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abstract

Let K be a field. We denote by Modg the category of K-modules. We study a generalization of cohomological
Mackey functors defined on H Par,, a subcategory of the Hecke category of the symmetric group S,,. We denote
the category of cohomological Mackey functors defined on H Par, by Mac®"(H Par,) and the category of strict
polynomial functors of degree n by PolFun,. We show that Macc"h(’HParn) is equivalent to PolFun,. An
M-module is a collection of objects in Mac®”(# Pary,) parametrized by n € N. We denote the category of M-
modules by Mod%. We introduce two monoidal structures on Mod%: the tensor product ® and the composition
O product. A strict analytic functor is a collection of objects in PolFun, parametrized by n € N. We denote
the category of strict analytic functors by AnFun. We show that the monoidal structures of tensor product
and the composition of endofunctors of Modgk induce two monoidal structures on the category of strict analytic
functors. We call these structures tensor product and composition of strict analytic functors. We show that the
equivalence between Mac“’h(’HParn) and PolFun, induces an equivalence of symmetric monoidal categories
between (Mod%,@) and (AnFun,®) as well an equivalence of monoidal categories (Mod%,l:l) and (AnFun,o).
Based on this new constructions we define the concept of an M-Operad, of an M-PROP, and of their categories

of algebras. We give examples of categories of algebras governed by M-operads and M-PROPs.

Introduction

We fix a field K and a non-negative integer n. We denote by Modk the category of K-modules.

Polynomial functors were introduced by Eilenberg and MacLane in [EML54] in the study
of homology of Eilenberg-MacLane spaces K (m,n). Strict polynomial functors of degree n are
particular polynomial functors endowed with an additional structure. They were introduced by
Friedlander and Suslin in [FS97a] in the study of the cohomology of finite group schemes. We
denote the category of strict polynomial functors of degree n by PolFun,,.

We define the category H Par,,, a generalization of the Hecke category associated to the sym-
metric group S,,. A Cohomological H Par,-Mackey functor is an additive functor from H Par,, to
Modg. We denote the category of Cohomological # Par,-Mackey functors by Mac®"(H Par,,).
We show that Mac®"(HPar,) is equivalent to the category of strict polynomial functors of
degree n. Our result explicitly reads:

Theorem A (Theorem 2.18). There exists an equivalence of categories
evy, : Mac®" (% Par,,) - Pol Fun,,.

A strict analytic functor F is a collection { F}, } ey such that F,, is a strict polynomial functor
of degree n for each n € N. We denote the category of strict analytic functors by AnFun. There
exists a forgetful functor U : AnFun — Fun(Modg, Modg) from the category of strict analytic
functors to the category of endofunctor of Modg. The tensor product and the composition in
Fun(Modg, Modx) extend along U and define two monoidal structures on the category of strict
analytic functors which we denote (AnFun,®,K) and (AnFun,o,1d).

An M-module is a collection { M, },ey such that M, € Macwh(’HParn) for each n € N. We
denote the category of M-modules by Mod% We endow Mod% with two monoidal structures,
the tensor product ® of M-modules with unit K and the composition O of M-modules with unit
I. We show the following result:



Theorem B (Theorem 4.28). The equivalence of Theorem 2.18 extends to an equivalence of
symmetric monoidal categories ev : (Mod%, ®,K) - (AnFun, ®,K) as well as to an equivalence
of monoidal categories ev: (Mody,0,1) - (AnFun, o,1d).

We introduce the category of M-operads, denoted by M-Op. An M-operad is defined as
a monoid in the category of M-modules with the monoidal product 0. To any M-operad we
associate a monad and a category of algebras. An M-operad encodes an algebraic structure with
polynomial operations. Any operad P defines an M-operad S_(P) such that the category of P-
algebras is isomorphic to the category of S_(P)-algebras. Moreover, if the operad P is connected
then we associate to it two additional M-operads: A_(P) and I'_(P). The corresponding monads
are isomorphic, respectively to A(P,-) and I'(P,-) (see Appendix ?7).

Let V be a K-module. We define the M-operad Polyy, it replaces the operad Endy in the
following sense:

Theorem C (Theorem 5.8). Let P be an M-operad and V' be a K-module. The set of P-algebra
structures on V' is in bijection with Homy_op (P, Polyy ).

We generalize the construction of M-modules and we define the category of M-PROPs. To
any M-PROP we associate a category of algebras. An M-PROP is an object which encodes
algebraic structures with polynomial operations with possible multiple inputs and outputs. The
category of M-PROPs generalizes the category of PROPs (see Appendix ?7?).

We give examples of categories of algebras governed by M-operads and M-PROPs which
are not governed by operads nor by PROPs. More precisely we show that the category of p-
restricted Poisson algebras, that appears in the theory of quantization of manifolds in positive
characteristic (see [BKO08]), is governed by an M-operad. The categories of divided power bi-
algebras, related to the category of divided powers Hopf algebras (see [And71]), and p-restricted
Lie bi-algebras are governed by M-PROPs.
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In Section 1 we introduce the concept of a cohomological Mackey functor from an admissible
collection of subgroups. In Section 2 we recall the definition of a strict polynomial functor and
we prove the equivalence of categories between Macwh(’HParn) and PolFun,. In Section 3
we introduce the category Mod% and the monoidal structures ®, and O. In Section 4 we recall
the definition of a strict analytic functor and we prove the equivalence of monoidal categories
between Mod% and AnFun. We conclude with applications to operads and PROPs, in Sections
5 and 6.

1 Admissible cohomological Mackey functors on partition

subgroups of the symmetric group

We introduce the definition of a cohomological Mackey functor on an admissible collection of
subgroups of a finite group. We apply this general definition to a collection of partition subgroups
of the symmetric group S,,.

1.1 Admissible cohomological Mackey functors

We fix a finite group G. We introduce the concept of an admissible collection of subgroups of
G. Any admissible collection of subgroups D defines a category denoted by HD and a category
of cohomological Mackey HD-functors.

Definition 1.1 (The Hecke category HG). We denote by HG the full subcategory of K[G]-
modules whose objects are permutation modules over K[G], i.e. it is the category defined as

follow:

1. the objects are direct sums of K[G]-modules of the form K[G | 7] where H is a subgroup
of G,

2. if K[G g, ] and K[G [ [, ] are two objects of HG then

Hom’HG(K[G/Hl ]7K[G/H2]) = K[Hl \ G/HQ]



From this definition, we see that the category HG is self dual, with an isomorphism HG? - HG
which is the identity map on objects, and which is induced by the inversion of G on morphisms.

Definition 1.2 (Admissible collection). A collection D of subgroups of G is admissible if it is
closed under intersection and conjugation by elements of G.

Notations 1.3. Let G be a finite group, K < H be subgroups of G and g € G. We use the
following notation

o wg : G/K - G/H 1s the projection of cosets,

e 9H ={ghg~'|h e H}, and

e H9={g'hglh e H}.

We associate a category to any admissible collection.

Definition 1.4 (The category HD). Let D be an admissible collection of subgroups of G. We
define the category HD to be the full subcategory of HG with objects @, K[G /Hz] where H; is
in D.

Let us mention that HD is self dual (like the Hecke category HG ).

For any admissible collection we define a category of cohomological Mackey functors.

Definition 1.5 (The category Mac®"(HD)). Let D be an admissible collection of subgroups of
G. The category of cohomological HD-Mackey functors is the category of K-linear functors from
HD to Modg with natural transformations. We denote this category by Macmh(’HD).

We present an equivalent definition of cohomological HD-Mackey functors.

Proposition 1.6. Let D be an admissible collection of subgroups of G. A cohomological HD-
Mackey functor is equivalent to the following data assignment: a function A :D — Modg; for
any inclusion between elements of D, Hy — Hs, a pair of morphisms Indgf tA(H,) — A(H»)

and Resgf : A(Hy) — A(H1) and for any element g € G and H in D an isomorphism cg :
A(H) — A(H) such that the following relations are satisfied:

1. Indj? Ind}? = Ind}?,

Hy Hj _ Hs
2. Resy? Resy® = Resy?,

co

Cg Ch = Cgh,

+~

Hy _ 1, 19Hs
¢gIndy? = Ind, 5 ¢,

Hy _ 9H>
5. cgResy? = Res, i ¢,
Hy 1H J K
6. Resj Indyiy = Y IndjepceResieqg,
zeJ\H/K

7. Indj}? Respy? = [Ha : Hi]1dp,,
for all H,Hy, H3, H, J, K € D such that H; < Hy < H3, and J, K < H.

Proof: Suppose we have an assignment A of this type. It defines a cohomological HD-Mackey
functor M as follows:

1. let K[G/f] be an object of HD, we set M(K[G /r7]) = A(H),
2. let K[G /Hl] and K[G /Hz] be two objects of HD and [g] an element of

HomHD(K[G/Hl ]7K[G/H2])7

we set

M ([g])(x) = Indy3

Hg
1
HinH, ResngﬁH2 cq().



The statement then follows from the Theorem of Yoshida; see [Yos83, Thm. 4.3]. O

From now on we will define cohomological HD-Mackey functors giving their values on the
subgroups in D and the morphisms Indﬁf, Resgf and ¢4 for all g € G, and Hy, Hy € D such that
H, < Hs.

Proposition 1.7. Let D be an admissible collection of subgroups of G and K, H € D. We have
that Homyp(G /i, G | i) is isomorphic to the K-free module generated by the diagram of the
form:

GlkinH

K H
TFLV K

GlK Glg

where g€ K\G/H and L=K9nH.
Moreover, let M be a cohomological HD-Mackey functors and suppose H < K. We have

Resks = M(G /g & Gy SGrp),

d ok
Indj =MG /g <G/g 5 Glk),
and Id
ocy Id
coqu=M(G|g <" Glgs>G/H).

Proof: 1t follows directly by Proposition 77. O

1.2 The collection Par,

Let n be a non-negative integer, we denote by S,, the symmetric group of n letters set. In this
paper we are interested in cohomological Mackey functors for a particular admissible collection
of subgroups of S,, denoted by Par,,.

Definition 1.8 (The collection Par,). We define Par, to be the collection of S, -subgroups
conjugated to

Sy, x ... xSy, =Sy,

for some mon-negative integers ry,...,ry such that r1 +...+1; =n where the inclusion is induced
by the ordering preserving bijection [1;er1,. {1, i} = {1,...n}.
These subgroups of S,, appear in the literature under the name “Young subgroups”.

Notations 1.9. The elements of Par, are in bijection with the partitions of the set n :=
{1,...,n}. From now on we identify the subgroups 7 € Par,, with the partitions of n.

We denote a partition of n by (p1),...,(pr), where p; is a subset of n and II;_;p; = n.
We denote by 9§, the discrete partition; i.e. the partition associated to the trivial subgroup

Slx...xgl.
———
n

Proposition 1.10. The set Par, is an admissible collection of subgroups of S, .

Proof: 1t is easy to check that the collection Par, is closed by conjugations and intersec-
tions. O

In what follows we consider the Hecke category H Par,, associated to the admissible collection
Par,,.

Example 1.11. Let V be a vector space endowed with an action of S,. Since the functors
Hy(-, V) and H*(-,V) are cohomological Mackey functors (See [Yos83], Example 2.1) by re-
striction they are cohomological HPar,-Mackey functors.



2 The equivalence between strict polynomial functors and
cohomological H Par,-Mackey functors

In this section we recall the general theory of strict polynomial functors and we show that their
category is equivalent to the category of cohomological H Par,-Mackey functors.

2.1 Strict polynomial functors

We fix a non-negative integer n. We recall the definition of the category of strict polynomial
functors of degree n. This category was introduced by Friedlander and Suslin in [FS97b] for the
study of group schemes.

Definition 2.1 (The functor I',,(-)). The functor T',,(-) : Modg — Modx is defined as follows:

L,(V)=(Ve...eV)5,

n

where V@ ...®V is endowed with the natural S,,-action induced by permutations.
[ —

We set: !
r,(V)=(Ve...e V)",
—————
n
for any 7 e Par,.
In what follows we use that these functor preserves filtered colimits. This claim follows
from the observation that the tensor powers preserve filtered colimits (see for instance [Fre09,

Proposition 1.2.3]) and that finite limits commute with filtered colimits in module categories (see
[Bor94, Theorem 2.13.4] for the counterpart of this statement in the category of sets).

Notations 2.2. Let C and D be categories. We denote by Fun(C,D) the category of functors
from C to D.

Definition 2.3 (The category T',, Modg). We denote by T',, Modk the category defined by:
1. the objects are K-modules,

2. if V and W are K-modules then

Homr, voa, (V; W) = I'n(Homyoa, (V, W),
3. composition is the following:

I, (Hompyioa, (W, U)) ® Ty, (Hompoa, (V, W)) —
Fn(HomMOdK(VV, U) ® HomModK(V, W)) — Fn(HOHlMOdK(‘/, U))

where the first morphism is given by the natural transformation (4 p : I'n(A) ® I'y(B) —
' (A® B), and the second is given by the composition in Modx.

We have a functor vy, : Modg — I';,, Modg defined as the identity on the objects and for a
morphism f: X —Y in Modg we have f— v, (f) = f®--® f e '),(Hompoax (X,Y)).

N

Definition 2.4 (Strict polynomial functors). A strict polynomial functor of degree n is a K-
linear functor F : T, Modg — Modg such that the functor U,(F) = F o7y, : Modg — Modg
preserves filtered colimits. We denote the category of strict polynomial functors of degree n by
PolFun,. The map U, : F — F o+, induces a functor U, : PolFun, — Fun(Modg,Modk).
As a consequence to any strict polynomial functor we associate an endofunctor of the category
MOdK.

Example 2.5. The following functors have a natural strict polynomial structure of degree n :

1. the n-symmetric powers: Sy,



2. the n-divided powers: T,
3. the n-external powers: A,.

Proposition 2.6. Let F': Modg — Modg be a functor. Providing F with the structure of a
strict polynomial functor of degree n amounts to giving a natural transformation

(=Cxy:TW(X)®F(Y) > F(X®Y),
for X, Y e Modg such that the following diagrams commute:

1d®Cy, 7z

(X))ol (Y)® F(Z2) >y T (X)) F(Y®Z)
J/CX,Y®IdF(Z) l(x,waz
I (XeY)e F(Z) e F(XeY)®eZ) —— F(X® (Y ®Z)),

and
(K, x

IL(K)e F(X) =% F(KeX)

F(X).

1z

Proof: Suppose we have such natural transformation (. We have:

T, (Homppoq, (X,Y)) ® F(X) —— F(Hompoq, (X,Y) ® X)

x} |

F(Y).

and we take the adjoint ay : T';(Hompoa, (X,Y)) — Hompeq, (F(X), F(Y)). In the con-
verse direction, we assume F' is a strict polynomial functor of degree n. We have Idy : X —
Hompod, (Y, X ® Y') defined by Idy(z) : y = x ® y the adjoint of Id: X ® Y - X ® Y. We take

I(X)®F(Y) — Ty, (Homppoq, (Y, X @ Y)) ® F(X)

T, |

F(X®Y).

We recall some properties of the category of strict polynomial functors.

Proposition 2.7. Let w € Par,. The functor T'x(=) : V. » T'x(V) is canonically a strict
polynomial functor of degree n. The action is given by the following composition

To(X)®Dy(Y) = Tr(X) @D (Y) » T (X ® V),
where the first morphism is the restriction T, (X) < T'n(X). O

Proposition 2.8 (Krause [Kral3]). The set {T'x(=)}repar, s a set of small projective generators
for the category Pol Fun,,. O

We recall a result on the Hom-sets between the projective generators I';(-) in the category
of strict polynomial functors of degree n.

Lemma 2.9. Let 1 = (p1)...(pc) andm = (q1),...,(q) be in Par,. The set B of Ixc N-matriz
such that ¥jeqr, oy i = lail and Tieqr gy i j = |pj| is in bijection with the set ., \ Sn 7o -



Proof: Let g €S,, we define the [ x ¢ Set-matrix m(g) by m(g): ; = pJ ng;. We have a function
Sp = B defined by g = M(g)i,; = {|m(i,5)|}i;- Let g1 and g2 in S,,. We have |M,, | = |Mg,| if
and only if there exist hy € m and hg € w9 such that higihe = go. Thus the map pass to the
quotient defining an injective function , \ Sn [, - B.

For the surjectivity suppose that the elements inside (g;) are ordered by the usual order for
every j. Let b=10;; € B. We take (¢;)s = (¢i1),---,(¢,c) a partition of g; such that |g; ;| = b; ;
and we consider the associated matrix ¢; ;. We consider a permutation o which map the element
of p; in the elements of |; ¢; ;. We have that M (o) = b. O

Example 2.10. Let 1 = (1,3),(2,4) and m2 = (1), (2),(3,4) € Pary. We consider g =(1,2) € Sy

o | {1}
we have 7 = (2,3)(1,4) and m(g) is| {2} | @ |
{3} | {4}
Definition 2.11. Let m1 = (p1)...(p.) and w2 = (¢1),...,(q) be in Par,. Let A={a;;} be a

I x ¢ N-matriz such that ¥jcq1. o @ij = |gi| and Tieqq,. gy iy = |pjl- Using the permutation of
Lemma 2.9 it defines a morphism:

YA : Fﬂ'l(_) = ®ij(_) - ®(®FO¢1](_)) = ®(®FO¢L; (_)) - ®qu(—) = Fﬂ'z(_)'

.....

We call the morphisms defined in this way “standard morphisms”.

Lemma 2.12 (Totaro [Tot97], Krause [Kral4]). Let m; and m be in Par,. The set of standard
morphisms of Definition 2.11 forms a basis for the K-module

HomPolFunn (Fﬂ'l (_)? F‘ﬂ'z (_))

2.2 Cohomological H Par,-Mackey functors and strict polynomial func-
tors

In what follows we prove the equivalence between Mac®" (# Par,) and PolFun,,.
We recall the notion of coend.

Definition 2.13. Let € be a small category enriched over Modg (see [Kel05]). Let F : € x
€¢°? — Modg be a Modg-enriched functor (a K-linear functor in the terminology used in the
previous sections). A extranatural transformation g : F — x with x € Modg, is a collection
{gc: F(c,c) — x}eee of morphisms in Modg, such that the following diagram commutes:

F(¢,d) ® Home (¢, d) —— F(c,c)

! |

F(dd) —— > z.

ce¢
A coend of F is an object [ F(c,c) in Modg with a extranatural transformation f : F —
ceC
[ F(c,c) such that any extranatural transformation g: F — x factorizes uniquely through f.

A coend of F is equivalent to a coequalizer of the form.:

ce€
P F(c,d) ® Home(c,d) 3 @ F(e,c) - [ F(c,c),

c,deC c
see [Kel05] for more details on this definition.

Definition 2.14 (The functor ev,). Let M, be a cohomological HPar,-Mackey functor. It
defines a functor:
M, (=) : Modg — Modg

wePar,

Vs f M, (7) ® T (V),



where we use that the mapping m v T (V) gives a covariant functor T_(V') : HPar, — Modg
and we compose this functor with the anti-isomorphism HPar;? — HPar, of Definition 1.4 to
form the contravariant functor T_(V') : HPar,? - Modk of this coend formula.

This mapping is functorial in M, we then have:

evy, : Mac®" (H Par,) — Fun(Modxk, Modk)
M, — ev, (M) (-).

Proposition 2.15. Let M,, be a cohomological HPar,-Mackey functor. We have that ev,,(M,,)
extends canonically to a strict polynomial functor of degree n.

weH Par,
Proof: We have ev,,(M,) = [ M,(7)®T;(-). If V and W are two objects in ', Modg

then the morphism I'7 (V) ® Homr, mody (V, W) — I'z (W) induces a morphism:
weH Par,

( f Mn(w)®FW(V))®HompnModK(V,W)—>an(w)@»F,T(W).

O

Corollary 2.16. The functor ev, : Mac®" (H Par,) — Fun(Modx, Modg) extends to a functor

PolFun,

evn ,/’?
PP Uy

Mac®" (H Pary,) —o—~ Fun(Mody, Modg).
Proposition 2.17. Let m; and 7o be partitions of n. We have a natural isomorphism:

HomPolFunn (Fﬂ'1 (_)7 Fﬂ'z (_)) = HomHParn (771 » 7T2)~

Proof: We have to check that 2.9 is compatible with composition. This follows by Proposition
1.7 and the observation that a “standard morphism” is the composition of a permutation with
ger \Sn /7T2 , a restriction to 7 N7y and an induction to . O

As a direct consequence we have the following theorem.

Theorem 2.18. The functor ev, : MaCCOh(’HParn) — PolFun,, induces an equivalence between
the category of cohomological HPar,-Mackey functors, and the category of strict polynomial
functors of degree n.

Proof: The theorem follows applying Yoneda’s Lemma, Proposition 2.8 and Lemma 2.17.
We define explicitly an inverse of ev by using Yoneda’s Lemma. Let P be a strict polynomial
functor of degree n. We define the cohomological H Par,-Mackey functor:

P(?T) = HOmPolFunn (Fﬂ'(_)’ P)

Let w1, and w5 be in Par, such that m; < 7o, and o € Par,. We recall that by Lemma 2.17 we
have a natural isomorphism Hom poirun,, (I'r, (=), Ty (<)) 2 K7, \ Sy /7r2 ]. We define the mor-
phisms P(Homy p,, (71,72)) by precomposition with Hompojpun, (I'r, (=), Tay(=)). Using the
isomorphism H Par;? — HPar, we deduce that the relations of cohomological H Par,-Mackey
functors are satisfied. O

3 The category Mod}

The aim of this section is to define the category of M-modules, denoted by Mod}, and to
introduce the two monoidal structures (Mod},®, K) and (Mod}¥,o,T).



3.1 M-modules
We introduce the concept of M-module. It generalizes the definition of S-module (see Appendix

?7).

Definition 3.1 (M-module). An M-module M is a sequence { My, }nen of cohomological HPar,-
Mackey functors. A morphism between two M-modules {M,, }nen and { Ny }nen is a sequence of
natural transformations {fn : My, — Ny nen. Their category is denoted by Modﬂkg.

We introduce some special classes of M-modules.

Definition 3.2 (The I'(M) and S(M) M-modules). Let M be a S-module (see Appendiz ?7?).
We set T, (M) (=) = H°(-, M (n)) and we consider the M-module T'(M) defined by the collection
of these cohomological Mackey functors. We also set S,(M)(-) = Ho(—,M(n)) and consider
the M-module S(M) defined by the collection of these cohomological Mackey functors. Remark
that H*(—, M (n)) and Hy (-, M(n)) are M-module for all k.

Definition 3.3 (The trace map). Let M be a S-module (see Appendiz ?77). There exists a
natural morphism of M-modules trp; : S(M) — T'(M) called trace map defined by: for any
neN and any m € Par, we set trpr(mw) : Sy (M)(7w) > T (M)(7) as [2] = Yoer o2

3.2 The monoidal structures x and O

We introduce the two monoidal structures (8, Mod™, K) and (o, Mod}, T).
We recall some properties of coends.

Lemma 3.4 (Fubini Theorem for coends). Let A and B be small categories and F : (A x B)°P x
(A x B) — Modk be a functor. We have, if the coend exists:

(A,B)eAxB AeA BeB BeB Ac A

f F(A,B,A,B);/ fF(A,B,A,B)gf fF(A,B,A,B).

Lemma 3.5 (coYoneda Lemma for coends). Let A be a small category enriched over Modg and
F: A— Modgk be a functor. We have:
AeA
F(-) f Hom4(A, -) ® F(A).
Proof: For more details and proofs see [Kel05, Sec. 3.10]. O

We introduce the two monoidal structures on Modi\éﬂ. They correspond to tensor product and
composition.

Definition 3.6 (The product ®). Let M and N be two M-modules. We set:

T xmeeH Par;xHPar;

(M&N) (1) = @ [ (M(m1) ® N(2)) ® Homy pay., (11 x 2, 7).

i+j=n

for each 7 € Par,, and for all n € N.
The action of HPar,, is given by the action on Homy pe, (71 x 7o, ) inside the coend.

Proposition 3.7. Let K be the following M-module:

K, = K i=0;
0 i#0.

The triple (Mod%, ®,K) forms a symmetric monoidal category.



Proof: Let A, B,C be M-modules. We consider the following isomorphism:

mixmeeH ParixH Par;

(A8(BaO)() = @ f A(m) ® (BE C)(m2) ® Hompy,, (11 x T, 7)
T1XTo p1xp2eH ParsxHPary
o f Am)e (@ f B(p1) ® C(ps)®

Homy par, (p1 * p2,m2)) ® Homy par, (71 x mo, )

TLXT2XP1XP2

) f A(my) ® B(p1) ® C(p2) ® Homy par; (p1 % p2,m2)®

1+s+t=n

112

Homy par,, (71 X 72, 7)
T1XP1XP2

&) [ A(m1) ® B(p1) ® C(p2) ® Homy par, (m1 % p1 X p2,m),

i+s+t=n

112

where we first expand the tensor product and then we use the isomorphisms given by Lemma
3.4 and by Lemma 3.5.

We get the same formula for ((Ax B)®&C)(7) hence we have AR (BrC) 2 (A B)=C. For
the unit 74 : A®K — A morphism we consider the following isomorphism:

Ty xmeeH Par;xHPar;

ARK =@ f A(m) ® K(72) ® Hompyy., (1, % 12, 7)
i+]
mi1e€H Par,
- [ A(m) ® K® Homp,,, (1, 7) = A(r),

where we use the isomorphism of Lemma 3.5.
For the symmetry isomorphism 84 5: AR B - BR A we consider the following isomorphism:

myxmeeH Par;xH Par;

(A= B)(r)= @ f A(m) ® B(ms) ® Hompy,, (1 x 12, 7)
1+j=n
moxmi€H ParjxH Par;
@ f B(m) ® A(m1) ® Hompay, (1 x 71, 7) = (A® B) (7).

1+j=n

Definition 3.8 (The product O). Let M and N be two M-modules we set:

peH Par,

MBN)(m) =@ [ M(p)e N (m)).
reN

for all w € Par,,, where we use that N®*" () forms a K[S,]-module by the symmetry of the tensor
product ® and again we consider the contravariant functor (N®"(w))”) induced by the duality
isomorphism HPar,? — HPar,,.

Let T be the following M-module:

The proof that the triple (Mod%,l:l,]l) forms a monoidal category is postponed to Theorem
4.28.
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4 The equivalence between strict analytic functors and M-
modules

In this section we recall the definition of AnFun, the category of strict analytic functors. We
prove that the equivalence of Theorem 2.18 extends to a monoidal equivalence between Mod%JI
and AnFun.

4.1 Strict analytic functors

We recall the definition of strict analytic functors and we introduce two monoidal structures.

Definition 4.1 (Strict analytic functor). A strict analytic functor is a collection {F,}neny where
F, is a strict polynomial functor of degree n. Let {Fp}neny and {Gplnen be strict analytic
functors. A morphism of strict analytic functors is a collection {fn} : {Fp}nen = {Gn }nen where
fn is a morphism of strict polynomial functors. We denote the category of strict analytic functors
by AnFun. We accordingly have AnFun =[],y PolFun,,.

Definition 4.2 (The functor U). We define the functor U : AnFun - Fun(Modg, Modg). Let
F = {F,}nen be a strict analytic functor we set UF = @, enUF,,. This functor U : AnFun —
Fun(Modg, Modx) is faithful, because this is clearly the case for each functor U, : PolFun, —
Fun(Modg, Modx) in Definition 2.4.

The category AnFun is equipped with two monoidal structures (AnFun, ®, K) and (AnFun, o, 1d).

Definition 4.3 (The product ®). Let F = {F, }neny and {Gy }nen be strict analytic functors we

set:
(FeG(-)= D F(-)eG;(-).

+j=n

Let F = {Fp}nen, {Gn}nen, A = {An}tnen, and B = {By}neny be strict analytic functors and
{futnen 1 F = A, {gn}nen : G = B be strict analytic functor morphisms we set:

{f®g}n: Z fi®gj'

i+j=n

Definition 4.4 (The strict analytic functor K). We define the strict analytic functor K = {K,, :
', Modg — Modg fnen such that Ko : To Modg — Modg is the constant functor V.~ K, and
K, : ', Modg = Modk is the constant functor V — 0 when n # 0.

Proposition 4.5. The triple (AnFun, ®,K) forms a symmetric monoidal category. In particu-
lar, for F and G strict analytic functors the collection F @ G = {(F ® G)y, }nen 1s canonically a
strict analytic functor. We moreover have a natural isomorphism U(F © G) 2U(F)  U(G).

Proof: We show that (F ® G),(-) is a strict polynomial functor of degree n using the
characterization of Proposition 2.6. We have:

Fa(X) e (FOG),(Y)= @ Tu(X)e (V)G (Y)Y @ s, (X)oF(Y)0G(Y) 2

i+jen i+j=n
@ Fl(X)®E(Y)®FJ(X)®GJ(Y)—> @ Fl(X®Y)®GJ(X®Y),
i+j=n i+j=n

where the morphism (*) is given by the restriction map I',,(X) = T, (X) - Tgxs,(X) =
I's,(X) ®I's,(X). The unit and the associativity property of this action of I, (X) on (F ® G),
follows from the commutativity of the following diagrams:

I'n(K) —— @i Ti(K) ® T (K)

| |

K — > K,
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and
LX) @Ln(Y) — @ivjen Ni(X) @Tj(X) @I(Y) @ T;(Y)

| |

I (X®Y) ——— @i Li(X8Y) 0T, (X ®Y).

The relation U(F @ G) 2U(F) @ U(G) follows from the distributivity of tensor product with
respect to direct sums.
There are evident isomorphisms:

(K‘X’F)n(_) = Fn(_) = (F‘X’K)n(_)v

and
(AeB)eC)u(-)z D Ai(-)eBj(-)eCi(-)= (A8 (BeC)).(-),
i+j+k=n
the compatibility of these isomorphisms with polynomial structures follows from the unit, asso-
ciativity and symmetry of the restriction maps used in our definition. O

We recall some relations between polynomial functors, in the sense of Eilenberg-MacLane
(see [EML54]), and strict polynomial functors.

Definition 4.6 (Cross-effect). Let F : Modg — Modxk be a functor. We set
Ao(F) = F(0).

Let n be a non-negative integer. We define the nth cross-effect A, (F) : Modg™" — Modg
by:
A (FY(Vi,..., V) =Ker(F(V1@...0V,)) —@PFVie...000...0V,)).
i=1
Proposition 4.7. Let F be an endofunctor of the category Modg. We have the following
canonical decomposition:

n

FVie..oV,) =@ @ AF)Vi,....Vi).

r=11<11<...<1.<n

Proof: We refer to [EML54] for a proof of the statement. O

Definition 4.8 (Homogeneous cross-effect). We assume that w; : Vi@---@Vy, — Vi@---@V is the
endomorphism of V1 @---® Vs induced by the projection on the summand V;. For ay+...+as=n
we consider the following elements of T'p,(Hompoa, (Vi @ - @ Vi, Vi @ - @ V})):

Yo (1) - - Ya, (75) = Z J*(W?al‘g"'@w?%)a
Sp

oe Sary xxSag

where the notation vy, refers to the fact that T'(=) represents the free divided power algebra. In

this expression, we use the action of a set of representative of the class o € % in the
g s
®a;

2% in the tensor product (w7, ..., 7). We

group of permutation S,, to shuffle the factors ™
equivalently have:
7a1(771)-~-'7a5(7T5): Z Ty ® - ® T4, ,
{ir=i}l=a;
where the sum runs over the set of n-tuples (i1, ...,i,) with a; terms such that iy =i for each i.
The addition formula for divided powers (see Definition A.37) implies that we have the iden-
tity:

Yn(Id) =y (1 + -+ 75) = Z Yar (71)Ya, (7s),

ap+tog=n
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in T (Hompypoa, (Vi @ - @ Vs, Vi @ - @ V5)). From the relation

(7, @ - @mi,) o (m), ®---®m;,)

Ty @ @ T, if(ila"win):(jla-“vjn)v

=(m, 75, @@ i )=
(i, 51 i) {0, otherwise,

in Hom(Vi@ @V, Vi@ - & V,)®", we also deduce that:

('7041(”1) < Ve (775)) © (’Yﬁl (771) - VBs (Ws))
:{wl(wl)..%s(ws), if (a1, an) = (Br,o B,

0, otherwise,

we also deduce that these elements (Yo, (m1)...Ya.(7s)) forms a complete set of orthogonal
idempotents in Tp(Hom(Vi @ ---@ Vs, Vi @---@ Vy)). We refer to [Boub67] for this result.

Let F be a strict polynomial functor of degree n. We define the homogeneous cross-effect of
degrees (aq,...,as) of F as follows:

FOv0d (Vi V) = Im(F (Yay (71) -+ e, (7))

Proposition 4.9. Let F be a strict polynomial functor of degree n. We have the following
canonical decomposition of the nth cross-effect:

AJUF)) (V... V)= @ Flv—o) . V).
a1+a.A-;((>)cs:n

Proof: We refer to [Bou67] for this statement. O

Remark 4.10. Let F': Modg — Modxk be a functor. We say that F' is polynomial, in the sense
of Eilenberg-MacLane [EML5/], of degree lower or equal to n if Ay (F) =0. We say that F is
of degree n if it is of degree lower or equal to n and A, #0.

Let F be a strict polynomial functors of degree n. The functor U(F') : Modg — Modk is a
polynomial functor, in the sense of Eilenberg-MacLane [EML5/], of degree lower or equal to n.
The statement is an obvious consequence of the formula of Proposition 4.9 when n > s.

On the other hand the functor U : PolFun, — Fun(Modg,Modk) does not preserve the
polynomial degree. In general if F is a strict polynomial functor of degree n then U(F) is a
polynomial functor of degree m where m < n.

In what follows, we mainly use the following variation on the results of Proposition 4.7 and
Proposition 4.9:

Proposition 4.11 (Bousfield [Bou67]). Let F be a strict polynomial functor of degree n. We
have the isomorphism:

FVie-—-eV,)= @ FOer-)(, .. V),
arseT

where the sum runs over all s-tuples of non-negative integers c; € N such that ap +++++ ag = n.

Proof: The proof follows directly from the decomposition of v, (Id) in orthogonal idempo-
tents as in Definition 4.8. O

Proposition 4.12. Let F' be a strict polynomial functor of degree n.

1. If a; =0 for some i, then we have

Flon i) (oY) = Pl T (T V),
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2. if we assume V; = 69?;1 V! for each i, then we have

F(a17---7ai7---,as)(vl7 Vi, Vs)
= @ F(ﬁir“vﬁfl7---a5i7---75§s)(‘/117...7V1k1,...
B
Zj ﬁi:az
3 TR (X, X)) = Tay (X1) ® - ® T, (Xn).

Proof: The first relation is trivial. The second relation follows from decomposition rules for
divided power operations:

’Y(!z(ﬂ—l) :r}/ai(ﬂ-il-"”'-{—ﬂ—i ): Z ’)/511(7'(‘11)’}/18k1(7'rl )7

y
Bl+-+B; =,

with the obvious notation for the projectors associated to the direct sum V; = 69?’_;1 Vl-j . To get
the third relation, we use the isomorphism:

in*

(X;0-0X,)2 P X, 00X

The action of a permutation o € S,, on the tensor power maps the term X;, ® ---® X, associated

to (i1,...,%n) to the term Xi,oy ®+®X; . in this sum. We then have the relation:
im(Ln (Yo, (1) 7a, (75))) = ( @ Xi, ®-®X;, )Sn,
[{ir=i}l=c;
from which the requested identity follows. O

Lemma 4.13. Let F be a strict polynomial functor. We have a natural morphism:
Lo, (X1)®...0T,, (X,) @ Flera)(y, | Y,)— Flera) (X, 0Y,,...,X, 0Y,).

This pairing verifies an evident generalization of unit relation of 2.6 when we suppose X; = K
for some i as well as an evident generalization of associativity relation of Proposition 2.6 when
we compose our pairing to get an operation of the form:

(Toy (X1) @+ @ T, (X)) ® (Tay (V1) ® - @ T, (V) ® 1) (Zy,..., Z,)
> Flven) (X Y0 Z,..., X, Y, ®Z,)

Proof: The morphism is deduced from the following commutative diagram:

r(X;e..eX, )9 F(h1®...0Y,) %F(&@}ﬁ@...&@n)

Fn(’Yal(7T1)»--’Yar(7fr))®F(’Ya1(ﬂl)»--var(ﬂr))l J/F('chl(ﬂl)w-’)/a,—(ﬂ-r))
o (X1)®...0T, (X,)® Flevar) (Y Y,) ———-3 Flenar)(X,0Y1,...,X,.0Y,),

where (*) is yielded by the morphism of Proposition 2.6 and the projection morphism
X0 X)e(V1e0Y,)> X910 X, 0Y,.

We apply the idempotent construction of Definition 4.8 to F(X;&---® X,.), F(Y18---@Y,), and
F(X;9Yi @ --@ X, ®Y,) to get the vertical morphisms of this diagram. We actually consider
the corestriction of these idempotent morphisms to their image in our diagram. We check that
these idempotents commute with the horizontal morphism (*) to establish the existence of the
dotted map of our diagram. We deduce this statement from the associativity of Proposition
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2.6. To be more precise if weset X' =X=X; 00X, andY' =Y =Y; ®---®Y,, then this
associativity property implies that we have a commutative diagram:

T (Hom(X, X")) ® Tn(X) ® Tn(Hom(Y,Y")) ® F(Y) —= T, (X') ® F(Y") .

|

I'h(Hom(X, XY@ Hom(Y,Y'))® F(X®Y)

|

F(Hom(XeY,X'9Y")® F(X®Y)

F(X'®Y")

We take the morphisms induced by the projection of X @Y = (@; X;) ® (@, Y;) onto @, X; ®Y;
to prolong the vertical morphism of this diagram. We then get a commutative diagram

Ip(Hompyoa (X @Y, X' @Y )@ F(X®Y) ———— F(X'®Y')

! |

Iy (Homypoa, (@; X ©Y;, @, X/ 0Y/)) o F(B, X;9Y;) — F(P,; X/ eY/)

We just take v, (71) Yo, (7r) € T (Hompoa, (X, X)) and vo, (1) Y, (7r) € Ty, (Homppoa, (Y, Y))
to check our assertion.

The associativity of the pairing for F(®1+%r) comes from the associativity of the pairing for
F with the direct sum inside. O

We use the observation of the previous proposition to give a sense to homogeneous cross-
effects over a countable sequence of variables:

Definition 4.14. Let F be a strict polynomial functor of degree n. Let X = (Xo,...,X;,...) be
a collection of modules X; € Modg. Let a = (o, ...,an,...) denote a sequence of non-negative
integers a; € N such that a; = 0 for all but a finite number of indices i and Y, ; = n. Let
i1 <--- <1, be the collection of these indices i =iy such that c; >0. We set:

FE(X) = Fl2n) (X X)),
We then have the following generalization of the result of Proposition 4.11:

Proposition 4.15. Let F be a strict polynomial functor of degree n. Let X = (Xo,...,X;,...)
be a collection of modules X; € Modyx . We have the isomorphism:

F(Xoo-—0X;0...)=P FY(X),

where the sum runs over all the sequences of non-negative integers a = (ag,...,q;,...) which
satisfy the constraints of the previous definition.

Proof: The statement follows from the fact that F' commutes with the filtered colimits (see
Definition 2.4) O

Definition 4.16. Let (aq,...,as) be any collection of non-negative integers a; > 0. Let n =
ay +---+as. For an analytic functor F = (Fy)nen, we set Flaas) — F,Eal""’a‘”‘), where we
consider the homogeneous cross effect of the component of F of degree n = a1 + -+ as. Let
a=(ag,...,q;,...) be any sequence of non-negative integers such that c; =0 for all but a finite
number of indices i > 0. Let n =¥, ;. We also set F® = Fy-, where we use the construction of
Definition 4.14 for the component of F of degree n = Y, a;. The formulas of Proposition 4.11
and of Proposition 4.15 have an obvious generalization for analytic functors (we just forget about
the constraints ¥, ; = n in this case).
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Proposition 4.17. Let F = {F,}neny and G = {Gy}nen be two strict analytic functors. The
composition functor UF oUG : Modg —> Modg has a natural structure of strict analytic functor
such that:

(FoG)n= @ P L) (G Gy).

; 0<i1<...<1¢
I<t<s oy +itay, =s

11+ i oy =N

Proof: Proposition 4.15 implies that the functor U(F') o U(G)(X) is given by the sum of
the expression of the statement. The structure is given by the composition of the following
morphisms:

Lo (X)® F (G (Y),..., Gy (V)
(1)

)1
B (0, (X0) © Gy (V), 0, Ty (X) © Gy, (Y))
(3)1
Flr(@ (X eY),...,Gi (X eY)),

To define our map (1), we use that any composite I'y(T';(X)) is identified with the submodule
of X®* spanned by the tensors which are invariant under a certain subgroup of Sj;, denoted
by Sk ¢S, and which is classically called the wreath product in the literature. We then have
Loy (Ti, (X)) ® - @ Ty, (T, (X)) = (X®7)SartSi 525 - and morphism (1) is given by the

obvious embedding T',, (X) = (X )% o (X ®")5a1t5ix%5a, 25 The morphism (2) is the mor-
phism of Lemma 4.13, and the morphism (3) is induced by the morphism of Proposition 2.6. [

Definition 4.18 (The product o). We define the product o on AnFun by the construction of
Proposition 4.17. It is compatible with the usual composition of functors in the sense that the
following diagram commutes:

AnFun x AnFun ° s AnFun

] |«

Fun(Modg, Modk ) x Fun(Modg, Modg) —— Fun(Modg, Modk).

Lemma 4.19. Let F, G be analytic functors. We use the short notation X = (X1, ..., X,) for any
r-tuple of K-modules X;. We also use the short notation b for any collection b = (by,...,b,.) e N”
and we set T'p(X) = ®;_1 'y, (X;) for short. We equip the set of collections N" with a total
ordering and we fix ¢ = (¢1,...,¢.) € N".

1. We have:
(FoG)ere)(X) = s F(‘“"“"”)(Ggl(g),...,GE(X)),
bl <!
(l_7;>0
i aibi=c;(Vj)
where the sum Tuns over all sequences (ai,...,a;), I >0, of positive integers a; > 0, and
over all ordered sequences of collections bl <+ < b such that we have Y.iaibl = ¢;, for all
jed{l,...,r}.
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2. For this object (FoG)<(-), the pairing of Lemma 4.13 is given by a composite of the form:

L(X)8(F o G)(Y) »
B T p(X) @ @T,, (T (X)) e Fera) (Gt (Y),...,GY (Y))

Q1<---<Ql
a,_i>0
z'i aib;:cj(Vj)
@ Fee ) ed (), Ty(X) e e (1)
Q1<---<Ql - )
a;>0

Zi aib;=c_7‘(vj)

. @ F(al,..A,az)(GQI(X®X)7...,Gél(K@)X))a

bl <ol
a;>0
X aiby=c; (Vi)

where we use the notation Y = (Y1,...,Y;) for another r-tuple of variables, and we set
XY =(X10Y1,...,X,.®Y,). In this composite, the first morphism is given term-wise by
a canonical inclusion To(X) &> T, (T (X)) @ 0T, (T (X)), and the next morphisms
are given by the pairing of Lemma 4.13 for the functors F' and G.

Proof: We have by definition:

(FoG)p(X1@@X,)= @ FO2(GQ, (X;++X,),...,Gn (X1 +-+X,)).

n1<-<ng
a;>0 (Vi)
> nia;=n

Let mi: Xqj@---@ X, > X1 ®---® X, be the morphism given by the projection onto the summand
X; in the sum X = X; @---@ X,.. For any collection b = (b1,...,b.), we set v (x) = [Ti=; Vo, (73)
for short.

We use the expansion

Gni (Xl +'“+XT) = @ 0(51’767)(X)

Bi++Br=n;

of Proposition 4.13. We adopt the short notation 12 = vg(x) for the morphism which induces

the projection onto the summand GE(K) in this sum, where we still write 8 = (f1,...,05;) for
short. We also use the notation |3| = 81 +--- + 3, for any collection 8 = (f31,...,43,) in what
follows. N N

We aim to determine the image of the element 7.(7) € I',(X) under the morphism A :
I(X) > To, (T, (X)) ® - ®T,, (', (X)) which we use in the construction of Proposition
4.17. We explicitly get:

1,1 1,kq 7,1 rk
A(ve(m)) = > Yar (I8 )-.-vafl(Hb )@ @y, (T )-~-VG;Z(H§ D (%)
Q""1<~~<Q7"'ki
s.t. b |=n; (Vi,5) el (T, (X)) elo, (Tn, (X))
a},...,afi>0

1 k; .
s.t.a;+ta;t=a; (V1)
g ajby?=cs (Vs)

: _ i I's Zl,...,afi>0,kizl,izl,...,r,and
over sequences b"! < .- < b"* of collections b™7 = (b17,... b%7) which satisfy the constraints

given in our expression. We put off the verification of this identity until the end of this proof.

where the sum runs over collections of positive integers a
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We deduce from this result that we have an identity:

(Foa)re)(X)= P

n1<--<ng bi’1<---<bi’ki

ai>0(\7’i) T L

Siaien st b =n (Vi)
a} ..... afi>0

1, Ky )
5.t a;+-+a; t=ay (Vi)
i albhI=cs (Vs)

J Ti7s

Fai,.‘.,afl,...,all,‘..,afl (Gblwl (K)a ceey Gbl‘kl (K)v ceey Gblwl (K)? ceey Gbllkl (X)))v

and we use a straightforward re-indexing of the direct sum which we get in this formula to get
the decomposition of the lemma.

The second assertion of the lemma follows from a straightforward expansion of the def-
inition of our pairing in Proposition 4.12 for objects of the form F(®1-e)(G, (X + .- +
X))y, Gpy(X1 +---+ X,)) and from the expansion of our pairing for the objects G&(X) in
Lemma 4.13. We also use that these constructions are compatible with the isomorphisms of
Proposition 4.12 which we use to get the expansion of the first assertion of this lemma.

We now explain the proof of Formula (#). We argue as follows. We use a scalar extension
K[t1,...,t.] ®& —, where (t1,...,t.) denote formal variables and we work in K[ty,...,t.] ®k
Iy (Hommoa, (X, X)) = Ty (K[t1, . .., t,] ®k Homyod, (X, X)). We have the formula v, (t171 +
oA T ) = Yoy teemy=n Yy (1)« o Y, ()87 87 by properties of divided powers (see Def-
inition A.37). We can accordingly identify 7.(xw) with the coefficient of t¢ = ¢]* ...t in the
expansion of 7, (t1m + -+ + t,m.). We use that for an element of this form ~,(¢), where
6 = tim + -+ tymy, we have the formula A(7,(6)) = Yay (0, (6)) ® -+ ® Yo, (0, (6)) in
To,(Th, (X)) ®--®T,, (I'y, (X)). The terms of Formula (%) correspond to the coefficients
of the monomial ¢{* ...¢Z" when we use the properties of the divided powers to expand the fac-
t0rS Yo, (Y, (@) = Yo, (Y, (t1771 + -+ - + t,7,)) in this tensor product. O

Lemma 4.20. Let F be an analytic functor. We have an isomorphism Ido '~ F ~ F o Id in
the category of analytic functors which realizes the obvious identity Id U (F) =U(F) =U(F)old
in the category of ordinary functors.

Let A, B,C be analytic functors. We have an isomorphism (Ao B)oC ~ Ao (BoC) in
the category of analytic functors which realizes the obvious identity (U(A) o U(B)) o U(C) =
U(A) o (U(B) oU(C)) in the category of ordinary functors.

Proof: The verification of the unit relation is easy and we focus on the proof of the associa-
tivity relation.

We use the following conventions in this proof. We set F(X) = (Fo(X),...,Fn(X),...) for
the sequence of modules F,,(X) which we obtain by taking the image of a module X under the
components of an analytic functor F,, € AnPol,,. For a sequence a = (v, ..., Qy,...) such that
a; =0 for all but a finite number of indices 4, we also set w(a) = Y; ic;.

We have a straightforward generalization of the result of the previous lemma in the case
where X is a countable sequence of modules X = (Xg,...,X,,...). We then assume that the
set of sequences b = (bg,...,b;,...) such that b; = 0 for all but a finite number of indices i is
equipped with a total ordering such that b' < b* if we have ¥, b} < ¥, b2. We get:

(AoB)(X)= @  Alr—a)(BY(X),...,BY (X)),

[
a;>0
i aibl=c; (Vj5)

where the sum runs over all sequences (aq,...,q;), [ >0, of positive integers a; > 0, and over all
ordered sequences of collections Ql <-ee < Ql such that we have }; a;0} = ¢;, for all je{l,...,7}.
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We use this identity to determine the expansion of (Ao B) o C. We explicitly have:

”t@(’)i (Ao B)%(C(X))
@ Al (B (C(X)),..., BY(C(X))).

bl<ocb!
H.1‘>_0
%, aiblj=n

(Ao B)oC)n(X)

We also get that the pairing ', (X) ® (Ao B) o C)n(Y) = ((Ao B) o C)p(X ® Y) which we
associate to the composite functor ((A o B) o () is carried to the direct sum of the morphisms

o (X)@AC) (BY (C(Y),..., BY (C(Y))) » A@r=a)(BY (C(X®Y)),..., BY (C(X8Y)))

which we obtain by using the operation of the previous lemma for the composite A o B, and by
using the pairing (xy : T;(X)® C;(Y) - C;(X ®Y") associated to each functor C;(-) inside the
functors BY .

We have on the other hand:

(Ao (BoC))n(X) = D A2 (Bo 0)y, (X),..., (BoC)pn (X)).

ny<--<Ngy
Qty...,00>0
any+e+orne=n
r>0

We then use the expression of each (Bo(C),,(X) as a direct sum of cross-effects in Proposition
4.17, and the result of Proposition 4.12 to get the identity:

(Ao (BoC))n(X) = S ( S
aran S0 \by<shy! <sbl <<y
aing +"'+84rnr:” w(@j):nl (Vj)

r2
al>0,%; al=a;

We use a straightforward re-indexing operation in this sum to retrieve the expression of ((AoB)o
C)n(X). We can also check by using the correspondence of Lemma 4.13 and of Proposition 4.17
inside each input of the functor A(®1++%)(~ . ) that the pairing T',,(X)®(Ao(BoC)),(Y) -
(Ao (Bo(C)),(X ®Y) which we obtain for this expression of the composite (Ao (Bo()),(X)
agrees with the pairing which we obtain for the composite ((Ao B)o C),(X).

We conclude that we have an isomorphism of strict polynomial functor ((A o B) o C), =~
(Ao (Bo(C)),, for each ne N.

Proposition 4.21. The triple (AnFun,o,1d) forms a monoidal category.

Proof: This statement follows from the result of the previous lemma. Let us simply men-
tion that our structure isomorphisms fulfil the coherence constraints of monoidal categories
since we observe that these isomorphisms correspond to the obvious unit and associativity iden-
tities of the composition in the category of functors and because the functor U : AnFun —
Fun(Modgk, Modg) is faithful. O

4.2 The functor ev

We introduce the equivalence of categories ev : ModﬂkgI — AnFun which extends the functor
evy, : Mac®" (# Par,,) - Pol Fun,, of Definition 2.14. We prove that ev is strongly monoidal; i.e.
it reflects the two monoidal structures on Mod! into the tensor product and the composition of
functors.
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Definition 4.22 (The functor ev). Let M be an M-module, it defines a strict analytic functor

weH Par,

{eonM) W= [ Ma(m) @ T (V)} e
The mapping ev is functorial in M, so it defines a functor:
ev : Mod}y — AnFun,

M~ {evn(M)(_)}neN-

Since ev,, is an equivalence of categories for any n € N, we have that ev is an equivalence of
categories as well.

We devote the rest of this section to the study of the image of monoidal structures under the
functor ev. We establish a series of intermediate lemmas before formulating our main theorem.

Lemma 4.23. We have a natural isomorphism
ev(M&rN) - ev(M) ® ev(N)

for any pair M, N ¢ Mod%, where we consider the functor ev(M ® N) € AnFun associated to
M®&N on the left hand side, the pointwise tensor product of the analytic functors ev(M),ev(N) €
AnFun such as in Definition 4.3 on the right hand side.

Proof: We prove that there exists a natural isomorphism ev(M & N) — ev(M) ® ev(N). It
follows from a sequence of natural isomorphims given by I'z, xr, (V) 2 Try (V) @ sy (V), Lemma
3.4, and Lemma 3.5. More precisely:

ev(Mr N)(V)
weH Par, m1xm2eH Par;xH Par;
-2 | / (M(m1) ® N (r3)) ® Homy par,, (w1 72, 7) ® D (V)
n i+j=n
T1XT2

@ @ [ (M) oNm) o [ Hompa, (11 xm2,m) @ T(V)

T X2

=@ [ (M(m)®N(m)) 8 Tr (V)8 Tr (V)

= (@ [ M(m)eTr (V) © (@ [ N(m) 9 Tna(V)),

where we use the isomorphisms given by Lemma 3.4 and by Lemma 3.5.
The isomorphism commute with the action of I'y, (X)) on ev, (M & N)(Y). This claim follows
from the commutativity of the following diagram:

weHPar, T
Fn(X)® / Homq.[parn(mxmﬂr)@l"ﬁ(Y) —_— fHOHl'Hparn(Wl><7T277T)®F7‘—(X®Y)

1

r,(X)el', (V)T (Y)

!

FI(X) ® FJ(X) ® Fﬂ'l (Y) ® F7T2 (Y) ” I‘l7r1 (X ® Y) ® F7T2 (X ® Y)a

|13

where ¢ + j = n, m € Par;, ma € Par;j and the morphism I',,(X) - I';(X) ® I'; (X)) is given by the
restriction from S,, to S; xS;. (We then use that the Fubini isomorphism of Lemma 3.4 is given
by the canonical morphism from the object Ty, sz, (V) = Id, xry @y xrrp (V) € Homyy par,, (1 %
o, M Xm2) @', (V') into the coend and that T, (X) acts on I'z wmy (=) = Ty (=) ® T, (=) through
the diagonal morphism I',,(X) - I';(X) ® I';(X).) O
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Lemma 4.24. The isomorphisms of Lemma 4.28 make the unit, associativity, and symmetry
isomorphisms of the symmetric monoidal category of M-modules, such as defined in Proposition
3.7, correspond to the unit, associativity and symmetry isomorphisms of the symmetric monoidal
category of analytic functors such as defined in Proposition 4.5.

Proof: The proof of this lemma follows from straightforward verifications. O
We show a similar result for O.

Lemma 4.25. Let M be an M-module. We have interchange formula:
evn ((N®1)") = (evn (N®"))”
for every p subgroup of S,.

Proof: Since the functor ev,, is an equivalence of category it is an exact functor and hence
preserves invariants. O

Lemma 4.26. We have a natural isomorphism
ev(MON) zev(M)oev(N),

for every M, N ¢ Mod%ﬂ, where we consider the functor ev(M O N) € AnFun associated to MO N
on the left hand side, the composition product of the analytic functors ev(M),ev(N) € AnFun
such as in Definition 4.18 on the right hand side.

Proof: We have:

weH Par,, peHPar,
Mo =@ [ [ (Mpe T (m))el(V)

;g%fp[ﬂ(M(p)@(NT(ﬂ))”)®1“w(V)
® [ e fomimyrer.m
@ [ Mo vy
%)@fM(p)@(ev(NW)(V))”
g@pr(p)Qb(ev(N)(V)@T)p

=@ [ M(p) o Ty (eo(N)(V)) = co(M)(eo(N)(V)),

where we use the isomorphisms given by Lemma 3.4 and by Lemma 3.5, and the isomorphism
(1) is given by Lemma 4.25.

To check that this isomorphism commutes with the action of T',,(X) we use that the iso-
morphisms inside the coends preserve the natural action of I',,(X) on our objects. In the final
step, we get an action of I',(X) on I',(ev(N)(-)) c ev(N)(-)®" which coincides with the ac-
tion defined in Proposition 4.17 for this composite functor, and the conclusion readily follows. [

Lemma 4.27. The composition product O inherits unit and associativity isomorphisms which
correspond to the unit and associativity isomorphisms of the composition of analytic functors,
such as defined in Definition 4.18. These unit and associativity isomorphisms satisfy the coher-
ence constraints of a monoidal category in Mod% Thus the triple (Mod%, 0,1), where I denotes
the obvious M-module which corresponds to the identity functor, forms a monoidal category.
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Proof: This statement follows from the result of Lemma 4.26 and from the observation that
ev is an equivalence of categories. O

Theorem 4.28. The mapping ev : M — ev(M) defines an equivalence of symmetric monoidal
categories ev : (Mod}, ®,K) - (AnFun,®,K) as well as an equivalence of monoidal categories

ev: (Mod, 0,T) - (AnFun, o,1d).

Proof: The proof follows from Theorem 2.18, Lemma 4.24 and Lemma 4.27. O

Remark 4.29. Let A,B and C be three M-modules. We have an isomorphism:
(AoC)r(Bo(C)z(ArvB)oC
which reflects the formula:
(ev(A) oev(C)) ® (ev(B)oev(C)) = (ev(A) ® ev(B)) o ev(C).

Recall that by Definition 3.2, to a S-module M we can associate the M-modules I'(M) and
S(M). By definition 4.22 we have the strict analytic functors ev(I'(M)) and ev(S(M)). In the
following proposition we identify these strict analytic functors.

Proposition 4.30. Let M = {M,}nen be a S-module (see Appendiz ??). If V is a free K-
module, then we have ev(S(M))(V) = {Sp(M,V)}nen and ev(T(M))(V) 2 {Th(M,V) }nen,
where S, (M,V) = M(n)®s, V" and T,,(M,V) = M(n) & V" (see Appendiz ?7?).

Proof: We first consider the cohomological H Par,,-Mackey functor T(M) = T,,(M) where
T.(M) = M, ® I"". We have that ev,, (T,,(M))(V) = ev, (M, @ I*")(V) = M,, ® V®". The unit
object I is given by I; = K (the constant functor on the category H Par; with object set pt and
Hom-object K) and I; =0 for ¢ # 1. Let 7 € Par,,. We accordingly have

T X XTr€H Par;, x---xHPar;,.

(r)= @ / I(m) ® - ®I(n,) ® Homy par, (71 X -+ X W5, )

i1+ +ip=n

m X xmreH Pary”
- f (1) ® - ® () ® Homy par, (1 X - X 70y, 1)
- K[Sn /]

by the associativity of ® and the definition of Homy pay, (71, m2). We therefore have T,, (M) () =
M, @ K[Sn /],

The mapping S,,(M)(7) — M, ®, K[Sn/;] defined by [m] = [m ® e] where e is the
unit of S, induces an isomorphism S, (M) = M, ®s, K[Sn/x] = (T,(M))s,. The mapping
Lo(M)(7) — M, & K[Sn /] defined by m — Yaes, /= @ (m) ® a induces an isomorphism
Fn(M) = M, ®5" K[Sn /7T] = (Tn(M))Sn'

Since ev,, is an equivalence of categories it preserves invariants and coinvariants. The con-
clusion follows. O

Corollary 4.31. Let M and N be two S-modules (see Appendiz ??). We have
e SIM)rS(N)=S(M®N), and
e '(M)RT'(N)2T'(M&N).
Proof: The statement is a direct consequence of Proposition 4.30, of Proposition A.20 and

of Theorem 4.28. O

Corollary 4.32. Let M and N be two S-modules (see Appendiz 7). We have
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e S(M)oS(N)zS(MaogN), and
e I'(M)oT(N)=T(Mc®N).

Proof: The statement is a direct consequence of Proposition 4.30, of Proposition A.20 and
of Theorem 4.28. O

5 M-Operads and their algebras

In this section we introduce the definition of M-operad. Roughly speaking an M-operad is an
object governing the category of “type of algebras” with polynomial operations with multiple
inputs and one output. Our definition of M-operad is equivalent to the definition of Schur
operads introduced by Ekedahl and Salomonsson in [ES04], [Sal03] and studied by Xantcha in
[Xan10].

5.1 M-Operads
We introduce the definition of M-operads. They are a generalization of operads (see Appendix

7).

Definition 5.1 (M-operad). An M-operad is an M-module P together with two M-module mor-
phisms p: PO P — P and n:1— P such that the following diagrams commute:

Idp Op

PoPoP —— POP
uold pl lu (associativity)
POP ——— P,

Pol 22 pop 224 1op
\ lM/ (unity)
™ ™2
P,

i.e. (P,u,m) is a monoid in the monoidal category (Mod}¥,0,T).
A morphism of M-operad is a morphism of monoid in the monoidal category (Mod%,lj,ﬂ).
We denote the category of M-operad by M-Op.

Proposition 5.2. Let P be a connected operad (see Appendiz ??). The M-modules S(P), I'(P)
and A(P) are M-operads.

Proof: Let p: Pog P — P and 7 : 1 — P be the structure maps of the operad P. We have
two induced morphisms S(u) : S(Pos P) — S(P) and 7 :I — S(P). From Proposition 4.32
we have isomorphisms S(P 0Og P) 2 S(P)0S(P) and T'(Po® P)2T'(P)aT(P). O

Proposition 5.3. Let (P,u,n) be an M-operad. The endofunctor ev(P) endowed with the
morphisms ev(p) and ev(n) is a monad.

Proof: 1t is a consequence of Theorem 4.27. O

Definition 5.4 (P-algebra). Let (P,u,n) be an M-operad. The category of P-algebras is the
category of algebras governed by the monad ev(P). More explicitly, a P-algebra is a pair (V,7),
where V is an object of Modg and ~ : ev(P)(V) — V is a morphism in Modg such that the
following diagrams commute:
ev(P)(ev(P)(V)) —— ev(P)(V)
Ml l’y (associativity)

ev(P)(V) ————V,
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V — ev(P)(V)
l,y (unity)
V.

Ida

5.2 The M-operad Polyy

Let (P, u,n) be an M-operad and V' be a K-module. The set of P-algebra structures over V' is
governed by the set of morphisms of M-operads between P and an M-operad denoted by Polyy .

Lemma 5.5. Let M be an M-module and V be a K-module. We denote by M : HPar?? - Modg
the functor obtained by the composition of M with the isomorphism HPar,? > HPar,. The V-
dual of M is the M-module defined by Homyjoa, (M (-),V') : HPar,, - Modk.

Proof: Tt follows from the linearity of Hompoq, (—, V). O

Definition 5.6 (The M-module Polyy ). Let V' be a K-module. We define the M-module Polyy
to be the V-dual of T_(V), explicitly:

1. let w be an object of HPar,, we set Polyy () := Hompoay, (T'x(V), V),

2. let m and mo be objects in H Par,, such that my is a subgroup of wa, we set Ind7? := (Res]?)*
and Res?? == (Ind7?)*.

Proposition 5.7. Let V be a K-module. The M-module Polyy inherits the structure of an
M-operad.

Proof: We aim to define
(Polyy 0 Polyy )(m) — Polyy (r),
which is equivalent to give a morphism as follows:
(Polyy 0 Polyy )(m) @ T (V) > V.
We have:

(Polyy O Polyy )(m) @ T (V)

peH Par, T1X . XTr€H Pary, - xHPary,.

-@ [ Pow(me( @ / Polyy (x1) ® - ® Polyy ()@

r ni+-+ne=n

Homy pr, (1 % ... 70, w))P) @ T (V)

T X X T

=@ [Poyv(ne( @ [ Poly(m)®-8 Polyy(r,)s

ni+-+n,y=n

Homy pyr, (11 % ... 70, ) @ T (V))?)

P TLX...X
(1)
2@ [ Piywine( & [
r N+ +np=n

I (V) @-T'7 (V))?)

s

Polyy (m1) ® - ® Polyy (7 )®

P peH Par,
Y@ [ Powneve) =@ [ Poy(p)er,) DV

where we first expand the composite, the isomorphism (1) is given by Iz, xeoxr, (V) 2 T, (V) ®-+-®
Iz, (V), and the morphisms (2) and (3) by the maps Polyy (7)®T'z (V) = Hompoa, (T (V),V)®
r.(V)->"V.

Unit and associativity follow from straightforward verifications. O
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Theorem 5.8. Let P be an M-operad and V' be in Modg, the set of P-algebra structures over
V is in bijection with Homy-op (P, Polyy ).

Proof: We define a function between the set of monoids morphisms between P and Polyy
and the set of P-algebra structures of V:

¢ : Hompy_op (P, Polyy ) — {7 : ev(P)(V) — V|y P-Algebra structure}.

Let f: P(-) - Hompoday (I-(V),V) be an M-operad morphism between P and Polyy .

We denote by f*: @, P(r) ® ['x(V) - V the morphism defined by the adjoint of f. We set
weH Pary,
&(f):P(V)= [ P(r)®I'z(V)— V by the universal property of the coend:

@ Pla)oI's(V) — ?P(w)@l}(v)

a—f3

®P(r)ol, (V) ———— P(V) r

f*
v
The Theorem follows from the following sequences of isomorphisms:

weH Par, i

Homytod, (€ [ P(m)oT.(V),V)=® [ Hotmngoa, (P(7) ® Tr(V), V)

iy f Hotmod, (P(), Homytoq, (Tr (V), V).

More precisely an M-operad morphism between P and Polyy is a morphism of M-modules
g: P — Polyy such that the following diagram commutes:

peH Par,.

& [ PP (m)”

Idp Og

» @ P(p) ® (Poly ()"

|

GTBfP(p) ® Hompgoa, (T (V) T,(V))

m lfDIdp

G?[pHOHlMOdK(FP(V), V) ® HomMOdK(FW(V), FP(V))

! |

P(m) > Polyy (m) = Hompody (T2 (V), V).

g

Applying the isomorphism we get the following commutative diagram:

TE ar, peH Par, T P
7 HfP (@ [ P(p)® (P ())& (V) — ?[ @[ P(p) ® Homwioa, (T'#(V),T,(V)) @ (V)

" | |

§fp(7r) ®T, (V) - , @fp(p)wp(x/).

O
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5.3 Examples

We present some examples of categories of algebras governed by M-operads.

We only aim to give an idea of future applications of our constructions in this example section.
We therefore posit the existence of free objects in the category of M-operads, which generalize
the ordinary free operads, without giving further details on the construction of such objects.

Proposition 5.9. Let P be a connected operad. We have that the category of S(P)-algebras is
isomorphic to the category of S(P,-)-algebras, and the category of T'(P)-algebras is isomorphic
to the category of T'(P,-)-algebras (see Appendiz 77 ).

Proof: By Proposition 4.30 S(P) is an M-operad such that ev(S(P)) = S(P,-) and the
structure maps are induced by the structure maps of P. The same argument works for I'(P). O

Example 5.10. A I'(Com)-algebra structure corresponds to a divided power algebra. That is a
triple (V, w, {i }ien) such that (V, p) is a commutative algebra and~y; : V. — V are set-theoretical
functions such that:

Yn(T +y) = i%—i(m)%(y),
vi(Az) = N'yi(z),
94! (x) =,

@@ = (" (@),

T (10(2)) = ().

Let K be a field of positive characteristic p. A T'(Lie)-algebra structure corresponds to a
p-restricted Lie algebra (see [Fre00]) . That is a triple (V,[~,~],~P)) such that (V,[-,~-]) is a
Lie algebra, and -P): V — V is a set-theoretical function such that:

()\w)[p] - )\p(x)[pL

p-1 ..
(2 + )P = 2P 4yl 4 3 M
i=1 ?

ad(zP)) = (ad(x))P),

There are explicit descriptions for T'(Pois)-algebras (see [Fre00]) and for A(PreLie) and
T'(PreLie)-algebras (see the preprint of the author [Ces15]), where Pois is the operad governing
Poisson algebras, and PreLie is the operad governing the category of pre-Lie algebras.

Definition 5.11 (2-restricted Poisson algebra). Let K be a field of characteristic 2. A 2-
restricted Poisson algebra is a triple
(A [-,-]: A9 A— A, (-)*: A— A)

where A is a commutative algebra and (A,[-,-]: A® A — A, (-)21: A — A) is a 2-restricted
Lie algebra structure, such that:

1. [z, yz] = y[z, 2] + [2,y]z, and

2. (zy)¥ = 22 () + 2z, yly + () Hy2

Proposition 5.12. Let K a field of characteristic 2. The M-module S(Com) oT'(Lie) is an
Me-operad, denoted by 2-Pois, which encodes the category of 2-restricted Poisson algebras.

Sketch: For the partition (1)(2) of the set 2 = {1,2} let p € Com((1)(2)) and [-,-] €
Lie((1)(2)) be respectively the generators of the operads Com and Lie. Consider the M-
module S(Com) oT'(Lie). We show that the relation 1 of Definition 5.11 defines a distribu-
tive law of monads in the sense of Beck [Bec69]. We define the morphism of M-modules
p- :T'(Lie) o S(Com) — S(Com) T (Lie) using this relation. O
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Remark 5.13. Let K be a field of positive characteristic p > 2. The M-module S(Com)oT (Lie)
still forms an M-operad by using the distributive law of monads induced by relation 1 of Definition
5.11. In this case the relation 2 of Definition 5.11 is replaced by the more complicated:

(wy) P = 2PylP) 4 2 lPlyp o pay)

where P(x,y) is a Poisson polynomial that can be made explicit. This structure was first intro-
duced by Bezrukavnikov and Kaledin in [BK08] in the study of quantization of algebraic manifolds
in positive characteristic.

6 M-PROPs and their algebras

In this section we introduce the definition of M-PROPs. A M-PROP is an algebraic object which
governs algebraic structures with (polynomial) operations with multiple inputs and multiple
outputs.

6.1 The category ModP™

Definition 6.1 (Cohomological (H Par,,, H Par,,)-Mackey bifunctor). Let n and m be two non-
negative integers. A cohomological (HPary,, HPar,,)-Mackey bifunctor M is a biadditive bifunc-

tor:
M : HPar, x HPar,, — Modg .

Definition 6.2 (BiM-module). A BiM-module M, o is a collection { M m}(nm)enxn of coho-

mological (HPar,, HPar,,)-Mackey bifunctors. A morphism between two BiM-modules is a
collection of natural transformations. Their category is denoted by ModH%lM,

We define two monoidal structures (Mod2™, m, K) and (Mod2™ g,1), respectively the hor-
izontal and the vertical composition.

Definition 6.3 (The product m). For any M and N BiM-modules we set:

(M mN)(m,p)

mixme€H Par;, xHPar;,
p1xp2eH Parj, xHPar,

= & [ M (71, 72) ® N(p1,p2) ® Homy par, x#Par,, (71 % p1,m2 % p2), (7, p)).
t1+j1=n1
io+j2=n2

Proposition 6.4. The product @ forms a symmetric monoidal structure together with the BiM-
module K:

K (d1,42) = (0,0),
Kiia 3= {o (i1,i2) # (0,0)

as unit.

Proof: A prove similar to the one for Definition 3.6 works. O

Definition 6.5 (The product 8). Let M and N be two BiM-modules we define

veH Par,,
(MaN)(mp) =@ [ M(rv)eN(p).

Proposition 6.6. The product 8 forms a monoidal structure together with the BiM-module 1:

N K iy =is,
R0 iy #ig)

as unit.

Proof: It follows directly from the monoidal structure of the tensor product of K-modules. [

27



6.2 M-PROPs
We introduce the concept of an MI-PROP which generalizes the concept of an M-operad.

Definition 6.7 (M-PROP). An M-PROP is a BiM-module P endowed with two associative
multiplication maps pp : PO P — P, p, : PBP — P and a unit n:1—- P for u, such that:

o the restriction of n:1— P to K< 1 is a unit for pp,

e for any f1 € P(m1,v1), fa € P(ma,v2) we have
pn(f2), f1) = cor(pn(f1, f2)))

where o (resp. T) is the permutation in Sy, in, (T€SP. Smy+m,) Which permutes the blocks
{1,...,n1} and {n1+1,...,n1+na} (resp. {1,...,m1} and {m1+1,...,m1+ma}) and fix
the orders inside the blocks.

e for any f1 € P(my,v1), fa € P(m2,v2),01 € P(v1,p1), 92 € P(v2, p2) we have:

(o (f15,91)5 o (f2,92)) = po (pn(f1, f2)5 pn (91, 92))-

A morphism of M-PROPs is a natural transformation compatible with this structure.
Example 6.8. Let P be an M-operad then it is, in particular, an M-PROP.

Proposition 6.9. Let P be a PROP (see Appendix ?7?). 1t defines different M-PROPs as
follows:

e S(P) is defined by:
Sn,m(P)(ﬂ-vp) = W(P(n7m))l7

where w € HPar,, and p € HPar,,, and
e if P is biconnected, T'(P) is defined by:
Ly (P)(m, p) =7 (P(n,m))”
where m € HPar, and p € HPar,,.
Proof: We show how the composition on P induces a composition on I'(P).

weH Par,
me(P)(mp) ® Fs,n(P)(O'aﬂ') =

Pom( [ "P(n,m) @ P(5,0)7)(@,0) = Ton( [ (P(n,m) ® P(s5,1))7) (@) =
Fs,m(P(nam) ®S" P(Svn))(aa p) - Fs,m(P(Svm))(J7p) =
FS,m(P)(O'a p)

a similar proof works for S(P). O

6.3 Algebras over an M-PROP

Fix a K-module V. We define an M-PROP denoted by BiPolyy which we use to define the
category of algebras over an M-PROP.

Definition 6.10 (The M-PROP BiPolyy). We define the M-PROP BiPolyy by:
BiPolyy (m, p) = Homyod, (' (V),Tp(V)).

The horizontal composition is induced by the tensor product of morphism in Modg and the
vertical composition by the composition of morphisms in Modg.

Definition 6.11 (M-PROP algebras). Let P be a M-PROP. A P-algebra over the K-module V
is a morphism of M-PROPs ~: P — BiPolyy .
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6.4 Examples

Let P be a PROP (see Appendix ??). We prove that the category of S(P)-algebras is equivalent
to the category of P-algebras. We prove that the category of p-restricted Lie bialgebras and the
category of divided power bialgebras are governed by two M-PROPs. These two categories are
not governed by any PROPs.

We again only aim to give an idea of future applications of our constructions in this example
section. We still posit the existence of free objects in the category of M-PROPs, which generalize
the ordinary free PROPs, without giving further details on the construction of such objects.

Proposition 6.12. Let P be an M-operad. It defines an M-PROP where
P(m,p) = (P™ (7))’
for all m € Par,, and p € Par,.

Proposition 6.13. Let P be a PROP (see Appendiz ??). The category of algebras associated
to the M-PROP S(P) is equivalent to the category of P-algebras.

Proof: Let V be a K-module. Let ¢ : S(P) — BiPolyy be a S(P)-algebra then if restricted
to the discrete partitions it defines a P-algebra structure. Vice-versa since inductions are epimor-
phisms in S(P) any P-algebra structure can be extended to a unique S(P)-algebra structure. [

Definition 6.14 (2-restricted Lie bialgebra). Let K be a field of characteristic 2. We say that
(A, [-,-1,-12,6), where

- AEMOdK,
“[--]:A®A— 4,
N ) Yy
-0:A— AQ®A,

is a 2-restricted Lie bialgebra if (A,[-, -], (=)) is a 2-restricted Lie algebra, (A,[-,~],8) is a
Lie bialgebra and
s(-Bhy=o.

Proposition 6.15. Let K be a field of characteristic 2. There exists an M-PROP, denoted by
T'BiLie, which encodes the category of 2-restricted Lie bialgebras.

Sketch: Let BiLie be the PROP which governs the category of Lie bialgebras. We consider
the M-PROP T'(BiLie).

We prove that the I'(BiLie)-algebras correspond to the 2-restricted Lie bialgebras.

Let ¢ : T'(BiLie) — Polyy be a I'(BiLie)-algebra. There exists a monomorphism from the
M-PROP defined by the M-operad I'(Lie) and I'( BiLie) that we denote 7. From this inclusion
¢ defines a 2-restricted Lie algebra (V, [, -], -[?1). The restriction of ¢ to the discrete partitions
is equivalent to a BiLie-algebra (V,[-,-],0) where [-,-] = ¢(m) and § = ¢(c). For i = 2 we
have that:

c(m)=eeom(coe)+mee(e®c)+m®e((2,3)cee)+e@m((1,2)e®c).
By applying this relation to the image by ¢ of I'y o(BiLie)((1,2), (1)(2)) we obtain:
s(-h=o.

Let (V,[-,-],-[?,6) be a 2-restricted Lie bialgebra. In particular (V,u,d) is a bialgebra,
that is equivalent to a morphism v : BiLie — BiEndy . We identify indexes of these two PROPs
with the discrete partitions and partially extend the morphism ¢ by the inductions morphisms.
The 2-restricted Lie bialgebra (V,[-, -], ~[?]) is in particular a T'(Lie)-algebra. Extending ¢ by
the inclusion of the M-PROP defined by T'(Lie) into I'(BiLie) we obtain a I'(BiLie)-algebra
structure. O
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Remark 6.16. Let K be a field of positive characteristic p > 2. It is possible to define p-restricted
Lie bialgebra.

Definition 6.17 (Divided power bialgebra). We say that (A, p, {7 }ien, A), where:
- A e Modg,
S A®A— A,
-yt A— A
-yt A— A,
-AA— AR A,

is a divided power bialgebra if (A, 1, {7;}ien) is a divided powers algebra, A is co-associative and
a map of divided power algebras. In particular (A, u, A) is a commutative bialgebra.

The notion of divided power bialgebras have been studied by André in [And71], Bulliksen
and Levin in [GL69], and Block in [Blo85] for its relations with the enveloping algebra of a Lie
algebra over a field of positive characteristic and the Hopf algebra associated.

Proposition 6.18. There exists an M-PROP, denoted by I"BiAlgcom, which encodes the cate-
gory of divided power bialgebras.

Sketch: Let BiAlgoom be the PROP which governs the category of commutative bialgebras.
We denote m € BiAlgoom(2,1) and ¢ € BiAlgoom(1,2) the generating elements. We consider
the M-PROP T'(BiAlgcom ).

We prove that I'( BiAlgcom )-algebras correspond to divided power bialgebras.

Let ¢ : T'(BiAlgcom) —> BiPolyy be a T'(BiAlgcom)-algebra. There exists a monomor-
phism from the M-PROP defined by the M-operad I'(Com) and I'(BiAlgcom ) that we denote
i. By this inclusion ¢ defines a divided power algebra (V, i, {7; }ien). The restriction of ¢ to the
discrete partitions is equivalent to a BiAlgcom-algebra (V, u, A) where p = ¢(m) and A = ¢(c).
For i = 2 we have that:

c(m) =mem((2,3)c®c).

Applying this relation to the image by ¢ of I's o(BiAlgcom)((1,2), (1)(2)) we obtain:
A(72) =72©072((2,3)A®A).

This is equivalent to say that A is compatible with 5. Similar computations work for the general
Vi

Let (V, , {7i}ien,A) be a divided power bialgebra. In particular (V,u,A) is a bialgebra.
This is equivalent to a morphism v : BiAlgcom —> BiEndy. We identify indexes of these two
PROPs with the discrete partitions and partially extend the morphism 1 by the inductions
morphisms. The divided power bialgebra (V, u, {v; }ien) is in particular a I'(Com)-algebra. Ex-
tending ¢ by the inclusion of the M-PROP defined by I'(Com) into I'( BiAlgcom) we obtain a
T (BiAlgcom )-algebra structure. O
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A Operads and PROPs

The aim of this section is to recall the basic definitions and notions of the theory of operads and
PROPS.

We fix a commutative ring K. We denote the category of K-modules by Modg. In this section
we recall the definitions and properties of symmetric modules, of (symmetric) operads and of
(symmetric) PROPs in the category Modk.

A.1 Symmetric modules

We recall the definition of the notion of a symmetric module.

Definition A.1 (Symmetric modules). A symmetric module A is a collection {Ap}nen of K-
modules with an action of the symmetric group S, on A, for all n € N.

A morphism of symmetric modules f: A — B is a collection of K-morphisms f, : A, - B,
commuting with the symmetric group actions.

We denote the category of symmetric modules by Mod%

A symmetric module A = {Ap, }nen 18 said to be connected if Ay = 0.

The category ModHS( has three important monoidal structures, namely ®, 0s and 0. The first
two correspond to the classical tensor product and to the composition of symmetric modules.
They are used to define the notions of operads and algebras over an operad. The product O° was
introduced by Fresse in [Fre00] and it is used to define the categories of I'P-algebras or algebras
with divided symmetries for any connected operad P.

We recall the definition of unit objects which we associate to these monoidal structures in
the paragraph. We explain the definition of the operations ®, Og, and 0° afterwards.

Definition A.2. 1. The tensor unit symmetric module K is the symmetric module
K =0,
Kn = " .
0 otherwise.

2. The composition unit symmetric module 1 is the symmetric module

I - K n=1,
"o otherwise.

Definition A.3 (The product ®). Let A = {A,}nen and B = { By }neny be symmetric modules.
We define the symmetric module AR B as follows:

AwB= @ Indg,; A;®B;

i+j=n

where Indgjxgj A; ® B; stands for the K[S,,]-module induced by the K[S; x S;]-module A; ® B;.
The product ® forms a bifunctor. To be explicit, let f: A— B and g: A’ - B’ be symmetric
module morphisms. We define f ® g to be the collection

(fmg)n= D Indgfxsj i ®gj-

+j=n
Proposition A.4. The triple (Mod%,®=,KK) forms a symmetric monoidal category.

Proof: See [Fre00, Proposition 1.1.6]. O

Definition A.5 (The product ®s, ). Let R and S be K[S, ]-modules. We denote by R®s,, S the
K-module of coinvariants of the K[S,,]-module R® S endowed with the diagonal action of S,,. In
what follows we use the notation [x ® y] for the class of a tensor x® y€ R® S in this quotient.
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Definition A.6 (The product Ogs). Let A = {Ap, }neny and B = {B, }neny be symmetric modules.
We define the symmetric module AQs B by:

(A Os B)n = @AT ®s,. (Br)n.
reN

The product Og forms a bifunctor. To be explicit, let f: A— B and g: A" - B’ be symmetric
module morphisms. We define fOs g to be the collection

(fOsgn=Dfr®s, (Y, 9,®®g,).

reN ti+-+t.=n
Proposition A.7. The triple (Mod%,Os,1) forms a monoidal category.

Proof: We refer to [Fre00, Proposition 1.1.9]. O

Definition A.8 (The product ®"). Let A and B be K[S,]-modules. We denote by A ®°" B
the K-module of invariants of the K[S,]-module A® B endowed with the diagonal action of S,.

Definition A.9 (The product ©%). Let A = {A, }nen and B = {B,, }nen be symmetric modules.
We define the symmetric module AT® B by:

(AC® B), = E%AT 8" (B™ ).

The product O° forms a bifunctor. To be explicit, let f: A — B and g: A’ - B’ be symmetric
module morphisms. We define f0° g as the collection

(fDSg)n:Zfr(@ST( Z gt1®"'®gt,,-)'

reN t1+-+t,.=n
Proposition A.10. The triple (Mods,, 0%, 1) forms a monoidal category.
Proof: We refer to [Fre00, Proposition 1.1.9]. O

Let G be a finite group and X be a K[G]-module. We consider the K-module of coinvariant
X¢ and the K-module of invariant X¢. There is a natural map, called trace or norm map,
tr: Xg - X© defined by [z] ~ Ygec 9w, for any x € X. We apply this observation to our
composition product:

Definition A.11 (The natural transformation t¢r). Let A = {Ap}neny and B = {B,}nen be
symmetric modules. We define the morphism of symmetric modules

tr: Aog B -~ Ao® B,

by
tr(fla®b;® - ®b,])= > 0" (a®b @ ®b,),

o€S,

for any [a®by ® - ®b,] € A, ®s (B®"),,.

We use the epi-mono factorization of ¢r to define a third product O, intermediate between
Os and OS:

Proposition A.12. The natural transformation tr is monoidal, i.e. it preserves unit and asso-
ciativity isomorphisms.

Proof: See [Fre00, Lemma 1.1.19]. O
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Definition A.13 (The product O;,). Let A = {A,}neny and B = { By }nen be symmetric modules.
We define the symmetric module AO B by:

(ADy B),, = Im(tr: (Aog B),, » (AD° B),,),

for each n e N.
The product Oy, forms a bifunctor. To be explicit, let f: A — B and g: A" - B’ be symmetric
module morphisms. We define f O g as the collection

(fOug)n = (fDS 9)"|(Autr3)n’

the restrictions of (f0° g)n to (ADy B)y.
Proposition A.14. Let K be a field. The triple (Modi, O¢r, 1) forms a monoidal category.

Proof: We use that tr is monoidal and the observations that —Og — preserves the epimor-
phisms and —0° — preserves the monomorphisms to obtain a diagram of the form:

(Aog B)os C — (A0, B)0, C —— (Ac® B)o®C

4 !

Aos(Bos C) — Ao, (Bo, C) —— Ac®(Bo® C).
We deduce the associativity diagram for Oy, the unit follows easily. O

Let G be a group of cardinality n and X be a K[G]-module. If K is a field of characteristic
0 then the natural map ¢r~' : X¢ - X defined as follows z — L[z] is the inverse of the trace
map. Thus, the natural transformation ¢r is an isomorphism of bifunctors.

Proposition A.15. IfK is a field of characteristic 0 then the trace induces an isomorphism of
monoidal categories
(Mod, 0g, I) = (Mod$, O, I) 2 (Mods, 0%, I).

If K does not contain Q we still have:

Proposition A.16 (Fresse [Fre00], Proposition 1.1.15). Let A = {Ap}nen and B = { By }nen be
symmetric modules. If B is connected then tr: Ans B — A0® B is an isomorphism of symmetric
modules. O

We are interested in symmetric modules because they are combinatorial models of a special
kind of endofunctors of the category Modx. We explain this correspondence in the following
definition.

Definition A.17 (The functors S(A,-), I'(A4,-) and A(A,-)). Let A= {A,}nen be a symmetric
module. We have an obvious inclusion in : Modg = ModS. such that:

in(Vy, =" "=
0  otherwise.
We then consider the functors S(A,-), A(A,-), and T'(A,-) : Modg - Modg such that:
S(A,V)=Aosin(V),

A(A, V) = Ao in(V),
(A, V) =Ac®in(V).
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We have natural transformations:
S(A7 _) - A(Aa _) - F(Aa _)

given by the epi-mono factorization of the trace map on these composition products.

The functor S(A,-) is the standard functor of the theory of operads and is usually called
the Schur functor associated to A.

Let A be a symmetric module. In general the functors S(A,-), A(A,-) and T'(A,-) are not
isomorphic. But we have the following statement:

Proposition A.18 (Fresse [Fre00], Proposition 1.1.2). Let A = { A, }nen be a symmetric module.
If A is projective as a symmetric sequence then

tr:S(A,-) >T(A,-)
is an isomorphism. O

Corollary A.19. We have that S(As,—) is isomorphic to T'(As,—). O

The functors S(-,-), A(-,-), and I'(-,-) are compatible with the monoidal structures x,
o S.
s, O, and O°:

Proposition A.20 (Fresse [Fre00], Propositions 1.1.6 and 1.1.9). The bifunctors S(—,-), I'(-,-)
and A(-,-) : Mod$ - Fun(Modgk, Modg) are:

e (strongly) symmetric monoidal functors with respect to the two symmetric monoidal struc-
tures (Mod$,®,K) and (Fun(Modg, Modk),®,K), hence we have:

S(AmB,-) 2 S(A,-)®S(B,-)T(Am B,-) =T(4,-) ® [(B, -),

if K is a field
AArB,-) 2 A(A,-)® A(B,-),

e (strongly) monoidal functors with respect to the two monoidal structures (Mod%,0,1) and
(Fun(Modg, Modk), o, Idmod, ), hence we have:

S(Aos B,-) = S(A,-)oS(B,-),I'(AD® B,-) 2T(A,-) o I'(B, -),

if K is a field
A(Aog B,-)2A(A,-) o A(B,-).

A.2 Operads and their associated monads

We recall the definitions and the properties of operads and of the categories of algebras associated
to operads.

A.2.1 Operads and algebras over an operad

Since (ModHS(7 Os, 1) is a monoidal category we can define the category of monoids with respect
to this structure.

Definition A.21 (Operads). Let P = {P,}nen be a symmetric module. Let p: POs P — P and
n:1— P be morphisms of symmetric modules. The triple (P, u,n) is an operad if it is a monoid
in the monoidal category (Modﬂi,l:lg,]l). More explicitly the triple (P,u,n) is an operad if the
following diagrams commute:

Idp Os
PogPog P 24 pog P

(0s Idpl lu (Associativity)

PDSP#)P,
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and

n0Os Id IdpOs n
IogP ——= Pog P «+—— Pogl

. £ - (Unit)

Let (P = {Pp}nen, tt,1) and (P' = {P) }nen, pt'yn") be operads. A morphism of operads is a
morphism of symmetric modules ¢ : P — P’ such that the following diagrams commute:

Pos P 2% prog pr

Hl lu'
P T> P,

and

We denote the category of operads by Op.

We use that POg P is spanned by tensors of the form [p® ¢; ® -+ ® ¢,,] with p € P, and
q1,---,qn € P to give an explicit definition of u.

Remark A.22. The general theory of operads allows us to define the free operad generated by
a symmetric module, and the ideals of an operad. We can present any operad by generators and
relations. Since this theory goes beyond the purpose of this section we do not give more details.
For the interested reader we refer to the books of Fresse [Fre09, Section 3.1], Loday and Vallette
[LV12, Section 5.5], and Markl, Schnider and Stasheff [MSS02].

Let (P = {Pp}nen, t,m) be an operad, the elements p € P, can be interpreted as n-ary opera-
tions and p as the rule for composing them. The morphism n represents the identity operation.
We can present operads by generating operations and relations.

We introduce a different and useful definition of operad structure on a symmetric module.

Definition A.23 (System of partial compositions). Let P = {P,}nen be a symmetric module.
A system of partial compositions ({o;}ien+,n) 18 a collection of K-modules morphisms — o; — :
P, ® P, = Pyim-1 and a morphism of K-module n: K — Py such that:

1. —0;—: P, ® Py, > Py ym—1 is the zero map if i > n,
2. —0i(=0j~)=(=0;~) 01—, and
3. po; (n(1))=(n(1)) o1 p=p for any pe P, and i <n,
and which respect the symmetric action. That is:
zo;07(y) =7 (xo;y)

for all o € S,, where T is the Spim-1 permutation that act as the identity on the set {1,...,i—
lyi+n,...,n+m} and as o on the set {i,...,i+n—-1}, and

p*(z)oiy=p (vo;y)

for all p € S,, where o is the Spym-1 permutation that act as p on the blocks {(1),...,(i -
1),(...,i+n=1),(i+n),...,(n+m)} and identity inside the block (i,...,i+n—-1).

Proposition A.24. Let P = {P,}nen be a symmetric module. An operad structure (P, u,n) is
equivalent to a system of partial compositions (P,{o;}},n)-
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Proof: For more details see [LV12, Section 5.3.7) O

The compatibility of S(—,-) with the composition products Og and o has an important
consequence. Any monoid with respect to Og defines a monoid in the category of endofunctor
of Modg with respect to the composition of functors o, a monad is the usual terminology of
category theory:

Proposition A.25. Let (P = {P,}nen, ;1) be an operad. The triple (S(P,-),S(u,-),S(n,-))

1s a monad.

Proof: The statement is a direct consequence of Proposition A.20. O

To any monad we associate a category of algebras. Thus, to any operad we associate a
category of algebras.

Definition A.26 (P-algebra). Let (P = {P,}nen, tt,n) be an operad. The category of P-algebras
is the category of algebras over the monad (S(P,-),S(u,-),S(n,-)). It is denoted by Algp.
More explicitly an object of Algp is a couple (V,7) such that the following diagrams commute:

Idp Os 7y

S(Pog P, V) —= S(P,S(P,V)) =27 S(P,V)

NOIva/ l’)’

S(P,V) >V,

and
S(LV) 2% g(p,v)

\ g

Example A.27. 1. The symmetric module As defined by Asg = 0 and As, = K[S,] with
multiplicative actions for all n >0 is an operad with the composition product such that:

pw(lp®T @ ®7]) =T,01) @ & Ty(r)

for peS, and 1; €S, and n=1dg. Alternatively the operad As can be defined as the free
operad generated by a binary operation m quotient by the ideal generated by the relation
m(m(_7 _)7 _) = m(_7 m(_7 _))

The category of As-algebras is isomorphic to the category of non unital associative algebras.

2. The symmetric module Com 1is defined by Comgy =0 and Com,, = K with trivial action for
alln >0, is an operad if endowed with the morphisms p = 1dg and n = 1dg. Alternatively the
operad Com can be defined as the free operad generated by a commutative binary operation
¢ quotient by the ideal generated by the relation c(c(—,-),—) = c(—,¢(-,-)).

The category of Com-algebras is isomorphic to the category of associative commutative
algebras,

3. The symmetric module Lie is defined by Lieg = 0 and Lie, = IndZ’/LnZ(p), where p is the
one dimensional representation of the n-cyclic group given by an irreducible nth-root for all
n>0. We can define an operad structure on the symmetric module Lie as the free operad

generated by an anti-symmetric binary operation [—,—] quotient by the ideal generated by
the relation [[1,2],3]+[[2,3],1] +[[3,1],2] = 0.

The category of Lie-algebras is isomorphic to the category of Lie algebras.
Not every monad is in the image of S(—,-). Operads correspond, in some sense, to the
category of monads presented by multilinear operations and multilinear relations between them.

The advantage of working with the category of operads instead of the whole category of monads
is their combinatorial nature that allows us to make explicit computations.
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Definition A.28 (The operad Endy). Let V be a K-module. We define the symmetric module
Endy by:
Endvﬂb = HomModK(V@", V),

with the symmetric group action induced by the permutation action on V®" for any n e N. The
composition of morphisms in the category Modg and the identity of V' gives an operad structure
on Endy. We explicit set:

#([f(_v"'v_)®gl(_7"’7_)®"'®gr(_a'“7_)]):f(gh"-g?“)(_v"'?_)a

for f eEndy,, and ¢g; € Endy ,, and
'I](l) = Idv .

Remark A.29. The construction of the symmetric module Endy is not functorial on V.

Proposition A.30. Let (P = {Py}nen, 1t,m) be an operad and V' be a K-module. We have the
following bijection:
{21(V;7) € Algp) = Homop(P, Endy).
Let (V,~) and (V',4") be P-algebras and f:V — V' be a K-morphism. It is a morphism of
P-algebras if and only if

Fy’(p)(f® - ® f(_a o '7_)) = f(f}/(p)(_v s 7_))7

n n n

for all pe P, and n € N.

Proof: We refer to Fresse [Fre09, Proposition 3.4.2] and Loday and Vallette [LV12, Proposi-
tion 5.2.13]. O

A.2.2 AP and I'P-algebras

Let K be a field. o Since the map Pog P — Po® P induced by the trace is an isomorphism
for connected symmetric modules. Hence the category of connected operads coincides with the
category of connected monoids with respect to Oy and O°. Let P be a connected operad. We
use the compatibility of the functors A(—,-) and I'(—,—) with the composition to define other
two monads associated to P.

Proposition A.31. Let (P = {P,}nen, 4,M) be a connected operad. The triples

A(P, =), A(p, =), A(n, -)), (TP, =), Ik, =), T(n,-))
are monads such that the morphisms given by the epi-mono factorization of tr:
S(P,-) = A(P,-) > T(P,-)
are monad morphisms. ]

Definition A.32 (AP-algebras). Let (P = {P,}nen, it,7) be a connected operad. We define the
category of AP-algebras as the category of algebras over the monad (A(P,-), A(u,-),A(n,-)).

Proposition A.33. Let (P ={P,}nen, it,n) be a connected operad and A be a AP-algebra. The
monad S(P,—) acts on A through the morphism S(P,-) - A(P,-) so that A inherits a natural
P-algebra structure. O

Let P be a connected operad. Since the functor A(P,-) is, in general, different from the
functor S(P,-) the category of AP-algebras is, in general, not equivalent to the category of
P-algebras. The category of AP-algebras can be interpreted as the subcategory of P-algebras
satisfying some additional non-linear relations.

Example A.34. We have:
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1. let K be a field of positive characteristic p, a Com-algebra C is a ACom-algebra if ¢? =0
for any ce C,

2. let K be a field of characteristic 2, a Lie-algebra L is a ALie-algebra if [I,1] = 0 for any
lel,

see [Fre04, Proposition 1.2.15-1.2.16].

Definition A.35 (I'P-algebras). Let (P = {P, }nen, i, 1) be a connected operad. We define the
category of T' P-algebras as the category of algebras over the monad (T'(P,-),T'P(u,-),T'P(n,-)).

Proposition A.36. Let (P = {P, }nen, tt,1) be a connected operad and A be a T'P-algebra. The
monad A(P,-) acts on A through the morphism A(P,-) - T'(P,-) so that A inherits a natural
AP-algebra structure. O

As for AP-algebras, since I'(P, -) is, in general, different from S(P,-) the category of I'P-
algebras is, in general, not equivalent to the categories of P-algebras. The category of I'P-
algebras can be interpreted as the category of AP-algebras with an additional structure.

Definition A.37 (Divided power algebras). A divided power algebra is a commutative algebra
C' endowed with a collection of operations ~y; : C — C' such that:

T+ y) = Z i () (),
Yi(Az) = N, (2),
71($) =z,
@) = (" fmen (@),

110 (2)) = e on (@)

Let C and D be divided power algebras. A commutative algebra morphism ¢ : C - D is a
morphism of divided power algebras if

o(7i(=)) =7 (o(-))
for any v e N.

Definition A.38 (p-restricted Lie algebras). Let K be a field of positive characteristic p. A
p-restricted Lie algebra is a Lie algebra L equipped with an operation =Pl : L — L such that:

(Az)P) = P (2)[P])

p-1 o
(w4 )P = al?) 4 ytr) 2 5 2000),
i=1 ¢

ad(z) = (ad(z))),

where s;(x,y) is the coefficient of t'™* on the expression of ad(tz1yyr-1 ().
Let L and G be p-restricted Lie algebras. A Lie algebra morphism ¢ : L — G is a p-restricted

Lie algebra morphism if
B = ()

Example A.39. We have:

1. the category of TCom-algebras is isomorphic to the category of divided power algebras (see
Fresse [Fre00, Proposition 1.2.3]),

2. let K be a field of positive characteristic p; the category of I' Lie-algebras is isomorphic to
the category of p-restricted Lie algebras (see Fresse [Fre00, Theorem 1.2.5]).
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A.3 PROPs and their algebras

We recall the notion of a PROP and of the category of algebras associated to a PROP. These
notions were first introduced by MacLane. We first introduce the concept of symmetric bimodule.

Definition A.40 ((G, H)-modules). Let G and H be groups. A (G, H)-module is a K-module
V' endowed with a left G-action and a right H-action such that the two actions commute with
each other. A morphism of (G, H)-modules is a morphism of left K[G]-modules and right K[ H]-
modules.

Definition A.41 (Symmetric bimodule). A symmetric bimodule A = {Anm}(nm)enxn 5 @
collection of (Sy,Sm)-modules.

Let A and B be symmetric bimodules. A morphism of symmetric bimodules f: A - B is a
collection { fn,m}(n,myenxn Of (Sn,Sm)-module morphisms.

We denote their category by BiMod%

We define two monoidal structures, namely @ and 8. They correspond to tensor and com-
position products. We recall the definition of unit objects for these monoidal structures.

Definition A.42. 1. the horizontal tensor unit K is the symmetric bimodule defined as fol-
lows:

Knm:

3

{K n=0 and m=0,

0 otherwise,

2. the vertical tensor unit K is the symmetric bimodule defined as follows:

I K n=m,
"0 otherwise,

where we take the trivial action of symmetric groups on K.

Definition A.43 (The product M). Let A = {Anm}nmyenxy and B = { By m} (n,m)enxn be
symmetric bimodules. We define the symmetric bimodule AmM B by:

(A m B)n,m = @ dSmS Anhml ® Anz,m27

Snq *XSng Smq XSm
ni+ns=n 1 R 2
mi+mo=m

where

dS” S (—) = IndS xS, (IndSm

Sn 1 XSnz 7Sn11 XS

() =Tndgy . (Ind? .5 ().

xSmoy ™M1 XSm "1

The product @ s a bifunctor. To be explicit let f : A - B and g : A" - B’ be symmetric
bimodule morphisms. We define fi0g: AW A’ -~ Bm B’ by:

Sn,Sm
(fO@nm= ), Ind Sny XSny Smy XSy Jrimy ® Gnoyms-

nit+tng=n
mi1+mo=m

Proposition A.44. The triple (BiModI[S<7 m,K) forms a symmetric monoidal category.

Proof: Tt easily follow by adapting the proof [Fre00, Proposition 1.1.6]. O

Definition A.45 (The product 8). Let A = {An m}mm)enxy and B = { By m}(nm)enxn be
symmetric bimodules. We define the symmetric bimodule AB B by:

(AE]B @Anr@’S Brm
reN

The product 8 1s a bifunctor. To be explicit let f : A - B and g : A’ - B’ be symmetric
bimodule morphisms. We define fag: AB A’ - BB B’ to be the morphism defined such that:

(fElg anr®S 9rm-

reN
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Proposition A.46. The triple (BiModHS{, 8,1) forms a monoidal category.
Proof:[Sketch] The unit is given by

(A S| H)n,m = @ An,r ®s,. ]Ir,m = An,n ®s,, K= An,ma
reN

the associativity morphism is given by:

(AeB)EC)ym=P(ABB),, &s, Cr.m

=D(@Anses, B es, O
= @ @An,s ®s, (Bsr ®s, Cr.m)
=(As(Bal))ym
O

Let A= {Apn m} (n,m)enxy be a symmetric bimodule. As for operads, we want to identify the
elements of A, ,, with some abstract operations with n inputs and m outputs. A PROP is a
symmetric bimodule endowed with a structure that encodes the composition of these abstract
operations.

Definition A.47 (PROP). Let P = { Py m}(n,m)enxn be a symmetric bimodule, iy, : PMP — P,
Wy : PBP > P, and n:1 - P be symmetric bimodule morphisms. The set of data (P, pn, to,n)
is a PROP if the following diagrams commute:

Idp Os
POoPOP N pop

pnOs Id pl luh (Horizontal associativity)

POP —p— P,

IKmP "2 pg ' p gk

\ l“u/ (Horizontal unit)

Id v
PaPaPt28pap
Ho Os Idpl l " (Vertical associativity)
PP —F—— P,

1P Y% pgp 28 pgg

\ l / (Vertical unit)
P,

and the following equations holds:

wh(fog)=c"(ur(g® )7, (Horizontal commutativity)

for all f € Py, 1, and g € Py, ., where o (resp. T) is the permutation in Sy, 4n, (T€SP. Smy+ma)

which permutes the blocks {1,...,n1} and {ny +1,...,n1 + no} (resp. {1,...,mq} and {my +
1,...,my +ma}) and fix the orders inside the blocks.

1 (o (f1s 91)s 1o (f20.92)) = o (i (f1s f2)s (91, 92))- (Distributivity)

A morphism of symmetric bimodules f : P — Q is a morphism of PROPs if it commutes with
all py, pip, and n.
We denote the category of PROPs by PROP.
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Proposition A.48. The category of PROPs is equivalent to the category of symmetric monoidal
categories (P,®, S, e) enriched over Modk such that:

1. the class of objects is identified with the set of natural numbers N,
2. the product on objects is defined by m ®On =m+n for any m,n € N.
Proof: We refer to Markl [Mar08, Section 8] for more details. O

Remark A.49. As for operads, the general theory of PROPs allows us to define the free PROP
generated by a set of operations and ideals generated by relations. Any PROP can be presented
by generators and relations.

Example A.50. We can define the following PROPs:

1. the PROP BiAlg is the PROP generated by a product m € BiAlgs1 and a coproduct
A € BiAlgy 2, quotiented by the ideal generated by the following relations:

m(m(=,-),=) =m(=,m(=,-)), (Aeld)A(-)=(IdeA)(A(-)),
A(m(1,2)) = (mem)((2,3)"(A(1),A(2)))

2. the PROP Frob is the PROP generated by a product m € Froby 1, a unit e € Froby 1, a
coproduct A € Froby o and a counit c € Froby o, quotiented by the ideal generated by the
following relations:

m(m(—,—),—) :m(—,m(—7—)), m(—7e) :m(e>_) :Id(
(A®Id)A(-) = (Id®A)(A(-)), (Id@c)(A(-)) = (c®ld)(A(-)) = 1d(

),
-)

b

and the Frobenius relation:

(Idem)(AeId)(-,-) = (m®Id)(Id ®A)(-,-) = A(m(-,-)),

3. if K has characteristic different from 2, the PROP BiLie is the PROP generated by an
antisymmetric product [—,—] € BiLiea1 and an antisymmetric product § € BiLiey 2, quo-
tiented by the ideal generated by the following relations:

[[1’2]73] + [[273]’ 1] + [[3’ 1]72] =0,
(1,2,3)(0®@Id)(0(-)) + (2,3,1)(0 ®Id)(0(-)) + (3,1,2) (6 ® Id) (6(-)) = 0,
and

(1,2)6([1,2]) - (1,2)([-, -] ® Id)(Id ®5)(1,2) - (2, 1)([-, -] ® Id)(Id ®0)(1,2)
- (27 1)([_7 _] ® Id)(Id ®6)(27 1) - (172)([_7 _] ® Id)(Id ®6)(2a 1) =0.

Definition A.51 (The PROP Endy ). Let V be a K-module. The PROP Endy is the strict
symmetric monoidal category (Endy,®, S,e) such that:

EndV;n,m = HOmMOdK(V®n, V®m).

The PROP structure is given by the permutation action on V& and V®™, the tensor product
and the composition of morphisms in Modg.

As for operads, PROPs are combinatorial objects that govern categories of algebras which
are described by multilinear operations and multilinear relations. The major difference between
operads and PROPs is that PROPs allow operations with more than one outputs. Another
important difference between operads and PROPs is that, in general, a PROP is not associated
to any monad. To define the category of algebras we are forced to use the PROP Endy .
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Definition A.52 (P-algebras). Let (P = { Py m} (n,m)enxn, i, fo, 1) be a PROP. A P-algebra
is a pair (V,¢: P - Endy ) where V is a K-modules and ¢ a morphism of PROPs.
Let (V,¢) and (V',¢") be P-algebras. A morphisms of K-module f : V — V' is a P-algebra
morphism if
f ®® f(¢(p)(_7 (R _)) = d)/(p)(f ®® f)(_v ey _)a
| —— —_—— —_——— ——
for any pe Py .
We denote the category of algebras over the PROP P by Algp.
Example A.53. We have:

1. the category of BiAlg-algebras is equivalent to the category of associative, coassociative
bialgebras,

2. the category of Frob-algebras is equivalent to the category of Frobenius algebras,

3. the category of BiLie-algebras is equivalent to the category of Lie bialgebras.
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