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Introduction

The main purpose of this thesis is to study the categories of algebras over operads in the
context of a category of modules defined over a field of positive characteristic. Several well known
theorems of algebraic operads which are valid over the fields of characteristic 0 fail to be true in
this more general setting.

Let K be the ground ring of our category of modules. Briefly recall that an operad P consists
of a collection {P (n)}n∈N where P (n) is a K module equipped with an action of the symmetric
group on n-letters Sn, together with composition products which model the composition schemes
of abstract operations. The standard category of algebras associated to an operad P is governed
by a monad on the category of K-modules denoted by S(P,−). This monad S(P,−) is given by
a generalization of the classical construction of the symmetric algebra. We explicitly have :

S(P,V ) = ⊕
n∈N

P (n) ⊗Sn V
⊗n,

for everyK-module V , where P (n)⊗SnV
⊗n denotes the coinvariant quotient of the tensor product

of the component P (n) of our operad P and the tensor power V ⊗n under the diagonal action of
the symmetric group Sn. The composition products of an operad actually reflect the composition
product associated to a monad of this shape. The classical categories of algebras, like notably the
category of commutative algebras, and the category of Lie algebras, are associated to operad.

In [Fre00] B.Fresse observe that we can associate another monad Γ(P,−) to any operad P
by replacing the coinvariants in the definition of S(P,−) by invariants. We explicitly have :

Γ(P,V ) = ⊕
n∈N

P (n) ⊗Sn V ⊗n,

for every K-module V , where we use the notation ⊗Sn for this invariant construction.
Two important examples of algebraic structures come from this construction. The category

of divided power algebras is governed by Γ(Com,−), where Com is the operad of commutative
algebras. The category of p-restricted Lie algebras is governed by Γ(Lie,−), where Lie is the
operad of Lie algebras. The monads S(P,−) and Γ(P,−) are related by a natural transformation
of monads trace ∶ S(P,−) → Γ(P,−). The epi-mono factorization of this trace map defines a third
interesting monad denoted by Λ(P,−). These three monads coincide when the commutative ring
K contains Q. But in general they are different.

For a given operad P , we have no general method to obtain a description of the structure of
an algebra over the monads Λ(P,−) and Γ(P,−) in terms of generating operations and relations.
The first goal of my thesis is to find such presentations for a significant example of operad,
PreLie, which is associated to a category of algebras called pre-Lie algebras. Pre-Lie algebras
were introduced by M. Gerstenhaber [Ger63] in the deformation theory of associative algebras.
A pre-Lie algebra explicitly consists of a K-module V equipped with a bilinear product {−,−}
such that we have the relation :

{{x, y}, z} − {x,{y, z}} = {{x, z}, y} − {x,{z, y}},

for every x, y, z ∈ V . A pre-Lie algebra inherits a Lie bracket which is given by the commutator
of the pre-Lie product :

[x, y] = {x, y} − {y, x},

for every x, y ∈ V . In [CL01] F. Chapoton and M. Livernet prove that the category of pre-Lie
algebras is associated to an operad that has an explicit description in terms of rooted trees.
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Examples of pre-Lie algebras notably appear in deformation theory of algebraic structures (see
[DSV15]), in operad theory (see Section 5.4.6 [LV12]), and in renormalization theory for quantum
field theories (see [CK99]).

The main results of this thesis on pre-Lie algebras are explained in Chapter 1. First we show
that over a field of characteristic p > 0 the category of Λ(PreLie,−) algebras is isomorphic
to the category of p-restricted pre-Lie algebras introduced by A. Dzhumadil’daev in [Dzh01].
Explicitly :

Theorem A (Chapter 1, Theorem 1.4.16). We assume that the ground ring K is a field of
characteristic p. A ΛPreLie-algebra is equivalent to a K-module V equipped with an operation
{−,−} ∶ V ⊗V Ð→ V satisfying the PreLie-relation and the following p-restricted PreLie-algebra
relation :

{{. . .{{x, y}, y} . . .}y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p

} = {x,{. . .{{y, y} . . .}y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p

}},

for every x, y ∈ V .

Then we give a presentation by generating operations and relations of the structure of an
algebra over the monad Γ(PreLie,−) which is valid over any commutative ring :

Theorem B (Chapter 1, Theorem 1.5.19). If V is a free module over the ground ring K, then
providing the module V with a ΓPreLie-algebra structure is equivalent to providing V with a
collection of polynomial maps

{−;−, . . . ,−
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

n

}r1,...,rn ∶ V × V × . . . × V
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

Ð→ V,

for all n ∈ N, where r1, . . . , rn ∈ N and which are linear in the first variable and such that the
following relations hold :

{x; y1, . . . , yn}rσ(1),...,rσ(n) = {x; yσ−1(1), . . . , yσ−1(n)}r1,...,rn , (1)

for any σ ∈ Sn ;

{x; y1, . . . , yi−1, yi, yi+1, . . . , yn}r1,...,ri−1,0,ri+1,...,rn =

{x; y1, . . . , yi−1, yi+1, . . . , yn}r1,...,ri−1,ri+1,...,rn , (2)

{x; y1, . . . , λyi, . . . , yn}r1,...,ri,...,rn = λ
ri{x; y1, . . . , yi, . . . , yn}r1,...,ri,...,rn , (3)

for any λ in K ;

if yi = yi+1

{x; y1, . . . , yi, yi+1, . . . , yn}r1,...,ri,ri+1,...,rn =

(
ri + ri+1

ri
){x; y1, . . . , yi, yi+2, . . . , yn}r1,...,ri+ri+1,ri+2,...,rn . (4)

{x; y1, . . . , yi−1, a + b, yi+1, . . . , yn}r1,...,ri,...,rn =
ri

∑
s=0

{x; y1, . . . , a, b, . . . , yn}r1,...,s,ri−s,...,rn , (5)

{−;} = id, (6)

8



{{x; y1, . . . , yn}r1,...,rn ; z1, . . . , zm}s1,...,sn =

∑
si=βi+∑α ,i

1

∏(rj !)
{x;{y1; z1, . . . , zm}α1,1

1 ,...,α1,1
m
, . . . ,{y1; z1, . . . , zm}

α
1,r1
1 ,...,α

1,r1
m

,

. . . ,{yn; z1, . . . , zm}αn,11 ,...,αn,1m
, . . . ,{yn; z1, . . . , zm}αn,rn1 ,...,αn,rnm

,

z1, . . . , zm}1,...,1,β1,...,βm , (7)

where, to give a sense to the latter formula, we use that the denominators rj ! divide the coefficient
of the terms of the reduced expression which we get by applying relations (1) and (4) to simplify
terms with repeated inputs on the right hand side (see Example 1.5.11).

It turns out that some important examples of pre-Lie algebra have such a Γ(PreLie,−) alge-
bra structure. For example the K-module ⊕n P (n) associated to an operad P is a Γ(PreLie,−)
algebra.

Let P be an operad. Let V be a K-module. By a classical statement of the theory of operads,
providing V with the structure of an S(P,−)-algebra amounts to giving an operad morphism
φ ∶ P → EndV , where EndV is a universal operad associated to V (the endomorphism operad
of V ). But we do not have an analogue of this universal operad for the study of Γ(P,−)-algebra
structures, at least if we only consider operads in the classical sense. In Chapter 2, we explain
how to define a suitable generalisation of the notion of an operad in order to work out this
problem.

The functors Sn(P,V ) = P (n) ⊗Sn V
⊗n and Γn(P,V ) = P (n) ⊗Sn V ⊗n which define the

summands of the monads S(P,−) and Γ(P,−) associated to an operad P are examples of (strict)
polynomial functors of degree n in the sense of Friedlander-Suslin.

In a first step we explain the definition of a category of (cohomological) Mackey functors,
which generalize the Sn-modules considered in the definition of an operad, to get a combinatorial
“model” of the category of strict polynomial funtors of degree n. To give an idea of our definition,
we consider the collection Parn formed by the subgroups of the symmetric group Sn which are
conjugate to a group of the form Si1 × ⋯ × Sir ≤ Sn where i1 + ⋯ + ir = n. The cohomological
Mackey functors which we consider can be defined by giving a collection of K-modules M(π),
where π ∈ Parn, together with induction morphisms Indπ2

π1
∶ M(π1) → M(π2) and restriction

morphisms Resπ2
π1

∶ M(π2) → M(π1) for each pair of subgroup π1, π2 ∈ Parn such that π1 ≤ π2,
and conjugation operations cσ ∶M(π) →M(πσ) for each σ ∈ Sn, where πσ denotes the conjugate
subgroup of π in Sn under the action of σ. We suppose that these operations satisfy natural
relations. We notably assume Indπ2

π1
Resπ2

π1
= [π2 ∶ π1] Idπ2 in our category of cohomological

Mackey functors.
We denote the category of strict polynomial functors of degree n by PolFunn, and the

category of cohomological Mackey functors on Parn by Maccoh(HParn). We associate a strict
polynomial functor ev(M)n of degree n to every objectM ∈ Maccoh(HParn) and we prove that :

Theorem C (Chapter 2, Theorem 2.2.18). Our mapping evn∶ Maccoh(HParn) → PolFunn
defines an equivalence of categories from Maccoh(HParn) the category of cohomological Mackey
functors on Parn to the category PolFunn of strict polynomial functors of degree n.

We then consider a category of analytic functors, denoted by AnFun, whose objects are direct
sums F = ⊕n∈N Fn where Fn is a strict polynomial functor of degree n on the category of K-
modules. We check that the composition of functors lifts to the category AnFun, so that the
triple (AnFun, ○, Id), where ○ is this composition operation and Id is the identity functor, forms
a monoidal category. We consider on the other hand a category of M-modules ModM

K whose
objects are collections M = {Mn}n∈N such that Mn ∈ Maccoh(HParn), for each n. We consider
the obvious functor ev ∶ ModM

K → AnFun such that ev(M) = ⊕n∈N evn(Mn), for everyM ∈ ModM
K .

Theorem C implies that this functor defines an equivalence of categories.
We make explicit a composition product ◻ and a unit object I in the category of M-modules

ModM
K such that (ModM

K ,◻, I) forms a monoidal category and we establish the following results :

Theorem D (Chapter 2, Theorem 2.4.28). The mapping ev ∶M → ev(M), defines a (strongly)
monoidal functor from the category of M-modules equipped with the composition product ◻ to the
category of analytic functors AnFun equipped with the composition product ○.
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We then define an M-operad as a monoid object in the monoidal category of M-modules.
We denote the category of M-operads by M -Op. Theorem C and Theorem D have the following
corollary :

Corollary . The mapping P ↦ ev(P ) induces an equivalence of categories between the category
of M-operads and the category of analytic monads

Let us mention that our notion of an M-operad is equivalent to the notion of a Schur operad
defined in the Ph.D. thesis of Q. Xantcha [Xan10]. The main novelty of our approach is the
definition of our objects in terms of monoidal structures whereas Xantcha define his notion of
a Schur operad by using an abstract notion of polynomial operation. Xantcha’s approach is a
reminiscence of Lazard’s definition of an analizeur [Laz55].

We already mentioned that the summands Sn(P,−) and Γn(P,−) of the monads S(P,−) and
Γ(P,−) associated to an operad P are examples of strict polynomial functors. These monads
S(P,−) and Γ(P,−) form examples of analytic monads ; and so does the other third monad which
we associate to an operad Λ(P,−). We make explicit the M-operads S−(P ), Γ−(P ) and Λ−(P )
which correspond to these analytic monads. We prove that the category of p-restricted Poisson
algebras introduced by R. Bezrukavnikov and D. Kaled [BK08] in the study of deformation
theory of manifolds in positive characteristics is also associated to an M-operad p-Pois which is
not of this form.

To any K-module V is associated an M-operad denoted by PolyV . If P is an M-operad then
the set of P -algebras structures on V is recovered from the set HomM -Op(P,PolyV )

Theorem E (Chapter 2, Theorem 2.5.8). Let P be an M-operad and V be a K-module. The set
of P -algebras structures on V is in bijection with HomM -Op(P,PolyV ).

We also have a notion of an M-PROP which generalizes MacLane’s concept of a PROP,
and which can be used to govern categories of bialgebras. We define for instance an M-PROP
ΓBiAlgCom which governs the category of commutative-coassociative bialgebras with divided
powers (This category of bialgebras is equivalent to the André’s category of divided power Hopf
algebras [And71] when we work in a category of connected graded K-modules).

Outlook
The work-in-progress [Ces] is devoted to the study of applications of divided symmetries

pre-Lie algebras on the theory of combinatorial Hopf algebras. J.-M. Oudom, D. Guin [OG08],
and T. Schedler [Sch13] showed that for a Lie algebra coming from a pre-Lie algebra a strongest
version of Poincaré-Birkhoff-Witt’s Theorem holds, namely the quantum PBW theorem. The
aim of this work [Ces] is to study the p-restricted case and a generalization to divided power
algebras of this result.

Plan of the thesis
The thesis is divided in three chapters.
Chapter 1 is devoted to the study of pre-Lie algebras. We examine the definition of Λ(PreLie,−)-

algebras and Γ(PreLie,−)-algebras in terms of generating operations and relations, and we esta-
blish the results of Theorem A and Theorem B.We also give a bunch of examples of Λ(PreLie,−)-
algebra and Γ(Pre,Lie,−)-algebra structures in the concluding section of Chapter 1.

Chapter 2 is devoted to our study of the generalized operads which model the structure of
analytic monads. We explain the definition of our categories of cohomological Mackey functors
associated to our subset Parn of the set of subgroups of the symmetric group Sn. We define
the equivalence between these categories of cohomological Mackey functors and the category of
strict polynomial functors asserted in Theorem C. Then we explain the definition of our monoidal
structure and of our notion of operad in the category of M-modules, which fit in the results of
Theorem D and its corollary. We eventually establish the result of Theorem E and we give
examples of M-operads and of our more general notion of an M-PROP which naturally occur in
the field of algebra.

These Chapters 1 and 2 are independent articles of the author and each of these chapter
includes a self contained introduction and its own reminders.

10
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Chapter 1

On PreLie Algebras with Divided
Symmetries

abstract

We study an analogue of the notion of p-restricted Lie-algebra and of the notion of divided power algebra for
PreLie-algebras. We deduce our definitions from the general theory of operads. We consider two variants Λ(P,−)

and Γ(P,−) of the monad S(P,−) which governs the category of algebras classically associated to an operad P .
For the operad PreLie corresponding to PreLie-algebras, we prove that the category of algebras over the monad
Λ(PreLie,−) is identified with the category of p-restricted PreLie-algebras introduced by A. Dzhumadil’daev.
We give an explicit description of the structure of an algebra over the monad Γ(PreLie,−) in terms of brace-type
operations and we compute the relations between these generating operations. We prove that classical examples
of PreLie-algebras occurring in deformation theory actually form Γ(PreLie,−)-algebras.

Introduction
In this chapter, we study an analogue of the notion of p-restricted Lie-algebra and of the

notion of divided power algebra for PreLie-algebras.
PreLie-algebras were introduced by Gerstenhaber in [Ger63] to encode structures related to

the deformation complex of algebras. In recent years, applications of PreLie-algebras appear
in many other topics. Notably it has been discovered that they play a fundamental role in
Connes-Kreimer’s renormalization methods.

The category of PreLie-algebras is associated to an operad denoted by PreLie. To define
our notion of PreLie-algebras with divided symmetries, we use the general theory of B. Fresse
[Fre00], who showed how to associate a monad Γ(P,−) to any operad P in order to encode this
notion of algebra with divided symmetries.

Recall that the usual category of algebras associated to an operad P is governed by a monad
S(P,−) given by a generalized symmetric algebra functor with coefficients in the components
of the operad P . To define Γ(P,−) we merely replace the modules of coinvariant tensors, which
occur in the generalized symmetric algebra construction, by modules of invariants. We denote by
Λ(P,−) the monad given by the image of the trace map between S(P,−) and Γ(P,−). For short,
we call ΓP -algebras the category of algebras governed by the monad Γ(P,−), and we similarly call
ΛP -algebras the category of algebras governed by the monad Λ(P,−). It turns out that many
variants of algebra categories associated to these monads are governed by these monads. For
instance, for the operad P = Lie a ΛLie-algebra is equivalent to a Lie algebra equipped with an
alterned Lie bracket [x,x] = 0, while the ordinary category of algebras over the operad Lie only
depicts Lie algebras equipped with an antisymmetric Lie bracket [x, y] = −[y, x] (which differs
from the latter when the ground field has characteristic two). The category of ΓLie-algebras, on
the other hand, turns out to be equivalent to the classical notion of a p-restricted Lie algebra,
where p is the characteristic of the ground field (see [Fre00] and [Fre04])

We aim to give a description in terms of generating operations of the structure of an al-
gebra over the monads Λ(PreLie,−) and Γ(PreLie,−). Our main motivations come from the
applications of PreLie-algebras in deformation theory. We will see that significant examples of
PreLie-algebras occurring in deformation theory are actually ΓPreLie-algebras.
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Chapter 1. On PreLie Algebras with Divided Symmetries

To be explicit, recall that a PreLie-algebra is a module V equipped with an operation
{−,−} ∶ V ⊗ V Ð→ V such that :

{{x, y}, z} − {x,{y, z}} = {{x, z}, y} − {x,{z, y}},

for all x, y, and z in V .
First, we study the algebras over Λ(PreLie,−). We prove that these algebras are identified

with the notion of p-restricted PreLie-algebras in the sense of [Dzh01]. A p-restricted PreLie-
algebra is a PreLie-algebra where the following relation is satisfied

{. . .{x, y}, . . .}y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p

} = {x,{. . .{y, y} . . .}y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p

}.

Our result explicitly reads :

Theorem A (Theorem 1.4.16). We assume that the ground ring K is a field of characteristic p.
A ΛPreLie-algebra is equivalent to a K-module V equipped with an operation {−,−} ∶ V ⊗V Ð→ V
satisfying the PreLie-relation and the p-restricted PreLie-algebra relation.

Let V be a free K-module with a fixed basis. We prove the existence of an isomorphism of
graded free K-modules between S(PreLie, V ) and Γ(PreLie, V ). Using this isomorphism we ex-
press the composition morphism of the free algebra Γ(PreLie, V ) and find a normal form for its
elements. We combine these results to give a presentation of Γ(PreLie,−) : this monad is deter-
mined by n+ 1-fold polynomial “corollas” operations {−;−, . . . ,−

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
n

}r1,...,rn of degree (1, r1, . . . , rn)

and which satisfy some relations. We obtain the following theorem :

Theorem B (Theorem 1.5.19). If V is a free module over the ground ring K, then providing
the module V with a ΓPreLie-algebra structure is equivalent to providing V with a collection of
polynomial maps

{−;−, . . . ,−
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

n

}r1,...,rn ∶ V × V × . . . × V
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

Ð→ V,

where r1, . . . , rn ∈ N and which are linear in the first variable and the following relations hold :

{x; y1, . . . , yn}rσ(1),...,rσ(n) = {x; yσ−1(1), . . . , yσ−1(n)}r1,...,rn , (1)

for any σ ∈ Sn ;

{x; y1, . . . , yi−1, yi, yi+1, . . . , yn}r1,...,ri−1,0,ri+1,...,rn =

{x; y1, . . . , yi−1, yi+1, . . . , yn}r1,...,ri−1,ri+1,...,rn , (2)

{x; y1, . . . , λyi, . . . , yn}r1,...,ri,...,rn = λ
ri{x; y1, . . . , yi, . . . , yn}r1,...,ri,...,rn , (3)

for any λ in K ;

if yi = yi+1

{x; y1, . . . , yi, yi+1, . . . , yn}r1,...,ri,ri+1,...,rn =

(
ri + ri+1

ri
){x; y1, . . . , yi, yi+2, . . . , yn}r1,...,ri+ri+1,ri+2,...,rn . (4)

{x; y1, . . . , yi−1, a + b, yi+1, . . . , yn}r1,...,ri,...,rn =
ri

∑
s=0

{x; y1, . . . , a, b, . . . , yn}r1,...,s,ri−s,...,rn , (5)

14



1.1. Operads and their monads

{−;} = id, (6)

{{x; y1, . . . , yn}r1,...,rn ; z1, . . . , zm}s1,...,sm =

∑
si=βi+∑α ,i

1

∏(rj !)
{x;{y1; z1, . . . , zm}α1,1

1 ,...,α1,1
m
, . . . ,{y1; z1, . . . , zm}

α
1,r1
1 ,...,α

1,r1
m

,

. . . ,{yn; z1, . . . , zm}αn,11 ,...,αn,1m
, . . . ,{yn; z1, . . . , zm}αn,rn1 ,...,αn,rnm

,

z1, . . . , zm}1,...,1,β1,...,βm , (7)

where, to give a sense to the latter formula, we use that the denominators rj ! divide the coefficient
of the terms of the reduced expression which we get by applying relations (1) and (4) to simplify
terms with repeated inputs on the right hand side (see Example 1.5.11).

We give explicit examples of ΓPreLie-algebras in the last section. Notably we explain that
ΓPreLie-algebras naturally occur in the study of Brace-algebras in characteristic different from
0. The already alluded to applications of ΓPreLie-algebras in deformation theory actually arise
from this relationship.

Contents
We devote sections 1−2 to general recollections on the operadic background of our construc-

tions and to the definition of the operad PreLie.
In section 3 we construct a normal form for S(PreLie, V ) and a basis for Γ(PreLie, V ). We

establish the equivalence between ΛPreLie-algebras and p-restricted PreLie-algebras in section
4. We give the construction of a presentation of Γ(PreLie,−) in section 5. We conclude with
examples of ΓPreLie-algebras in section 6.

1.1 Operads and their monads
In this section, we briefly survey the general definitions of operad theory which we use in the

chapter. This section does not contain any original result. We follow the presentation of [Fre00]
for the definition of the monads Λ(P,−) and Γ(P,−) associated to an operad. We refer to the
books [MSS02], [LV12], and [Fre09] for a comprehensive account of the theory of operads. We
work in a category of modules, ModK, over a fixed commutative ground ring K. For simplicity, we
assume that K is a field in the statement of the general results and in the account of the general
constructions of this section. We only consider the general case of a ring in concluding remarks
at the end of each subsection (1.1.1-1.1.4). We explain in these remarks the extra assumptions
which we need to make our constructions work when we work over a ring.

1.1.1 S-Modules
We recall the notion of S-module, which underlies the notion of operad, and the definition of

three monoidal structures on the category of S-modules.

Definition 1.1.1. We denote by Sn the symmetric group on a finite set of n elements. An
S-module M is a collection {M(n)}n∈N where M(n) is an Sn-K-module for each n ∈ N.

A morphism between S-modules f ∶M Ð→ N is a collection {fn ∶M(n) Ð→ N(n)}n∈N where
fn is a morphism of Sn-K-modules for each n ∈ N.

We denote by ModS
K the category of S-modules.

We recall the definition of generalized symmetric (respectively, divided symmetries) tensors
associated to an S-module. These functors determine the monads that define algebras over an
operad and divided symmetries algebras over an operad.

Definition 1.1.2. We denote by End(ModK) the category of endofunctors of ModK. Let V be an
K-module and M be an S-module. On V ⊗n the monoidal structure of the tensor product induces
a natural Sn-action. The K-module M(n) ⊗ V ⊗n is equipped with the diagonal Sn action. The
Schur functor S(M,−) ∶ ModK Ð→ModK is defined as :

S(M,V ) :=⊕
n

M(n) ⊗Sn V
⊗n,
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Chapter 1. On PreLie Algebras with Divided Symmetries

where ⊗Sn means the K-module of co-invariants of the tensor product M(n) ⊗ V ⊗n under the
diagonal action ; and the coSchur functor Γ(M,−) ∶ ModK Ð→ModK is defined as :

Γ(M,V ) :=⊕
n

M(n) ⊗Sn V ⊗n,

where ⊗Sn means the K-module of invariants.
We then have two functors S ∶ ModS

K Ð→ End(ModK) defined as S(M) ↦ S(M,−), and
Γ ∶ ModS

K Ð→ End(ModK) defined as Γ(M) ↦ Γ(M,−).

Remark 1.1.3. The functors S(M,−) and Γ(M,−) are full and faithful when the ground ring
is an infinite field.

Between the coinvariant space and the invariant space there is a map called the trace (or
norm) map.

Definition 1.1.4. Let M be an S-module. The trace map is the natural transformation Tr ∶
S(M,−) Ð→ Γ(M,−) such that :

Tr(m⊗ v1 ⊗ . . .⊗ vn) = ∑
σ∈Sn

σ∗(m⊗ v1 ⊗ . . .⊗ vn),

for each m ∈ M , v1, . . . vn ∈ V , and where we take the diagonal action of σ ∈ Sn on the tensor
m⊗ v1 ⊗ . . .⊗ vn ∈M(n) ⊗ V ⊗n.

Remark 1.1.5. The natural transformation Tr is an isomorphism in characteristic 0, but this
is no longer the case in positive characteristic.

Definition 1.1.6. We consider three monoidal structures on ModS
K, letM , N be two S-modules :

1. the tensor product − ⊠ − ∶ ModS
K ×ModS

K Ð→ModS
K of S-modules, defined by

(M ⊠N)(n) := ⊕
i+j=n

IndSn
Si×SjM(i) ⊗N(j),

and whose unit is the S-module such that K(n) =

⎧⎪⎪
⎨
⎪⎪⎩

K if n = 0

0 if n ≠ 0,

2. the coinvariant composition product −◻
̃
− ∶ ModS

K ×ModS
K Ð→ModS

K of S-modules, defined
by

M◻
̃
N :=⊕

r

M(r) ⊗Sr N
⊠r,

and whose unit is the S-module such that I(n) =
⎧⎪⎪
⎨
⎪⎪⎩

K if n = 1

0 if n ≠ 1,
.

3. and the invariant composition product −◻̃− ∶ ModS
K ×ModS

K Ð→ModS
K of S-modules, defi-

ned by

M ◻̃N :=⊕
r

M(r) ⊗Sr N⊠r,

with the same unit object as the coinvariant tensor product.
The tensor product − ⊠ − is symmetric, while the composition products −◻

̃
− and −◻̃− are not.

The two functors S and Γ are monoidal, more precisely :

Proposition 1.1.7. The functors S ∶ ModS
K Ð→ End(ModK) and Γ ∶ ModS

K Ð→ End(ModK)
define :

1. strongly symmetric monoidal functors

(ModS
K,⊠,K)

S // (End(ModK),⊗,K) and (ModS
K,⊠,K)

Γ // (End(ModK),⊗,K),

where ⊗ is the pointwise tensor product, inherited from the tensor product of K-modules,
on the category of functors ;
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1.1. Operads and their monads

2. strongly monoidal functors

(ModS
K,◻̃

,K)
S // (End(ModK), ○, Id) and (ModS

K, ◻̃,K)
Γ // (End(ModK), ○, Id),

where ○ is the composition of functors.

Proof: These assertions are classical for S (see for instance [LV12, Ch. 5]) and the analogue
of these relations for Γ is established in [Fre00].

Remark 1.1.8. The statements of Proposition 1.1.7 remain valid without any change when we
work with a commutative ground ring K in the case of the functor S ∶M ↦ S(M,−).

For the functor Γ(P,−) the statement of Proposition 1.1.7 is still valid if K is an hereditary
ring, we restrict ourself to S-modules M whose components M(r) are projective as K-modules
for all r ∈ N, and we consider the restriction of our functor Γ(M,−) to the category of projective
K-modules.

In short the tensor product M(r)⊗V ⊗r form a projective K-module as soon as M(r) and V
do so. We just use the assumption that the ring K is hereditary to ensure that M(r) ⊗Sr V ⊗r ⊆
M(r) ⊗ V ⊗r is still projective as a K-module. We accordingly get that the map Γ(M,−) ∶ V ↦
Γ(M,V ) defines an endofunctor of the category of projective K-modules in this case. We then
use that the tensor product with a projective module preserves kernels (and hence invariants) to
check the validity of the claims of our proposition, after observing that the invariant composition
of S-modules also consists of projective K-modules in this setting.

1.1.2 Operads and P -algebras
We now recall the definition of an operad and the definition of the monads associated to an

operad which we use in this chapter. To be specific, when we use the name operad, we mean
symmetric operad, and we define this structure by using the coinvariant composition product
recalled in the previous subsection.

Definition 1.1.9. We define an operad to be a triple (P,µ, η) where P is an S-module, µ ∶
P◻
̃
P Ð→ P, is a multiplication morphism, and η ∶ I Ð→ P a unit morphism such that P forms

a monoid in (ModS
K,◻̃

, I).

If P is an operad, then S(P,−) is a monad by Proposition 1.1.7.
In what follows, we also use that the composition structure of an operad is determined by

composition operations ○i ∶ P (m)⊗P (n) Ð→ P (m+n−1) defined for any m,n ∈ N and 1 ≤ i ≤m,
and which satisfies natural equivariance and associative relations. The unit morphism can then
be given by a unit element 1 ∈ P (1) which satisfies natural unit relations with respect to these
composition products. We refer to [Fre00] for instance for more details on this correspondence.

Since a general theory of free operads and their ideals can be set up (see [Fre09]) we can
present operads by generating operations and relations.

Definition 1.1.10. Let P be an operad, we define a P -algebra to be an algebra over the monad
S(P,−).

We have the following classical statement.

Proposition 1.1.11. Let V be a K-module and (P,µ, η) be an operad. The K-module S(P,V )
equipped with the morphisms induced by µ and η is itself a P -algebra.

Proof: See [LV12, Sec. 5.2.5].

Remark 1.1.12. The statement of 1.1.11 remains valid without any extra assumption on our
objects nor change when we work over a general ring K.

1.1.3 Γ(P,−) and Λ(P,−) monads
Under a connectivity condition any operad structure on an S-module P induces a monad

structure on Γ(P,−). We define ΓP -algebras as the algebras for the monad Γ(P,−). The trace
map is a natural transformation of monads. The concept of ΓP -algebra was introduced by B.
Fresse in [Fre00]. We recall the definition of these concepts in this section.
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Chapter 1. On PreLie Algebras with Divided Symmetries

Definition 1.1.13. An S-module N is connected if N(0) = 0.

We rely on the following observation :

Proposition 1.1.14. Let M and N be two S-modules. If N is connected, then we have an
isomorphism TrM,N ∶M◻

̃
N Ð→M ◻̃N .

Proof: See [Fre00].

This proposition has the following consequence :

Proposition 1.1.15. Let (P,µ, η) be a connected operad. There exists a product µ̃ ∶ P ◻̃P Ð→ P
given by :

P ◻̃P
≅
←Ð P◻

̃
P

µ
Ð→ P

and making (P, µ̃, η) into a monoid in the monoidal category (ModS
K, ◻̃, I). ◻

Corollary 1.1.16. Let (P,µ, η) be a connected operad ; then (Γ(P,−), µ̃, η) is a monad. ◻

Definition 1.1.17. Let (P,µ, η) be a connected operad. A ΓP -algebra is an algebra over the
monad Γ(P,−).

From now on we only consider connected operads.

Proposition 1.1.18. Let P a connected operad. The natural transformation Tr ∶ S(P,−) →
Γ(P,−) is a morphism of monads.

Proof: See [Fre00].

We introduce a third kind of algebras called ΛP -algebras.

Definition 1.1.19. We denote by Λ(P,−) ∶ ModK Ð→ModK the functor defined by the epi-mono
factorization of the trace map.

Proposition 1.1.20. Let P a connected operad. The functor Λ(P,−) forms a submonad of
Γ(P,−) and the factorization

S(P,−) → Λ(P,−) → Γ(P,−)

forms a monad morphism.

Proof: We use that Tr is a morphism of monads and that the functor S(P,−) preserves the
epimorphisms to obtain that we have a commutative diagram of the form :

S(P,S(P,−)) Λ(P,Λ(P,−)) Γ(P,Γ(P,−))

S(P,−) Λ(P,−) Γ(P,−).

Tr○S(P,Tr)=Γ(P,Tr)○Tr

∃

Tr

We deduce from this diagram that the composition product of the monad Γ(P,−) and factor
through Λ(P,−). The unit of Γ(P,−) similarly factors through Λ(P,−). The conclusion of the
proposition follows.

Definition 1.1.21. Let P be a connected operad, a ΛP -algebra is an algebra for the monad
Λ(P,−).
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Remark 1.1.22. Any ΛP -algebra V is a P -algebra. Any ΓP -algebra W is a ΛP -algebra by the
following commutative diagram :

Λ(P,V ) //

��

V

Γ(P,V ).

;;

Remark 1.1.23. The statements of this subsection have a generalization when we work over
a hereditary ring. We then assume that the components of our operads P (r) form projective
K-modules, for all r ∈ N, and we use that the map Γ(P,−) ∶ V ↦ Γ(P,V ) defines an endofunctor
of the category of projective K-modules, according to the observation of Remark 1.1.8. We get
that this functor Γ(P,−) forms a monad in this case, and that Λ(P,−) is a submonad of this
monad over the category of projective K-modules.

We can actually forget the assumption that K is hereditary in the case of the PreLie ope-
rad which we study in the following section. We will actually see that Γ(PreLie,−) ∶ V ↦
Γ(PreLie, V ) induces an endofunctor of the category of free K-module without any further as-
sumption on the ground ring K.

1.1.4 Non-symmetric operads and TP -algebras
We mostly use symmetric operads in this chapter. But we also consider a monad T (P,−)

which is naturally associated to any non-symmetric operad. We explain this auxiliary construc-
tion in this subsection.

Notations 1.1.24. We denote by ModN
K the category of K-modules graded on N.

Definition 1.1.25. Let A be in ModN
K. There is a functor T (A,−) ∶ ModK Ð→ModK defined as

follows :

T (A,V ) =⊕
n

A(n) ⊗ V ⊗n.

Forgetting the action of the symmetric groups we get a functor U ∶ ModS
K Ð→ModN

K. Composing
U with T (−,−) we have a functor T ∶ ModS

K Ð→ End(ModK).

Definition 1.1.26. Let M , N be two graded modules. We define the graded module M ◻N by :

M ◻N(n) =⊕
r

M(r) ⊗ ( ⊕
n1+...nr=n

N(n1) ⊗ . . .⊗N(nr)),

This operation gives a monoidal structure on ModN
K.

We have the following proposition :

Proposition 1.1.27. The functor T ∶ (ModS
K,◻, I) Ð→ (End(ModK), ○, Id) is strongly mono-

idal.

Proof: We easily adapt the proof of the counterpart of this statement for S and Γ.

Definition 1.1.28. Let P a non-symmetric operad, a TP -algebra is an algebra over the monad
T (P,−).

Let P be an operad and V a K-module ; then T (P,V ) is a TP -algebra with a structure map
given by the map µ on P and juxtaposition of words formed by elements of V .

Definition 1.1.29. There is a natural transformation given by the quotient

pr ∶ T (P,−) Ð→ S(P,−).

Proposition 1.1.30. Let P be a connected operad. The two natural transformations in and pr
are monad morphisms.
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Proof: Let V be a K-module. This statement follows from the commutativity of the following
diagrams :

T (P,T (P,V )) //

≅
��

S(P,S(P,V ))

≅
��

T (P ◻ P,V )

��

S(P◻
̃
P,V )

T (P◻
̃
P,V ).

pr

66

The verification of this commutative property is immediate.

Remark 1.1.31. The results of this subsection remain valid without change when we work over
a commutative ring K.

1.2 On PreLie and rooted trees operads
We recall the definition of PreLie-algebras. These algebras have a binary product and a

relation, sometimes called right associativity.
The PreLie-algebras were introduced in [Ger63] by Gerstenhaber. We refer to [CL01] for

the definition of the operad which governs this category of algebras. We also refer to [Man11]
for a survey on the theory and to [Dok13] for some applications of PreLie-algebras in positive
characteristic.

Definition 1.2.1. A K-module V is a PreLie-algebra if it is endowed with a bilinear product :

{−,−} ∶ V ⊗ V Ð→ V,

such that

{{x, y}, z} − {x,{y, z}} = {{x, z}, y} − {{x, y}, z}.

The PreLie bracket defines a Lie bracket by : [a, b] = {a, b} − {b, a} .
This structure appears naturally in different contexts. We recall some examples which we

revisit in the context of ΓPreLie-algebras.

Example 1.2.2. 1. Let P be an operad ; we can define a PreLie-algebra structure on the
following K-module ⊕n P (n). Explicitly the PreLie-product is given by the following for-
mula :

{p, q} = ∑
i∈{1,...,n}

p ○i q

where p ∈ P (n) and q ∈ P (m). We go back to this example in Section 1.6 where we study
the relation between PreLie-systems and ΓPreLie-algebras.

2. The Hochschild complex of an associative algebra A defined as Cr(A,A) = Hom(A⊗r,A)
has a dg-PreLie-algebra structure. For f ∈ Cm(A,A) and g ∈ Cn(A,A), we explicitly
have :

{f, g}(x1, . . . , xn+m−1) =
m

∑
i=1

(−1)(n−1)(i−1)f(x1, . . . , xi−1, g(xi, . . . , xn+i−1), xn−i. . . . , xn+m−1),

This structure was introduced by Gerstenhaber in [Ger63] and can actually be defined
on the deformation complex of any algebra over an operad (see [LV12, Ch. 12]). This
PreLie-algebra structure on the Hochschild complex of an algebra is also a special case
of the previous example, where we take P = ΛEndA, the operadic suspension Λ of the
endomorphism operad EndA of A.
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We have a new type of PreLie-algebras, called p-restricted PreLie-algebras, which occur
when the ground ring is a field of characteristic p > 0. As for p-restricted Lie-algebras, introduced
by N. Jacobson in [Jac79], p-restricted PreLie-algebras appear naturally in the study of PreLie
structures in positive characteristic p. This kind of algebras was introduced by A. Dzhumadil’daev
in [Dzh01].

Definition 1.2.3. Fixed a field K of characteristic p. Let (L,{,}) be a PreLie-algebra. It is a
p-restricted PreLie, or p − PreLie-algebra if the following equation holds :

{{. . .{{x, y}, y} . . .}y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p

} = {x,{. . .{{y, y} . . .}y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p

}}.

Remark 1.2.4. In [Dok13] I. Dokas introduces a more general notion of p-restricted PreLie-
algebra. A “generalized” p-restricted PreLie-algebra is a PreLie-algebra V endowed with a Fro-
benius map φ ∶ V → V satisfying some relations. If we assume φ = {{⋯{y, y},⋯}, y

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p

} we retrieve

the definition of A. Dzhumadil’daev (Definition 1.2.3).

Example 1.2.5. Simple Lie algebra sl(2,K). In characteristic 0 a semisimple Lie algebra
does not admit a PreLie structure. But this is no longer the case in positive characteristic. In
[Dok13] it is shown that sl(2,K) admits a PreLie structure if and only if char(K) = 3. In this
case the PreLie structure is 3-restricted. For details and proof see [Dok13].

Rota-Baxter algebras. In [Dok13] it is shown that the Rota-Baxter algebras, introduced by
Gian-Carlo Rota in [Rot95], admit a p-restricted PreLie structure.

PreLie-algebras in the sense of 1.2.1 are identified with a category of algebras over an operad
defined by generators and relations. We recall another description of this operad in terms of trees.

1.2.1 Non labelled trees
In this section we introduce the definition of non labelled tree.

Definition 1.2.6. We use the name non labelled tree to refer to a non-empty, finite, connected
graph, without loops, with one special vertex called the root. The edges of such a tree admit a
canonical orientation with the root as ultimate outgoing vertex, we have a pre-order corresponding
to this orientation on the set of vertices of the tree, with the root as least element. Two non
labelled trees are isomorphic if they are isomorphic as graphs by an isomorphism which preserves
the root.

If necessary, we speak about a non labelled n-tree to specify the number n of vertices.

Definition 1.2.7. Let τ be a non labelled tree, a sub-tree is a connected sub-graph with root its
minimum vertex by the pre-order defined by τ .

Definition 1.2.8. Let τ be a non labelled rooted tree, a branch B of τ is a maximal subtree of
τ that does not contain the root, where maximal has to be understood as a maximal element in
the poset, defined by inclusion, of non labelled sub-trees of τ .

Definition 1.2.9. Let τ be a non labelled tree and B be a branch of τ , the set iso(B) is the set
of all branches of τ isomorphic, as non labelled trees, to B.

1.2.2 Labelled trees
We define the concept of labelled tree.

Definition 1.2.10. We call labelled tree, or just tree, a non labelled tree with a fixed bijection,
called labelling, between its vertices and the set {1, . . . , n}, where n is the number of vertices.
We denote by RT (n) the set of labelled trees with n vertices. The group Sn acts on this set by
permuting the labelling.

If necessary, we use the expression of n-tree to specify the number of vertices of a tree.
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Example 1.2.11. The following is a 3-tree :

br r
@�

3

2 1

,

with root the vertex labelled by 3.
Notice that our trees are not planar. For example, we have :

br r
@�

3

2 1

= br r
@�

3

1 2

.

Definition 1.2.12. The S-module RT of rooted trees is

RT (n) :=K[RT (n)],

where K[X] is the K-module freely generated by the base set X.

Example 1.2.13. Let σ be the permutation of S3 that permutes 1 with 2 and fixes 3 :

σ∗ br r
@�

1

2 3

= br r
@�

2

1 3

.

1.2.3 The rooted trees operad
The S-module RT can be endowed with a structure of operad. This new operad is isomorphic

to PreLie. We review this result in this section. The proof of the isomorphism is given in [CL01].

Definition 1.2.14. We define the following partial compositions :

− ○i − ∶ RT (m) ×RT (n) Ð→ RT (n +m − 1),

with 1 ≤ i ≤m as follows, let In(τ , i) be the set of incoming edges of the vertex of τ labelled i :

τ ○iυ := ∑
f ∶In(τ,i)Ð→{1,...,n}

τ ○fi υ,

where τ ○fi υ is the n +m − 1-tree obtained by substituting the tree υ to the ith vertex of the tree
τ , by attaching the outgoing edge of this vertex in τ , if it exists, to the root of υ, and the ingoing
edges to vertices of υ following the attaching map f and then labelling following the labelling of
τ and the labelling of υ after obvious the shift. The sum runs over all these attachment maps
f ∶ In(τ, i) Ð→ {1, . . . n}.

Example 1.2.15.

r2 b1
○1 br r
@�

1

2 3

=

r4 r2 r3
@�b

1

+

r4r2 r3
@�b

1

+
rbr r

@�
1

2 3 4

.

Lemma 1.2.16. These partial compositions define a total composition γ ∶ RT ○RT Ð→ RT that
is an operad structure on the S-module RT .

Example 1.2.17.

r2 b1
( br r
@�

1

2 3

, b1 ) =

r4 r2 r3
@�b

1

+

r4r2 r3
@�b

1

+
rbr r

@�
1

2 3 4

.

Theorem 1.2.18 (Chapoton, Livernet). The PreLie operad is isomorphic to the RT operad.
The isomorphism ϕ ∶ PreLie Ð→ RT is realized by sending the generating operations of PreLie
to r2 b1

.

Proof: See [CL01].
From now on we do not make any difference between RT and PreLie if it is not strictly necessary
and therefore we will talk about trees as elements of PreLie.
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1.3 A basis of Γ(PreLie, V )
The aim of this section is to make explicit a basis of the module Γ(PreLie, V ) when V is a

K-module equipped with a fixed basis V.

Definition 1.3.1. Let x1, . . . , xn be elements of V , and τ be an n-tree. We denote the element
τ ⊗x1 ⊗ . . . ⊗ xn in T (RT,V ) by τ⟨x1, . . . , xn⟩ and the class [τ ⊗x1 ⊗ . . . ⊗ xn] in S(RT,V ) by
τ(x1, . . . , xn) . If we fix a basis V of V , then we call :

— canonical basis of T (RT,V ) the set T (RT ,V) = {τ⟨x1, . . . , xn⟩∣ τ ∈ RT (n), xi ∈ V},
— and canonical basis of S(RT,V ) the set S(RT ,V) = {τ(x1, . . . , xn)∣ τ ∈ RT (n), xi ∈ V}.

The epimorphism pr ∶ T (RT,V ) Ð→ S(RT,V ) restricts to a surjective function

pr ∶ T (RT ,V) Ð→ S(RT ,V).

Definition 1.3.2. Let V be a free K-module with a fixed basis V. Let t = τ⟨x1, . . . xn⟩ be an
element of T (RT ,V). The stabilizer of t, denoted by Stab(t), is the subgroup of Sn defined by :

Stab(t) :={σ ∈ Sn ∣ σ∗ t = t},

where we consider the diagonal action of permutations σ ∈ Sn on the tensor τ ⊗ x1 ⊗ . . . ⊗ xn
which represents our element t = τ⟨x1, . . . , xn⟩.

Example 1.3.3. Let V be a free K-module with a fixed basis V, and x, y, z be elements of V.
We have the following formulas :

Stab( br r
@�

1

2 3

{x, y, z}) = {id},

and

Stab( br r
@�

1

2 3

{y, x, x}) = {id, (2,3)}.

Definition 1.3.4. We define Fn to be the following labelled n + 1-tree br rpp p pp
@�

1

2 n+1

.

Proposition 1.3.5. Let V be a free K-module with a fixed basis V and x0, . . . , xr be elements of
V such that xp ≠ xq if p ≠ q and p, q ≠ 0. Consider the element Fn⟨x0, x1, . . . , x1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i1

, . . . , xr, . . . , xr
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ir

⟩

in T (RT ,V) ; then Stab(Fn⟨x0, x1, . . . , x1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i1

, . . . , xr, . . . , xr
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ir

⟩) is isomorphic to Si1 × . . . × Sir .

Proof: An element σ of Sn+1 is in Stab(Fn⟨x0, x1, . . . , x1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i1

, . . . , xr, . . . , xr
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ir

⟩) if its action fixes

both Fn and x0, x1, . . . , x1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i1

, . . . , xr, . . . , xr
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ir

. Since Fn should be fixed we have that x0 is fixed and

then σ has to be in the stabilizer of x1, . . . , x1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i1

, . . . , xr, . . . , xr
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ir

that is isomorphic to Si1×. . .×Sir .

Definition 1.3.6. Let V be a free K-module with a fixed basis V. Let t be an element of
S(RT ,V). We define Dec(t) to be the element of S(RT ,S(RT ,V)) :

Fr(x0,B1, . . . ,Br),

where Fr is isomorphic as non labelled rooted tree to the full sub-corolla with root x0 the element
of V corresponding to the root of t, and Bj are elements of S(RT ,V) corresponding to the
branches of t.
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In the literature the elements Fr(x,T1, . . . , Tr) are sometimes denoted B(x,T1, . . . , Tr), see
[CK98].

Example 1.3.7. Let t be the element :

r4 r2 r3
@�b

1

(x0, x1, x2, x3).

We have :
Dec(t) = F2(x0,

r2 b1
(x1, x3), b1 (x2)).

Remark 1.3.8. Let V be a free K-module with a fixed basis V, and t be an element of S(RT ,V).
If µ ∶ S(RT,S(RT,V )) Ð→ S(RT,V ) is the composition product for the operad RT then
µ(Dec(t)) = t.

Definition 1.3.9. Let V be a free K-module with a fixed basis V. By iterating the process of
Definition 1.3.6, we can decompose any element t ∈ S(RT ,V) into a composition of corollas
whose roots are labelled by elements of the basis V. We refer to this decomposition as the normal
form of t. It is unique up to the permutations of the non root entry of corollas.

Definition 1.3.10. Let V be a free K-module with a fixed basis V. Let t be an element of
T (RT ,V), and σ be an element in Sn. Then Stab(t) is isomorphic to Stab(σ∗ t). Therefore we
can define the group Stab(t) where t is an element of S(RT ,V) as Stab(t) where t is in the
pre-image of t under pr ∶ T (RT ,V) Ð→ S(RT ,V).

The group Stab(t) can be computed by induction.

Proposition 1.3.11. Let V be a free K-module with a fixed basis V, and t be an element of
T (RT ,V). Then Stab(t) is isomorphic to Stab(Dec(t))⋉(Stab(B1)× . . .×Stab(Br)), where the
semi-direct product is defined by the action of Stab(Dec(t)) which permutes isomorphic branches.

Proof: There is an obvious inclusion of Stab(Dec(t)) ⋉ (Stab(B1) × . . . × Stab(Br)) into
Stab(t). Since any element of Stab(t) can be written in a unique way as a product of an ele-
ment in Stab(Dec(t)) and an element in (Stab(B1) × . . . × Stab(Br)) the inclusion is actually
an isomorphic.

Definition 1.3.12. Let V be a free K-module with a fixed basis V. Let t be an element of
T (RT ,V). We set :

O t := ∑
σ∈Sn/Stab(t)

σ∗ t,

Remark 1.3.13. Let V be a free K-module with a fixed basis V. Let t be an element of T (RT ,V).
We clearly have O t = O σ∗ t for any permutation σ. Hence, this map passes to the quotient over
coinvariants and induces a map of K-modules O ∶ S(RT,V ) Ð→ Γ(RT,V ) by linearity. Let x be
an element of V . It is easy to show that O b1 (x) is equal to b1 ⊗ x (where b1 is the unique
1-tree). If there is no risk of confusion we will denote this element just by x.

Notice that, in general, Tr(t) differs from O t.

Example 1.3.14. Let V be a free K-module with a fixed basis V, and x, y be elements of V, we

compute O br r
@�

1

2 3

{x, y, y} :

O br r
@�

1

2 3

(x, y, y) = br r
@�

1

2 3

⊗ x ⊗ y ⊗ y + br r
@�

2

1 3

⊗ y ⊗ x ⊗ y + br r
@�

3

2 1

⊗ y ⊗ y ⊗ x.
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Given a free K-module V , we want to compare the K-modules Γ(RT,V ) and S(RT,V ).
We show that they are isomorphic and that this isomorphism is realized by the map O ∶
S(PreLie, V ) Ð→ Γ(PreLie, V ).

We use the following elementary result :

Lemma 1.3.15. Let G be a group and X be a G-set. There exists a isomorphism between K[X]G
and K[X]G, where K[X] is the free K-module over the set X. ◻

Proposition 1.3.16. Let V be a free K-module with a fix basis V. We define the set OS(RT ,V) =
{O t ∣t ∈ S(RT ,V)}. The set OS(RT ,V) forms a basis for the K-module Γ(RT,V ).

Proof: By definition the map O ∶ S(RT,V ) Ð→ Γ(RT,V ) gives a set-map O ∶ S(RT ,V) Ð→
OS(RT ,V) defined by the bijection of Lemma (1.3.15).

1.4 The equivalence between ΛPreLie-algebras and p−PreLie-
algebras

In this section we assume that K is a field of positive characteristic p . We show that the
categories of ΛPreLie-algebras and p−PreLie-algebras are isomorphic. Let us observe that this
implies that the category of p − PreLie-algebras is a monadic subcategory of PreLie-algebras.

In [Dok13] I. Dokas proves that ΓPreLie-algebra are p-restricted PreLie-algebras. Here we
improve this result by showing that the restricted PreLie structure is given by the ΛPreLie
action on ΓPreLie.

Remark 1.4.1. In [Dok13] I. Dokas introduces a more general notion of p-restricted PreLie-
algebras, here we consider the less general definition given by in A. Dzhumadil’daev in [Dzh01].

Recall that Λ(PreLie, V ) is the target of the epimorphism given by the epi-mono decompo-
sition of the trace map.

Ker(TrV )� u

''
S(PreLie, V )

(( ((

TrV // Γ(PreLie, V )

Λ(PreLie, V )
) 	

66

.

We compute the kernel of the trace map.

Proposition 1.4.2. Let V be a K-module with a fixed basis V. Let t be an element of S(RT ,V).
We have Tr(t) = ∣Stab(t)∣O t.

Proof: Let t be equal to τ(x1, . . . , xn) for some tree τ and x1, . . . , xn elements of V. Then
the following equation holds :

Tr(τ(x1, . . . , xn)) = ∑
σ∈Sn

σ∗ τ⟨x1, . . . , xn⟩ =

∑
Stab(τ(x1,...,xn))

∑
σ∈ Sn

Stab(τ(x1,...,xn))

σ∗ τ⟨x1, . . . , xn⟩ = ∣Stab(t)∣O t .

Corollary 1.4.3. Let V be a K-module with a fixed basis V. The kernel of the trace map is
linearly generated by the elements t of S(RT ,V) such that ∣Stab(t)∣ is a multiple of p.

Proof: The proof follows from Proposition 1.4.2 and from the observation that the map
t↦ O t defines a one-to-one correspondence from a basis of S(RT,V ) to a basis of Γ(RT,V ).
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Lemma 1.4.4. Let V be a K-module with a fixed basis V. Let t be an element of S(RT ,V).
Then t has trace zero if and only if the expression Fn+p(x,B, . . . ,B

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p

,B1, . . . ,Bn) with B and

Bi ∈ S(RT ,V) appears in its normal form.

Proof: The proof follows from Proposition 1.3.11, since Stab(t) is an iterated product of
semi-direct products of symmetric groups representing the stabilizers of the corollas which com-
pose the normal form of t.

We improve this result and find a smaller collection of generators. First we fix the notation
for multinomial coefficients.

Notations 1.4.5. Let k0, . . . , kr be natural numbers and n = ∑
r
i=0 ki. We define the multinomial

coefficient (k0, . . . , kr) to be
n!

k0! . . . kr!
.

Lemma 1.4.6. Let V be a K-module, x ∈ V and B,Bi ∈ S(PreLie, V ). The following equation
holds :

Fp(Fn−p(x,B1, . . . ,Bn−p),B, . . . ,B
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p

) = Fn(x,B, . . . ,B
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p

,B1, . . . ,Bn−p)

+ ∑
i0+...+iv−p=p

i0<p

(i0, . . . , in−p)Fn−p+i0(x,B, . . . ,B
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i0

, Fi1(B1,B, . . . ,B
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i1

), . . . , Fin−p(Bn−p,B, . . . ,B
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

in−p

))

in S(PreLie, S(PreLie(S(PreLie, V ))).

Proof: Immediate consequence of the definition of composition of trees.
For gi ∈ S(RT , (S(RT ,V)) and f inRT (n) we denote by f(g1, . . . , gn) the element in S(RT , S(RT , S(RT ,V)))
representing their composite.

Definition 1.4.7. Let V be a K-module with a fixed basis V. A subset G of S(RT ,S(RT ,V))
is said to generate Ker(Tr) if any element t of S(RT ,V) is in Ker(Tr) if and only if it is the
image by µ ○ µ ∶ S(RT,S(RT,S(RT,V ))) Ð→ S(RT,V ) of a linear combination of elements of
the form f(g1, . . . , gn), where at least one gi is in G.

Lemma 1.4.8. Let V be a K-module with a fixed basis V. The set K :={Fp(A,B, . . . ,B
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p

)∣A,B ∈

S(RT ,V)} generates Ker(Tr).

Proof: We compute Fp(Fv(x,B1, . . . ,Bv),B, . . . ,B
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p

). By Lemma (1.4.6) it is equal to :

∑
i0+...+iv=p

(i0, . . . , iv)Fv+i0(x,B, . . . ,B
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i0

, Fi1(B1,B, . . . ,B
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i1

), . . . , Fiv(Bv,B, . . . ,B
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

iv

)),

We have that (i0, . . . , iv) = ( p
ih
)kih∀0 ≤ h ≤ n for an integer kih and so this coefficient differs from

0 modulo p if and only if ik = 0 for all but one index ik. Then we get a multinomial coefficient
(0, . . . , p, . . . ,0) = 1. Therefore we have :

Fp(Fv(x,B1, . . . ,Bv),B, . . . ,B
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p

) = Fv+p(x,B, . . . ,B
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p

,B1, . . . ,Bv)

+ ∑
i∈{1,...,v}

Fv(x,B1, . . . ,Bi−1, Fp(Bi,B, . . . ,B
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p

),Bi+1, . . . ,Bv).

Let t be an element of S(RT ,V). By Lemma 1.4.4, t ∈Ker(Tr) if and only if its normal form
contains a corolla of the form gi = Fv+p(x,B, . . . ,B

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p

,B1 . . . ,Bv). We use the above computation
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and the multi-linearity of a tree component to express this factor Fv+p(x,B, . . . ,B
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p

,B1, . . . ,Bv)

as difference of terms of the form f(g1, . . . , gn) where at least one gi is in K. This proves the
“only if” part of our claim.

To check the “if” part of our statement we use the above formula to express a factor
Fp(A,B, . . . ,B

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p

) with Dec(A) = Fv(x,B1, . . . ,Bv) as sum of terms with either a factor

Fv+p(x,B, . . . ,B
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p

,B1, . . . ,Bv) ∈Ker(Tr)

or a factor
Fp(Bi,B, . . . ,B

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p

)

where Bi has strictly less vertices than A. Repeating the computation inductively of the equa-
tion and using the multi-linearity of the tree components we obtain, on the right side of the
equation, a sum of elements in Ker(Tr). Since Tr is a morphism of monads any f(g1, . . . , gn) ∈
S(RT,S(RT,S(RT,V ))) such that at least one gi is in K is in Ker(Tr).

The following definition appears in the literature with the name of heap order trees, see
[CK98].

Definition 1.4.9. Let τ be a non labelled tree. A labelling of vertices of τ is said to be an
increasing labelling if it defines a total order refinement of the partial order on vertices induced
by the tree, with the root as least element. We denote the number of possible increasing labellings
by λ(τ).

Example 1.4.10. Consider the following non labelled tree :

rr r
@�b .

Then the following are the only three possible increasing labellings of τ :

r4 r2 r3
@�b

1

,

r3 r2 r4
@�b

1

,

r4 r3 r2
@�b

1

,

and λ(

rr r
@�b ) = 3.

Definition 1.4.11. We denote by n− ILTrees the set of n-trees with an increasing labelling on
vertices.

The following lemma is already treated in the literature using a different notation, see for
example the operator N in [CK98], the growth operator in [Hof03]. It is used in the Butcher
series for example in [Bro00] and in [Liv06].

Lemma 1.4.12. In PreLie the following equation holds :

ϕ({{. . .{{−,−},−} . . .}−
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

}) = ∑
τ∈n−ILTrees

τ(−, . . . ,−
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

n

),

where ϕ is the natural isomorphism between PreLie and RT .
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Proof: We proceed by induction on n. If n is equal to 1 then the result is obviously true.
Suppose the statement true at rank n − 1. We then have :

ϕV ({{. . .{{y1, y2}, y3} . . .}yn}) =

µ(
r2 b1

( ∑
τ∈(n−1)−ILTrees

τ(y1, . . . , yn−1)), yn)) =

∑
τ∈(n−1)−ILTrees

µ(
r2 b1

(τ(y1, . . . , yn−1)), yn)).

If τ is in (n−1)− ILTree, then r2 b1
(τ(y1, . . . , yn−1)), yn) is the sum of n−1 distinct increasing

labelling n-trees. To any increasing labelling of an n-tree is associated a labelling (n − 1)-tree
obtained by dropping the leave labelled with n. We readily conclude that all the increasing la-
bellings n-tree appear once in the sum.

Proposition 1.4.13. Let V be a K-module with a fixed basis V and x, y be elements of V. In
S(PreLie, V ), the following equation holds :

ϕV ({{. . .{{x, y}, y} . . .}y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

}) = ∑
τ∈(n+1)−Trees

λ(τ) τ(x, y, . . . , y),

where λ(τ) is the number of increasing labellings of τ , and ϕV the natural isomorphism induced
by the isomorphism of operads between PreLie and RT .

Proof: This identity follows from Lemma 1.4.12.

Lemma 1.4.14. Let V be a K-module. Let x, y be elements of V . The equation :

{{. . .{{x, y}, y} . . .}y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p

} = {x,{. . .{{y, y} . . .}y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p

}}

holds in a PreLie-algebra (V, γ) if and only if γ(Fp(x, y, . . . , y
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

p

)) = 0.

Proof: By Proposition 1.4.13 the left side of the equation can be expressed as a sum of trees
with coefficients the number of possible increasing labellings. Let τ be a tree and B be a branch
of τ . That is :

τ = FmB+r( b1 ,B, . . . ,B
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

mB

,B1, . . . ,Br),

where Bi ≇ B for all i ∈ {1, . . . , r}. We denote by the symbol nB the number of vertices of B and
by S the tree

Fr( b1 ,B1, . . . ,Br).

It is easy to check that the coefficient λ(τ) is equal to ( p
nBmB

)(nB , . . . , nB
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

mB

)
1

mB !
λ(B)mBλ(S),

where the symbol (nB , . . . , nB
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

mB

) refers to the Notation 1.4.5. Since p is a prime number p ∤ λ(τ)

just in two cases :
1. nB = p, and mB = 1 ;
2. nB = 1, and mB = p.

In the first case we obtain the following sum

∑
τ∈p−Trees

λ(τ)(x, τ(y, . . . , y)).

But λ(τ) is equal to λ(x, τ(y, . . . , y)), and therefore applying ϕ−1 we get {x,{. . .{{y, y} . . .}y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p

}}.

In the second case we obtain Fp(x, y, . . . , y). This completes the proof.
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Proposition 1.4.15. If (V, γ) is a ΛPreLie-algebra, then {−,−} ∶ V ⊗ V Ð→ V deduced from
the PreLie-algebra structure of V is a p − PreLie-algebra.

Proof: By Lemma 1.4.14 (V, γ) satisfies the relation of p-restricted PreLie-algebra.

Theorem 1.4.16. The construction of Proposition 1.4.15 gives an isomorphism between the
categories of ΛPreLie-algebras and of p − PreLie-algebras.

Proof: The category of ΛPreLie-algebras is isomorphic to the subcategory of PreLie-algebras
(V, γ) such that the following diagram admits a factorization :

S(PreLie, V )

����

γ // V

Λ(PreLie, V )

99

.

This diagram admits an extension if and only if the composition

Ker(Tr) Ð→ S(PreLie, V ) Ð→ V

is zero. By Lemma 1.4.8 this is equivalent to say that (V, γ) is a p − PreLie-algebra.

Proposition 1.4.17. The morphism Γ(Lie,−) Ð→ Γ(PreLie,−) factors through Λ(PreLie,−).

Proof: To determine the image of the map it is enough to compute the image of a general
bracket [−,−] and Frobenius power −[p]. They are respectively

{−,−} − (1,2)∗{−,−}

and
{. . .{{−,−},−} . . . ,−}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p

.

These operations are contained in the sub-monad Λ(PreLie,−).

1.5 The Γ(PreLie,−) monad
We go back to the case where K is a commutative ring. We express the formula to compute

the composition morphism of the monad Γ(PreLie,−). We use this formula to recover a normal
form for the elements of Γ(PreLie, V ).

1.5.1 A formula for the Γ(PreLie,−) composition
Let V be a free K-module, we show an explicit formula for the composition in Γ(PreLie, V ).
By Proposition 1.3.16 we have an explicit basis of Γ(PreLie, V ). So we compute the compo-

sition on it, and then extend by linearity.

Theorem 1.5.1. Let V be a free K-module with a fixed basis V. Let υ be an element of
RT (n) and t1, . . . ,tn be elements of S(RT ,V). We assume that the composite of υ t1, . . . ,tn
in S(PreLie,Z[V]), where Z[V] denotes the free Z-module generated by V, has the expansion :

µ(υ(t1, . . . ,tn)) = ∑
t∈S(RT ,V)

χ(t)t,

We then have the identity :

µ̃(O υ(O t1, . . . ,O tn)) = ∑
χ(t)∣Stab(t)∣

∣Stab(υ(t1, . . . ,tn))∣∏i ∣Stab(ti)∣
O t,

in Γ(RT,V ) where we consider the map µ̃ ∶ Γ(RT,Γ(RT,V )) → Γ(RT,V ) and Stab(υ(t1, . . . ,tn))
is the stabilizer of υ(t1, . . . ,tn) ∈ S(RT , S(RT ,V)). (In the latter case we apply the definition
of the stabilizer to the set S(RT ,W), where we take W = S(RT ,V).)
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Proof: We start with a preliminary step. We use the notation PreLieK to distinguish the
coefficient in which is defined the operad PreLie. We consider the following morphism

Γ(PreLieZ,Z[V]) → Γ(PreLieK,K[V]),

induced by the canonical morphism iPreLie ∶ PreLieZ → PreLieK and iV ∶ Z[V] → K[V]. We
have the following commutative diagram :

Γ(PreLieZ,Γ(PreLieZ,Z[V])) Γ(PreLieK,Γ(PreLieK,K[V]))

Γ(PreLieZ◻
̃
PreLieZ,Z[V])) Γ(PreLieK◻

̃
PreLieK,K[V]))

Γ((PreLie◻
̃
PreLie)K,K[V]))

Γ(PreLieZ,Z[V]) Γ(PreLieK,K[V])).

≅ ≅

µ̃Z

≅

µ̃K

We assume K = Q first and we check the relation in this case. We use the fact that O t =
Tr(t)

∣Stab(t)∣
and that Tr ∶ S(PreLieQ,−) → Γ(PreLieQ,−) is an isomorphism of monads to get the

identity :

µ(Tr(υ(Tr(t1), . . . , T r(tn)))) = Tr(µ(υ(t1, . . . ,tn)))

= ∑
t∈S(RT ,V)

χ(t)Tr(t)

= ∑
t∈S(RT ,V)

χ(t)∣Stab(t)∣O t,

and

µ(Tr(υ(Tr(t1), . . . , T r(tn)))) = ∣Stab(υ(t1, . . . ,tn))∣∏
i

∣Stab(ti)∣µ(O υ(O t1, . . . ,O tn))).

We now consider the caseK = Z. We have a monomorphism Γ(PreLieZ,Z[V]) ↪ Γ(PreLieQ,Q[V])
which respects the composition product. Thus the coefficients computed for the basis of Γ(PreLieQ,Q[V])
correspond to the coefficients for the basis of Γ(PreLieZ,Z[V]).

We consider the general case. The canonical morphism Γ(PreLieZ,Z[V]) → Γ(PreLieK,K[V])
carries the relation, which is verified over Z for our basis elements, to the same relation over
K.

1.5.2 Decompositions in corollas and normal form
Let V be a free K-module with a fixed basis V. Let t be an element of Γ(PreLie, V ) ; recall

that by Proposition 1.3.16, t is a linear combination of elements in OS(RT ,V).
We present how to construct the elements of Γ(PreLie, V ) from corollas.

Lemma 1.5.2. Let V be a free K-module with a fixed basis V. Let x be an element of V, and
t1, . . . ,tr be elements of S(RT ,V). Then

µ̃(OFr{x,O t1, . . . ,O tr}) = O(µ(Fr(x,t1, . . . ,tr))).

Proof: The only thing to check is that the coefficient which appears in the left terms is one.

Lemma 1.5.3. Let V be a free K-module with a fixed basis V. If t is an element of S(RT ,V),
then O t is equal to µ̃(OFr(xa,OB1, . . . ,OBr)) where Fr[xa,B1, . . . ,Br] is Dec(t).
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Proof: We apply Lemma 1.5.2 to Dec(t).

Definition 1.5.4. Let V be a free K-module with a fixed basis V, and t be an element of
S(RT ,V). We call normal form of O t its expression in iterated composition of elements of
the form O(Fr(x,−, . . . ,−)) with x an element of V deduced from the normal form of t.

Proposition 1.5.5. Let V be a free K-module with a fixed basis V. If t is an element of S(RT ,V)
then O t admits a unique normal form.

Proof: We apply Lemma 1.5.3 recursively to get a bijection between the normal form in
S(RT,V ) and the normal form of Γ(RT,V ).

Proposition 1.5.6. The set of monomials in normal form gives a basis of the K-module
Γ(RT,V ).

Proof: It is easy to prove that the set of monomials in normal forms is in bijection with the
set S(RT ,V). By Proposition 1.3.16 the set OS(RT ,V) forms a basis for Γ(RT,V ) and it is in
bijection with S(RT ,V).

1.5.3 A presentation for Γ(PreLie,−)
To describe the structure of ΓPreLie-algebras we first show how to construct some polynomial

abstract operations from a tree. We define a new type of algebras, Cor-algebras, using just the
abstract operations defined by corollas. We conclude the section by proving that Cor-algebras
coincide with ΓPreLie-algebras.

Let (V, γ) be a ΓPreLie-algebra and En be the free K-module generated by a set of variables
En = {ei}i∈{1,...,n}. We consider an element of Γ(RT,En). It can be written as a linear combination
of elements of the form :

O(ρ(e1 ⊗ . . .⊗ e1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r1

⊗ . . .⊗ en ⊗ . . .⊗ en
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

rn

)),

for some ρ ∈ RT .
Let v1, . . . , vn be elements in V , we define the morphism ψv1,...,vn ∶ En Ð→ V by linear

extension of ψv1,...,vn(ei) = vi. By functoriality it induces a morphism ψv1,...,vn ∶ Γ(RT,En) Ð→
Γ(RT,V ).

Definition 1.5.7. Any element α of Γ(RT ,En) is of the form

α = O(ρ(e1 ⊗ . . .⊗ e1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r1

⊗ . . .⊗ en ⊗ . . .⊗ en
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

rn

))

and induces a function
ϕe1⊗...⊗e1
´ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r1

⊗...⊗en⊗...⊗en
´ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

rn

∶ V ×n Ð→ V

defined by :
ϕe1⊗...⊗e1
´ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r1

⊗...⊗en⊗...⊗en
´ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

rn

(v1, . . . , vn) = γ(ψv1,...,vn(α)).

The elements ei have the role of abstract variables. We denote the set of these functions by
AbsOpn and we set AbsOp = ∐n∈NAbsOpn.

Definition 1.5.8. The group Sn acts on the set AbsOpn by permutation of the indices {1, . . . , n}.
Let σ be an element of Sn. Let ϕ ∈ AbsOp be the element associated to

α = O(ρ(e1 ⊗ . . .⊗ e1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r1

⊗ . . .⊗ en ⊗ . . .⊗ en
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

rn

))
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we define :
(σ∗ϕ)e1⊗...⊗e1

´ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
r1

⊗...⊗en⊗...⊗en
´ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

rn

to be the element associated to

O(ρ(eσ(1) ⊗ . . .⊗ eσ(1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r1

⊗ . . .⊗ eσ(n) ⊗ . . .⊗ eσ(n)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

rn

))

From now on, we denote ϕe1⊗...⊗e1
´ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r1

⊗...⊗en⊗...⊗en
´ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

rn

by ϕr1,...,rn or ϕ.

Proposition 1.5.9. The following equations hold :

σ∗ϕ(v1, . . . , vn) = ϕ(vσ(1), . . . , vσ(n)), (1.1)

where σ ∈ Sn,

ϕr1,...,ri−1,0,ri+1,...,rn(v1, . . . , vn) = ϕr1,...,ri−1,ri+1,...,rn(v1, . . . , vi−1, vi+1 . . . , vn). (1.2)

ϕr1,...,ri...,rn(v1, . . . , λvi, . . . , vn) = λ
ri(ϕr1,...,ri,...,rn(v1, . . . , vi, . . . , vn)). (1.3)

If the function
ϕr1,...,ri,ri+1,...,rn

is commutative in the variables i and i + 1 i.e. (i, i + 1)∗ϕ = ϕ, and vi = vi+1, then

ϕr1,...,ri,ri+1,...,rn(v1, . . . , vi, vi+1, . . . , vn) =

(
ri + ri+1

ri
)ϕr1,...,ri−1,ri+ri+1,ri+2,...,rn(v1, . . . , vi−1, vi, vi+2, . . . , vn). (1.4)

We have

ϕr1,...,ri...,rn(v1, . . . , a + b
i
, . . . , vn) =

ri

∑
s=0

ϕr1,...,s,ri−s,...,rn(v1, . . . , a, b, . . . , vn). (1.5)

where vi = a + b

Proof: These identities are immediate consequences of the multi-linearity of the operadic
composition.

Proposition 1.5.10. Let {−;−, . . . ,−
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

n

}r1,...,rn be the function defined by the corolla :

OF(∑ r )(e1, e2, . . . , e2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r1

, . . . , en+1, . . . , en+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

rn

).

We have the unit relation :

{−;} = id, (1.6)

and a distribution relation, which we formally write :

{{x; y1, . . . , yn}r1,...,rn ; z1, . . . , zm}s1,...,sm =

∑
si=βi+∑α ,i

1

∏(rj !)
{x;{y1; z1, . . . , zm}α1,1

1 ,...,α1,1
m
, . . . ,{y1; z1, . . . , zm}

α
1,r1
1 ,...,α

1,r1
m

,

. . . ,{yn; z1, . . . , zm}αn,11 ,...,αn,1m
, . . . ,{yn; z1, . . . , zm}αn,rn1 ,...,αn,rnm

,

z1, . . . , zm}1,...,1,β1,...,βm , (1.7)

where, to give a sense to the latter formula, we use that the denominators rj ! divide the coefficient
of the terms of the reduced expression which we get by applying relations (1.1) and (1.4) to
simplify terms with repeated inputs on the right hand side.
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Proof: Let V be a basis of V and x, y1, . . . , yn, z1, . . . , zm ∈ V with possible repetition, the
general case follows from relation (1.3) and relation (1.5). The Proposition is an immediate
consequence of the formula of Theorem 1.5.1, where we take υ = Fs1+...+sm ,

t0 = Fr1+...+rn(x, y1, . . . , y1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r1

, . . . , yn, . . . , yn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

rn

)

which we plug into the root of υ and t1 = b1 (z1), . . . ,ts1 = b1 (z1), . . . ,ts1+...+sm−1+1 = b1 (zm), . . . ,ts1+...+sm =b1 (zm) which we plug into the leaves of υ. More precisely, the expansion of the composite is a
linear combination of elements of the form O t where

t = F∑ b●
●
+∑β●(x,

Fα1,1
1 +...+α1,1

m
(y1, z1, . . . , z1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
α1,1

1

, . . . , zm, . . . , zm
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

α1,1
m

), . . . , Fα1,1
1 +...+α1,1

m
(y1, z1, . . . , z1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
α1,1

1

, . . . , zm, . . . , zm
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

α1,1
m

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b11

, . . .

F
α

1,γ1
1 +...+α1,γ1

m
(y1, z1, . . . , z1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
α

1,γ1
1

, . . . , zm, . . . , zm
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

α
1,γ1
m

), . . . , F
α

1,γ1
1 +...+α1,γ1

m
(y1, z1, . . . , z1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
α

1,γ1
1

, . . . , zm, . . . , zm
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

α
1,γ1
m

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b1γ1

. . .

Fαn,11 +...+αn,1m
(yn, z1, . . . , z1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
αn,11

, . . . , zm, . . . , zm
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

αn,1m

), . . . , Fαn,11 +...+α1,1
m

(yn, z1, . . . , z1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

αn,11

, . . . , zm, . . . , zm
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

αn,1m

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
bn1

, . . .

Fαn,γ11 +...+α1,1
m

(yn, z1, . . . , z1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
αn,γn1

, . . . , zm, . . . , zm
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

αn,γnm

), . . . , Fαn,γn1 +...+αn,γnm
(y1, z1, . . . , z1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
αn,γn1

, . . . , zm, . . . , zm
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

αn,γnm

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
bnγn

. . .

y1, . . . , y1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b1γ1+1

, . . . , yn, . . . , yn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

bnγn+1

, z1, . . . , z1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

β1

, . . . , zm, . . . , zm
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

βm

),

where 1 ≤ γi ≤ ri for all 1 ≤ r ≤ n
We first compute the coefficient in front of O t by the formula of Theorem 1.5.1. We get

χ(t) =
∏ r●!

∏ b●●!

∏ s●!

∏α
●,●
● !∏β●!

,

∣Stab(υ(t0, . . . ,ts1+... tm))∣ = ∏ s●!,

and
∣∏Stab(ti)∣ = ∏ r●!.

If yi = zi for all i < t, we have

∣Stab(t)∣ = ∏α●,●● !∏ b●●!∏β●!
t

∏
i=1

(
biγi+1 + βi

βi
).

Thus the coefficient in front of O t is equal to ∏ti=1 (
biγi+1

+βi
βi

).
On the other hand in the relation (1.7) we first use relation (1.1) to sum all the terms

associated to t. We find the coefficients

1

∏ r●!

∏ r●!

∏ b●●!
.

Then we apply relation (1.4) merging the common variables, hence we multiply the coefficient
by

∏ b●●!
p

∏
i=1

(
biγi+1 + βi

βi
).
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We obtain the same coefficient as before.

Example 1.5.11. We have :

{{x; y}2; y, z}2,1 =
1

2
({x; y, y, y, z}1,1,2,1 + {x;{y; y}1,{y; y}1, z}1,1,1

+ {x;{y; y}1, y, y, z}1,1,1,1 + {x; y,{y; y}1, y, z}1,1,1,1

+ {x;{y; z}, y, y}1,1,1 + {x; y,{y; z}, y}1,1,1

+ {x;{y; y},{y; z}, y}1,1,1 + {x;{y; z},{y; y}, y}1,1,1

+ {x;{y; y, z}1,1, y, y}1,1,1 + {x; y,{y; y, z}1,1, y}1,1,1

+ {x;{y; y}2, y, z}1,1,1 + {x; y,{y; y}2, z}1,1,1

+ {x;{y; y}2,{y; z}1}1,1 + {x;{y; z}1,{y; y}2}1,1

+ {x;{y, y}1,{y; y, z}1,1}1,1 + {x;{y; y, z}1,1,{y, y}1}1,1

+ {x;{y; y, z}2,1, y}1,1 + {x; y,{y; y, z}2,1}1,1)

(1.1)
=

1

2
({x; y, y, y, z}1,1,2,1 + {x;{y; y}1,{y; y}1, z}1,1,1

+ 2{x;{y; y}1, y, y, z}1,1,1,1 + 2{x;{y; z}, y, y}1,1,1

+ 2{x;{y; y},{y; z}, y}1,1,1 + 2{x;{y; y, z}1,1, y, y}1,1,1

+ 2{x;{y; y}2, y, z}1,1,1 + 2{x;{y; y}2,{y; z}1}1,1

+ 2{x;{y, y}1,{y; y, z}1,1}1,1 + 2{x;{y; y, z}2,1, y}1,1)

(1.4)
=

1

2
(12{x; y, z}4,1 + 2{x;{y; y}1, z}2,1

+ 4{x;{y; y}1, y, z}1,2,1 + 4{x;{y; z}, y}1,2

+ 2{x;{y; y},{y; z}, y}1,1,1 + 4{x;{y; y, z}1,1, y}1,2

+ 2{x;{y; y}2, y, z}1,1,1 + 2{x;{y; y}2,{y; z}1}1,1

+ 2{x;{y, y}1,{y; y, z}1,1}1,1 + 2{x;{y; y, z}2,1, y}1,1)

= 6{x; y, z}4,1 + {x;{y; y}1, z}2,1

+ 2{x;{y; y}1, y, z}1,2,1 + 2{x;{y; z}, y}1,2

+ {x;{y; y},{y; z}, y}1,1,1 + 2{x;{y; y, z}1,1, y}1,2

+ {x;{y; y}2, y, z}1,1,1 + {x;{y; y}2,{y; z}1}1,1

+ {x;{y, y}1,{y; y, z}1,1}1,1 + {x;{y; y, z}2,1, y}1,1,

where we apply relation 1.1 to get our second identity and relation 1.4 to get our third identity.

Definition 1.5.12. A Cor-algebra is a K-module V with a family of functions

{−;−, . . . ,−
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

n

}r1,...,rn ∶ V
n+1 Ð→ V

satisfying relations (1.2-1.7) as axioms. A morphism of Cor-algebra is a linear map commuting
with the operations {−;−, . . . ,−}r1,...,rn i.e.

f({−;−, . . . ,−}r1,...,rn) = {f(−); f(−), . . . , f(−)}r1,...,rn .

Proposition 1.5.13. Let V be a K-module. A ΓPreLie-algebra structure γ ∶ Γ(PreLie, V ) Ð→
V on V induces a natural Cor-algebra structure on V .

Proof: We set {v;w1, . . . ,wn}r1,...,rn = γ(OFr1+...+rn)(v,w1, . . . ,w1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r1

, . . . ,wn, . . . ,wn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

rn

)). The

statements of Propositions 1.5.9 and 1.5.10 show that it defines a Cor-algebra.

Our aim is to show that when we restrict to free K-modules the structures of ΓPreLie-algebra
and Cor-algebra are equivalent. From now on, let V be a free K-module with a basis V endowed
with a Cor-algebra structure. We aim to define a ΓPreLie-algebra structure on V i.e. we define
a morphism γ ∶ Γ(RT,V ) Ð→ V compatible with the action of Γ(PreLie,−) on Γ(PreLie, V ).
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1.5. The Γ(PreLie,−) monad

Construction 1.5.14. We set

γ(O(F(∑ r )(x, y1, . . . , y1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r1

, . . . , yn, . . . , yn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

rn

))) = {x; y1, . . . , yn}r1,...,rn

where x, y1, . . . , yn ∈ V . By the normal form any element of Γ(RT ,V) can be decomposed in the
iterated composition of corollas, the morphism γ is defined on the basis by composition of the
function associated to corollas and then computed iteratively.

Lemma 1.5.15. Let V be a free K-module with a basis V. If V is a Cor-algebra then the
assignment of construction 1.5.14 is well defined and does not depend on the choice of the basis
V of the K-module V .

Proof: This follows from the relations (1.1), (1.2), (1.3), (1.5). More precisely given two basis
V, W of V , we check that the two maps γV , γW ∶ Γ(PreLie, V ) Ð→ V are equal. Let t be
a general element of Γ(RT ,V) such that Dec(t) = OFm(v; q1, . . . , q1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
t1

, . . . , qr, . . . , qr
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

tr

), for some

qj ∈ Γ(RT ,V), v ∈ V. Let ∑
js∈Js

λjsp
js
s be the linear decomposition of qs in the basis Γ(RT ,W)

and v = ∑
wi∈W

ξiwi. We proceed by induction on n, the number of corollas appearing in the normal

form of t. If n is equal to 0 then t is the identity. Suppose the statement true at rank n − 1. We
then have by definition :

Dec(t) = OFm(v; q1, . . . , q1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t1

, . . . , qr, . . . , qr
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

tr

) =

OFm(v; ∑
j1∈J1

λj1p
j1
1 , . . . ∑

j1∈J1
λj1p

j1
1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
t1

, . . . , ∑
jr∈Jr

λjrp
jr
r , . . . ∑

jr∈Jr
λjrp

jr
r

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
tr

) =

∑
jhk ∈Jk

ak
∑
u=1

sju
k
=tk

λ
s
j1
1

j11
. . . λ

sjarr
jarr

∣Stab(F ) ∶ Ss
j1
1

× . . . × Ssjarr ∣OFm(v;p
j11
1 , . . . ,p

j11
1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
s
j1
1

,

. . . ,p
j
a1
1

1 , . . . ,p
j
a1
1

1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s
j
a1
1

, . . . ,p
j1r
r , . . . ,p

j1r
r

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
sj1r

, . . . ,p
jarr
r , . . . ,p

jarr
r

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
sjarr

) =

∑
wi∈W

ξi ∑
jhk ∈Jk

ak
∑
u=1

sju
k
=tk

λ
s
j1
1

j11
. . . λ

sjarr
jarr

∣Stab(Cs
j1
1
,...,s

j
a1
1

)) ∶ Ss
j1
1

× . . . × Ssjarr ∣OFm(wi;p
j11
1 , . . . ,p

j11
1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
s
j1
1

,

. . . ,p
j
a1
1

1 , . . . ,p
j
a1
1

1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s
j
a1
1

, . . . ,p
j1r
r , . . . ,p

j1r
r

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
sj1r

, . . . ,p
jarr
r , . . . ,p

jarr
r

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
sjarr

)

where Stab(Cs
j1
1
,...,s

j
a1
1

)) is the group

Stab(OFm(v;p
j11
1 , . . . ,p

j11
1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
s
j1
1

, . . . ,p
j
a1
1

1 , . . . ,p
j
a1
1

1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s
j
a1
1

)).
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We have :

γW(t) =

∑
wi∈W

ξi ∑
jhk ∈Jk

ak
∑
u=1

sju
k
=tk

λ
s
j1
1

j11
. . . λ

sjarr
jarr

∣Stab(F ) ∶ Ss
j1
1

× . . . × Ssjarr ∣{wi;γW(p
j11
1 ), . . . , γW(p

j
a1
1

1 ),

. . . , γW(p
j1r
r ), . . . , γW(p

jarr
r )}s

j1
1
,...,sjarr

=

∑
jhk ∈Jk

ak
∑
u=1

sju
k
=tk

λ
s
j1
1

j11
. . . λ

sjarr
jarr

∣Stab(F ) ∶ Ss
j1
1

× . . . × Ssjarr ∣{v;γW(p
j11
1 ), . . . , γW(p

j
a1
1

1 ),

. . . , γW(p
j1r
r ), . . . , γW(p

jarr
r )}s

j1
1
,...,sjarr

.

Applying the Cor-algebra relations (1.4)-(1.6) we have :

γW(t) = {v;γW(p1), . . . , γW(pr)}t1,...,tr

by induction hypothesis

γW(t) = {v;γW(p1), . . . , γW(pr)}t1,...,tr = {v;γV(p1), . . . , γV(pr)}t1,...,tr = γV(t).

Definition 1.5.16. Let V be a free K-module with a basis V. Let t be an element of RT and
w1, . . . ,wm ∈ V. We say that an element of Γ(RT ,Γ(RT ,V)) is simple if it is of the form
O(t( b1 (w1), . . . , b1 (wm))) .

Lemma 1.5.17. Let V be a free K-module with a basis V. Recall that b1 is the unique 1-tree.
If O(t( b1 (w1), . . . , b1 (wm))) is a simple element then

µ̃(O(t( b1 (w1), . . . , b1 (wm)))) = O(t(w1, . . . ,wm)).

Lemma 1.5.18. The Construction 1.5.14 is compatible with unit and composition in Γ(PreLie, V ).

Proof: This follows from the relations (1.4), (1.6), (1.7). More precisely, let v1
1 , . . . , v

1
m1

,. . .,vn1 , . . . , v
n
mn

be elements of V, let s be an element of RT (n) and for any i ∈ {1, . . . , n} let ti be an element
of RT (mi) such that

Dec(ti(v
i
1, . . . , v

i
mi)) = Fri(v

i
1;pi1, . . . ,p

i
ri),

for some pij ∈ Γ(RT ,V).
We consider an element of Γ(RT ,Γ(RT ,V))

T = O(s(O(t1(v
1
1 , . . . , v

1
m1

)), . . . ,O(tn(v
n
1 , . . . , v

n
mn)))).

We want to compute the image of T under the map

µ̃ ∶ Γ(PreLie,Γ(PreLie, V )) Ð→ Γ(PreLie, V ).

Our strategy is to find a linear combination of simple elements with the same image of T under
the map µ̃. We suppose mi = max{mj ∣j = 1, . . . , n} i.e. the tree ti has the highest number of
vertices. The normal form of T in Γ(RT ,Γ(RT ,V)) is a composition of corollas of the form :

O(Fs(O ti(v
i
1, . . . , v

i
mi); q1, . . . , qt)),

that is the image of
S = O(Fs(OFri(v

i
1;pi1, . . . ,p

i
ri); q1, . . . , qt))
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under the map

id ○ µ̃ ∶ Γ(PreLie,Γ(PreLie,Γ(PreLie, V ))) Ð→ Γ(PreLie,Γ(PreLie, V )).

Since Γ(PreLie, V ) is a ΓPreLie-algebra, the following diagram commutes :

Γ(PreLie,Γ(PreLie,Γ(PreLie, V )))

id○µ̃
��

µ̃○id // Γ(PreLie,Γ(PreLie, V ))

µ̃

��
Γ(PreLie,Γ(PreLie, V )))

µ̃
// Γ(PreLie, V ).

To compute the image of T we apply first µ̃○id on S as composition of corollas. The result is a
linear combination of elements of Γ(PreLie,Γ(PreLie, V )) whose normal forms are compositions
of corollas which have as roots

O(t1(v
1
1 , . . . , v

1
m1

)), . . . , b1 (vi1),p
i
1, . . . ,p

i
ri , . . .O(tn(v

n
1 , . . . , v

n
mn)).

Since the number of vertices of pij is strictly smaller than mi, repeating the same compu-
tation inductively we obtain, in a finite number of passages, a sum of simple elements of
Γ(PreLie,Γ(PreLie, V )). This procedure of computing T use just the compositions of corollas
and it is performed the same way by using Cor-algebra relations for corollas.

This verification completes the proof of the following statement.

Theorem 1.5.19. The construction of Proposition 1.5.13 induces an isomorphism between the
subcategories of Γ(PreLie,−)-algebras and of Cor-algebras formed by objects with a free K-
modules structure. ◻

Remark 1.5.20. The previous discussion shows that the functor Γ(PreLie,−) corresponds to
an analyseur de Lazard (see [Laz55]) with non-commutative variables.

1.6 Examples
In this last section we give some particular examples of ΓPreLie-algebras.

1.6.1 Brace algebras are ΓPreLie-algebras
We recall the definition of the operad Brace and prove that any Brace-algebra is a ΓPreLie-

algebra.

Definition 1.6.1. Let V be a K-module. It is a brace algebra if it is endowed with a sequence
of operations ⟨−;−, . . . ,−

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
n−1

⟩ ∶ V ⊗n Ð→ V , subject to the following relations :

1. ⟨x; ⟩ = x,
2.

⟨⟨x; y1, . . . , yn⟩; z1 . . . , zr⟩ = ∑⟨x;Z1, ⟨y1;Z2⟩, Z3, . . . , Z2n−1, ⟨yn;Z2n⟩, Z2n+1⟩,

where the sum runs over the partitions of the ordered set {z1 . . . , zr} into (possibly empty)
consecutive ordered intervals Z1 ⊔ . . . ⊔Z2n+1.

The operad corresponding to brace-algebras is denoted by Brace.

The Brace algebras naturally appears in the study of Hochschild complex (see for example
[LM05]).

We embed the operad PreLie into the operad Brace :

ψ ∶ PreLie↪ Brace

by sending {−,−} into ⟨−,−⟩. This inclusion induces a monomorphism from the ΓPreLie free
algebra into the ΓBrace free algebra which is isomorphic to the Brace free algebra, since the sym-
metric action on the operad Brace is free. We accordingly have an inclusion from the ΓPreLie
free algebra into the Brace free algebra. For more details see [Cha02].
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This monomorphism is given by the following correspondence :

br rpp p pp
@�

1

2 n

(x, y1, . . . , y1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i1

, . . . , yr, . . . , yr
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ir

) := ∑
σ∈Sh(i1,...,ir)

σ ∗ ⟨x; y1, . . . , y1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i1

, . . . , yr, . . . , yr
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ir

⟩,

where Sh(i1, . . . , ir) is the set of the (i1, . . . , ir)-shuffles. More precisely :

Definition 1.6.2. We call n-planar-tree an n-tree with an order on the set In(τ , i) for any
vertex i of the n-tree τ . Let {PRT (n)} be the S-module with PRT (n) generated by the n-planar
labelled rooted trees. We define partial compositions

− ○i − ∶ PRT (m) ⊗ PRT (n) Ð→ PRT (n +m − 1),

with 1 ≤ i ≤m as follows :

(τ , ord(τ)) ○i (υ, ord(υ)) := ∑
f ∶In(τ,i)Ð→(1,...,n)

∣s(1)+1∣,...,∣s(n)+1∣

∑
j1,...,jn

(τ ○fi υ, ord(j1, . . . , jn)),

where τ ○fi υ is the n+m−1-tree obtained by substituting the tree υ to the ith vertex of the tree τ , by
attaching the outgoing edges of this vertex in τ to the root of υ, and the ingoing edges accordantly
with the attaching map f . The sum runs over all these attachment maps f ∶ In(τ, i) Ð→ (1, . . . n)
preserving ord(τ) and ord(υ).

Lemma 1.6.3. The operad Brace is isomorphic to the operad PRT .

Proof: See [Foi10].

Proposition 1.6.4. The action of symmetric groups on the operad Brace is free. The brace
algebras therefore coincide with ΓBrace-algebras for any field and any brace-algebra inherits a
ΓPreLie-algebra structure. More precisely we have a morphism from Γ(PreLie, V ) into S(Brace, V ),
and we can make it explicit :

{x; y1, . . . , yn}r1,...,rn ↦ ∑
σ∈Sh(r1,...,rn)

⟨x; yσ(1), . . . , yσ(r1+...+rn)⟩,

where the ordered set (y1, . . . , yr1+...+rn) is (y1, . . . , y1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r1

, . . . , yn, . . . , yn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

rn

). ◻

Notations 1.6.5. Let (P,µ, η) be a connected operad. Let φ ∶ {1, . . . r} → {1, . . . , n} be an
injective function. Let p ∈ P (n) and qi ∈ P (mi) where i ∈ {1, . . . , r}. We denote by p○φ(q1, . . . , qr)
the following element of P :

µ(p⊗ x1 ⊗ . . .⊗ xr)

where

xj =

⎧⎪⎪
⎨
⎪⎪⎩

qi if j = φ(i) for some i,
1 the operadic unit, otherwise.

Example 1.6.6. Let (P,µ, η) be a connected operad. It is a well known fact that the K-module
⊕i P (i) is a PreLie-algebra. This structure is induced by a Brace-algebra structure. Therefore
the PreLie-algebra structure extends to a ΓPreLie-algebra structure. More explicitly :

{p; q1, . . . , qm}r1,...rm = ∑
φ∈Shn(r1,...,rm)

p ○φ (q1, . . . , q1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r1

, . . . , qm, . . . , qm
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

rm

)

where Shn(r1, . . . , rm) is the set of injective functions from {1, . . . , r1 + . . . + rm} to {1, . . . , n}
such that they are (r1, . . . , rm)-shuffle when we identify their image with {1, . . . , r1 + . . . + rm}.

Significant examples of PreLie-algebras are associated to PreLie-systems (see [Ger63] and
[GV95]). We revisit the definition of this notion and we check that any PreLie-system gives rise
to a ΓPreLie-algebra.
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Definition 1.6.7. Let S be a N-graded free K-module. A PreLie-system on S is a family of
maps :

○k ∶S
n ⊗Sm Ð→Sn+m−1

for any 1 ≤ k ≤ n, such that for any f ∈Sn, g ∈Sm, and h ∈Sl we have :

f ○u (g ○v h = (f ○u g) ○v+u−1 h

for any 1 ≤ u ≤ n and 1 ≤ v ≤m, and

(f ○u g) ○v+m−1 h = (f ○v h) ○u g

for any 1 ≤ u < v ≤ n.

Proposition 1.6.8. Let f be an element of Sm and g1, . . . , gn be elements of S with n ≤ m.
We define :

⟨f ; g1, . . . , gn⟩ = ∑
1≤i1<...<in≤m

(. . . ((f ○in gn) . . .) ○i1 g1);

Then S endowed with these operations is a Brace-algebra, and hence inherits a ΓPreLie-algebra
structure. ◻

Example 1.6.9. Let P a connected operad. The PreLie-algebra structure on the module⊕n P (n)
of the Example 1.2.2 (1) is clearly induced by a PreLie-system therefore it extends to a ΓPreLie-
algebra structure.

1.6.2 Dendriform algebras are ΓPreLie-algebras
I. Dokas proved in [Dok13] that dendriform algebras in positive characteristic admits a p-

restricted PreLie-algebra structure (and hence a ΛPreLie-algebra structure by Theorem 1.4.16).
We prove that any dendriform algebra is a ΓPreLie-algebra.

Definition 1.6.10. A dendriform algebra, denoted by Dend-algebra, is a free K-module A en-
dowed with two binary operations <,>∶ A⊗AÐ→ A, such that :

(x < y) < z = x < (y ∗ z),

(x > y) < z = x > (y < z),

(x ∗ y) > z = x > (y > z),

where x ∗ y = x > y + y < x. It is easy to show that ∗ is associative.
The category of dendriform algebras is governed by an operad denoted Dend.

Dendriform algebras were introduced by J.L. Loday in [Lod01] as Koszul dual of diassociative
algebras in the study of K-Theory periodicity. They appear naturally in other fields such as
combinatorial algebra, physics and algebraic topology.

Definition 1.6.11. Let (A,<,>) be a Dend-algebra. We define the following binary operation
{x, y} = x > y − y < x.

Proposition 1.6.12. Let (A,<,>) be a Dend-algebra. Then (A,{−,−}) is a p-restricted PreLie-
algebra.

Proof: See [Dok13].
We deduce from Theorem 1.4.16 and the previous proposition that a Dend-algebra is a ΛPreLie-
algebra.

Proposition 1.6.13. Let V be a free K-module then the PreLie-algebra structure defined in
S(Dend,V ) extends to a ΓPreLie-algebra structure.
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Proof: Let V be a free K-module then the ΓPreLie-algebra structure defined on S(Dend,V )
is given by the inclusions PreLie Ð→ Brace Ð→ Dend, and the construction of Proposition
1.6.4.

By the same kind of argument we prove that any Zinbiel algebra is a Γ(PreLie,−)-algebra.
Zinbiel algebras are encoded by the operad Zinb which was introduced by J.L. Loday in [Lod95],
it is the Koszul dual of the operad Leib which encodes the Leibniz algebras. Then the cohomology
of a Leib-algebra inherits a Zinb-algebra structure.

Definition 1.6.14. Let A be a free K-module, then it is a Zinbiel algebra if it is endowed with
a bilinear product ○ such that :

(a ○ b) ○ c = a ○ (b ○ c + c ○ b).

Proposition 1.6.15. Let V be a free K-module then S(Zinb, V ) is a ΓPreLie-algebra.

Proof: This proposition follows from the inclusion of S(Dend,V ) into S(Zinb, V ).
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Chapter 2

Mackey Functors, Generalized
Operads and Analytic Monads

abstract

Let K be a field. We denote by ModK the category of K-modules. We study a generalization of cohomological
Mackey functors defined on HParn, a subcategory of the Hecke category of the symmetric group Sn. We denote
the category of cohomological Mackey functors defined on HParn by Maccoh(HParn) and the category of strict
polynomial functors of degree n by PolFunn. We show that Maccoh(HParn) is equivalent to PolFunn. An M-
module is a collection of objects in Maccoh(HParn) parametrized by n ∈ N. We denote the category of M-modules
by ModM

K . We introduce two monoidal structures on ModM
K : the tensor product ⊠ and the composition ◻ product.

A strict analytic functor is a collection of objects in PolFunn parametrized by n ∈ N. We denote the category of
strict analytic functors by AnFun. We show that the monoidal structures of tensor product and the composition
of endofunctors of ModK induce two monoidal structures on the category of strict analytic functors. We call these
structures tensor product and composition of strict analytic functors. We show that the equivalence between
Maccoh(HParn) and PolFunn induces an equivalence of symmetric monoidal categories between (ModM

K ,⊠)

and (AnFun,⊗) as well an equivalence of monoidal categories (ModM
K ,◻) and (AnFun, ○). Based on this new

constructions we define the concept of an M-Operad, of an M-PROP, and of their categories of algebras. We give
examples of categories of algebras governed by M-operads and M-PROPs.

Introduction
We fix a field K and a non-negative integer n. We denote by ModK the category of K-modules.
Polynomial functors were introduced by Eilenberg and MacLane in [EML54] in the study

of homology of Eilenberg-MacLane spaces K(π,n). Strict polynomial functors of degree n are
particular polynomial functors endowed with an additional structure. They were introduced by
Friedlander and Suslin in [FS97a] in the study of the cohomology of finite group schemes. We
denote the category of strict polynomial functors of degree n by PolFunn.

We define the category HParn, a generalization of the Hecke category associated to the
symmetric group Sn. A CohomologicalHParn-Mackey functor is an additive functor fromHParn
to ModK. We denote the category of CohomologicalHParn-Mackey functors by Maccoh(HParn).
We show that Maccoh(HParn) is equivalent to the category of strict polynomial functors of
degree n. Our result explicitly reads :

Theorem A (Theorem 2.2.18). There exists an equivalence of categories

evn ∶ Maccoh(HParn) → PolFunn.

A strict analytic functor F is a collection {Fn}n∈N such that Fn is a strict polynomial functor
of degree n for each n ∈ N. We denote the category of strict analytic functors by AnFun. There
exists a forgetful functor U ∶ AnFun → Fun(ModK,ModK) from the category of strict analytic
functors to the category of endofunctor of ModK. The tensor product and the composition in
Fun(ModK,ModK) extend along U and define two monoidal structures on the category of strict
analytic functors which we denote (AnFun,⊗,K) and (AnFun, ○, Id).

41



Chapter 2. Mackey Functors, Generalized Operads and Analytic Monads

An M-module is a collection {Mn}n∈N such that Mn ∈ Maccoh(HParn) for each n ∈ N. We
denote the category of M-modules by ModM

K . We endow ModM
K with two monoidal structures,

the tensor product ⊠ of M-modules with unit K and the composition ◻ of M-modules with unit
I. We show the following result :

Theorem B (Theorem 2.4.28). The equivalence of Theorem 2.2.18 extends to an equivalence of
symmetric monoidal categories ev ∶ (ModM

K ,⊠,K) → (AnFun,⊗,K) as well as to an equivalence
of monoidal categories ev ∶ (ModM

K ,◻, I) → (AnFun, ○, Id).

We introduce the category of M-operads, denoted by M -Op. An M-operad is defined as
a monoid in the category of M-modules with the monoidal product ◻. To any M-operad we
associate a monad and a category of algebras. An M-operad encodes an algebraic structure with
polynomial operations. Any operad P defines an M-operad S−(P ) such that the category of P -
algebras is isomorphic to the category of S−(P )-algebras. Moreover, if the operad P is connected
then we associate to it two additional M-operads : Λ−(P ) and Γ−(P ). The corresponding monads
are isomorphic, respectively to Λ(P,−) and Γ(P,−) (see Appendix A).

Let V be a K-module. We define the M-operad PolyV , it replaces the operad EndV in the
following sense :

Theorem C (Theorem 2.5.8). Let P be an M-operad and V be a K-module. The set of P -algebra
structures on V is in bijection with HomM -Op(P,PolyV ).

We generalize the construction of M-modules and we define the category of M-PROPs. To
any M-PROP we associate a category of algebras. An M-PROP is an object which encodes
algebraic structures with polynomial operations with possible multiple inputs and outputs. The
category of M-PROPs generalizes the category of PROPs (see Appendix A).

We give examples of categories of algebras governed by M-operads and M-PROPs which are
not governed by operads nor by PROPs. More precisely we show that the category of p-restricted
Poisson algebras, that appears in the theory of quantization of manifolds in positive characteristic
(see [BK08]), is governed by an M-operad. The categories of divided power bi-algebras, related
to the category of divided powers Hopf algebras (see [And71]), and p-restricted Lie bi-algebras
are governed by M-PROPs.

Contents
In Section 2.1 we introduce the concept of a cohomological Mackey functor from an admissible

collection of subgroups. In Section 2.2 we recall the definition of a strict polynomial functor and
we prove the equivalence of categories between Maccoh(HParn) and PolFunn. In Section 2.3
we introduce the category ModM

K and the monoidal structures ⊠, and ◻. In Section 2.4 we recall
the definition of a strict analytic functor and we prove the equivalence of monoidal categories
between ModM

K and AnFun. We conclude with applications to operads and PROPs, in Sections
2.5 and 2.6.

2.1 Admissible cohomological Mackey functors on partition
subgroups of the symmetric group

We introduce the definition of a cohomological Mackey functor on an admissible collection of
subgroups of a finite group. We apply this general definition to a collection of partition subgroups
of the symmetric group Sn.

2.1.1 Admissible cohomological Mackey functors
We fix a finite group G. We introduce the concept of an admissible collection of subgroups of

G. Any admissible collection of subgroups D defines a category denoted by HD and a category
of cohomological Mackey HD-functors.

Definition 2.1.1 (The Hecke category HG). We denote by HG the full subcategory of K[G]-
modules whose objects are permutation modules over K[G], i.e. it is the category defined as
follow :

1. the objects are direct sums of K[G]-modules of the form K[G /H ] where H is a subgroup
of G,
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2. if K[G/H1
] and K[G/H2

] are two objects of HG then

HomHG(K[G/H1
],K[G/H2

]) = K[H1
/ G/H2

].

From this definition, we see that the category HG is self dual, with an isomorphism HGop →HG
which is the identity map on objects, and which is induced by the inversion of G on morphisms.

Definition 2.1.2 (Admissible collection). A collection D of subgroups of G is admissible if it is
closed under intersection and conjugation by elements of G.

Notations 2.1.3. Let G be a finite group, K ≤ H be subgroups of G and g ∈ G. We use the
following notation

— πHK ∶ G /K → G /H is the projection of cosets,
— gH = {ghg−1∣h ∈H}, and
— Hg = {g−1hg∣h ∈H}.

We associate a category to any admissible collection.

Definition 2.1.4 (The category HD). Let D be an admissible collection of subgroups of G. We
define the category HD to be the full subcategory of HG with objects ⊕ni=1 K[G/Hi

] where Hi is
in D.

Let us mention that HD is self dual (like the Hecke category HG).

For any admissible collection we define a category of cohomological Mackey functors.

Definition 2.1.5 (The category Maccoh(HD)). Let D be an admissible collection of subgroups
of G. The category of cohomological HD-Mackey functors is the category of K-linear functors
from HD to ModK with natural transformations. We denote this category by Maccoh(HD).

We present an equivalent definition of cohomological HD-Mackey functors.

Proposition 2.1.6. Let D be an admissible collection of subgroups of G. A cohomological HD-
Mackey functor is equivalent to the following data assignment : a function A ∶ D Ð→ ModK ;
for any inclusion between elements of D, H1 Ð→ H2, a pair of morphisms IndH2

H1
∶ A(H1) Ð→

A(H2) and ResH2

H1
∶ A(H2) Ð→ A(H1) and for any element g ∈ G and H in D an isomorphism

cg ∶ A(H) Ð→ A(gH) such that the following relations are satisfied :

1. IndH3

H2
IndH2

H1
= IndH3

H1
,

2. ResH2

H1
ResH3

H2
= ResH3

H1
,

3. cg ch = cgh,

4. cg IndH2

H1
= Ind

gH2
gH1

cg,

5. cg ResH2

H1
= Res

gH2
gH1

cg,

6. ResHJ IndHK = ∑
x∈J/H/K

IndJJ∩xK cxResKJx∩K ,

7. IndH2

H1
ResH2

H1
= [H2 ∶H1] IdH2 ,

for all H1,H2,H3,H, J,K ∈ D such that H1 ≤H2 ≤H3, and J,K ≤H.

Proof: Suppose we have an assignment A of this type. It defines a cohomological HD-Mackey
functor M as follows :

1. let K[G /H ] be an object of HD, we set M(K[G /H ]) = A(H),

2. let K[G/H1 ] and K[G/H2 ] be two objects of HD and [g] an element of

HomHD(K[G/H1 ],K[G/H2 ]),

we set
M([g])(x) = IndH2

Hg1∩H2
Res

Hg1
Hg1∩H2

cg(x).
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The statement then follows from the Theorem of Yoshida ; see [Yos83, Thm. 4.3].

From now on we will define cohomological HD-Mackey functors giving their values on the
subgroups in D and the morphisms IndH2

H1
, ResH2

H1
and cg for all g ∈ G, and H1,H2 ∈ D such that

H1 ≤H2.

Proposition 2.1.7. Let D be an admissible collection of subgroups of G and K,H ∈ D. We have
that HomHD(G /K ,G /K ) is isomorphic to the K-free module generated by the diagram of the
form :

G /Kg ∩H

G /K G /H

πKLg ○cg πHL

where g ∈K/G/H and L =Kg ∩H.
Moreover, let M be a cohomological HD-Mackey functors and suppose H ≤K. We have

ResKH =M(G /K
πKH
← G /H

Id
→ G /H ),

IndKH =M(G /H
Id
← G /H

πKH
→ G /K ),

and

cg,H =M(G /H
Id ○cg
← G /Hg

Id
→ G /H ).

Proof: It follows directly by Proposition A.5.9.

2.1.2 The collection Parn

Let n be a non-negative integer, we denote by Sn the symmetric group of n letters set. In this
paper we are interested in cohomological Mackey functors for a particular admissible collection
of subgroups of Sn denoted by Parn.

Definition 2.1.8 (The collection Parn). We define Parn to be the collection of Sn-subgroups
conjugated to

Sr1 × . . . × Srt ↪ Sn

for some non-negative integers r1, . . . , rt such that r1 + . . .+ rt = n where the inclusion is induced
by the ordering preserving bijection ∐i∈{1,...,t}{1, . . . , ri} → {1, . . . n}.

These subgroups of Sn appear in the literature under the name “Young subgroups”.

Notations 2.1.9. The elements of Parn are in bijection with the partitions of the set n ∶=
{1, . . . , n}. From now on we identify the subgroups π ∈ Parn with the partitions of n.

We denote a partition of n by (p1), . . . , (pr), where pi is a subset of n and ∐ri=1 pi = n. We de-
note by δn the discrete partition ; i.e. the partition associated to the trivial subgroup S1 × . . . × S1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

.

Proposition 2.1.10. The set Parn is an admissible collection of subgroups of Sn.

Proof: It is easy to check that the collection Parn is closed by conjugations and intersec-
tions.

In what follows we consider the Hecke category HParn associated to the admissible collection
Parn.

Example 2.1.11. Let V be a vector space endowed with an action of Sn. Since the functors
Hk(−, V ) and Hk(−, V ) are cohomological Mackey functors (See [Yos83], Example 2.1) by res-
triction they are cohomological HParn-Mackey functors.
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2.2 The equivalence between strict polynomial functors and
cohomological HParn-Mackey functors

In this section we recall the general theory of strict polynomial functors and we show that
their category is equivalent to the category of cohomological HParn-Mackey functors.

2.2.1 Strict polynomial functors
We fix a non-negative integer n. We recall the definition of the category of strict polynomial

functors of degree n. This category was introduced by Friedlander and Suslin in [FS97b] for the
study of group schemes.

Definition 2.2.1 (The functor Γn(−)). The functor Γn(−) ∶ ModK Ð→ ModK is defined as
follows :

Γn(V ) = (V ⊗ . . .⊗ V
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

)Sn ,

where V ⊗ . . .⊗ V
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

is endowed with the natural Sn-action induced by permutations.

We set :
Γπ(V ) = (V ⊗ . . .⊗ V

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

)π,

for any π ∈ Parn.
In what follows we use that these functor preserves filtered colimits. This claim follows from

the observation that the tensor powers preserve filtered colimits (see for instance [Fre09, Pro-
position 1.2.3]) and that finite limits commute with filtered colimits in module categories (see
[Bor94, Theorem 2.13.4] for the counterpart of this statement in the category of sets).

Notations 2.2.2. Let C and D be categories. We denote by Fun(C,D) the category of functors
from C to D.

Definition 2.2.3 (The category ΓnModK). We denote by ΓnModK the category defined by :
1. the objects are K-modules,
2. if V and W are K-modules then

HomΓnModK(V,W ) = Γn(HomModK(V,W )),

3. composition is the following :

Γn(HomModK(W,U)) ⊗ Γn(HomModK(V,W )) Ð→

Γn(HomModK(W,U) ⊗HomModK(V,W )) Ð→ Γn(HomModK(V,U)).

where the first morphism is given by the natural transformation ζA,B ∶ Γn(A) ⊗ Γn(B) →
Γn(A⊗B), and the second is given by the composition in ModK.

We have a functor γn ∶ ModK → ΓnModK defined as the identity on the objects and for a
morphism f ∶X → Y in ModK we have f ↦ γn(f) = f ⊗⋯⊗ f

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

∈ Γn(HomModK(X,Y )).

Definition 2.2.4 (Strict polynomial functors). A strict polynomial functor of degree n is a K-
linear functor F ∶ ΓnModK Ð→ ModK such that the functor Un(F ) = F ○ γn ∶ ModK → ModK
preserves filtered colimits. We denote the category of strict polynomial functors of degree n by
PolFunn. The map Un ∶ F ↦ F ○γn induces a functor Un ∶ PolFunn → Fun(ModK,ModK). As a
consequence to any strict polynomial functor we associate an endofunctor of the category ModK.

Example 2.2.5. The following functors have a natural strict polynomial structure of degree n :
1. the n-symmetric powers : Sn,
2. the n-divided powers : Γn,
3. the n-external powers : Λn.
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Proposition 2.2.6. Let F ∶ ModK Ð→ModK be a functor. Providing F with the structure of a
strict polynomial functor of degree n amounts to giving a natural transformation

ζ = ζX,Y ∶ Γn(X) ⊗ F (Y ) → F (X ⊗ Y ),

for X,Y ∈ ModK such that the following diagrams commute :

Γn(X) ⊗ Γn(Y ) ⊗ F (Z) Γn(X) ⊗ F (Y ⊗Z)

Γn(X ⊗ Y ) ⊗ F (Z) F ((X ⊗ Y ) ⊗Z) F (X ⊗ (Y ⊗Z)),

ζX,Y ⊗IdF (Z)

id⊗ζY,Z

ζX,Y ⊗Z

ζX⊗Y,Z ≅

and
Γn(K) ⊗ F (X) F (K⊗X)

F (X).

≅

ζK,X

≅

Proof: Suppose we have such natural transformation ζ. We have :

Γn(HomModK(X,Y )) ⊗ F (X) F (HomModK(X,Y ) ⊗X)

F (Y ).
∃α

and we take the adjoint α♯ ∶ Γn(HomModK(X,Y )) → HomModK(F (X), F (Y )). In the converse di-
rection, we assume F is a strict polynomial functor of degree n. We have Id♯ ∶X → HomModK(Y,X⊗
Y ) defined by Id♯(x) ∶ y ↦ x⊗ y the adjoint of Id ∶X ⊗ Y →X ⊗ Y . We take

Γn(X) ⊗ F (Y ) Γn(HomModK(Y,X ⊗ Y )) ⊗ F (X)

F (X ⊗ Y ).
∃ζ

We recall some properties of the category of strict polynomial functors.

Proposition 2.2.7. Let π ∈ Parn. The functor Γπ(−) ∶ V ↦ Γπ(V ) is canonically a strict
polynomial functor of degree n. The action is given by the following composition

Γn(X) ⊗ Γπ(Y ) → Γπ(X) ⊗ Γπ(Y ) → Γπ(X ⊗ Y ),

where the first morphism is the restriction Γn(X) ↪ Γπ(X).

Proposition 2.2.8 (Krause [Kra13]). The set {Γπ(−)}π∈Parn is a set of small projective gene-
rators for the category PolFunn.

We recall a result on the Hom-sets between the projective generators Γπ(−) in the category
of strict polynomial functors of degree n.

Lemma 2.2.9. Let π1 = (p1) . . . (pc) and π2 = (q1), . . . , (ql) be in Parn. The set B of l × c
N-matrix such that ∑j∈{1,...,c} αi,j = ∣qi∣ and ∑i∈{1,...,l} αi,j = ∣pj ∣ is in bijection with the set

π1
/ Sn /π2

.

Proof: Let g ∈ Sn we define the l×c Set-matrix m(g) by m(g)i,j = p
g
i ∩qj . We have a function

Sn → B defined by g ↦M(g)i,j = {∣m(i, j)∣}i,j . Let g1 and g2 in Sn. We have ∣Mg1 ∣ = ∣Mg2 ∣ if and
only if there exist h1 ∈ π1 and h2 ∈ π2 such that h1g1h2 = g2. Thus the map pass to the quotient
defining an injective function π1 / Sn /π2 → B.
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For the surjectivity suppose that the elements inside (qj) are ordered by the usual order for
every j. Let b = bi,j ∈ B. We take (qi)b = (qi,1), . . . , (qi,c) a partition of qi such that ∣qi,j ∣ = bi,j
and we consider the associated matrix qi,j . We consider a permutation σ which map the element
of pj in the elements of ⊔i qi,j . We have that M(σ) = b.

Example 2.2.10. Let π1 = (1,3), (2,4) and π2 = (1), (2), (3,4) ∈ Par4. We consider g = (1,2) ∈

S4 we have πg1 = (2,3)(1,4) and m(g) is
∅ {1}
{2} ∅
{3} {4}

.

Definition 2.2.11. Let π1 = (p1) . . . (pc) and π2 = (q1), . . . , (ql) be in Parn. Let A = {αi,j} be a
l × c N-matrix such that ∑j∈{1,...,c} αi,j = ∣qi∣ and ∑i∈{1,...,l} αi,j = ∣pj ∣. Using the permutation of
Lemma 2.2.9 it defines a morphism :

γA ∶ Γπ1(−) ≅⊗
j

Γpj(−) Ð→⊗
j

(⊗
i

Γαi,j(−)) ≅⊗
i

(⊗
j

Γαi,j(−)) Ð→⊗
j

Γqj(−) ≅ Γπ2(−).

We call the morphisms defined in this way “standard morphisms”.

Lemma 2.2.12 (Totaro [Tot97], Krause [Kra14]). Let π1 and π2 be in Parn. The set of standard
morphisms of Definition 2.2.11 forms a basis for the K-module

HomPolFunn(Γπ1(−),Γπ2(−)).

2.2.2 Cohomological HParn-Mackey functors and strict polynomial func-
tors

In what follows we prove the equivalence between Maccoh(HParn) and PolFunn.
We recall the notion of coend.

Definition 2.2.13. Let C be a small category enriched over ModK (see [Kel05]). Let F ∶ C ×
Cop Ð→ ModK be a ModK-enriched functor (a K-linear functor in the terminology used in the
previous sections). A extranatural transformation g ∶ F Ð→ x with x ∈ ModK, is a collection
{gc ∶ F (c, c) Ð→ x}c∈C of morphisms in ModK, such that the following diagram commutes :

F (c, d) ⊗HomC(c, d) F (c, c)

F (d, d) x.

A coend of F is an object
c∈C
∫ F (c, c) in ModK with a extranatural transformation f ∶ F Ð→

c∈C
∫ F (c, c) such that any extranatural transformation g ∶ F Ð→ x factorizes uniquely through f .

A coend of F is equivalent to a coequalizer of the form :

⊕
c,d∈C

F (c, d) ⊗HomC(c, d) ⇉⊕
c

F (c, c) →

c∈C

∫ F (c, c),

see [Kel05] for more details on this definition.

Definition 2.2.14 (The functor evn). Let Mn be a cohomological HParn-Mackey functor. It
defines a functor :

Mn(−) ∶ ModK Ð→ModK

V ↦

π∈Parn

∫ Mn(π) ⊗ Γπ(V ),

where we use that the mapping π ↦ Γπ(V ) gives a covariant functor Γ−(V ) ∶ HParn →ModK
and we compose this functor with the anti-isomorphism HParopn →HParn of Definition 2.1.4 to
form the contravariant functor Γ−(V ) ∶ HParopn →ModK of this coend formula.

47



Chapter 2. Mackey Functors, Generalized Operads and Analytic Monads

This mapping is functorial in Mn, we then have :

evn ∶ Maccoh(HParn) Ð→ Fun(ModK,ModK)

Mn ↦ evn(Mn)(−).

Proposition 2.2.15. LetMn be a cohomological HParn-Mackey functor. We have that evn(Mn)
extends canonically to a strict polynomial functor of degree n.

Proof: We have evn(Mn) =
π∈HParn

∫ Mn(π)⊗Γπ(−). If V and W are two objects in ΓnModK
then the morphism Γπ(V ) ⊗HomΓnModK(V,W ) Ð→ Γπ(W ) induces a morphism :

(

π∈HParn

∫ Mn(π) ⊗ Γπ(V )) ⊗HomΓnModK(V,W ) Ð→

π

∫ Mn(π) ⊗ Γπ(W ).

Corollary 2.2.16. The functor evn ∶ Maccoh(HParn) Ð→ Fun(ModK,ModK) extends to a func-
tor

PolFunn

Maccoh(HParn) Fun(ModK,ModK).

Un

evn

evn

Proposition 2.2.17. Let π1 and π2 be partitions of n. We have a natural isomorphism :

HomPolFunn(Γπ1(−),Γπ2(−)) ≅ HomHParn(π1, π2).

Proof: We have to check that 2.2.9 is compatible with composition. This follows by Proposi-
tion 2.1.7 and the observation that a “standard morphism” is the composition of a permutation
with g ∈ π1 / Sn /π2 , a restriction to πg1 ∩ π2 and an induction to π2.

As a direct consequence we have the following theorem.

Theorem 2.2.18. The functor evn ∶ Maccoh(HParn) → PolFunn induces an equivalence bet-
ween the category of cohomological HParn-Mackey functors, and the category of strict polynomial
functors of degree n.

Proof: The theorem follows applying Yoneda’s Lemma, Proposition 2.2.8 and Lemma 2.2.17.
We define explicitly an inverse of ev by using Yoneda’s Lemma. Let P be a strict polynomial

functor of degree n. We define the cohomological HParn-Mackey functor :

P (π) = HomPolFunn(Γπ(−), P ).

Let π1, and π2 be in Parn such that π1 ≤ π2, and σ ∈ Parn. We recall that by Lemma 2.2.17 we
have a natural isomorphism HomPolFunn(Γπ1(−),Γπ2(−)) ≅ K[π1 / Sn /π2 ]. We define the mor-
phisms P (HomHParn(π1, π2)) by precomposition with HomPolFunn(Γπ1(−),Γπ2(−)). Using the
isomorphism HParopn → HParn we deduce that the relations of cohomological HParn-Mackey
functors are satisfied.

2.3 The category ModM
K

The aim of this section is to define the category of M-modules, denoted by ModM
K , and to

introduce the two monoidal structures (ModM
K ,⊠,K) and (ModM

K ,◻, I).
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2.3.1 M-modules
We introduce the concept of M-module. It generalizes the definition of S-module (see Appen-

dix A).

Definition 2.3.1 (M-module). An M-moduleM is a sequence {Mn}n∈N of cohomological HParn-
Mackey functors. A morphism between two M-modules {Mn}n∈N and {Nn}n∈N is a sequence of
natural transformations {fn ∶Mn Ð→ Nn}n∈N. Their category is denoted by ModM

K .

We introduce some special classes of M-modules.

Definition 2.3.2 (The Γ(M) and S(M) M-modules). Let M be a S-module (see Appendix A).
We set Γn(M)(−) =H0(−,M(n)) and we consider the M-module Γ(M) defined by the collection
of these cohomological Mackey functors. We also set Sn(M)(−) =H0(−,M(n)) and consider the
M-module S(M) defined by the collection of these cohomological Mackey functors. Remark that
Hk(−,M(n)) and Hk(−,M(n)) are M-module for all k.

Definition 2.3.3 (The trace map). Let M be a S-module (see Appendix A). There exists a
natural morphism of M-modules trM ∶ S(M) Ð→ Γ(M) called trace map defined by : for any
n ∈ N and any π ∈ Parn we set trM(π) ∶ Sn(M)(π) → Γn(M)(π) as [x] ↦ ∑σ∈π σ

∗x.

2.3.2 The monoidal structures ⊠ and ◻
We introduce the two monoidal structures (⊠,ModM

K ,K) and (◻,ModM
K , I).

We recall some properties of coends.

Lemma 2.3.4 (Fubini Theorem for coends). Let A and B be small categories and F ∶ (A ×
B)op × (A × B) Ð→ModK be a functor. We have, if the coend exists :

(A,B)∈A×B

∫ F (A,B,A,B) ≅

A∈A

∫

B∈B

∫ F (A,B,A,B) ≅

B∈B

∫

A∈A

∫ F (A,B,A,B).

Lemma 2.3.5 (coYoneda Lemma for coends). Let A be a small category enriched over ModK
and F ∶ A Ð→ModK be a functor. We have :

F (−) ≅

A∈A

∫ HomA(A,−) ⊗ F (A).

Proof: For more details and proofs see [Kel05, Sec. 3.10].

We introduce the two monoidal structures on ModM
K . They correspond to tensor product and

composition.

Definition 2.3.6 (The product ⊠). Let M and N be two M-modules. We set :

(M ⊠N)n(π) = ⊕
i+j=n

π1×π2∈HPari×HParj

∫ (M(π1) ⊗N(π2)) ⊗HomHParn(π1 × π2, π).

for each π ∈ Parn and for all n ∈ N.
The action of HParn is given by the action on HomHParn(π1 × π2, π) inside the coend.

Proposition 2.3.7. Let K be the following M-module :

Ki ∶=
⎧⎪⎪
⎨
⎪⎪⎩

K i = 0;

0 i ≠ 0.

The triple (ModM
K ,⊠,K) forms a symmetric monoidal category.
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Proof: Let A,B,C be M-modules. We consider the following isomorphism :

(A ⊠ (B ⊠C))(π) = ⊕
i+j=n

π1×π2∈HPari×HParj

∫ A(π1) ⊗ (B ⊠C)(π2) ⊗HomParn(π1 × π2, π)

= ⊕
i+j=n

π1×π2

∫ A(π1) ⊗ ( ⊕
s+t=j

ρ1×ρ2∈HPars×HPart

∫ B(ρ1) ⊗C(ρ2)⊗

HomHParj(ρ1 × ρ2, π2)) ⊗HomHParn(π1 × π2, π)

≅ ⊕
i+s+t=n

π1×π2×ρ1×ρ2

∫ A(π1) ⊗B(ρ1) ⊗C(ρ2) ⊗HomHParj(ρ1 × ρ2, π2)⊗

HomHParn(π1 × π2, π)

≅ ⊕
i+s+t=n

π1×ρ1×ρ2

∫ A(π1) ⊗B(ρ1) ⊗C(ρ2) ⊗HomHParn(π1 × ρ1 × ρ2, π),

where we first expand the tensor product and then we use the isomorphisms given by Lemma
2.3.4 and by Lemma 2.3.5.

We get the same formula for ((A⊠B)⊠C)(π) hence we have A⊠(B ⊠C) ≅ (A⊠B)⊠C. For
the unit ηA ∶ A ⊠K→ A morphism we consider the following isomorphism :

A ⊠K =⊕
i+j

π1×π2∈HPari×HParj

∫ A(π1) ⊗K(π2) ⊗HomParn(π1 × π2, π)

=

π1∈HParn

∫ A(π1) ⊗K⊗HomParn(π1, π) ≅ A(π),

where we use the isomorphism of Lemma 2.3.5.
For the symmetry isomorphism βA,B ∶ A⊠B → B⊠A we consider the following isomorphism :

(A ⊠B)(π) = ⊕
i+j=n

π1×π2∈HPari×HParj

∫ A(π1) ⊗B(π2) ⊗HomParn(π1 × π2, π)

≅ ⊕
i+j=n

π2×π1∈HParj×HPari

∫ B(π2) ⊗A(π1) ⊗HomParn(π2 × π1, π) = (A ⊠B)(π).

Definition 2.3.8 (The product ◻). Let M and N be two M-modules we set :

(M ◻N)n(π) = ⊕
r∈N

(

ρ∈HParr

∫ M(ρ) ⊗ (N⊠r(π))ρ),

for all π ∈ Parn, where we use that N⊠r(π) forms a K[Sr]-module by the symmetry of the tensor
product ⊠ and again we consider the contravariant functor (N⊠r(π))−) induced by the duality
isomorphism HParopn →HParn.

Let I be the following M-module :

Ii =
⎧⎪⎪
⎨
⎪⎪⎩

K i = 1,

0 i ≠ 1.

The proof that the triple (ModM
K ,◻, I) forms a monoidal category is postponed to Theorem

2.4.28.
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2.4 The equivalence between strict analytic functors and
M-modules

In this section we recall the definition of AnFun, the category of strict analytic functors. We
prove that the equivalence of Theorem 2.2.18 extends to a monoidal equivalence between ModM

K
and AnFun.

2.4.1 Strict analytic functors
We recall the definition of strict analytic functors and we introduce two monoidal structures.

Definition 2.4.1 (Strict analytic functor). A strict analytic functor is a collection {Fn}n∈N
where Fn is a strict polynomial functor of degree n. Let {Fn}n∈N and {Gn}n∈N be strict analytic
functors. A morphism of strict analytic functors is a collection {fn} ∶ {Fn}n∈N → {Gn}n∈N where
fn is a morphism of strict polynomial functors. We denote the category of strict analytic functors
by AnFun. We accordingly have AnFun = ∏n∈N PolFunn.

Definition 2.4.2 (The functor U). We define the functor U ∶ AnFun→ Fun(ModK,ModK). Let
F = {Fn}n∈N be a strict analytic functor we set UF = ⊕n∈N UFn. This functor U ∶ AnFun →
Fun(ModK,ModK) is faithful, because this is clearly the case for each functor Un ∶ PolFunn →
Fun(ModK,ModK) in Definition 2.2.4.

The category AnFun is equipped with two monoidal structures (AnFun,⊗,K) and (AnFun, ○, Id).

Definition 2.4.3 (The product ⊗). Let F = {Fn}n∈N and {Gn}n∈N be strict analytic functors
we set :

(F ⊗G)n(−) = ⊕
i+j=n

Fi(−) ⊗Gj(−).

Let F = {Fn}n∈N,{Gn}n∈N,A = {An}n∈N, and B = {Bn}n∈N be strict analytic functors and
{fn}n∈N ∶ F → A, {gn}n∈N ∶ G→ B be strict analytic functor morphisms we set :

{f ⊗ g}n = ∑
i+j=n

fi ⊗ gj .

Definition 2.4.4 (The strict analytic functor K). We define the strict analytic functor K =
{Kn ∶ ΓnModK → ModK}n∈N such that K0 ∶ Γ0 ModK → ModK is the constant functor V ↦ K,
and Kn ∶ ΓnModK →ModK is the constant functor V ↦ 0 when n ≠ 0.

Proposition 2.4.5. The triple (AnFun,⊗,K) forms a symmetric monoidal category. In parti-
cular, for F and G strict analytic functors the collection F ⊗G = {(F ⊗G)n}n∈N is canonically
a strict analytic functor. We moreover have a natural isomorphism U(F ⊗G) ≅ U(F ) ⊗ U(G).

Proof: We show that (F ⊗G)n(−) is a strict polynomial functor of degree n using the cha-
racterization of Proposition 2.2.6. We have :

Γn(X) ⊗ (F ⊗G)n(Y ) = ⊕
i+j=n

Γn(X) ⊗ Fi(Y ) ⊗Gj(Y )
(∗)
→ ⊕

i+j=n
ΓSi×Sj(X) ⊗ Fi(Y ) ⊗Gj(Y ) ≅

⊕
i+j=n

Γi(X) ⊗ Fi(Y ) ⊗ Γj(X) ⊗Gj(Y ) → ⊕
i+j=n

Fi(X ⊗ Y ) ⊗Gj(X ⊗ Y ),

where the morphism (∗) is given by the restriction map Γn(X) = ΓSn(X) → ΓSi×Sj(X) = ΓSi(X)⊗
ΓSj(X). The unit and the associativity property of this action of Γn(X) on (F ⊗G)n follows
from the commutativity of the following diagrams :

Γn(K) ⊕i+j=n Γi(K) ⊗ Γj(K)

K K,=
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and
Γn(X) ⊗ Γn(Y ) ⊕i+j=n Γi(X) ⊗ Γj(X) ⊗ Γi(Y ) ⊗ Γj(Y )

Γn(X ⊗ Y ) ⊕i+j=n Γi(X ⊗ Y ) ⊗ Γj(X ⊗ Y ).=

The relation U(F ⊗G) ≅ U(F )⊗U(G) follows from the distributivity of tensor product with
respect to direct sums.

There are evident isomorphisms :

(K⊗F )n(−) ≅ Fn(−) ≅ (F ⊗K)n(−),

and
((A⊗B) ⊗C)n(−) ≅ ⊕

i+j+k=n
Ai(−) ⊗Bj(−) ⊗Ck(−) ≅ (A⊗ (B ⊗C))n(−),

the compatibility of these isomorphisms with polynomial structures follows from the unit, asso-
ciativity and symmetry of the restriction maps used in our definition.

We recall some relations between polynomial functors, in the sense of Eilenberg-MacLane
(see [EML54]), and strict polynomial functors.

Definition 2.4.6 (Cross-effect). Let F ∶ ModK Ð→ModK be a functor. We set

∆0(F ) = F (0).

Let n be a non-negative integer. We define the nth cross-effect ∆n(F ) ∶ ModK
×n Ð→ ModK

by :

∆n(F )(V1, . . . , Vn) =Ker(F (V1 ⊕ . . .⊕ Vn) Ð→
n

⊕
i=1

F (V1 ⊕ . . .⊕
i
0⊕ . . .⊕ Vn)).

Proposition 2.4.7. Let F be an endofunctor of the category ModK. We have the following
canonical decomposition :

F (V1 ⊕ . . .⊕ Vn) =
n

⊕
r=1

⊕
1≤i1≤...≤ir≤n

∆r(F )(Vi1 , . . . , Vir).

Proof: We refer to [EML54] for a proof of the statement.

Definition 2.4.8 (Homogeneous cross-effect). We assume that πi ∶ V1⊕⋯⊕Vs Ð→ V1⊕⋯⊕Vs is
the endomorphism of V1⊕⋯⊕Vs induced by the projection on the summand Vi. For α1+. . .+αs = n
we consider the following elements of Γn(HomModK(V1 ⊕⋯⊕ Vs, V1 ⊕⋯⊕ Vs)) :

γα1(π1) . . . γαs(πs) = ∑
σ∈ Sn

Sα1
×⋯×Sαs

σ∗(π⊗α1

1 ⊗⋯⊗ π⊗αss ),

where the notation γα refers to the fact that Γ(−) represents the free divided power algebra. In
this expression, we use the action of a set of representative of the class σ ∈ Sn

Sα1
×⋯×Sαs

in the
group of permutation Sn to shuffle the factors π⊗αii in the tensor product (π⊗α1

1 , . . . , π⊗αss ). We
equivalently have :

γα1(π1) . . . γαs(πs) = ∑
∣{ik=i}∣=αi

πi1 ⊗⋯⊗ πin ,

where the sum runs over the set of n-tuples (i1, . . . , in) with αi terms such that ik = i for each i.
The addition formula for divided powers (see Definition A.1.40) implies that we have the

identity :

γn(Id) = γn(π1 +⋯ + πs) = ∑
α1+⋯+αs=n

γα1(π1)⋯γαs(πs),
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in Γn(HomModK(V1 ⊕⋯⊕ Vs, V1 ⊕⋯⊕ Vs)). From the relation

(πi1 ⊗ ⋅ ⋅ ⋅ ⊗ πin) ○ (πj1 ⊗ ⋅ ⋅ ⋅ ⊗ πjn)

= (πi1πj1 ⊗ ⋅ ⋅ ⋅ ⊗ πinπjn) =

⎧⎪⎪
⎨
⎪⎪⎩

πi1 ⊗ ⋅ ⋅ ⋅ ⊗ πin , if (i1, . . . , in) = (j1, . . . , jn),

0, otherwise,

in Hom(V1 ⊕ ⋅ ⋅ ⋅ ⊕ Vs, V1 ⊕ ⋅ ⋅ ⋅ ⊕ Vs)
⊗n, we also deduce that :

(γα1(π1) . . . γαs(πs)) ○ (γβ1(π1) . . . γβs(πs))

=

⎧⎪⎪
⎨
⎪⎪⎩

γα1(π1) . . . γαs(πs), if (α1, . . . , αn) = (β1, . . . , βn),

0, otherwise,

we also deduce that these elements (γα1(π1) . . . γαs(πs)) forms a complete set of orthogonal
idempotents in Γn(Hom(V1 ⊕ ⋅ ⋅ ⋅ ⊕ Vs, V1 ⊕ ⋅ ⋅ ⋅ ⊕ Vs)). We refer to [Bou67] for this result.

Let F be a strict polynomial functor of degree n. We define the homogeneous cross-effect of
degrees (α1, . . . , αs) of F as follows :

F (α1,...,αs)(V1, . . . , Vs) = Im(F (γα1(π1) . . . γαs(πs))).

Proposition 2.4.9. Let F be a strict polynomial functor of degree n. We have the following
canonical decomposition of the nth cross-effect :

∆s(U(F ))(V1, . . . , Vs) = ⊕
α1+...+αs=n

αi>0

F (α1,...,αs)(V1, . . . , Vs).

Proof: We refer to [Bou67] for this statement.

Remark 2.4.10. Let F ∶ ModK Ð→ ModK be a functor. We say that F is polynomial, in the
sense of Eilenberg-MacLane [EML54], of degree lower or equal to n if ∆n+1(F ) = 0. We say that
F is of degree n if it is of degree lower or equal to n and ∆n ≠ 0.

Let F be a strict polynomial functors of degree n. The functor U(F ) ∶ ModK Ð→ ModK is a
polynomial functor, in the sense of Eilenberg-MacLane [EML54], of degree lower or equal to n.
The statement is an obvious consequence of the formula of Proposition 2.4.9 when n > s.

On the other hand the functor U ∶ PolFunn Ð→ Fun(ModK,ModK) does not preserve the
polynomial degree. In general if F is a strict polynomial functor of degree n then U(F ) is a
polynomial functor of degree m where m ≤ n.

In what follows, we mainly use the following variation on the results of Proposition 2.4.7 and
Proposition 2.4.9 :

Proposition 2.4.11 (Bousfield [Bou67]). Let F be a strict polynomial functor of degree n. We
have the isomorphism :

F (V1 ⊕ ⋅ ⋅ ⋅ ⊕ Vs) = ⊕
α1+⋅⋅⋅+αs=n

αi≥0

F (α1,...,αs)(V1, . . . , Vs),

where the sum runs over all s-tuples of non-negative integers αi ∈ N such that α1 + ⋅ ⋅ ⋅ + αs = n.

Proof: The proof follows directly from the decomposition of γn(Id) in orthogonal idempotents
as in Definition 2.4.8.

Proposition 2.4.12. Let F be a strict polynomial functor of degree n.

1. If αi = 0 for some i, then we have

F (α1,...,αi,...,αs)(V1, . . . , Vi, . . . , Vs) = F
(α1,...,α̂i,...,αs)(V1, . . . , V̂i, . . . , Vs),
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2. if we assume Vi = ⊕kij=1 V
j
i for each i, then we have

F (α1,...,αi,...,αs)(V1, . . . , Vi, . . . , Vs)

= ⊕
(βji )

∑j β
j
i =αi

F (β1
1 ,...,β

k1
1 ,...,β1

s ,...,β
ks
s )(V 1

1 , . . . , V
k1
1 , . . . , V 1

s , . . . , V
ks
s ).

3. Γ
(α1,...,αn)
n (X1, . . . ,Xr) = Γα1(X1) ⊗⋯⊗ Γαn(Xn).

Proof: The first relation is trivial. The second relation follows from decomposition rules for
divided power operations :

γαi(πi) = γαi(π
1
i + ⋅ ⋅ ⋅ + π

ki
i ) = ∑

β1
i +⋅⋅⋅+β

ki
i =αi

γβ1
i
(π1
i ) . . . γβkii

(πkii ),

with the obvious notation for the projectors associated to the direct sum Vi = ⊕
ki
j=1 V

j
i . To get

the third relation, we use the isomorphism :

(X1 ⊕⋯⊕Xr)
⊗n ≅ ⊕

(i1,...,in)
Xi1 ⊗⋯⊗Xin .

The action of a permutation σ ∈ Sn on the tensor power maps the term Xi1 ⊗⋯⊗Xin associated
to (i1, . . . , in) to the term Xiσ(1) ⊗⋯⊗Xiσ(n) in this sum. We then have the relation :

im(Γn(γα1(π1)⋯γαs(πs))) = ( ⊕
∣{ik=i}∣=αi

Xi1 ⊗⋯⊗Xin)
Sn ,

from which the requested identity follows.

Lemma 2.4.13. Let F be a strict polynomial functor. We have a natural morphism :

Γα1(X1) ⊗ . . .⊗ Γαr(Xr) ⊗ F
(α1,...,αr)(Y1, . . . , Yr) Ð→ F (α1,...,αr)(X1 ⊗ Y1, . . . ,Xr ⊗ Yr).

This pairing verifies an evident generalization of unit relation of 2.2.6 when we suppose
Xi = K for some i as well as an evident generalization of associativity relation of Proposition
2.2.6 when we compose our pairing to get an operation of the form :

(Γα1(X1) ⊗ ⋅ ⋅ ⋅ ⊗ Γαr(Xr)) ⊗ (Γα1(Y1) ⊗ ⋅ ⋅ ⋅ ⊗ Γαr(Yr)) ⊗ F
(α1,...,αr)(Z1, . . . , Zr)

→ F (α1,...,αr)(X1 ⊗ Y1 ⊗Z1, . . . ,Xr ⊗ Yr ⊗Zr)

Proof: The morphism is deduced from the following commutative diagram :

Γn(X1 ⊕ . . .⊕Xr) ⊗ F (Y1 ⊕ . . .⊕ Yr) F (X1 ⊗ Y1 ⊕ . . .Xr ⊗ Yr)

Γα1(X1) ⊗ . . .⊗ Γαr(Xr) ⊗ F
(α1,...,αr)(Y1, . . . , Yr) F (α1,...,αr)(X1 ⊗ Y1, . . . ,Xr ⊗ Yr),

(∗)

Γn(γα1
(π1)...γαr (πr))⊗F (γα1

(π1)...γαr (πr)) F (γα1
(π1)...γαr (πr))

where (∗) is yielded by the morphism of Proposition 2.2.6 and the projection morphism

(X1 ⊕⋯⊕Xr) ⊗ (Y1 ⊕⋯⊕ Yr) →X1 ⊗ Y1 ⊕⋯⊕Xr ⊗ Yr.

We apply the idempotent construction of Definition 2.4.8 to F (X1⊕⋅ ⋅ ⋅⊕Xr), F (Y1⊕⋅ ⋅ ⋅⊕Yr), and
F (X1⊗Y1⊕⋅ ⋅ ⋅⊕Xr⊗Yr) to get the vertical morphisms of this diagram. We actually consider the
corestriction of these idempotent morphisms to their image in our diagram. We check that these
idempotents commute with the horizontal morphism (∗) to establish the existence of the dotted
map of our diagram. We deduce this statement from the associativity of Proposition 2.2.6. To
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be more precise if we set X ′ =X =X1⊕⋅ ⋅ ⋅⊕Xr and Y ′ = Y = Y1⊕⋅ ⋅ ⋅⊕Yr, then this associativity
property implies that we have a commutative diagram :

Γn(Hom(X,X ′)) ⊗ Γn(X) ⊗ Γn(Hom(Y,Y ′)) ⊗ F (Y ) //

��

Γn(X
′) ⊗ F (Y ′)

��

Γn(Hom(X,X ′) ⊗Hom(Y,Y ′)) ⊗ F (X ⊗ Y )

��
Γn(Hom(X ⊗ Y,X ′ ⊗ Y ′)) ⊗ F (X ⊗ Y ) // F (X ′ ⊗ Y ′)

.

We take the morphisms induced by the projection of X ⊗Y = (⊕iXi)⊗(⊕j Yj) onto ⊕iXi⊗Yi
to prolong the vertical morphism of this diagram. We then get a commutative diagram

Γn(HomModK(X ⊗ Y,X ′ ⊗ Y ′)) ⊗ F (X ⊗ Y ) F (X ′ ⊗ Y ′)

Γn(HomModK(⊕iXi ⊗ Yi,⊕iX
′
i ⊗ Y

′
i )) ⊗ F (⊕iXi ⊗ Yi) F (⊕iX

′
i ⊗ Y

′
i )

We just take γα1(π1)⋯γαr(πr) ∈ Γn(HomModK(X,X)) and γα1(π1)⋯γαr(πr) ∈ Γn(HomModK(Y,Y ))
to check our assertion.

The associativity of the pairing for F (α1,...,αr) comes from the associativity of the pairing for
F with the direct sum inside.

We use the observation of the previous proposition to give a sense to homogeneous cross-
effects over a countable sequence of variables :

Definition 2.4.14. Let F be a strict polynomial functor of degree n. Let X = (X0, . . . ,Xi, . . . ) be
a collection of modules Xi ∈ModK . Let α = (α0, . . . , αn, . . . ) denote a sequence of non-negative
integers αi ∈ N such that αi = 0 for all but a finite number of indices i and ∑i αi = n. Let
i1 < ⋅ ⋅ ⋅ < ir be the collection of these indices i = ik such that αi > 0. We set :

Fα(X) = F (αi1 ,...,αir )(Xi1 , . . . ,Xir).

We then have the following generalization of the result of Proposition 2.4.11 :

Proposition 2.4.15. Let F be a strict polynomial functor of degree n. Let X = (X0, . . . ,Xi, . . . )
be a collection of modules Xi ∈ModK . We have the isomorphism :

F (X0 ⊕ ⋅ ⋅ ⋅ ⊕Xi ⊕ . . . ) =⊕
α

Fα(X),

where the sum runs over all the sequences of non-negative integers α = (α0, . . . , αi, . . . ) which
satisfy the constraints of the previous definition.

Proof: The statement follows from the fact that F commutes with the filtered colimits (see
Definition 2.2.4)

Definition 2.4.16. Let (a1, . . . , as) be any collection of non-negative integers ai ≥ 0. Let n =

a1 + ⋅ ⋅ ⋅ + as. For an analytic functor F = (Fn)n∈N , we set F (a1,...,as) = F
(a1,...,as)
n , where we

consider the homogeneous cross effect of the component of F of degree n = a1 + ⋅ ⋅ ⋅ + as. Let
α = (α0, . . . , αi, . . . ) be any sequence of non-negative integers such that αi = 0 for all but a finite
number of indices i ≥ 0. Let n = ∑i αi. We also set Fα = F

α
n , where we use the construction of

Definition 2.4.14 for the component of F of degree n = ∑i αi. The formulas of Proposition 2.4.11
and of Proposition 2.4.15 have an obvious generalization for analytic functors (we just forget
about the constraints ∑i αi = n in this case).
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Proposition 2.4.17. Let F = {Fn}n∈N and G = {Gn}n∈N be two strict analytic functors. The
composition functor UF ○UG ∶ ModK Ð→ModK has a natural structure of strict analytic functor
such that :

(F ○G)n = ⊕
s

1≤t≤s

⊕
0≤i1<...<it

αi1+...+αit=s
i1αi1+...+itαit=n

F
(αi1 ,...,αit)
s (Gi1 , . . . ,Git).

Proof: Proposition 2.4.15 implies that the functor U(F ) ○ U(G)(X) is given by the sum
of the expression of the statement. The structure is given by the composition of the following
morphisms :

Γn(X) ⊗ F
(αi1 ,...,αit)
s (Gi1(Y ), . . . ,Git(Y ))

(1) ↓

Γαi1 (Γi1(X)) ⊗ . . .⊗ Γαit (Γit(X)) ⊗ F
(αi1 ,...,αit)
s (Gi1(Y ), . . . ,Git(Y ))

(2) ↓

F
(αi1 ,...,αit)
s (Γi1(X) ⊗Gi1(Y ), . . . ,Γit(X) ⊗Git(Y ))

(3) ↓

F
(αi1 ,...,αit)
s (Gi1(X ⊗ Y ), . . . ,Git(X ⊗ Y )),

To define our map (1), we use that any composite Γk(Γl(X)) is identified with the submodule
of X⊗kl spanned by the tensors which are invariant under a certain subgroup of Skl, deno-
ted by Sk ≀ Sl, and which is classically called the wreath product in the literature. We then
have Γα1

(Γi1(X)) ⊗ ⋅ ⋅ ⋅ ⊗ Γαr(Γir(X)) = (X⊗n)Sα1
≀Si1×⋅⋅⋅×Sαr ≀Sir , and morphism (1) is given by

the obvious embedding Γn(X) = (X⊗n)Sn ↪ (X⊗n)Sα1
≀Si1×⋅⋅⋅×Sαr ≀Sir . The morphism (2) is the

morphism of Lemma 2.4.13, and the morphism (3) is induced by the morphism of Proposition
2.2.6.

Definition 2.4.18 (The product ○). We define the product ○ on AnFun by the construction of
Proposition 2.4.17. It is compatible with the usual composition of functors in the sense that the
following diagram commutes :

AnFun×AnFun AnFun

Fun(ModK,ModK) × Fun(ModK,ModK) Fun(ModK,ModK).

○

U×U U

○

Lemma 2.4.19. Let F,G be analytic functors. We use the short notation X = (X1, . . . ,Xr) for
any r-tuple of K-modules Xi. We also use the short notation b for any collection b = (b1, . . . , br) ∈
Nr and we set Γb(X) = ⊗ri=1 Γbi(Xi) for short. We equip the set of collections Nr with a total
ordering and we fix c = (c1, . . . , cr) ∈ Nr.

1. We have :

(F ○G)(c1,...,cr)(X) = ⊕
b1<⋅⋅⋅<bl
ai>0

∑i aib
i
j=cj(∀j)

F (a1,...,al)(Gb
1

(X), . . . ,Gb
l

(X)),

where the sum runs over all sequences (a1, . . . , al), l ≥ 0, of positive integers ai > 0, and
over all ordered sequences of collections b1 < ⋅ ⋅ ⋅ < bl such that we have ∑i aibij = cj, for all
j ∈ {1, . . . , r}.
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2. For this object (F ○G)c(−), the pairing of Lemma 2.4.13 is given by a composite of the
form :

Γc(X)⊗(F ○G)c(Y ) →

⊕
b1<⋅⋅⋅<bl
ai>0

∑i aib
i
j=cj(∀j)

Γa1(Γb1(X)) ⊗ ⋅ ⋅ ⋅ ⊗ Γal(Γbl(X)) ⊗ F (a1,...,al)(Gb
1

(Y ), . . . ,Gb
l

(Y ))

→ ⊕
b1<⋅⋅⋅<bl
ai>0

∑i aib
i
j=cj(∀j)

F (a1,...,al)(Γb1(X) ⊗Gb
1

(Y ), . . . ,Γbl(X) ⊗Gb
l

(Y ))

→ ⊕
b1<⋅⋅⋅<bl
ai>0

∑i aib
i
j=cj(∀j)

F (a1,...,al)(Gb
1

(X ⊗ Y ), . . . ,Gb
l

(X ⊗ Y )),

where we use the notation Y = (Y1, . . . , Yr) for another r-tuple of variables, and we set
X⊗Y = (X1⊗Y1, . . . ,Xr⊗Yr). In this composite, the first morphism is given term-wise by
a canonical inclusion Γc(X) ↪ Γa1(Γb1(X))⊗ ⋅ ⋅ ⋅ ⊗Γal(Γbl(X)), and the next morphisms
are given by the pairing of Lemma 2.4.13 for the functors F and G.

Proof: We have by definition :

(F ○G)n(X1 ⊕ ⋅ ⋅ ⋅ ⊕Xr) = ⊕
n1<⋅⋅⋅<nl
αi>0 (∀i)
∑niαi=n

F (α1,...,αl)(Gn1(X1 + ⋅ ⋅ ⋅ +Xr), . . . ,Gnl(X1 + ⋅ ⋅ ⋅ +Xr)).

Let πi ∶X1⊕⋅ ⋅ ⋅⊕Xr →X1⊕⋅ ⋅ ⋅⊕Xr be the morphism given by the projection onto the summand
Xi in the sum X = X1 ⊕ ⋅ ⋅ ⋅ ⊕Xr. For any collection b = (b1, . . . , br), we set γb(π) = ∏ri=1 γbi(πi)
for short.

We use the expansion

Gni(X1 + ⋅ ⋅ ⋅ +Xr) = ⊕
β1+⋅⋅⋅+βr=ni

G(β1,...,βr)(X)

of Proposition 2.4.13. We adopt the short notation Πβ = γβ(π) for the morphism which induces
the projection onto the summand Gβ(X) in this sum, where we still write β = (β1, . . . , βr) for
short. We also use the notation ∣β∣ = β1 + ⋅ ⋅ ⋅ + βr for any collection β = (β1, . . . , βr) in what
follows.

We aim to determine the image of the element γc(π) ∈ Γn(X) under the morphism ∆ ∶
Γn(X) → Γα1(Γn1(X)) ⊗ ⋅ ⋅ ⋅ ⊗ Γαr(Γnr(X)) which we use in the construction of Proposition
2.4.17. We explicitly get :

∆(γc(π)) = ∑
bi,1<⋅⋅⋅<bi,ki

s.t. ∣bi,j ∣=ni (∀i,j)
a1i ,...,a

ki
i >0

s.t. a1i+⋅⋅⋅+a
ki
i =αi (∀i)

∑ij a
j
i b
i,j
s =cs (∀s)

γa11(Π
b1,1) . . . γ

a
k1
1

(Πb1,k1 )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Γα1

(Γn1
(X))

⊗ ⋅ ⋅ ⋅ ⊗ γa1
l
(Πbr,1) . . . γ

a
kl
l

(Πbr,kl )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Γαl(Γnl(X))

, (∗)

where the sum runs over collections of positive integers a1
i , . . . , a

ki
i > 0, ki ≥ 1, i = 1, . . . , r, and

over sequences bi,1 < ⋅ ⋅ ⋅ < bi,ki of collections bi,j = (bi,j1 , . . . , bi,jr ) which satisfy the constraints
given in our expression. We put off the verification of this identity until the end of this proof.
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We deduce from this result that we have an identity :

(F ○G)(c1,...,cr)(X) = ⊕
n1<⋅⋅⋅<nl
αi>0 (∀i)
∑niαi=n

⎛

⎝
⊕

bi,1<⋅⋅⋅<bi,ki
s.t. ∣bi,j ∣=ni (∀i,j)

a1i ,...,a
ki
i >0

s.t. a1i+⋅⋅⋅+a
ki
i =αi (∀i)

∑ij a
j
i b
i,j
s =cs (∀s)

F a
1
1,...,a

k1
1 ,...,a1l ,...,a

kl
l (Gb

1,1

(X), . . . ,Gb
1,k1

(X), . . . ,Gb
l,1

(X), . . . ,Gb
l,kl

(X))
⎞

⎠
,

and we use a straightforward re-indexing of the direct sum which we get in this formula to get
the decomposition of the lemma.

The second assertion of the lemma follows from a straightforward expansion of the defi-
nition of our pairing in Proposition 2.4.12 for objects of the form F (α1,...,αl)(Gn1(X1 + ⋅ ⋅ ⋅ +
Xr), . . . ,Gnl(X1 + ⋅ ⋅ ⋅ + Xr)) and from the expansion of our pairing for the objects Gb(X) in
Lemma 2.4.13. We also use that these constructions are compatible with the isomorphisms of
Proposition 2.4.12 which we use to get the expansion of the first assertion of this lemma.

We now explain the proof of Formula (∗). We argue as follows. We use a scalar extension
K[t1, . . . , tr] ⊗K −, where (t1, . . . , tr) denote formal variables and we work in K[t1, . . . , tr] ⊗K
Γn(HomModK(X,X)) = Γn(K[t1, . . . , tr] ⊗K HomModK(X,X)). We have the formula γn(t1π1 +
⋅ ⋅ ⋅ + trπr) = ∑m1+⋅⋅⋅+mr=n γm1(π1) . . . γmr(πr)t

m1

1 . . . tmrr by properties of divided powers (see
Definition A.1.40). We can accordingly identify γc(π) with the coefficient of tc = tc11 . . . tcrr in
the expansion of γn(t1π1 + ⋅ ⋅ ⋅ + trπr). We use that for an element of this form γn(φ), where
φ = t1π1 + ⋅ ⋅ ⋅ + trπr, we have the formula ∆(γn(φ)) = γα1(γn1(φ)) ⊗ ⋅ ⋅ ⋅ ⊗ γαr(γnr(φ)) in
Γα1(Γn1(X)) ⊗ ⋅ ⋅ ⋅ ⊗ Γαr(Γnr(X)). The terms of Formula (∗) correspond to the coefficients of
the monomial tc11 . . . tcrr when we use the properties of the divided powers to expand the factors
γαi(γni(φ)) = γαi(γni(t1π1 + ⋅ ⋅ ⋅ + trπr)) in this tensor product.

Lemma 2.4.20. Let F be an analytic functor. We have an isomorphism Id ○F ≃ F ≃ F ○ Id in
the category of analytic functors which realizes the obvious identity Id ○U(F ) = U(F ) = U(F )○ Id
in the category of ordinary functors.

Let A,B,C be analytic functors. We have an isomorphism (A ○ B) ○ C ≃ A ○ (B ○ C) in
the category of analytic functors which realizes the obvious identity (U(A) ○ U(B)) ○ U(C) =
U(A) ○ (U(B) ○ U(C)) in the category of ordinary functors.

Proof: The verification of the unit relation is easy and we focus on the proof of the associativity
relation.

We use the following conventions in this proof. We set F (X) = (F0(X), . . . , Fn(X), . . . ) for
the sequence of modules Fn(X) which we obtain by taking the image of a module X under the
components of an analytic functor Fn ∈ AnPoln. For a sequence α = (α0, . . . , αn, . . . ) such that
αi = 0 for all but a finite number of indices i, we also set w(α) = ∑i iαi.

We have a straightforward generalization of the result of the previous lemma in the case
where X is a countable sequence of modules X = (X0, . . . ,Xn, . . . ). We then assume that the
set of sequences b = (b0, . . . , bi, . . . ) such that bi = 0 for all but a finite number of indices i is
equipped with a total ordering such that b1 < b2 if we have ∑i b1i < ∑i b

2
i . We get :

(A ○B)c(X) = ⊕
b1<⋅⋅⋅<bl
ai>0

∑i aib
i
j=cj (∀j)

A(a1,...,al)(Bb
1

(X), . . . ,Bb
l

(X)),

where the sum runs over all sequences (a1, . . . , al), l ≥ 0, of positive integers ai > 0, and over all
ordered sequences of collections b1 < ⋅ ⋅ ⋅ < bl such that we have ∑i aibij = cj , for all j ∈ {1, . . . , r}.
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We use this identity to determine the expansion of (A ○B) ○C. We explicitly have :

((A ○B) ○C)n(X) = ⊕
c s.t.w(c)=n

(A ○B)c(C(X))

= ⊕
b1<⋅⋅⋅<bl
ai>0

∑i aib
i
jj=n

A(a1,...,al)(Bb
1

(C(X)), . . . ,Bb
l

(C(X))).

We also get that the pairing Γn(X) ⊗ ((A ○ B) ○ C)n(Y ) → ((A ○ B) ○ C)n(X ⊗ Y ) which we
associate to the composite functor ((A ○B) ○C) is carried to the direct sum of the morphisms

Γn(X)⊗A(a1,...,al)(Bb
1

(C(Y )), . . . ,Bb
l

(C(Y ))) → A(a1,...,al)(Bb
1

(C(X⊗Y )), . . . ,Bb
l

(C(X⊗Y )))

which we obtain by using the operation of the previous lemma for the composite A ○B, and by
using the pairing ζX,Y ∶ Γi(X)⊗Ci(Y ) → Ci(X ⊗Y ) associated to each functor Ci(−) inside the
functors Bb

j

.
We have on the other hand :

(A ○ (B ○C))n(X) = ⊕
n1<⋯<nr
α1,...,αr>0

α1n1+⋅⋅⋅+αrnr=n
r≥0

A(α1,...,αr)((B ○C)n1(X), . . . , (B ○C)nr(X)).

We then use the expression of each (B ○C)ni(X) as a direct sum of cross-effects in Proposition
2.4.17, and the result of Proposition 2.4.12 to get the identity :

(A ○ (B ○C))n(X) = ⊕
n1<⋯<nr
α1,...,αr>0

α1n1+⋅⋅⋅+αrnr=n
r≥0

⎛

⎝
⊕

b11<⋅⋅⋅<b
l1
1 <⋅⋅⋅<b11<⋅⋅⋅<b

lr
1

w(bji )=ni (∀j)
aji>0,∑j a

j
i=αi

A(a11,...,a
l1
1 ,...,a

1
r,...,a

lr
r )(Bb

1
1(C(X)), . . . ,Bb

l1
1 (C(X)), . . . ,Bb

1
r(C(X)), . . . ,Bb

lr
r (C(X)))

⎞

⎠
.

We use a straightforward re-indexing operation in this sum to retrieve the expression of ((A ○
B)○C)n(X). We can also check by using the correspondence of Lemma 2.4.13 and of Proposition
2.4.17 inside each input of the functor A(α1,...,αr)(−, . . . ,−) that the pairing Γn(X) ⊗ (A ○ (B ○
C))n(Y ) → (A ○ (B ○ C))n(X ⊗ Y ) which we obtain for this expression of the composite (A ○
(B ○C))n(X) agrees with the pairing which we obtain for the composite ((A ○B) ○C)n(X).

We conclude that we have an isomorphism of strict polynomial functor ((A ○ B) ○ C)n ≃
(A ○ (B ○C))n, for each n ∈ N .

Proposition 2.4.21. The triple (AnFun, ○, Id) forms a monoidal category.

Proof: This statement follows from the result of the previous lemma. Let us simply men-
tion that our structure isomorphisms fulfil the coherence constraints of monoidal categories
since we observe that these isomorphisms correspond to the obvious unit and associativity iden-
tities of the composition in the category of functors and because the functor U ∶ AnFun →
Fun(ModK,ModK) is faithful.

2.4.2 The functor ev

We introduce the equivalence of categories ev ∶ ModM
K Ð→ AnFun which extends the functor

evn ∶ Maccoh(HParn) → PolFunn of Definition 2.2.14. We prove that ev is strongly monoidal ;
i.e. it reflects the two monoidal structures on ModM

K into the tensor product and the composition
of functors.
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Definition 2.4.22 (The functor ev). Let M be an M-module, it defines a strict analytic functor

{evn(Mn)(V )}n∈N = {

π∈HParn

∫ Mn(π) ⊗ Γπ(V )}n∈N.

The mapping ev is functorial in M , so it defines a functor :

ev ∶ ModM
K Ð→ AnFun,

M ↦ {evn(M)(−)}n∈N.

Since evn is an equivalence of categories for any n ∈ N, we have that ev is an equivalence of
categories as well.

We devote the rest of this section to the study of the image of monoidal structures under the
functor ev. We establish a series of intermediate lemmas before formulating our main theorem.

Lemma 2.4.23. We have a natural isomorphism

ev(M ⊠N) → ev(M) ⊗ ev(N)

for any pair M,N ∈ ModM
K , where we consider the functor ev(M ⊠ N) ∈ AnFun associated to

M⊠N on the left hand side, the pointwise tensor product of the analytic functors ev(M), ev(N) ∈
AnFun such as in Definition 2.4.3 on the right hand side.

Proof: We prove that there exists a natural isomorphism ev(M ⊠N) Ð→ ev(M) ⊗ ev(N). It
follows from a sequence of natural isomorphims given by Γπ1×π2(V ) ≅ Γπ1(V )⊗Γπ2(V ), Lemma
2.3.4, and Lemma 2.3.5. More precisely :

ev(M ⊠N)(V )

=⊕
n
⊕
i+j=n

π∈HParn

∫

π1×π2∈HPari×HParj

∫ (M(π1) ⊗N(π2)) ⊗HomHParn(π1 × π2, π) ⊗ Γπ(V )

≅⊕
n
⊕
i+j=n

π1×π2

∫ (M(π1) ⊗N(π2)) ⊗

π

∫ HomParn(π1 × π2, π) ⊗ Γπ(V )

≅⊕
i,j

π1×π2

∫ (M(π1) ⊗N(π2)) ⊗ Γπ1(V ) ⊗ Γπ2(V )

≅ (⊕
i

π1

∫ M(π1) ⊗ Γπ1(V )) ⊗ (⊕
j

π2

∫ N(π2) ⊗ Γπ2(V )),

where we use the isomorphisms given by Lemma 2.3.4 and by Lemma 2.3.5.
The isomorphism commute with the action of Γn(X) on evn(M ⊠N)(Y ). This claim follows

from the commutativity of the following diagram :

Γn(X) ⊗
π∈HParn

∫ HomHParn(π1 × π2, π) ⊗ Γπ(Y )
π

∫ HomHParn(π1 × π2, π) ⊗ Γπ(X ⊗ Y )

Γn(X) ⊗ Γπ1(Y ) ⊗ Γπ2(Y )

Γi(X) ⊗ Γj(X) ⊗ Γπ1(Y ) ⊗ Γπ2(Y ) Γπ1(X ⊗ Y ) ⊗ Γπ2(X ⊗ Y ),

≅

≅

where i+ j = n, π1 ∈ Par i, π2 ∈ Par j and the morphism Γn(X) → Γi(X)⊗Γj(X) is given by the
restriction from Sn to Si×Sj . (We then use that the Fubini isomorphism of Lemma 2.3.4 is given
by the canonical morphism from the object Γπ1×π2(V ) = Idπ1×π2 ⊗Γπ1×π2(V ) ⊂ HomHParn(π1 ×
π2, π1×π2)⊗Γn(V ) into the coend and that Γn(X) acts on Γπ1×π2(−) = Γπ1(−)⊗Γπ2(−) through
the diagonal morphism Γn(X) → Γi(X) ⊗ Γj(X).)
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Lemma 2.4.24. The isomorphisms of Lemma 2.4.23 make the unit, associativity, and symmetry
isomorphisms of the symmetric monoidal category of M-modules, such as defined in Proposition
2.3.7, correspond to the unit, associativity and symmetry isomorphisms of the symmetric mono-
idal category of analytic functors such as defined in Proposition 2.4.5.

Proof: The proof of this lemma follows from straightforward verifications.
We show a similar result for ◻.

Lemma 2.4.25. Let M be an M-module. We have interchange formula :

evn((N
⊠r)ρ) = (evn(N

⊠r))ρ

for every ρ subgroup of Sr.

Proof: Since the functor evn is an equivalence of category it is an exact functor and hence
preserves invariants.

Lemma 2.4.26. We have a natural isomorphism

ev(M ◻N) ≅ ev(M) ○ ev(N),

for every M,N ∈ ModM
K , where we consider the functor ev(M ◻N) ∈ AnFun associated to M ◻N

on the left hand side, the composition product of the analytic functors ev(M), ev(N) ∈ AnFun
such as in Definition 2.4.18 on the right hand side.

Proof: We have :

ev(M ◻N)(V ) ≅⊕
n

π∈HParn

∫

ρ∈HParr

∫ (M(ρ) ⊗ (N⊠r(π))ρ) ⊗ Γπ(V )

≅⊕
r,n

ρ

∫

π

∫ (M(ρ) ⊗ (N⊠r(π))ρ) ⊗ Γπ(V )

≅⊕
r,n

ρ

∫ M(ρ) ⊗

π

∫ (N⊠r(π))ρ ⊗ Γπ(V )

=⊕
r,n

ρ

∫ M(ρ) ⊗ evn((N
⊠r)ρ)(V )

(1)
≅ ⊕

r

ρ

∫ M(ρ) ⊗ (ev(N⊠r)(V ))ρ

≅⊕
r

ρ

∫ M(ρ) ⊗ (ev(N)(V )⊗r)ρ

≅⊕
r

ρ

∫ M(ρ) ⊗ Γρ(ev(N)(V )) = ev(M)(ev(N)(V )),

where we use the isomorphisms given by Lemma 2.3.4 and by Lemma 2.3.5, and the isomorphism
(1) is given by Lemma 2.4.25.

To check that this isomorphism commutes with the action of Γn(X) we use that the iso-
morphisms inside the coends preserve the natural action of Γn(X) on our objects. In the final
step, we get an action of Γn(X) on Γρ(ev(N)(−)) ⊂ ev(N)(−)⊗r which coincides with the action
defined in Proposition 2.4.17 for this composite functor, and the conclusion readily follows.

Lemma 2.4.27. The composition product ◻ inherits unit and associativity isomorphisms which
correspond to the unit and associativity isomorphisms of the composition of analytic functors,
such as defined in Definition 2.4.18. These unit and associativity isomorphisms satisfy the cohe-
rence constraints of a monoidal category in ModM

K . Thus the triple (ModM
K ,◻, I), where I denotes

the obvious M-module which corresponds to the identity functor, forms a monoidal category.
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Proof: This statement follows from the result of Lemma 2.4.26 and from the observation that
ev is an equivalence of categories.

Theorem 2.4.28. The mapping ev ∶M ↦ ev(M) defines an equivalence of symmetric monoidal
categories ev ∶ (ModM

K ,⊠,K) → (AnFun,⊗,K) as well as an equivalence of monoidal categories
ev ∶ (ModM

K ,◻, I) → (AnFun, ○, Id).

Proof: The proof follows from Theorem 2.2.18, Lemma 2.4.24 and Lemma 2.4.27.

Remark 2.4.29. Let A,B and C be three M-modules. We have an isomorphism :

(A ◻C) ⊠ (B ◻C) ≅ (A ⊠B) ◻C

which reflects the formula :

(ev(A) ○ ev(C)) ⊗ (ev(B) ○ ev(C)) ≅ (ev(A) ⊗ ev(B)) ○ ev(C).

Recall that by Definition 2.3.2, to a S-module M we can associate the M-modules Γ(M) and
S(M). By definition 2.4.22 we have the strict analytic functors ev(Γ(M)) and ev(S(M)). In
the following proposition we identify these strict analytic functors.

Proposition 2.4.30. Let M = {Mn}n∈N be a S-module (see Appendix A). If V is a free K-
module, then we have ev(S(M))(V ) ≅ {Sn(M,V )}n∈N and ev(Γ(M))(V ) ≅ {Γn(M,V )}n∈N,
where Sn(M,V ) =M(n) ⊗Sn V

n and Γn(M,V ) =M(n) ⊗Sn V n (see Appendix A).

Proof: We first consider the cohomological HParn-Mackey functor T (M) = Tn(M) where
Tn(M) =Mn ⊗ I⊠n. We have that evn(Tn(M))(V ) = evn(Mn ⊗ I⊠n)(V ) ≅Mn ⊗ V

⊗n. The unit
object I is given by I1 = K (the constant functor on the category HPar1 with object set pt and
Hom-object K) and Ii = 0 for i ≠ 1. Let π ∈ Parn. We accordingly have

I⊠r(π) = ⊕
i1+⋯+ir=n

π1×⋯×πr∈HPari1×⋯×HParir

∫ I(π1) ⊗⋯⊗ I(πr) ⊗HomHParn(π1 ×⋯ × πr, π)

=

π1×⋯×πr∈HPar×r1

∫ I(π1) ⊗⋯⊗ I(π1) ⊗HomHParn(π1 ×⋯ × πr, π)

= K[Sn /π ]

by the associativity of ⊠ and the definition of HomHParn(π1, π2). We therefore have Tn(M)(π) =
Mn ⊗K[Sn /π ].

The mapping Sn(M)(π) Ð→ Mn ⊗Sn K[Sn /π ] defined by [m] ↦ [m ⊗ e] where e is the
unit of Sn induces an isomorphism Sn(M) ≅ Mn ⊗Sn K[Sn /π ] ≅ (Tn(M))Sn . The mapping
Γn(M)(π) Ð→ Mn ⊗

Sn K[Sn /π ] defined by m ↦ ∑α∈Sn/π α
∗(m) ⊗ α induces an isomorphism

Γn(M) ≅Mn ⊗
Sn K[Sn /π ] ≅ (Tn(M))Sn .

Since evn is an equivalence of categories it preserves invariants and coinvariants. The conclu-
sion follows.

Corollary 2.4.31. Let M and N be two S-modules (see Appendix A). We have
— S(M) ⊠ S(N) ≅ S(M ⊠N), and
— Γ(M) ⊠ Γ(N) ≅ Γ(M ⊠N).

Proof: The statement is a direct consequence of Proposition 2.4.30, of Proposition A.1.23 and
of Theorem 2.4.28.

Corollary 2.4.32. Let M and N be two S-modules (see Appendix A). We have
— S(M) ◻ S(N) ≅ S(M ◻S N), and
— Γ(M) ◻ Γ(N) ≅ Γ(M ◻S N).

Proof: The statement is a direct consequence of Proposition 2.4.30, of Proposition A.1.23 and
of Theorem 2.4.28.
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2.5 M-Operads and their algebras
In this section we introduce the definition of M-operad. Roughly speaking an M-operad is

an object governing the category of “type of algebras” with polynomial operations with multiple
inputs and one output. Our definition ofM-operad is equivalent to the definition of Schur operads
introduced by Ekedahl and Salomonsson in [ES04], [Sal03] and studied by Xantcha in [Xan10].

2.5.1 M-Operads
We introduce the definition ofM-operads. They are a generalization of operads (see Appendix

A).

Definition 2.5.1 (M-operad). An M-operad is an M-module P together with two M-module
morphisms µ ∶ P ◻ P Ð→ P and η ∶ IÐ→ P such that the following diagrams commute :

P ◻ P ◻ P P ◻ P

P ◻ P P,

µ◻IdP

IdP ◻µ

µ

µ

(associativity)

P ◻ I P ◻ P I◻P

P,

π1

IdP ◻η

µ

η◻IdP

π2

(unity)

i.e. (P,µ, η) is a monoid in the monoidal category (ModM
K ,◻, I).

A morphism of M-operad is a morphism of monoid in the monoidal category (ModM
K ,◻, I).

We denote the category of M-operad by M -Op.

Proposition 2.5.2. Let P be a connected operad (see Appendix A). The M-modules S(P ), Γ(P )
and Λ(P ) are M-operads.

Proof: Let µ ∶ P ◻S P Ð→ P and η ∶ IÐ→ P be the structure maps of the operad P . We have
two induced morphisms S(µ) ∶ S(P ◻S P ) Ð→ S(P ) and η ∶ IÐ→ S(P ). From Proposition 2.4.32
we have isomorphisms S(P ◻S P ) ≅ S(P ) ◻ S(P ) and Γ(P ◻S P ) ≅ Γ(P ) ◻ Γ(P ).

Proposition 2.5.3. Let (P,µ, η) be an M-operad. The endofunctor ev(P ) endowed with the
morphisms ev(µ) and ev(η) is a monad.

Proof: It is a consequence of Theorem 2.4.27.

Definition 2.5.4 (P -algebra). Let (P,µ, η) be an M-operad. The category of P -algebras is the
category of algebras governed by the monad ev(P ). More explicitly, a P -algebra is a pair (V, γ),
where V is an object of ModK and γ ∶ ev(P )(V ) Ð→ V is a morphism in ModK such that the
following diagrams commute :

ev(P )(ev(P )(V )) ev(P )(V )

ev(P )(V ) V,

µ

γ

γ

γ

(associativity)

V ev(P )(V )

V.

IdA

η

γ (unity)
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2.5.2 The M-operad PolyV
Let (P,µ, η) be an M-operad and V be a K-module. The set of P -algebra structures over

V is governed by the set of morphisms of M-operads between P and an M-operad denoted by
PolyV .

Lemma 2.5.5. LetM be an M-module and V be a K-module. We denote by M̄ ∶ HParopn →ModK
the functor obtained by the composition of M with the isomorphism HParopn →HParn. The V -
dual of M is the M-module defined by HomModK(M̄(−), V ) ∶ HParn →ModK.

Proof: It follows from the linearity of HomModK(−, V ).

Definition 2.5.6 (TheM-module PolyV ). Let V be a K-module. We define the M-module PolyV
to be the V -dual of Γ−(V ), explicitly :

1. let π be an object of HParn, we set PolyV (π) ∶= HomModK(Γπ(V ), V ),
2. let π1 and π2 be objects in HParn such that π1 is a subgroup of π2, we set Indπ2

π1
∶= (Resπ2

π1
)∗

and Resπ2
π1
∶= (Indπ2

π1
)∗.

Proposition 2.5.7. Let V be a K-module. The M-module PolyV inherits the structure of an
M-operad.

Proof: We aim to define

(PolyV ◻ PolyV )(π) → PolyV (π),

which is equivalent to give a morphism as follows :

(PolyV ◻ PolyV )(π) ⊗ Γπ(V ) → V.

We have :

(PolyV ◻ PolyV )(π) ⊗ Γπ(V )

= (⊕
r

ρ∈HParr

∫ PolyV (ρ) ⊗ ( ⊕
n1+⋯+nr=n

π1×...×πr∈HParn1
×⋯×HParnr

∫ PolyV (π1) ⊗⋯⊗ PolyV (πr)⊗

HomHParn(π1 × . . . πr, π))
ρ) ⊗ Γπ(V )

≅⊕
r

ρ

∫ PolyV (ρ) ⊗ ( ⊕
n1+⋯+nr=n

π1×...×πr

∫ PolyV (π1) ⊗⋯⊗ PolyV (πr)⊗

HomHParn(π1 × . . . πr, π) ⊗ Γπ(V ))ρ)

(1)
≅ ⊕

r

ρ

∫ PolyV (ρ) ⊗ ( ⊕
n1+⋯+nr=n

π1×...×πr

∫ PolyV (π1) ⊗⋯⊗ PolyV (πr)⊗

Γπ1(V ) ⊗⋯Γπr(V ))ρ)

(2)
→ ⊕

r

ρ

∫ PolyV (ρ) ⊗ (V ⊗r)ρ) ≅⊕
r

ρ∈HParr

∫ PolyV (ρ) ⊗ Γρ(V ))
(3)
→ V

where we first expand the composite, the isomorphism (1) is given by Γπ1×⋯×πr(V ) ≅ Γπ1(V )⊗⋯⊗
Γπr(V ), and the morphisms (2) and (3) by the maps PolyV (π)⊗Γπ(V ) = HomModK(Γπ(V ), V )⊗
Γπ(V ) → V .

Unit and associativity follow from straightforward verifications.

Theorem 2.5.8. Let P be an M-operad and V be in ModK, the set of P -algebra structures over
V is in bijection with HomM -Op(P,PolyV ).

Proof: We define a function between the set of monoids morphisms between P and PolyV
and the set of P -algebra structures of V :

φ ∶ HomM -Op(P,PolyV ) Ð→ {γ ∶ ev(P )(V ) Ð→ V ∣γ P-Algebra structure}.
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Let f ∶ P (−) → HomModK(Γ−(V ), V ) be an M-operad morphism between P and PolyV .
We denote by f∗ ∶ ⊕π P (π) ⊗ Γπ(V ) → V the morphism defined by the adjoint of f . We set

φ(f) ∶ P (V ) =
π∈HParn

∫ P (π) ⊗ Γπ(V ) Ð→ V by the universal property of the coend :

⊕
α→β

P (α) ⊗ Γβ(V ) ⊕
π
P (π) ⊗ Γπ(V )

⊕
π
P (π) ⊗ Γπ(V ) P (V )

V

f∗

f∗

The Theorem follows from the following sequences of isomorphisms :

HomModK(⊕
n

π∈HParn

∫ P (π) ⊗ Γπ(V ), V ) ≅⊕
n

π

∫ HomModK(P (π) ⊗ Γπ(V ), V )

≅⊕
n

π

∫ HomModK(P (π),HomModK(Γπ(V ), V )).

More precisely an M-operad morphism between P and PolyV is a morphism of M-modules
g ∶ P Ð→ PolyV such that the following diagram commutes :

⊕
r

ρ∈HParr

∫ P (ρ) ⊗ (P⊠r(π))ρ ⊕
r

ρ

∫ P (ρ) ⊗ (Poly⊠rV (π))ρ

⊕
r

ρ

∫ P (ρ) ⊗HomModK(Γπ(V ),Γρ(V ))

⊕
r

ρ

∫ HomModK(Γρ(V ), V ) ⊗HomModK(Γπ(V ),Γρ(V ))

P (π) PolyV (π) = HomModK(Γπ(V ), V ).

IdP ◻g

µ f◻IdP

g

Applying the isomorphism we get the following commutative diagram :

⊕
n

π∈HParn

∫ (⊕
r

ρ∈HParr

∫ P (ρ) ⊗ (P⊠r(π))ρ) ⊗ Γπ(V ) ⊕
n

π

∫ ⊕
r

ρ

∫ P (ρ) ⊗HomModK(Γπ(V ),Γρ(V )) ⊗ Γπ(V )

⊕
n

π

∫ P (π) ⊗ Γπ(V ) ⊕
r

ρ

∫ P (ρ) ⊗ Γρ(V ).=

2.5.3 Examples
We present some examples of categories of algebras governed by M-operads.
We only aim to give an idea of future applications of our constructions in this example section.

We therefore posit the existence of free objects in the category of M-operads, which generalize
the ordinary free operads, without giving further details on the construction of such objects.
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Proposition 2.5.9. Let P be a connected operad. We have that the category of S(P )-algebras is
isomorphic to the category of S(P,−)-algebras, and the category of Γ(P )-algebras is isomorphic
to the category of Γ(P,−)-algebras (see Appendix A).

Proof: By Proposition 2.4.30 S(P ) is an M-operad such that ev(S(P )) ≅ S(P,−) and the
structure maps are induced by the structure maps of P . The same argument works for Γ(P ).

Example 2.5.10. A Γ(Com)-algebra structure corresponds to a divided power algebra. That is a
triple (V,µ,{γi}i∈N) such that (V,µ) is a commutative algebra and γi ∶ V Ð→ V are set-theoretical
functions such that :

γn(x + y) =
n

∑
i=0

γn−i(x)γi(y),

γi(λx) = λ
iγi(x),

γ1(x) = x,

γm(x)γn(x) = (
m + n

n
)γm+n(x),

γm(γn(x)) =
mn!

(n!)mm!
γmn(x).

Let K be a field of positive characteristic p. A Γ(Lie)-algebra structure corresponds to a p-
restricted Lie algebra (see [Fre00]) . That is a triple (V, [−,−],−[p]) such that (V, [−,−]) is a Lie
algebra, and −[p] ∶ V Ð→ V is a set-theoretical function such that :

(λx)[p] = λp(x)[p],

(x + y)[p] = x[p] + y[p] +
p−1

∑
i=1

si(x, y)

i
,

ad(x[p]) = (ad(x))[p].

There are explicit descriptions for Γ(Pois)-algebras (see [Fre00]) and for Λ(PreLie) and
Γ(PreLie)-algebras (see Chapter 1), where Pois is the operad governing Poisson algebras, and
PreLie is the operad governing the category of pre-Lie algebras.

Definition 2.5.11 (2-restricted Poisson algebra). Let K be a field of characteristic 2. A 2-
restricted Poisson algebra is a triple

(A, [−,−] ∶ A⊗AÐ→ A, (−)2 ∶ AÐ→ A)

where A is a commutative algebra and (A, [−,−] ∶ A⊗AÐ→ A, (−)[2] ∶ AÐ→ A) is a 2-restricted
Lie algebra structure, such that :

1. [x, yz] = y[x, z] + [x, y]z, and
2. (xy)[2] = x2(y)[2] + x[x, y]y + (x)[2]y2.

Proposition 2.5.12. Let K a field of characteristic 2. The M-module S(Com) ◻ Γ(Lie) is an
M-operad, denoted by 2-Pois, which encodes the category of 2-restricted Poisson algebras.

Sketch: For the partition (1)(2) of the set 2 = {1,2} let µ ∈ Com((1)(2)) and [−,−] ∈
Lie((1)(2)) be respectively the generators of the operads Com and Lie. Consider the M-
module S(Com) ◻ Γ(Lie). We show that the relation 1 of Definition 2.5.11 defines a distri-
butive law of monads in the sense of Beck [Bec69]. We define the morphism of M-modules
ρ− ∶ Γ(Lie) ◻ S(Com) Ð→ S(Com) ◻ Γ(Lie) using this relation.

Remark 2.5.13. Let K be a field of positive characteristic p > 2. The M-module S(Com) ◻
Γ(Lie) still forms an M-operad by using the distributive law of monads induced by relation 1
of Definition 2.5.11. In this case the relation 2 of Definition 2.5.11 is replaced by the more
complicated :

(xy)[p] = xpy[p] + x[p]yp + P (x, y)
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where P (x, y) is a Poisson polynomial that can be made explicit. This structure was first introdu-
ced by Bezrukavnikov and Kaledin in [BK08] in the study of quantization of algebraic manifolds
in positive characteristic.

2.6 M-PROPs and their algebras
In this section we introduce the definition of M-PROPs. A M-PROP is an algebraic ob-

ject which governs algebraic structures with (polynomial) operations with multiple inputs and
multiple outputs.

2.6.1 The category ModBiM
K

Definition 2.6.1 (Cohomological (HParn,HParm)-Mackey bifunctor). Let n and m be two
non-negative integers. A cohomological (HParn,HParm)-Mackey bifunctor M is a biadditive
bifunctor :

M ∶ HParn ×HParm Ð→ModK .

Definition 2.6.2 (BiM-module). A BiM-module M●,● is a collection {Mn,m}(n,m)∈N×N of co-
homological (HParn,HParm)-Mackey bifunctors. A morphism between two BiM-modules is a
collection of natural transformations. Their category is denoted by ModBiM

K .

We define two monoidal structures (ModBiM
K ,�,K) and (ModBiM

K ,⊟, I), respectively the ho-
rizontal and the vertical composition.

Definition 2.6.3 (The product �). For any M and N BiM-modules we set :

(M �N)(π, ρ)

= ⊕
i1+j1=n1
i2+j2=n2

π1×π2∈HPari1×HPari2
ρ1×ρ2∈HParj1×HParj2

∫ M(π1, π2) ⊗N(ρ1, ρ2) ⊗HomHParn1
×HParn2

((π1 × ρ1, π2 × ρ2), (π, ρ)).

Proposition 2.6.4. The product � forms a symmetric monoidal structure together with the
BiM-module K :

Ki1,i2 ∶=
⎧⎪⎪
⎨
⎪⎪⎩

K (i1, i2) = (0,0),

0 (i1, i2) ≠ (0,0)

as unit.

Proof: A prove similar to the one for Definition 2.3.6 works.

Definition 2.6.5 (The product ⊟). Let M and N be two BiM-modules we define

(M ⊟N)(π, ρ) =⊕
w

υ∈HParw

∫ M(π, υ) ⊗N(υ, ρ).

Proposition 2.6.6. The product ⊟ forms a monoidal structure together with the BiM-module
I :

Ii1,i2 ∶=
⎧⎪⎪
⎨
⎪⎪⎩

K i1 = i2,

0 i1 ≠ i2)

as unit.

Proof: It follows directly from the monoidal structure of the tensor product of K-modules.
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2.6.2 M-PROPs
We introduce the concept of an M-PROP which generalizes the concept of an M-operad.

Definition 2.6.7 (M-PROP). An M-PROP is a BiM-module P endowed with two associative
multiplication maps µh ∶ P � P Ð→ P , µv ∶ P ⊟ P Ð→ P and a unit η ∶ I→ P for µv such that :

— the restriction of η ∶ I→ P to K↪ I is a unit for µh,
— for any f1 ∈ P (π1, υ1), f2 ∈ P (π2, υ2) we have

µh(f2), f1) = cσ,τ(µh(f1, f2)))

where σ (resp. τ) is the permutation in Sn1+n2 (resp. Sm1+m2) which permutes the blocks
{1, . . . , n1} and {n1 + 1, . . . , n1 + n2} (resp. {1, . . . ,m1} and {m1 + 1, . . . ,m1 +m2}) and
fix the orders inside the blocks.

— for any f1 ∈ P (π1, υ1), f2 ∈ P (π2, υ2), g1 ∈ P (υ1, ρ1), g2 ∈ P (υ2, ρ2) we have :

µh(µv(f1, g1), µv(f2, g2)) = µv(µh(f1, f2), µh(g1, g2)).

A morphism of M-PROPs is a natural transformation compatible with this structure.

Example 2.6.8. Let P be an M-operad then it is, in particular, an M-PROP.

Proposition 2.6.9. Let P be a PROP (see Appendix A). It defines different M-PROPs as
follows :

— S(P ) is defined by :
Sn,m(P )(π, ρ) = π(P (n,m))ρ

where π ∈ HParn and ρ ∈ HParm, and
— if P is biconnected, Γ(P ) is defined by :

Γn,m(P )(π, ρ) = π(P (n,m))ρ

where π ∈ HParn and ρ ∈ HParm.

Proof: We show how the composition on P induces a composition on Γ(P ).

π∈HParn

∫ Γn,m(P )(π, ρ) ⊗ Γs,n(P )(σ,π) ≅

Γs,m(

π

∫
πP (n,m) ⊗ P (s, n)π)(σ, ρ) → Γs,m(

π

∫ (P (n,m) ⊗ P (s, n))π)(σ, ρ) ≅

Γs,m(P (n,m) ⊗Sn P (s, n))(σ, ρ) → Γs,m(P (s,m))(σ, ρ) =

Γs,m(P )(σ, ρ)

a similar proof works for S(P ).

2.6.3 Algebras over an M-PROP
Fix a K-module V . We define an M-PROP denoted by BiPolyV which we use to define the

category of algebras over an M-PROP.

Definition 2.6.10 (The M-PROP BiPolyV ). We define the M-PROP BiPolyV by :

BiPolyV (π, ρ) = HomModK(Γπ(V ),Γρ(V )).

The horizontal composition is induced by the tensor product of morphism in ModK and the
vertical composition by the composition of morphisms in ModK.

Definition 2.6.11 (M-PROP algebras). Let P be a M-PROP. A P -algebra over the K-module
V is a morphism of M-PROPs γ ∶ P Ð→ BiPolyV .
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2.6.4 Examples
Let P be a PROP (see Appendix A). We prove that the category of S(P )-algebras is equiva-

lent to the category of P -algebras. We prove that the category of p-restricted Lie bialgebras and
the category of divided power bialgebras are governed by two M-PROPs. These two categories
are not governed by any PROPs.

We again only aim to give an idea of future applications of our constructions in this example
section. We still posit the existence of free objects in the category of M-PROPs, which generalize
the ordinary free PROPs, without giving further details on the construction of such objects.

Proposition 2.6.12. Let P be an M-operad. It defines an M-PROP where

P (π, ρ) ∶= (P⊠r(π))ρ,

for all π ∈ Parn and ρ ∈ Parr.

Proposition 2.6.13. Let P be a PROP (see Appendix A). The category of algebras associated
to the M-PROP S(P ) is equivalent to the category of P -algebras.

Proof: Let V be a K-module. Let φ ∶ S(P ) Ð→ BiPolyV be a S(P )-algebra then if restricted
to the discrete partitions it defines a P -algebra structure. Vice-versa since inductions are epimor-
phisms in S(P ) any P -algebra structure can be extended to a unique S(P )-algebra structure.

Definition 2.6.14 (2-restricted Lie bialgebra). Let K be a field of characteristic 2. We say that
(A, [−,−],−[2], δ), where

- A ∈ ModK,
- [−,−] ∶ A⊗AÐ→ A,
- −[2] ∶ AÐ→ A,
- δ ∶ AÐ→ A⊗A,

is a 2-restricted Lie bialgebra if (A, [−,−], (−)[2]) is a 2-restricted Lie algebra, (A, [−,−], δ) is a
Lie bialgebra and

δ(−[2]) = 0.

Proposition 2.6.15. Let K be a field of characteristic 2. There exists an M-PROP, denoted by
ΓBiLie, which encodes the category of 2-restricted Lie bialgebras.

Sketch: Let BiLie be the PROP which governs the category of Lie bialgebras. We consider
the M-PROP Γ(BiLie).

We prove that the Γ(BiLie)-algebras correspond to the 2-restricted Lie bialgebras.
Let φ ∶ Γ(BiLie) Ð→ PolyV be a Γ(BiLie)-algebra. There exists a monomorphism from the

M-PROP defined by the M-operad Γ(Lie) and Γ(BiLie) that we denote i. From this inclusion
φ defines a 2-restricted Lie algebra (V, [−,−],−[2]). The restriction of φ to the discrete partitions
is equivalent to a BiLie-algebra (V, [−,−], δ) where [−,−] = φ(m) and δ = φ(c). For i = 2 we have
that :

c(m) = e⊗m(c⊗ e) +m⊗ e(e⊗ c) +m⊗ e((2,3)c⊗ e) + e⊗m((1,2)e⊗ c).

By applying this relation to the image by φ of Γ2,2(BiLie)((1,2), (1)(2)) we obtain :

δ(−[2]) = 0.

Let (V, [−,−],−[2], δ) be a 2-restricted Lie bialgebra. In particular (V,µ, δ) is a bialgebra, that
is equivalent to a morphism ψ ∶ BiLie Ð→ BiEndV . We identify indexes of these two PROPs
with the discrete partitions and partially extend the morphism ψ by the inductions morphisms.
The 2-restricted Lie bialgebra (V, [−,−],−[2]) is in particular a Γ(Lie)-algebra. Extending φ by
the inclusion of the M-PROP defined by Γ(Lie) into Γ(BiLie) we obtain a Γ(BiLie)-algebra
structure.

Remark 2.6.16. Let K be a field of positive characteristic p > 2. It is possible to define p-
restricted Lie bialgebra.
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Definition 2.6.17 (Divided power bialgebra). We say that (A,µ,{γi}i∈N,∆), where :
- A ∈ ModK,
- µ ∶ A⊗AÐ→ A,
- γi ∶ AÐ→ A
- γi ∶ AÐ→ A,
- ∆ ∶ AÐ→ A⊗A,

is a divided power bialgebra if (A,µ,{γi}i∈N) is a divided powers algebra, ∆ is co-associative and
a map of divided power algebras. In particular (A,µ,∆) is a commutative bialgebra.

The notion of divided power bialgebras have been studied by André in [And71], Bulliksen
and Levin in [GL69], and Block in [Blo85] for its relations with the enveloping algebra of a Lie
algebra over a field of positive characteristic and the Hopf algebra associated.

Proposition 2.6.18. There exists an M-PROP, denoted by ΓBiAlgCom, which encodes the
category of divided power bialgebras.

Sketch: Let BiAlgCom be the PROP which governs the category of commutative bialgebras.
We denote m ∈ BiAlgCom(2,1) and c ∈ BiAlgCom(1,2) the generating elements. We consider
the M-PROP Γ(BiAlgCom).

We prove that Γ(BiAlgCom)-algebras correspond to divided power bialgebras.
Let φ ∶ Γ(BiAlgCom) Ð→ BiPolyV be a Γ(BiAlgCom)-algebra. There exists a monomorphism

from the M-PROP defined by the M-operad Γ(Com) and Γ(BiAlgCom) that we denote i. By
this inclusion φ defines a divided power algebra (V,µ,{γi}i∈N). The restriction of φ to the discrete
partitions is equivalent to a BiAlgCom-algebra (V,µ,∆) where µ = φ(m) and ∆ = φ(c). For i = 2
we have that :

c(m) =m⊗m((2,3)c⊗ c).

Applying this relation to the image by φ of Γ2,2(BiAlgCom)((1,2), (1)(2)) we obtain :

∆(γ2) = γ2 ⊗ γ2((2,3)∆⊗∆).

This is equivalent to say that ∆ is compatible with γ2. Similar computations work for the general
γi.

Let (V,µ,{γi}i∈N,∆) be a divided power bialgebra. In particular (V,µ,∆) is a bialgebra. This
is equivalent to a morphism ψ ∶ BiAlgCom Ð→ BiEndV . We identify indexes of these two PROPs
with the discrete partitions and partially extend the morphism ψ by the inductions morphisms.
The divided power bialgebra (V,µ,{γi}i∈N) is in particular a Γ(Com)-algebra. Extending φ by
the inclusion of the M-PROP defined by Γ(Com) into Γ(BiAlgCom) we obtain a Γ(BiAlgCom)-
algebra structure.
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Appendix A

Background

The aim of this chapter is to recall the basic definitions and notions of the theory of operads,
of the theory of polynomial functors and of the theory of Mackey functors, which we use in this
thesis.

A.1 Operads and PROPs
We fix a commutative ring K. We denote the category of K-modules by ModK. In this section

we recall the definitions and properties of symmetric modules, of (symmetric) operads and of
(symmetric) PROPs in the category ModK.

A.1.1 Symmetric modules
We recall the definition of the notion of a symmetric module.

Definition A.1.1 (Symmetric modules). A symmetric module A is a collection {An}n∈N of
K-modules with an action of the symmetric group Sn on An for all n ∈ N.

A morphism of symmetric modules f ∶ A → B is a collection of K-morphisms fn ∶ An → Bn
commuting with the symmetric group actions.

We denote the category of symmetric modules by ModS
K.

A symmetric module A = {An}n∈N is said to be connected if A0 = 0.

Remark A.1.2. In Chapter 1 we use the notation {A(n)}n∈N instead of {An}n∈N.

The category ModS
K has three important monoidal structures, namely ⊠,◻S and ◻S . The first

two correspond to the classical tensor product and to the composition of symmetric modules.
They are used to define the notions of operads and algebras over an operad. The product ◻S was
introduced by Fresse in [Fre00] and it is used to define the categories of ΓP -algebras or algebras
with divided symmetries for any connected operad P .

We recall the definition of unit objects which we associate to these monoidal structures in
the paragraph. We explain the definition of the operations ⊠, ◻S , and ◻S afterwards.

Definition A.1.3. 1. The tensor unit symmetric module K is the symmetric module

Kn =
⎧⎪⎪
⎨
⎪⎪⎩

K n = 0,

0 otherwise.

2. The composition unit symmetric module I is the symmetric module

In =
⎧⎪⎪
⎨
⎪⎪⎩

K n = 1,

0 otherwise.

Definition A.1.4 (The product ⊠). Let A = {An}n∈N and B = {Bn}n∈N be symmetric modules.
We define the symmetric module A ⊠B as follows :

A ⊠B = ⊕
i+j=n

IndSn
Si×Sj Ai ⊗Bj ,

71



Appendix A. Background

where IndSn
Si×Sj Ai ⊗Bj stands for the K[Sn]-module induced by the K[Si × Sj]-module Ai ⊗Bj.

The product ⊠ forms a bifunctor. To be explicit, let f ∶ A → B and g ∶ A′ → B′ be symmetric
module morphisms. We define f ⊠ g to be the collection

(f ⊠ g)n = ⊕
i+j=n

IndSn
Si×Sj fi ⊗ gj .

Proposition A.1.5. The triple (ModS
K,⊠,K) forms a symmetric monoidal category.

Proof: See [Fre00, Proposition 1.1.6].

Definition A.1.6 (The product ⊗Sn). Let R and S be K[Sn]-modules. We denote by R ⊗Sn S
the K-module of coinvariants of the K[Sn]-module R ⊗ S endowed with the diagonal action of
Sn. In what follows we use the notation [x ⊗ y] for the class of a tensor x ⊗ y ∈ R ⊗ S in this
quotient.

Definition A.1.7 (The product ◻S). Let A = {An}n∈N and B = {Bn}n∈N be symmetric modules.
We define the symmetric module A◻S B by :

(A◻S B)n = ⊕
r∈N

Ar ⊗Sr (B⊠r)n.

The product ◻S forms a bifunctor. To be explicit, let f ∶ A→ B and g ∶ A′ → B′ be symmetric
module morphisms. We define f ◻S g to be the collection

(f ◻S g)n = ∑
r∈N

fr ⊗Sr ( ∑
t1+⋯+tr=n

gt1 ⊗⋯⊗ gtr).

Remark A.1.8. In Chapter 1 we use the notation ◻
̃
instead of ◻S .

Proposition A.1.9. The triple (ModS
K,◻S , I) forms a monoidal category.

Proof: We refer to [Fre00, Proposition 1.1.9].

Definition A.1.10 (The product ⊗Sn). Let A and B be K[Sn]-modules. We denote by A⊗Sn B
the K-module of invariants of the K[Sn]-module A⊗B endowed with the diagonal action of Sn.

Definition A.1.11 (The product ◻S). Let A = {An}n∈N and B = {Bn}n∈N be symmetric modules.
We define the symmetric module A◻S B by :

(A◻S B)n = ⊕
r∈N

Ar ⊗
Sr (B⊠r)n.

The product ◻S forms a bifunctor. To be explicit, let f ∶ A→ B and g ∶ A′ → B′ be symmetric
module morphisms. We define f ◻S g as the collection

(f ◻S g)n = ∑
r∈N

fr ⊗
Sr ( ∑

t1+⋯+tr=n
gt1 ⊗⋯⊗ gtr).

Remark A.1.12. In Chapter 1 we use the notation ◻̃ instead of ◻S .

Proposition A.1.13. The triple (ModS
K,◻

S , I) forms a monoidal category.

Proof: We refer to [Fre00, Proposition 1.1.9].

Let G be a finite group and X be a K[G]-module. We consider the K-module of coinvariant
XG and the K-module of invariant XG. There is a natural map, called trace or norm map,
tr ∶ XG → XG defined by [x] ↦ ∑g∈G g

∗x, for any x ∈ X. We apply this observation to our
composition product :
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Definition A.1.14 (The natural transformation tr). Let A = {An}n∈N and B = {Bn}n∈N be
symmetric modules. We define the morphism of symmetric modules

tr ∶ A◻S B → A◻S B,

by
tr([a⊗ b1 ⊗⋯⊗ br]) = ∑

σ∈Sn
σ∗(a⊗ b1 ⊗⋯⊗ br),

for any [a⊗ b1 ⊗⋯⊗ br] ∈ Ar ⊗Sr (B⊠r)n.

We use the epi-mono factorization of tr to define a third product ◻tr intermediate between
◻S and ◻S :

Proposition A.1.15. The natural transformation tr is monoidal, i.e. it preserves unit and
associativity isomorphisms.

Proof: See [Fre00, Lemma 1.1.19].

Definition A.1.16 (The product ◻tr). Let A = {An}n∈N and B = {Bn}n∈N be symmetric mo-
dules. We define the symmetric module A◻trB by :

(A◻trB)n = Im(tr ∶ (A◻S B)n → (A◻S B)n),

for each n ∈ N.
The product ◻tr forms a bifunctor. To be explicit, let f ∶ A→ B and g ∶ A′ → B′ be symmetric

module morphisms. We define f ◻tr g as the collection

(f ◻tr g)n = (f ◻S g)n∣(A◻trB)n
,

the restrictions of (f ◻S g)n to (A◻trB)n.

Proposition A.1.17. Let K be a field. The triple (ModS
K,◻tr, I) forms a monoidal category.

Proof: We use that tr is monoidal and the observations that −◻S − preserves the epimorphisms
and −◻S − preserves the monomorphisms to obtain a diagram of the form :

(A◻S B)◻S C (A◻trB)◻trC (A◻S B)◻S C

A◻S(B ◻S C) A◻tr(B ◻trC) A◻S(B ◻S C).

≅ ∃ ≅

We deduce the associativity diagram for ◻tr, the unit follows easily.

Let G be a group of cardinality n and X be a K[G]-module. If K is a field of characteristic
0 then the natural map tr−1 ∶ XG → XG defined as follows x ↦ 1

n
[x] is the inverse of the trace

map. Thus, the natural transformation tr is an isomorphism of bifunctors.

Proposition A.1.18. If K is a field of characteristic 0 then the trace induces an isomorphism
of monoidal categories

(ModS
K,◻S , I) ≅ (ModS

K,◻tr, I) ≅ (ModS
K,◻

S , I).

If K does not contain Q we still have :

Proposition A.1.19 (Fresse [Fre00], Proposition 1.1.15). Let A = {An}n∈N and B = {Bn}n∈N be
symmetric modules. If B is connected then tr ∶ A◻S B → A◻S B is an isomorphism of symmetric
modules.
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We are interested in symmetric modules because they are combinatorial models of a special
kind of endofunctors of the category ModK. We explain this correspondence in the following
definition.

Definition A.1.20 (The functors S(A,−), Γ(A,−) and Λ(A,−)). Let A = {An}n∈N be a sym-
metric module. We have an obvious inclusion in ∶ ModK ↪ModS

K such that :

in(V )n =

⎧⎪⎪
⎨
⎪⎪⎩

V n = 0,

0 otherwise.

We then consider the functors S(A,−), Λ(A,−), and Γ(A,−) ∶ ModK →ModK such that :

S(A,V ) = A◻S in(V ),

Λ(A,V ) = A◻tr in(V ),

Γ(A,V ) = A◻S in(V ).

We have natural transformations :

S(A,−) → Λ(A,−) → Γ(A,−)

given by the epi-mono factorization of the trace map on these composition products.
The functor S(A,−) is the standard functor of the theory of operads and is usually called

the Schur functor associated to A.
Let A be a symmetric module. In general the functors S(A,−), Λ(A,−) and Γ(A,−) are not

isomorphic. But we have the following statement :

Proposition A.1.21 (Fresse [Fre00], Proposition 1.1.2). Let A = {An}n∈N be a symmetric mo-
dule. If A is projective as a symmetric sequence then

tr ∶ S(A,−) → Γ(A,−)

is an isomorphism.

Corollary A.1.22. We have that S(As,−) is isomorphic to Γ(As,−).

The functors S(−,−), Λ(−,−), and Γ(−,−) are compatible with the monoidal structures ⊠,
◻S , ◻tr, and ◻S :

Proposition A.1.23 (Fresse [Fre00], Propositions 1.1.6 and 1.1.9). The bifunctors S(−,−),
Γ(−,−) and Λ(−,−) ∶ ModS

K → Fun(ModK,ModK) are :
— (strongly) symmetric monoidal functors with respect to the two symmetric monoidal struc-

tures (ModS
K,⊠,K) and (Fun(ModK,ModK),⊗,K), hence we have :

S(A ⊠B,−) ≅ S(A,−) ⊗ S(B,−),Γ(A ⊠B,−) ≅ Γ(A,−) ⊗ Γ(B,−),

if K is a field
Λ(A ⊠B,−) ≅ Λ(A,−) ⊗Λ(B,−),

— (strongly) monoidal functors with respect to the two monoidal structures (ModS
K,◻, I) and

(Fun(ModK,ModK), ○, IdModK), hence we have :

S(A◻S B,−) ≅ S(A,−) ○ S(B,−),Γ(A◻S B,−) ≅ Γ(A,−) ○ Γ(B,−),

if K is a field
Λ(A◻trB,−) ≅ Λ(A,−) ○Λ(B,−).

A.1.2 Operads and their associated monads
We recall the definitions and the properties of operads and of the categories of algebras

associated to operads.
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Operads and algebras over an operad

Since (ModS
K,◻S , I) is a monoidal category we can define the category of monoids with respect

to this structure.

Definition A.1.24 (Operads). Let P = {Pn}n∈N be a symmetric module. Let µ ∶ P ◻S P → P
and η ∶ I → P be morphisms of symmetric modules. The triple (P,µ, η) is an operad if it is a
monoid in the monoidal category (ModS

K,◻S , I). More explicitly the triple (P,µ, η) is an operad
if the following diagrams commute :

P ◻S P ◻S P P ◻S P

P ◻S P P,

IdP ◻S µ

µ◻S IdP µ

µ

(Associativity)

and
I◻S P P ◻S P P ◻S I

P.

η◻S IdP

µ

IdP ◻S η

(Unit)

Let (P = {Pn}n∈N, µ, η) and (P ′ = {P ′
n}n∈N, µ

′, η′) be operads. A morphism of operads is a
morphism of symmetric modules φ ∶ P → P ′ such that the following diagrams commute :

P ◻S P P ′ ◻S P
′

P P ′,

φ◻S φ

µ µ′

φ

and
P

K

P ′.

φ

η

η′

We denote the category of operads by Op.

We use that P ◻S P is spanned by tensors of the form [p ⊗ q1 ⊗ ⋯ ⊗ qn] with p ∈ Pn and
q1, . . . , qn ∈ P to give an explicit definition of µ.

Remark A.1.25. The general theory of operads allows us to define the free operad generated by
a symmetric module, and the ideals of an operad. We can present any operad by generators and
relations. Since this theory goes beyond the purpose of this section we do not give more details.
For the interested reader we refer to the books of Fresse [Fre09, Section 3.1], Loday and Vallette
[LV12, Section 5.5], and Markl, Schnider and Stasheff [MSS02].

Let (P = {Pn}n∈N, µ, η) be an operad, the elements p ∈ Pn can be interpreted as n-ary opera-
tions and µ as the rule for composing them. The morphism η represents the identity operation.
We can present operads by generating operations and relations.

We introduce a different and useful definition of operad structure on a symmetric module.

Definition A.1.26 (System of partial compositions). Let P = {Pn}n∈N be a symmetric module.
A system of partial compositions ({○i}i∈N∗ , η) is a collection of K-modules morphisms − ○i − ∶
Pn ⊗ Pm → Pn+m−1 and a morphism of K-module η ∶ K→ P1 such that :

1. − ○i − ∶ Pn ⊗ Pm → Pn+m−1 is the zero map if i > n,

2. − ○i (− ○j −) = (− ○i −) ○i+j−1 −, and
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3. p ○i (η(1)) = (η(1)) ○1 p = p for any p ∈ Pn and i ≤ n,
and which respect the symmetric action. That is :

x ○i σ
∗(y) = σ∗(x ○i y)

for all σ ∈ Sn where σ is the Sn+m−1 permutation that act as the identity on the set {1, . . . , i −
1, i + n, . . . , n +m} and as σ on the set {i, . . . , i + n − 1}, and

ρ∗(x) ○i y = ρ
∗(x ○i y)

for all ρ ∈ Sm where σ is the Sn+m−1 permutation that act as ρ on the blocks {(1), . . . , (i −
1), (i, . . . , i + n − 1), (i + n), . . . , (n +m)} and identity inside the block (i, . . . , i + n − 1).

Proposition A.1.27. Let P = {Pn}n∈N be a symmetric module. An operad structure (P,µ, η) is
equivalent to a system of partial compositions (P,{○i}

∗
i∈N, η).

Proof: For more details see [LV12, Section 5.3.7]

The compatibility of S(−,−) with the composition products ◻S and ○ has an important
consequence. Any monoid with respect to ◻S defines a monoid in the category of endofunctor
of ModK with respect to the composition of functors ○, a monad is the usual terminology of
category theory :

Proposition A.1.28. Let (P = {Pn}n∈N, µ, η) be an operad. The triple (S(P,−), S(µ,−), S(η,−))
is a monad.

Proof: The statement is a direct consequence of Proposition A.1.23.

To any monad we associate a category of algebras. Thus, to any operad we associate a
category of algebras.

Definition A.1.29 (P -algebra). Let (P = {Pn}n∈N, µ, η) be an operad. The category of P -
algebras is the category of algebras over the monad (S(P,−), S(µ,−), S(η,−)). It is denoted by
AlgP . More explicitly an object of AlgP is a couple (V, γ) such that the following diagrams
commute :

S(P ◻S P,V ) S(P,S(P,V )) S(P,V )

S(P,V ) V,

µ○IdV

≅ IdP ◻S γ

γ

γ

and
S(I, V ) S(P,V )

V.

η○IdV

γ

Example A.1.30. 1. The symmetric module As defined by As0 = 0 and Asn = K[Sn] with
multiplicative actions for all n > 0 is an operad with the composition product such that :

µ([ρ⊗ τ1 ⊗⋯⊗ τr]) = τρ(1) ⊕⋯⊕ τρ(r)

for ρ ∈ Sr and τi ∈ Sni and η = IdK. Alternatively the operad As can be defined as the free
operad generated by a binary operation m quotient by the ideal generated by the relation
m(m(−,−),−) =m(−,m(−,−)).
The category of As-algebras is isomorphic to the category of non unital associative alge-
bras.

2. The symmetric module Com is defined by Com0 = 0 and Comn = K with trivial action for
all n > 0, is an operad if endowed with the morphisms µ = IdK and η = IdK. Alternatively
the operad Com can be defined as the free operad generated by a commutative binary
operation c quotient by the ideal generated by the relation c(c(−,−),−) = c(−, c(−,−)).
The category of Com-algebras is isomorphic to the category of associative commutative
algebras,
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3. The symmetric module Lie is defined by Lie0 = 0 and Lien = IndSn
Z/nZ(ρ), where ρ is

the one dimensional representation of the n-cyclic group given by an irreducible nth-root
for all n > 0. We can define an operad structure on the symmetric module Lie as the
free operad generated by an anti-symmetric binary operation [−,−] quotient by the ideal
generated by the relation [[1,2],3] + [[2,3],1] + [[3,1],2] = 0.
The category of Lie-algebras is isomorphic to the category of Lie algebras.

Not every monad is in the image of S(−,−). Operads correspond, in some sense, to the
category of monads presented by multilinear operations and multilinear relations between them.
The advantage of working with the category of operads instead of the whole category of monads
is their combinatorial nature that allows us to make explicit computations.

Definition A.1.31 (The operad EndV ). Let V be a K-module. We define the symmetric module
EndV by :

EndV,n = HomModK(V
⊗n, V ),

with the symmetric group action induced by the permutation action on V ⊗n for any n ∈ N. The
composition of morphisms in the category ModK and the identity of V gives an operad structure
on EndV . We explicit set :

µ([f(−, . . . ,−
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

r

) ⊗ g1(−, . . . ,−
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

n1

) ⊗⋯⊗ gr(−, . . . ,−
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

nr

)]) = f(g1, . . . gr)(−, . . . ,−
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
n1+...+nr

),

for f ∈ EndV,r, and gi ∈ EndV,ni and
η(1) = IdV .

Remark A.1.32. The construction of the symmetric module EndV is not functorial on V .

Proposition A.1.33. Let (P = {Pn}n∈N, µ, η) be an operad and V be a K-module. We have the
following bijection :

{γ∣(V, γ) ∈ AlgP } ≅ HomOp(P,EndV ).

Let (V, γ) and (V ′, γ′) be P -algebras and f ∶ V → V ′ be a K-morphism. It is a morphism of
P -algebras if and only if

γ′(p)(f ⊗⋯⊗ f
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

(−, . . . ,−
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

n

)) = f(γ(p)(−, . . . ,−
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

n

)),

for all p ∈ Pn and n ∈ N.

Proof: We refer to Fresse [Fre09, Proposition 3.4.2] and Loday and Vallette [LV12, Proposi-
tion 5.2.13].

ΛP and ΓP -algebras

Let K be a field. o Since the map P ◻S P → P ◻S P induced by the trace is an isomorphism
for connected symmetric modules. Hence the category of connected operads coincides with the
category of connected monoids with respect to ◻tr and ◻S . Let P be a connected operad. We
use the compatibility of the functors Λ(−,−) and Γ(−,−) with the composition to define other
two monads associated to P .

Proposition A.1.34. Let (P = {Pn}n∈N, µ, η) be a connected operad. The triples

Λ(P,−),Λ(µ,−),Λ(η,−)), (Γ(P,−),Γ(µ,−),Γ(η,−))

are monads such that the morphisms given by the epi-mono factorization of tr :

S(P,−) → Λ(P,−) → Γ(P,−)

are monad morphisms.

77



Appendix A. Background

Definition A.1.35 (ΛP -algebras). Let (P = {Pn}n∈N, µ, η) be a connected operad. We define the
category of ΛP -algebras as the category of algebras over the monad (Λ(P,−),Λ(µ,−),Λ(η,−)).

Proposition A.1.36. Let (P = {Pn}n∈N, µ, η) be a connected operad and A be a ΛP -algebra.
The monad S(P,−) acts on A through the morphism S(P,−) → Λ(P,−) so that A inherits a
natural P -algebra structure.

Let P be a connected operad. Since the functor Λ(P,−) is, in general, different from the
functor S(P,−) the category of ΛP -algebras is, in general, not equivalent to the category of
P -algebras. The category of ΛP -algebras can be interpreted as the subcategory of P -algebras
satisfying some additional non-linear relations.

Example A.1.37. We have :
1. let K be a field of positive characteristic p, a Com-algebra C is a ΛCom-algebra if cp = 0

for any c ∈ C,
2. let K be a field of characteristic 2, a Lie-algebra L is a ΛLie-algebra if [l, l] = 0 for any

l ∈ L,
see [Fre04, Proposition 1.2.15-1.2.16].

Definition A.1.38 (ΓP -algebras). Let (P = {Pn}n∈N, µ, η) be a connected operad. We define the
category of ΓP -algebras as the category of algebras over the monad (Γ(P,−),ΓP (µ,−),ΓP (η,−)).

Proposition A.1.39. Let (P = {Pn}n∈N, µ, η) be a connected operad and A be a ΓP -algebra.
The monad Λ(P,−) acts on A through the morphism Λ(P,−) → Γ(P,−) so that A inherits a
natural ΛP -algebra structure.

As for ΛP -algebras, since Γ(P,−) is, in general, different from S(P,−) the category of ΓP -
algebras is, in general, not equivalent to the categories of P -algebras. The category of ΓP -algebras
can be interpreted as the category of ΛP -algebras with an additional structure.

Definition A.1.40 (Divided power algebras). A divided power algebra is a commutative algebra
C endowed with a collection of operations γi ∶ C Ð→ C such that :

γn(x + y) =
n

∑
i=0

γn−i(x)γi(y),

γi(λx) = λ
iγi(x),

γ1(x) = x,

γm(x)γn(x) = (
m + n

n
)γm+n(x),

γm(γn(x)) =
mn!

(n!)mm!
γmn(x).

Let C and D be divided power algebras. A commutative algebra morphism φ ∶ C → D is a
morphism of divided power algebras if

φ(γi(−)) = γi(φ(−))

for any i ∈ N.

Definition A.1.41 (p-restricted Lie algebras). Let K be a field of positive characteristic p. A
p-restricted Lie algebra is a Lie algebra L equipped with an operation −[p] ∶ LÐ→ L such that :

(λx)[p] = λp(x)[p],

(x + y)[p] = x[p] + y[p] +
p−1

∑
i=1

si(x, y)

i
,

ad(x[p]) = (ad(x))[p],

where si(x, y) is the coefficient of ti−1 on the expression of ad(tx+y)p−1(x).
Let L and G be p-restricted Lie algebras. A Lie algebra morphism φ ∶ L→ G is a p-restricted

Lie algebra morphism if
φ((−)[p]) = (φ(−))[p].
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Example A.1.42. We have :

1. the category of ΓCom-algebras is isomorphic to the category of divided power algebras (see
Fresse [Fre00, Proposition 1.2.3]),

2. let K be a field of positive characteristic p ; the category of ΓLie-algebras is isomorphic to
the category of p-restricted Lie algebras (see Fresse [Fre00, Theorem 1.2.5]).

A.1.3 PROPs and their algebras
We recall the notion of a PROP and of the category of algebras associated to a PROP. These

notions were first introduced by MacLane. We first introduce the concept of symmetric bimodule.

Definition A.1.43 ((G,H)-modules). Let G and H be groups. A (G,H)-module is a K-module
V endowed with a left G-action and a right H-action such that the two actions commute with
each other. A morphism of (G,H)-modules is a morphism of left K[G]-modules and right K[H]-
modules.

Definition A.1.44 (Symmetric bimodule). A symmetric bimodule A = {An,m}(n,m)∈N×N is a
collection of (Sn,Sm)-modules.

Let A and B be symmetric bimodules. A morphism of symmetric bimodules f ∶ A → B is a
collection {fn,m}(n,m)∈N×N of (Sn,Sm)-module morphisms.

We denote their category by BiModS
K.

We define two monoidal structures, namely � and ⊟. They correspond to tensor and compo-
sition products. We recall the definition of unit objects for these monoidal structures.

Definition A.1.45. 1. the horizontal tensor unit K is the symmetric bimodule defined as
follows :

Kn,m =

⎧⎪⎪
⎨
⎪⎪⎩

K n = 0 and m = 0,

0 otherwise,

2. the vertical tensor unit K is the symmetric bimodule defined as follows :

In,m =

⎧⎪⎪
⎨
⎪⎪⎩

K n =m,

0 otherwise,

where we take the trivial action of symmetric groups on K.

Definition A.1.46 (The product �). Let A = {An,m}(n,m)∈N×N and B = {Bn,m}(n,m)∈N×N be
symmetric bimodules. We define the symmetric bimodule A�B by :

(A�B)n,m = ⊕
n1+n2=n
m1+m2=m

IndSn,Sm
Sn1

×Sn2
,Sm1

×Sm2
An1,m1 ⊗An2,m2 ,

where

IndSn,Sm
Sn1

×Sn2
,Sm1

×Sm2
(−) = IndSn

Sn1
×Sn2

(IndSm
Sm1×Sm2

(−)) = IndSm
Sm1×Sm2

(IndSn
Sn1

×Sn2
(−)).

The product � is a bifunctor. To be explicit let f ∶ A → B and g ∶ A′ → B′ be symmetric
bimodule morphisms. We define f � g ∶ A�A′ → B �B′ by :

(f � g)n,m = ∑
n1+n2=n
m1+m2=m

IndSn,Sm
Sn1

×Sn2
,Sm1

×Sm2
fn1,m1 ⊗ gn2,m2 .

Proposition A.1.47. The triple (BiModS
K,�,K) forms a symmetric monoidal category.

Proof: It easily follow by adapting the proof [Fre00, Proposition 1.1.6].
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Definition A.1.48 (The product ⊟). Let A = {An,m}(n,m)∈N×N and B = {Bn,m}(n,m)∈N×N be
symmetric bimodules. We define the symmetric bimodule A ⊟B by :

(A ⊟B)n,m = ⊕
r∈N

An,r ⊗Sr Br,m.

The product ⊟ is a bifunctor. To be explicit let f ∶ A → B and g ∶ A′ → B′ be symmetric
bimodule morphisms. We define f ⊟ g ∶ A ⊟A′ → B ⊟B′ to be the morphism defined such that :

(f ⊟ g)n,m = ∑
r∈N

fn,r ⊗Sr gr,m.

Proposition A.1.49. The triple (BiModS
K,⊟, I) forms a monoidal category.

Proof:[Sketch] The unit is given by

(A ⊟ I)n,m = ⊕
r∈N

An,r ⊗Sr Ir,m = An,n ⊗Sn K = An,m,

the associativity morphism is given by :

(A ⊟B) ⊟C)n,m =⊕
r

(A ⊟B)n,r ⊗Sr Cr,m

=⊕
r

(⊕
s

An,s ⊗Ss Bs,r) ⊗Sr Cr,m

=⊕
r
⊕
s

An,s ⊗Ss (Bs,r ⊗Sr Cr,m)

= (A ⊟ (B ⊟C))n,m

Let A = {An,m}(n,m)∈N×N be a symmetric bimodule. As for operads, we want to identify the
elements of An,m with some abstract operations with n inputs and m outputs. A PROP is a
symmetric bimodule endowed with a structure that encodes the composition of these abstract
operations.

Definition A.1.50 (PROP). Let P = {Pn,m}(n,m)∈N×N be a symmetric bimodule, µh ∶ P�P → P ,
µv ∶ P ⊟ P → P , and η ∶ I → P be symmetric bimodule morphisms. The set of data (P,µh, µv, η)
is a PROP if the following diagrams commute :

P � P � P P � P

P � P P,

IdP ◻S µh

µh ◻S IdP µh

µh

(Horizontal associativity)

IK�P P � P P �K

P,

η∣K�IdP

µv

IdP �η∣K

(Horizontal unit)

P ⊟ P ⊟ P P ⊟ P

P ⊟ P P,

IdP ◻S µv

µv ◻S IdP µv

µv

(Vertical associativity)

I⊟P P ⊟ P P ⊟ I

P,

η⊟IdP

µv

IdP ⊟η

(Vertical unit)
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and the following equations holds :

µh(f ⊗ g) = σ
∗(µh(g ⊗ f))τ∗, (Horizontal commutativity)

for all f ∈ Pn1,m1 and g ∈ Pn2,m2 where σ (resp. τ) is the permutation in Sn1+n2 (resp. Sm1+m2)
which permutes the blocks {1, . . . , n1} and {n1 + 1, . . . , n1 + n2} (resp. {1, . . . ,m1} and {m1 +
1, . . . ,m1 +m2}) and fix the orders inside the blocks.

µh(µv(f1, g1), µv(f2, g2)) = µv(µh(f1, f2), µh(g1, g2)). (Distributivity)

A morphism of symmetric bimodules f ∶ P → Q is a morphism of PROPs if it commutes with
all µv, µh and η.

We denote the category of PROPs by PROP .

Proposition A.1.51. The category of PROPs is equivalent to the category of symmetric mo-
noidal categories (P,⊙, S, e) enriched over ModK such that :

1. the class of objects is identified with the set of natural numbers N,
2. the product on objects is defined by m⊙n =m + n for any m,n ∈ N.

Proof: We refer to Markl [Mar08, Section 8] for more details.

Remark A.1.52. As for operads, the general theory of PROPs allows us to define the free
PROP generated by a set of operations and ideals generated by relations. Any PROP can be
presented by generators and relations.

Example A.1.53. We can define the following PROPs :

1. the PROP BiAlg is the PROP generated by a product m ∈ BiAlg2,1 and a coproduct
∆ ∈ BiAlg1,2, quotiented by the ideal generated by the following relations :

m(m(−,−),−) =m(−,m(−,−)), (∆⊗ Id)∆(−) = (Id⊗∆)(∆(−)),

∆(m(1,2)) = (m⊗m)((2,3)∗(∆(1),∆(2)))

2. the PROP Frob is the PROP generated by a product m ∈ Frob2,1, a unit e ∈ Frob0,1, a
coproduct ∆ ∈ Frob1,2 and a counit c ∈ Frob1,0, quotiented by the ideal generated by the
following relations :

m(m(−,−),−) =m(−,m(−,−)), m(−, e) =m(e,−) = Id(−),

(∆⊗ Id)∆(−) = (Id⊗∆)(∆(−)), (Id⊗c)(∆(−)) = (c⊗ Id)(∆(−)) = Id(−),

and the Frobenius relation :

(Id⊗m)(∆⊗ Id)(−,−) = (m⊗ Id)(Id⊗∆)(−,−) = ∆(m(−,−)),

3. if K has characteristic different from 2, the PROP BiLie is the PROP generated by
an antisymmetric product [−,−] ∈ BiLie2,1 and an antisymmetric product δ ∈ BiLie1,2,
quotiented by the ideal generated by the following relations :

[[1,2],3] + [[2,3],1] + [[3,1],2] = 0,

(1,2,3)(δ ⊗ Id)(δ(−)) + (2,3,1)(δ ⊗ Id)(δ(−)) + (3,1,2)(δ ⊗ Id)(δ(−)) = 0,

and

(1,2)δ([1,2]) − (1,2)([−,−] ⊗ Id)(Id⊗δ)(1,2) − (2,1)([−,−] ⊗ Id)(Id⊗δ)(1,2)

− (2,1)([−,−] ⊗ Id)(Id⊗δ)(2,1) − (1,2)([−,−] ⊗ Id)(Id⊗δ)(2,1) = 0.
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Definition A.1.54 (The PROP EndV ). Let V be a K-module. The PROP EndV is the strict
symmetric monoidal category (EndV ,⊙, S, e) such that :

EndV ;n,m = HomModK(V
⊗n, V ⊗m).

The PROP structure is given by the permutation action on V ⊗n and V ⊗m, the tensor product
and the composition of morphisms in ModK.

As for operads, PROPs are combinatorial objects that govern categories of algebras which
are described by multilinear operations and multilinear relations. The major difference between
operads and PROPs is that PROPs allow operations with more than one outputs. Another
important difference between operads and PROPs is that, in general, a PROP is not associated
to any monad. To define the category of algebras we are forced to use the PROP EndV .

Definition A.1.55 (P -algebras). Let (P = {Pn,m}(n,m)∈N×N, µh, µv, η) be a PROP. A P -algebra
is a pair (V,φ ∶ P → EndV ) where V is a K-modules and φ a morphism of PROPs.

Let (V,φ) and (V ′, φ′) be P -algebras. A morphisms of K-module f ∶ V → V ′ is a P -algebra
morphism if

f ⊗⋯⊗ f
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

(φ(p)(−, . . . ,−
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

n

)) = φ′(p)(f ⊗⋯⊗ f
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

)(−, . . . ,−
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

n

),

for any p ∈ Pn,m.
We denote the category of algebras over the PROP P by AlgP .

Example A.1.56. We have :
1. the category of BiAlg-algebras is equivalent to the category of associative, coassociative

bialgebras,
2. the category of Frob-algebras is equivalent to the category of Frobenius algebras,
3. the category of BiLie-algebras is equivalent to the category of Lie bialgebras.

A.2 Pre-Lie algebras
We introduce the definition of a pre-Lie algebra. The monad governing this category of

algebras comes from an operad. Pre-Lie algebras were introduced by Gerstenhaber [Ger63] in
the study of deformations of associative algebras. They appear in several contexts, notably in
operad theory (see Loday and Vallette [LV12, Section 5.4.6], Chapoton and Livernet [CL01]),
in deformation theory (see Dotsenko, Shadrin and Vallette preprint [DSV15]), and in quantum
field theory (see Connes and Kreimer [CK99], Foïssy [Foi14]).

Definition A.2.1 (Pre-Lie algebras). A pre-Lie algebra is a pair (V,{−,−}) where V is a K-
module and {−,−} ∶ V ⊗ V → V is a morphism of K-modules such that :

{{x, y}, z} − {x,{y, z}} = {{x, z}, y} − {x,{z, y}},

for all x, y, z ∈ V .

The name pre-Lie, which refers to Lie algebras, was chosen for the following reason.

Proposition A.2.2. If (V,{−,−}) is a pre-Lie algebra then (V, [−,−]), where we set [x, y] =
{x, y} − {y, x} for all x, y ∈ V , is a Lie algebra.

Proof: Immediate from a direct inspection.

Example A.2.3. The following structures are pre-Lie algebras :
1. let (P = {Pn}n∈N, µ = {○i}i∈N, η) be an operad, the K-module ⊕n∈N Pn endowed with the

product :

{f, g} =
n

∑
i=1

f ○i g

for all f ∈ Pn and g ∈ P ,
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2. the set of vector fields of a n dimensional affine R-space endowed with the product :

{f(x)
∂

∂x
, g(x)

∂

∂x
} = f ′(x)g(x)

∂

∂x
.

Since a pre-Lie product is a multilinear operation satisfying a multilinear relation, the cate-
gory of pre-Lie algebras is governed by an operad.

Definition A.2.4 (The operad PreLie). We define the operad PreLie as the quotient of the
free operad generated by a binary operation m by the ideal generated by the following relation :

m(m(1,2),3) −m(1,m(2,3)) =m(m(1,3),2) −m(1,m(3,2)).

Dzhumadil’daev [Dzh01] introduces a special class of pre-Lie algebras, called p-restricted
pre-Lie algebras, in the context where the ground ring is a field of positive characteristic p.

Definition A.2.5 (p-restricted pre-Lie algebra). A p-restricted pre-Lie algebra is a pre-Lie
algebra (V,{−,−}) such that the following equation is satisfied :

{⋯{x, y},⋯}; y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p

} = {x,{⋯{y, y},⋯}, y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p

}},

for any x, y ∈ V .

The notion of a p-restricted pre-Lie algebra is the first approximation of the notion of a
ΓPreLie-algebra.

Proposition A.2.6 (Dokas [Dok13]). There is a forgetful functor from ΓPreLie-algebras to
p-restricted pre-Lie algebras.

Remark A.2.7. In [Dok13] I. Dokas introduces a more general notion of p-restricted PreLie-
algebra. A “generalized” p-restricted PreLie-algebra is a PreLie-algebra V endowed with a Fro-
benius map φ ∶ V → V satisfying some relations. If we assume φ = {{⋯{y, y},⋯}, y

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p

} we retrieve

the definition of A. Dzhumadil’daev (Definition 1.2.3).

Pre-Lie algebras play an important role in operad theory over a field of characteristic zero.
In the context of operad theory over a field of positive characteristic p pre-Lie algebras should
be replaced by ΛPreLie or ΓPreLie-algebras. The aim of Chapter 1 is to give presentations by
generators and relations of the monads which govern these categories we also give examples of
ΛPreLie and ΓPreLie-algebras.

A.3 Strict polynomial functors
In this section we briefly recollect the notions of polynomial functors and strict polynomial

functors over ModK.

A.4 Polynomial Functors
Polynomial functors were introduced by Eilenberg and MacLane [EML54] in the study of

the cohomology of Eilenberg-MacLane spaces. Strict polynomial functors were introduced by
Friedlander and Suslin [FS97a] in the study of cohomology of group schemes. The definition of
polynomial functors à la Eilenberg-MacLane of degree lower or equal to n is given by induction
from the notion of additive functor.

Definition A.4.1 (Cross-effect). Let F ∶ ModK Ð→ModK be a functor. The cross-effect of F is
the bifunctor

∆2(F ) ∶ ModK ×ModK Ð→ModK

such that :
∆2(F )(V1, V2) ∶=Ker(F (V1 ⊕ V2) Ð→ F (V1) ⊕ F (V2)).
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We define the nth cross-effect ∆n(F ) ∶ ModK
×n Ð→ModK inductively by :

∆n(F )(V1, . . . , Vn) = ∆2(∆n−1(F )(V1, . . . , Vn−2,−))(Vn−1, Vn).

We also have :

∆n(F )(V1, . . . , Vn) ∶=Ker(F (V1 ⊕ . . .⊕ Vn) Ð→
n

⊕
i=1

F (V1 ⊕ . . .⊕
i
0⊕ . . .⊕ Vn)).

Roughly speaking the cross-effect measures the additivity defect of a functor.

Proposition A.4.2 ([EML54]). Let F ∶ ModK → ModK be a functor. We have the following
canonical decomposition :

F (V1 ⊕ . . .⊕ Vn) = ⊕
1≤i1<...<ir≤n

∆rF (Vi1 , . . . , Vir).

Definition A.4.3 (Polynomial functor). Let F ∶ ModK Ð→ModK be a functor. We say that F
is polynomial of degree lower or equal to n if ∆n+1(F ) = 0. We say that F is of degree n if it is
of degree lower or equal to n and ∆n(F ) ≠ 0.

We recall the notion of a strict polynomial functor on the underlying category ModK.

Definition A.4.4 (The functor Γn(−)). We define the functor Γn ∶ ModK →ModK as follows :

Γn(V ) = ⊕
n∈N∗

(V ⊗n)Sn ,

for any V ∈ ModK and where (V ⊗n)Sn stands for the K-module of invariants of the K[Sn]-module
V ⊗n.

Definition A.4.5 (The category ΓnModK). Let n be a non-negative integer. We denote by
ΓnModK the category objects are K-modules, and morphisms :

HomΓnModK(V,W ) = Γn(HomModK(V,W )).

The composition is defined by the composite :

Γn(HomModK(W,U)) ⊗ Γn(HomModK(V,W )) Ð→

Γn(HomModK(W,U) ⊗HomModK(V,W )) Ð→ Γn(HomModK(V,U)).

where the first morphism is the natural transformation Γn(A) ⊗ Γn(B) → Γn(A⊗B), and the
second morphism is induced by the composition in ModK.

Definition A.4.6 (Strict polynomial functors). A strict polynomial functor of degree n is a
linear functor F ∶ ΓnModK → ModK. Strict polynomial functors and natural transformations
form a category denoted by PolFunn.

Definition A.4.7 (The functor Un). We have an embedding of categories in ∶ ModK → ΓnModK
defined as follows

1. on objects the functor is the identity map,
2. on morphisms the mapping f ∶X → Y is induced by the map V → Γn(V ) such that

v ↦ γn(v) = v ⊗⋯⊗ v
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

.

By precomposition, we get a functor Un ∶ PolFunn → Fun(ModK,ModK) from strict polynomial
functors of degree n to endofunctors of the category ModK.

The functor Un allows us to compare the notions of a polynomial functor and the notion of
a strict polynomial functor.

84



A.5. Mackey functor and cohomological Mackey functors

Proposition A.4.8 ([Bou67]). Let F be a strict polynomial functor of degree n. The functor
Un(F ) is polynomial of degree lower or equal to n.

Remark A.4.9. 1. There exists a strict polynomial functors F of degree n such that Un(F )
is a polynomial functor of degree strictly lower than n,

2. there exist non isomorphic strict polynomial functors F and G such that Un(F ) ≅ Un(G),

3. there exists a polynomial functors F such that F is not in the image of U .

The functors associated to a symmetric module M which are considered in this thesis,
S(M,−), Λ(M,−) and Γ(M,−) are strict analytic functors, i.e. direct sums of strict polynomial
functors. The aim of part 2 is to replace the category of symmetric modules with the category of
M-modules. The category of M-modules is isomorphic to the category of strict analytic functors
and allows us to introduce the concept of M-operad and of category of algebra governed by an
M-operad. Some important categories of algebras are governed by M-operads.

In this context we introduce a generalization of PROPs namely M-PROPs and the categories
of their algebras. These objects govern categories of bialgebras with possible divided symmetry
operations.

A.5 Mackey functor and cohomological Mackey functors
In Chapter 2 we introduce the notion of a cohomological Mackey functors over the admissible

category Parn. This structure is used in the definition of M-modules.
In this section we recall the definitions of the notions of a Mackey functor and of a cohomo-

logical Mackey functor.

A.5.1 Mackey functors
The notion of Mackey functors was introduced by Dress in [Dre71], and Green in [Gre71] in

the study of the representations of finite groups. We refer to [TW95] for an exhaustive treatment
of the subject.

We introduce the category ΩK(G) to give a functorial definition of Mackey functors for a
finite group G.

Definition A.5.1 (The category ΩK(G)). Let G be a finite group. We denote by ω(G) the
category such that :

1. the objects are finite G-sets,

2. if X and Y are finite G-sets then the set of morphisms Homω(G)(X,Y ) is the set of
equivalence classes of diagrams of the form

A

X Y,

in the category of finite G-sets. Two diagrams X ←Ð A Ð→ Y and X ←Ð B Ð→ Y are
equivalent if there is an isomorphism of finite G-sets σ ∶ A Ð→ B such that the following
diagram commutes :

A

X Y

B ,

σ

3. the composition of two morphisms X ←Ð A Ð→ Y and Y ←Ð B Ð→ Z is defined by the
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following pull-back diagram of finite G-sets :

C

A B

X Y Z.

The disjoint union of G-sets gives to Homω(G)(X,Y ) a commutative monoid structure. More
explicitly let f =X ←Ð AÐ→ Y and g =X ←Ð B Ð→ Y be two elements of Homω(G)(X,Y ). We
set

f + g ∶=

A ⊔B

X Y.

We define the abelian group ZHomω(G)(X,Y ) by the usual Grothendieck group construction
on Homω(G)(X,Y ). The category Ω(G) is defined as follows :

1. the objects are finite G-sets,
2. if X and Y are finite G-sets then HomΩ(G)(X,Y ) = ZHomω(G)(X,Y ).

The category ΩK(G) is the category defined to have the same objects as Ω(G) and

HomΩK(G)(X,Y ) ∶= K⊗HomΩ(G)(X,Y ).

The Hom-sets of the category ω(G) admit a useful description as free abelian monoids over
some equivalent classes of diagrams.

Notations A.5.2. Let G be a finite group, H ≤ K be subgroups of G and g ∈ G. We use the
following notation :

— πKH ∶ G /H → G /K the coset projection,
— gH = {ghg−1∣h ∈H}, and
— Hg = {g−1hg∣h ∈H}.

Definition A.5.3 (Basic morphisms). Let G be a finite group and K, H be two subgroups of
G. In the category ω(G), a morphism between G /K and G /H is a basic morphism if it is
represented by a diagram of the following type :

G /L

G /K G /H

πKgL○cg πHL

where we consider a class g ∈K/G/H and L is a subgroup of Kg ∩H.

Proposition A.5.4. Let G be a finite group and K, H be two subgroups of G. The set of
morphisms Homω(G)(G /K ,G /H ) is the free abelian monoid generated by the set of basic mor-
phisms.

In particular the set of morphisms HomΩ(G)(G /K ,G /H ) is the free abelian group generated
by the set of basic morphisms.

Proof: See [TW95, Chp. 2].

We recall the definition of Mackey functor for a finite group G and a useful characterization.

Definition A.5.5 (Mackey functor). Let G be a finite group. A Mackey functor for G is an
additive functor M ∶ ΩK(G) Ð→ ModK. Mackey functors and natural transformations form a
category which we denote by Mac(G).
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There are some important instances of Mackey functors in different contexts.

Example A.5.6. Fix a finite group G :
1. The group cohomology and group homology functors Hn(G,V ) and Hn(G,V ) with coef-

ficients in the K[G]-module V , are Mackey functors,
2. the functor Kn(Z[G]), the K-theory of Z[G], is a Mackey functor,
3. the functor B(G), the Burnside ring of G, is a Mackey functor,
for details see [Bou10].

In the literature Mackey functors appear with different equivalent definitions. We recall one
of them :

Proposition A.5.7. Let G be a finite group, the definition of a Mackey functor is equivalent
to the following data assignment : a function from the set {G-sub-groups} to ModK for any
inclusion of G-sub-groups H1 Ð→ H2 a pair of K-linear morphisms IndH2

H1
∶M(H1) Ð→M(H2)

and ResH2

H1
∶ M(H2) Ð→ M(H1), and for any element g ∈ G and any G-subgroup H a K-linear

isomorphism cg ∶M(H) Ð→M(gH) such that the following relations are satisfied :

1. IndH3

H2
IndH2

H1
= IndH3

H1
,

2. ResH2

H1
ResH3

H2
= ResH3

H1
,

3. cg ch = cgh,

4. cg IndH2

H1
= Ind

gH2
gH1

cg,

5. cg ResH2

H1
= Res

gH2
gH1

cg,

6. ResHJ IndHK = ∑
x∈J/H/K

IndJJ∩xK cxResKJx∩K ,

the last relation is called the Mackey formula.

Proof: See [TW95, Chp. 2].

A.5.2 Cohomological Mackey functors
We recall the definition of a cohomological Mackey functor. We follow the characterization

given by Yoshida, in [Yos83], using the Hecke category HG.

Definition A.5.8 (The Hecke category HG). We denote by HG the full sub-category of K[G]-
modules whose objects are permutation modules over K[G], i.e. it is the category defined as
follows :

1. the objects are direct sums of K[G]-modules of the form K[G /H ], where H is a subgroup
of G,

2. if K[G/H1
] and K[G/H2

] are two objects of HG, then

HomHG(K[G/H1
],K[G/H2

]) ∶= K[H1
/ G/H2

].

Proposition A.5.9. Let G be a finite group. The set of morphisms HomHG(K[G /K ],K[G /H ])
is the free abelian group generated by the set of equivalent diagrams of the following type :

G /Kg ∩H

G /K G /H ,

πKLg ○cg πHL

where g ∈K/G/H and L =Kg ∩H.

Proof: The statement easily follows from Proposition A.5.4.
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Definition A.5.10 (Cohomological Mackey functors). A cohomological Mackey functor is an
additive functor M ∶ HG Ð→ ModK. We denote the category of cohomological Mackey functors
by Maccoh(G).

Cohomological Mackey functors are particular Mackey functors.

Proposition A.5.11. Let G be a finite group. There exists a full and faithful functor from
Maccoh(G), the category of cohomological Mackey functors, to Mac(G), the category of Mackey
functors.

Proof: We define a functor in ∶ ΩK(G) Ð→ HG. We proceed as follows.
1. Let X be a G-set. It decomposes uniquely as the disjoint union of transitive G-sets
X = ∐

i∈I
G/Hi , with Hi a subgroup of G. We set :

in(X) ∶= ⊕
i∈I

K[G/Hi ].

2. Let f be a basic morphism in ΩK(G) of the form :

G /L

G /K G /H .

πKgL○cg πHL

We set

in(

G /L

G /K G /H

πKgL○cg πHL ) ∶= ∣K∩gH ∶ L∣

G /Kg ∩H

G /K G /H .

πKgL○cg πHL

A cohomological Mackey functor defines a Mackey functor by pre-composition with in.

As for Mackey functors there is a description of cohomological Mackey functors in terms of
operations of conjugation, induction and restriction.

Theorem A.5.12 (Yoshida). Let G be a finite group. The definition of a cohomological Mackey
functors Maccoh(G) is equivalent to the following data assignment : a function from the set
{G-sub-groups} to the class ModK of K-modules ; for any inclusion of G-sub-groups H1 Ð→H2,
a pair of K-linear morphisms IndH2

H1
∶M(H1) Ð→M(H2) and ResH2

H1
∶M(H2) Ð→M(H1), and

for any element g ∈ G and any G-subgroup H, a K-linear isomorphism cg ∶ M(H) Ð→ M(gH)
such that the relations (1 − 6) of Proposition A.5.7 are satisfied and the following additional
relation

IndH2

H1
ResH2

H1
= ∣H2 ∶H1∣ IdH2

holds.

Proof: See [Yos83, Thm. 4.3].
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