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Caveat

If you fall in love with the road,
you will forget the destination

Zen Saying
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Preamble: linear PDEs and solution via Fourier
transform

Consider an IVP for a linear PDE (the linearised KdV equation)

ut + uxxx = 0 , u(x , 0) = u0(x) . (1)

Assume that u(x , t) can be expressed as a Fourier integral,

u(x , t) =
∫ ∞

−∞
a(k , t)eikx dk , (2)

Then for (1) one finds that at = ik3a hence a(k , t) = a(k , 0)eik3 t

where a(k , 0) is found as the Fourier transform of the initial condition
u(x , 0). Thus the solution of the IVP (1) becomes

u(x , t) =
∫ ∞

−∞
a(k , 0)ei(kx+k3 t)dk . (3)

So the integration procedure is as follows:

u(x , 0) → a(k , 0) → a(k , 0)eik3 t → u(x , t)
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Nonlinear example: Burgers equation

The Burgers equation (nonlinearity + dissipation)

ut + uux = νuxx , ν > 0

Direct application of the Fourier transform method is not possible due
to nonlinearity. However, the Cole-Hopf transformation

u = −2ν
φx

φ

reduces the Burgers equation to the linear heat equation

φt = νφxx .

so that we can use the Fourier transform to solve it

Now, what about the KdV equation

ut + uux + uxxx = 0

and other nonlinear dispersive PDEs (NLS, sin-Gordon, ....)?
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Nonlinear PDEs and solitons

John Scott Russell (1834); Boussinesq (1871 - 1877);
Korteweg & de Vries (1895) : solitary waves on shallow water,
u = a sech2[β(x − ct)], c ∼ a.
Zabusky & Kruskal (1965) : numerical simulation of the
continuum limit of the Fermi-Pasta-Ulam (1955) problem.
The KdV equation

ut + uux + δ2uxxx = 0 , δ = 0.022 (4)

with initial conditions u(x , 0) = cosπx , 0 ≤ x ≤ 2 and u, ux , uxx

periodic on [0, 2] for all t .

Generation of solitary waves elastically interacting with each
other; wave-particle duality: solitons
IST: Gardner, Green, Kruskal & Miura (1967) – KdV; Zakharov
& Shabat (1972) – NLS; AKNS (1974) – many other equations.
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IVP for the KdV equation

We consider the KdV equation in its canonical dimensionless form

ut + 6uux + uxxx = 0 . (5)

We shall be interested in solving the KdV equation (5) in the class of
functions decaying sufficiently fast together with their first derivatives
far from the origin. With this aim in view, we consider initial data

u(x , 0) = u0(x) , u0(x) → 0 , u′
0(x) → 0 as |x | → ∞ . (6)

Decay of a localised initial profile into solitons and some radiation
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Digression 1 for NLS lovers: NLS to KdV

The defocusing nonlinear Schrödinger (NLS) equation

iψt +
1
2
ψxx − |ψ2|ψ = 0 , ψ ∈ C

can be asymptotically reduced to the KdV equation in the
uni-directional, weakly nonlinear long-wave limit. Multiple-scale
perturbation procedure: one introduces ψ 7→ (ρ, v), where ρ, v ∈ R by

ψ =
√
ρeiφ , v = φx

and considers weakly nonlinear expansions for ρ and v

v = ǫv1(x , t) + ǫ2v2(x , t) + . . . , ρ = ρ0 + ǫρ1(x , t) + ǫ2ρ2(x , t) + . . . ,

ǫ≪ 1, together with the coordinate transformation

ξ = ǫ1/2(x ±√
ρ0t) , τ = ǫ3/2t .

As a result one obtains the KdV equation for v1 ∼ ρ1 (modulo
coefficients):

v1,τ ∓ v1v1,ξ + v1,ξξξ = 0

for the left- (upper sign) and right-(lower sign) propagating wave.
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Digression 2 for NLS lovers: KdV to NLS

The defocusing NLS equation can be derived from the KdV equation

ut + 6εuux + uxxx = 0 , 0 < ε≪ 1 ,

by considering an envelope of nearly linear narrow-band wave
packet KdV solution. The derivation technique is often called the
singular multiple-scale perturbation theory.

One introduces an asymptotic expansion u = εu1 + εu2 + ε2u3 + . . . , ,
where

u1 = A(τ, χ,T ,X)eiθ + c.c., (7)

with θ = kx − ωt , τ = εt , χ = εx ,T = ε2t ,X = ε2x .
Here ω = −k3 is the linear dispersion relation of the KdV equation.

As a result of the substitution in the KdV equation, collecting the
terms for the like powers of ǫ and eliminating secular terms, the
defocusing NLS equation arises in the order O(ε3) as

iAT + βAχχ + γ|A|2A = 0 ,

where β = 1
2

d2ω
dk2 = −3k < 0, γ = 1

6k > 0.
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Lax pairs, Zakharov-Shabat spectral problem and AKNS metho d
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KdV equation as a compatibility condition

GGKM (1967): the KdV equation ut − 6uux + uxxx = 0 can be viewed
as a compatibility condition for two linear differential equations for the
same auxiliary function φ(x , t ;λ):

Lφ = −φxx + u(x , t)φ = λφ , (8)

φt = Aφ = (−ux + γ)φ+ (4λ+ 2u)φx . (9)

Here λ is a complex parameter (can generally depend on time) and γ
is a constant (which is determined by normalisation of φ(x , t ;λ)).

Important :
In (8) t is a parameter so (8) is an ODE (a stationary spectral
problem);
System (8), (9) is overdetermined (i.e. compatible only for certain
potentials u(x , t))

Direct calculation shows that the compatibility condition
(φxx )t = (φt )xx for all λ yields the KdV equation for u(x , t) provided

λt = 0 , (10)

that is the KdV evolution of the potential u(x , t) is isospectral i.e.
preserves the spectrum of L.
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Lax Pair

Lax (1968) put the GGKM formulation into a general operator form.
Consider two compatible linear equations:

Lφ = λφ , (11)

φt = Aφ . (12)

Taking ∂
∂t of (11) and using (12) we obtain

[Lt + (LA−AL)]φ = λtφ

Then introducing [L,A] := LA−AL we obtain the Lax equation

Lt + [L,A] = 0 , (13)

for nontrivial solutions φ(x , t) if and only if λt = 0.
Take

L = −∂2
xx + u(x , t) ,

A = γ − 4∂3
xxx + 6u∂x + 3ux .

Then we see that (13) is satisfied iff u(x , t) satisfies the KdV equation.
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Zakharov-Shabat spectral problem

The stationary Schrödinger equation

φxx − uφ = −k2φ

can be represented as a system of two equations of the first order:

φx = ikφ+ ψ,

ψx = −ikψ + uφ
(14)

Zakharov and Shabat (1972) proposed a generalisation of (14):

ψ1,x = −ikψ1 + qψ2,

ψ2,x = ikψ2 + rψ1
(15)

i.e. we arrive at a matrix spectral problem

ψx =

(

−ik q
r ik

)

ψ or
(

∂x −q
r −∂x

)

ψ = −ikψ ,

where r(x , t) and q(x , t) are potentials and

ψ =

(

ψ1

ψ2

)

.

The spectral problem (15) with r = ±q∗ is associated with NLS eqn.
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AKNS method

Motivated by the Lax and ZS constructions Ablowitz, Kaup, Newell
and Segur (1974) proposed a method for generating integrable
equations.
Consider two linear equations

vx = Xv , vt = Tv

where v is an n-dimensional vector and X and T are n × n matrices.
The compatibility condition vxt = vtx yields (cf. (13) )

Xt − Tx + [X,T] = 0 . (16)

Consider the X-T pair (often called a Lax pair as well)

X =

(

−ik q
r ik

)

, T =

(

A B
C D

)

where q(x , t) and r(x , t) are (generally) complex functions, k is the
spectral parameter and A,B,C and D are scalar functions of r , q and
their derivatives, and k . (Note that the choice r = −1 leads to the
Schrödinger scattering problem v2,xx + (k2 + q)v2 = 0, i.e. the KdV
case).
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AKNS method and NLS equations

The compatibility condition

Xt − Tx + [X,T] = 0 (17)

and the isospectrality assumption kt = 0, impose a set of conditions
for A,B,C,D. These conditions are solvable only if another condition
(on r and q) is satisfied, this condition being an evolution equation.

The AKNS method : Representing A,B,C,D as polynomials in the
spectral parameter k one can obtain various evolution equations
associated with the same spectral problem vx = Xv.

Example (Zakharov and Shabat (1972))
Choosing r = −σq∗, where σ = ±1, and

D = −A, A = −2ik2 + iσqq∗ ,

B = 2qk + iqx , C = −2σq∗k + iσq∗
x

(18)

we obtain from (17) the NLS equation

iqt + qxx + 2σq2q∗ = 0 , (19)

σ = ±1 corresponding to the focusing and defocusing cases
respectively.
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Consequences of the existence of the Lax pair

Infinite number of conserved quantities;

Combined with the Hamiltonian structure, this leads to the notion
of infinitely-dimensional completely integrable system (Zakharov
& Faddeev (1971))

IST – the method of solution by finding the appropriate
angle-action variables (spectral data), determining their evolution
in time and performing the inverse map.
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IST method
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IST: The Big Picture

Consider an IVP for a nonlinear evolution equation

ut = F (u, ux , uxx , . . . ) , u(x , 0) = u0(x) . (20)

Assume that (20) can be represented as a compatibility condition for
two linear equations

Lφ = λφ , (21)

φt = Aφ . (22)

Let {S(λ, t)} be spectral (scattering) data for u(x , t) in (21):
the discrete eigenvalues, the norming coefficients of eigenfunctions,
and the reflection and transmission coefficients.

Then the IST steps are (cf. solution via the Fourier Transform):

u0(x) 7→ {S(λ, 0)} 7→ {S(λ, t)} 7→ u(x , t)

At each step we have to solve a linear problem!

Gennady EL Introduction to Inverse Scattering Transform



KdV: Forward Scattering Problem

We consider the KdV equation in the class of functions sufficiently
rapidly decaying as |x | → ∞ To be more precise, we require
boundedness of the integral (Faddeev’s condition)

∫ +∞

−∞
(1 + |x |)|u(x)|dx <∞ , (23)

which ensures applicability of the scattering analysis in the sequel.
Now we turn to the linear Schrödinger equation

−φxx + u(x , t)φ = λφ (24)

associated with the KdV evolution.

The spectrum of the Schrödinger operator is the set of values λ for
which there is a bounded solution φ(x) for all x .

The spectrum is divided into two parts: discrete and continuous.
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Properties of the Schrödinger operator

Lφ = (− d2

dx2 + u(x))φ = λφ . (25)

Self-adjoint (Hermitian) ⇒ real eigenvalues λ
Discrete spectrum : λn = −κ2

n < 0, n = 1, 2, . . .N
Non-degenerate: λn ↔ φn;
min{u(x)} < λ1 < λ2 < · · · < 0;
The eigenfunctions (bound states) φn are square integrable; can
use the normalisation ‖φn‖

2 =
∫

∞

−∞
φ2

ndx = 1;

Continuous spectrum : λ > 0
Doubly degenerate;
Eigenfunctions are not square integrable;
Abel’s theorem: If φ and ψ are two independent solutions of (25)
corresponding to the same eigenvalue, then the Wronskian

W =

∣

∣

∣

∣

φ ψ

φ′ ψ′

∣

∣

∣

∣

= constant

(to prove just consider dW
dx ).
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Jost solutions

Consider an asymptotic behaviour as x → ±∞: u → 0 so φ′′ ∼ −λφ.
Hence φ is asymptotically a linear combination of e±i

√
λ implying that

φ decays exponentially at infinity if λ < 0 and oscillates at infinity if
λ > 0.
One can introduce a basis of solutions defined by the asymptotic
behaviour at infinity (continuous spectrum):

φ1(x , k) = e−ikx + o(1)

φ2(x , k) = eikx + o(1) , x → +∞ .

The functions φ1,2 defined above are called the Jost solutions
(another set of Jost solutions can be specified by the analogous
conditions at −∞).
Any solution corresponding to the continuous spectrum can be
obtained by linear combination of the Jost functions.

A similar set of basis solutions can be introduced for the discrete
spectrum as well (several different normalisations are possible).

Gennady EL Introduction to Inverse Scattering Transform



Forward Scattering Problem: Continuous Spectrum

λ > 0: scattering solutions.

We introduce k2 ≡ λ , k ∈ R and, assuming that u → 0 as x → ±∞
fix an asymptotic behaviour of the function φ(x ; k2) far from the origin
:

φ ∼ e−ikx + b(k)eikx as x → +∞ , (26)

φ ∼ a(k)e−ikx as x → −∞ . (27)

This solution of the Schrödinger Eq. (24) describes scattering from
the right of the incident wave exp(−ikx) on the potential u(x). Then
b(k) represents a reflection coefficient and a(k) a transmission
coefficient.
Note:

|a|2 + |b|2 = 1 (follows from constancy of the Wronskian W (φ, φ∗

+ asymptotic behaviours (26), (27));

a(k) ≡ a(k , t), b(k) ≡ b(k , t).

Direct Scattering Transform: u(x , 0) 7→ {b(k , 0), a(k , 0)}.
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Time evolution of scattering data

Let the potential u(x , t) evolve according to the KdV equation
ut = 6uux + uxxx = 0. Then the corresponding evolution of the
scattering data a(x , t), b(x , t) is found by substituting asymptotics
(26), (27) into the second Lax equation

φt = Aφ = (−ux + γ)φ+ (4λ+ 2u)φx .

(note that u, ux → 0 as |x | → ∞ and kt = 0).

As a result we obtain γ = 4ik3 and

bt = 8ik3b , at = 0 . (28)

Hence
b(k , t) = b(k , 0)e8ik3 t , a(k , t) = a(k , 0) . (29)
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Forward Scattering Problem: Discrete Spectrum

(i) λ = λn < 0: bound states
If the potential u(x) is sufficiently negative near the origin of the
x -axis, the spectral problem (8) implies existence of finite number of
bound states φ = φn(x ;λ), n = 1, . . . ,N corresponding to the discrete
admissible values of the spectral parameter λ = λn = −κ2

n, κn ∈ R,
κ1 > κ2 > · · · > κn. We require the following asymptotic behaviour
consistent with φ′′ ∼ −λφ at |x | → ∞:

φn ∼ cne−κnx as x → +∞ , (30)

where cn are called the norming constants. We need to complete the
specification of ψn by either fixing the behaviour ψ ∼ eκnx at x → −∞
or by the normalisation

∫ ∞

−∞
φ2

ndx = 1. (31)

Thus, for the case of discrete spectrum we have an analog of the
scattering transform: u 7→ {κn, cn}.
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Discrete Spectrum: evolution of the spectral data

We are interested in the evolution of the spectral data {κn, cn} as the
potential u(x , t) evolves according to the KdV equation
ut − 6uux + uxxx = 0.

First of all, we already proved that dκn/dt = 0 so κn = const.
Next, we use the second Lax equation

φt = (−ux + γ)φ+ (4λ+ 2u)φx . (32)

and normalisation (31) of the bound states φ = φn to obtain γ = 0 .
Then, setting (30) into (32) we obtain

dcn

dt
= 4κ3

ncn so that cn(t) = cn(0)e4κ3
n t . (33)

Remark: We note that the bound state problem can be viewed as an
analytic continuation of the scattering problem defined on the real
k -axis, to the upper half of the complex k -plane. Then the discrete
points of the spectrum are found as simple poles k = iκn of the
reflection coefficient b(k) and b → 0 as |k | → ∞.
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Forward Scattering Problem: Summary

Step I

Find scattering data S for the KdV initial condition u(x , 0) = u0(x) by
solving

φxx + (λ− u0(x))φ = 0 .

As a result we get

S(0) = {κn, cn(0); a(k ; 0), b(k ; 0)}

Step II

If the potential u(x , t) evolves according to the KdV equation then the
scattering data S evolve according to simple equations

κn = const , cn(t) = cn(0)e4κ3
n t , a(k , t) = a(k , 0), b(k , t) = b(k , 0)e8ik3 t .

Next step: Inverse Scattering transform S(T ) 7→ u(x , t).
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Inverse Scatering Problem: GLM equation

It was established in the 1950s that the potential u(x) of the
Schrödinger equation can be completely reconstructed from the
scattering data S. The corresponding IST mapping S 7→ u is
accomplished through the Gelfand - Levitan - Marchenko (GLM)
linear integral equation.

We define the function F (x) as

F (x , t) =
N
∑

n=1

c2
n(t)e

−κnx +
1

2π

∫ +∞

−∞
b(k , t)eikx dk . (34)

Then the potential u(x , t) is restored from the formula

u(x , t) = −2
∂

∂x
K (x , x , t) , (35)

where K (x , y , t) is found from the linear integral (GLM) equation

K (x , y) + F (x + y) +
∫ +∞

x
K (x , z)F (y + z)dz = 0 (36)

defined for any moment t .
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Reflectionless potentials and N-soliton solutions

There exists a remarkable class of potentials characterised by zero
reflection coefficient, b(k) = 0. Such potentials are called
reflectionless and can be expressed in terms of elementary functions.

Example: N = 1
Assuming b(k) = 0, N = 1 in (34) we obtain:
F (x , t) = c(0)2 exp(−κx + 8κ3t), where c ≡ c1, κ ≡ κ1. Then the
solution of the GLM equation(36) can be sought in the form
K (x , y , t) = M(x , t)exp(−κy). After simple algebra we get

M(x , t) =
−2κc(0)2 exp(−κx + 8κ2t)

2κ+ c(0)2 exp(−2κx + 8κ2t)
. (37)

As a result, we obtain from (35)

u = −2κ2sech2(κ(x − 4κ2t − x0)) , (38)

which is just the soliton with the amplitude as = 2κ2 propagating to
the right with the velocity cs = 4κ2 = 2as and having the initial phase

x0 =
1

2κ
ln

c(0)2

2κ
. (39)
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Reflectionless potentials and N-soliton solutions

For arbitrary N ∈ N and b(k) ≡ 0 we have from (34)

F (x , t) =
N
∑

n=1

cn(t)2 exp(−κnx) , (40)

and therefore, seek the solution of the GLM equation (36) in the form

K (x , y , t) =
N
∑

n=1

Mn(x , t)exp(−κny) . (41)

Now, on using (35), (36) one arrives, after some algebra, at the
general (Kay-Moses) representation for the reflectionless potential
uN(x , t)

uN(x , t) = −2
∂2

∂x2 ln det A(x , t) . (42)

Here A is the N × N matrix given by

Amn = δmn +
cn(0)2

κn + κm
e−(κn+κm)x+8κ3

n t , (43)

δkm being the Kronecker delta.
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Reflectionless potentials and N-soliton solutions

Analysis of formulae (42), (43) shows that for t → ±∞ the solution of
the KdV equation corresponding to the reflectionless potential can be
asymptotically represented as a superposition of N single-soliton
solutions propagating to the right and ordered in space by their
speeds (amplitudes):

uN(x , t) ∼ −
N
∑

n=1

2κ2
nsech2[κn(x − 4κ2

nt − x±
n )] as t → ±∞ , (44)

where the amplitudes of individual solitons are given by an = 2κ2
n and

the positions ∓xn of the n-th soliton as t → ∓∞ are given by the
relationship (cf. (39) for a single soliton)

x±
n =

1
2κn

ln
cn(0)2

2κn
± 1

2κn

{

n−1
∑

m=1

ln

∣

∣

∣

∣

κn − κm

κn + κm

∣

∣

∣

∣

−
N
∑

m=n+1

ln

∣

∣

∣

∣

κn − κm

κn + κm

∣

∣

∣

∣

}

.
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Reflectionless potentials and N-soliton solutions

One can infer from Eq. (44) that at t ≫ 1, the tallest soliton with
n = N is at the front followed by the progressively shorter solitons
behind, forming thus the triangle amplitude (velocity) distribution
characteristic for noninteracting particles. At t → −∞ we get the
reversed picture. The full solution (42), (43) thus describes the
interaction (collision) of N solitons at finite times. For this reason it is
called N-soliton solution.

The N-soliton solution is characterised by 2N parameters κ1, . . . , κN ,
c1(0), . . . , cN(0). Owing to isospectrality (κn = constant), the solitons
preserve their amplitudes (and velocities) in the interactions; the only
change they undergo is an additional phase shift δn = x+

n − x−
n due to

collisions.
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Reflectionless potentials. Example: N = 2

2-soliton solution: interaction of two solitons

−u2(x , t) ∼ 2κ2
1sech2[κ1(x − 4κ2

1t ∓ x1)] + 2κ2
2sech2[κ2(x − 4κ2

2t ∓ x2)]

as t → ±∞
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Reflectionless potentials. N=2

For a two-soliton collision with κ1 > κ2 the phase shifts as t → +∞
are

δ1 = 2x1 =
1
κ1

ln
(

κ1 + κ2

κ1 − κ2

)

, δ2 = 2x2 = − 1
κ2

ln
(

κ1 + κ2

κ1 − κ2

)

. (45)

t
2η

1η

2η

1η

x

Dominant 
interaction 
region 

It follows from formula above that, as a result of the interaction, the
taller soliton gets an additional shift forward by the distance δ1 while
the shorter soliton is shifted backwards by the distance −δ2.
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Solitonsless potentials: nonlinear radiation

In contrast to the reflectionless potentials, characterised by discrete
spectrum, there are potentials characterised by pure continuous
spectrum. In particular, this is the case for all positive potentials
u0(x) ≥ 0. Now one has to deal with the second term alone in
formula (34). In this case, the general expression for the solution
similar to the N-soliton solution is not available.

An asymptotic analysis shows that, under the long-time evolution,
such a potential transforms into the linear dispersive wave (the
radiation) described by the linearised KdV equation but the detailed
structure of this wave and its dependence on the initial data are very
complicated. However, the qualitative behaviour is physically
transparent: the linear radiation propagates to the left with the
velocity close to the group velocity cg = −3k2 of a linear wavepacket
and the lowest rate of the amplitude decay is ∼ t−1/2 which is
consistent with the wave energy conservation in linear theory.
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Evolution of a “solitonless” profile

The plot shows evolution of −u(x , t)
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Evolution of an arbitrary decaying profile

The long-time asymptotic outcome of the general KdV initial-value
problem for decaying initial data can be represented in the form

u(x , t) ∼ −
N
∑

n=1

2κ2
nsech2(κn(x − 4κ2

nt − xn)) + linear radiation , (46)

where the soliton amplitudes an = 2κ2
n and the initial phases xn, as

well as the parameters of the radiation component, are determined
from the scattering data for the initial potential.

Unfortunately, even the direct scattering problem can be solved
explicitly only for very few potential forms. In most cases, one has to
use numerical simulations or asymptotic estimates.
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Arbitrary initial potential: concluding remarks

For a given initial potential u0(x):

A simple sufficient condition for the appearance of at least one
bound state in the spectrum (i.e. of a soliton in the solution of the
KdV equation ut − 6uux + uxxx = 0) is

∫ +∞

−∞
u0(x)dx < 0 . (47)

The upper bound for the number N of solitons in the solution can
be estimated by the formula

N ≤ 1 +

∫ +∞

−∞
|x ||u0(x)|dx . (48)
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Example: KdV evolution of a delta-function profile

ut − 6uux + uxxx = 0 , u(x , 0) = −u0δ(x) . (49)

Scattering Problem

Consider −φxx + V (x)φ = λφ, where V (x) = −u0δ(x).

Simple analysis shows that

φ(x) is continuous for all x ∈ R.

φ′(x) has a jump at x = 0: φ′(+0)− φ′(−0) = −u0φ(0)

Then for a discrete spectrum λn = −κ2
n < 0 we have

φn =

{

αne−κnx , x > 0,
βneκnx , x < 0.

Using continuity of φ(x) at x = 0 and normalisation
∫∞
−∞ φ2

ndx = 1 we
obtain αn = βn =

√
κn. Then the jump condition for φ′ at x = 0 implies

that there is only one discrete eigenvalue λ1 = −κ2
1, where κ1 = u0/2

(note that there is no discrete spectrum if u0 < 0).
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Example: KdV evolution of a delta-function profile

Continuous spectrum

Let λ = k2, k ∈ R. Then the scattering solution is

φn =

{

e−ikx + b(k)eikx , x > 0,
a(k)e−ikx , x < 0.

Continuity at x = 0 yields 1 + b(k) = a(k). Then from the jump
condition for φ′ at x = 0 we obtain the reflection coefficient.

b(k) = − u0

2ik + u0
.

One can see that

continuous spetrum exists for both signs of u0;

b(k) has a simple pole at k = iu0/2 in the upper half-plane, the
discrete spectrum value λ = k2 = −u2

0/4.
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Example: KdV evolution of a delta-function profile

The single discrete eigenvalue λ1 = −κ1 = −u0/2 and non-zero
reflection coefficient b(k) imply the KdV solution in the form of a
single soliton with the amplitude a = 2κ2

1 = u2
0/2 plus some radiation

due to continuous spectrum, so that for t ≫ 1 we have

u(x , t) ≃ −u2
0

2
sech2(

u0

2
(x − u2

0 t − x0)) + radiation , (50)

where x0 = 1
u0

ln 1
2 .
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Semi-classical asymptotics
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Semi-classical asymptotics in the IST method

One of the important cases where some explicit analytic results of
rather general form become available, occurs when the initial
potential is a ‘large-scale’ function.
We consider the KdV equation in the form

ut + 6uux + uxxx = 0 (51)

with large-scale positive initial data

u(x , 0) = u0(x/L) > 0 , L ≫ 1 . (52)

For simplicity, we assume that initial function (52) has a form of a
single positive hump satisfying an additional condition

∫ ∞

−∞
u0

1/2dx ≫ 1 , (53)

An estimate following from Eq. (53) is A1/2L ≫ 1, where
A = max(u0).
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Semi-classical asymptotics in the IST method

The Schrödinger operator associated with the KdV equation

ut + 6uux + uxxx = 0 (54)

is
−φxx − uφ = λφ . (55)

Then, for large positive initial condition u0(x) > 0 the operator (55)
has a large number of bound states located close to each other so
that the discrete spectrum can be characterized by a single
continuous distribution function. In this case, an effective asymptotic
description of the spectrum can be obtained with the use of the
semi-classical Wentzel-Kramers-Brillouin (WKB) method.
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Semi-classical asymptotics in the IST method

Assuming A = O(1) we introduce ‘slow’ variables X = ǫx , T = ǫt ,
where ǫ = 1/L ≪ 1 is a small parameter, into Eq. (54) to get the
small-dispersion KdV equation:

uT + 6uuX + ǫ2uXXX = 0 , ǫ≪ 1 (56)

with the initial condition

u(X , 0) = u0(X) ≥ 0 , (57)

where

u0(X) is C1 , and
∫ ∞

−∞
u1/2

0 dX = O(1) . (58)

The associated Schrödinger equation (55) in the Lax pair assumes
the form

−ǫ2φXX − uφ = λφ , ǫ≪ 1 . (59)
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Semi-classical asymptotics in the IST method

The WKB analysis of the Schrödinger equation (59) yields that, for
the potential −u0(X) ≤ 0 satisfying condition (58) the reflection
coefficient is asymptotically zero,

lim
ǫ→0

b(k) = 0 , (60)

while the eigenvalues λn = −η2
n (n = 1, . . . ,N and

η1 > η2 > · · · > κn ≥ 0) are distributed in the range −A ≤ −η2 ≤ 0 so
that the density of the distribution of ηk ’s is given by the formula
(Weyl’s law)

φ(η) =
1
πǫ

∫ X+(η)

X−(η)

η
√

u0(X) − η2
dX , (61)

so that φ(η)dη is the number of ηk ’s in the interval (η; η + dη). Here
the limits of integration X−(η) < X+(η) are defined by u0(X±) = η2.
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Semi-classical asymptotics in the IST method

The total number of bound states N can be estimated as

N ∼
∫ A1/2

0
φ(η)dη =

1
πǫ

∫ +∞

−∞
u1/2

0 (X)dX ≫ 1 . (62)

The inequality in (62) is equivalent to the condition (53) and clarifies
its physical meaning. The norming constants cn(0) of the scattering
data in the semi-classical limit are given by formulae

cn = exp{χ(κn)/ǫ} , (63)

where

χ(η) = ηX+(η) +

∫ ∞

X+(η)

(

η −
√

η2 − u0(X)

)

dX . (64)
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Semi-classical asymptotics in the IST method

Now we interpret the semi-classical scattering data (60) – (64) in
terms of the solution u(X ,T ) of the small-dispersion KdV equation
(56). First of all, the relation (60) implies that the potential −u0(X) is
asymptotically reflectionless and, hence, the initial data u0(X) can be
approximated by the N-soliton solution (42), (43),

u0(X) ≈ uN(X/ǫ) for ǫ≪ 1 , (65)

where N[u0] ∼ ǫ−1 is given by (62) and the discrete spectrum is
defined by (61), (63), (64). Now one can use the known N-soliton
dynamics for the description of the evolution of an arbitrary initial
potential satisfying the condition (53). This observation served as a
starting point in the series of papers by Lax, Levermore and
Venakides (see their review (1994) and references therein), where
the singular zero-dispersion limit of the KdV equation has been
introduced and thoroughly studied.
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Semi-classical asymptotics in the IST method

While the description of multisolitons at finite T turns out to be quite
complicated in the zero-dispersion limit, the asymptotic behaviour as
T → ∞ can be readily predicted using formula (44) which implies that
the asymptotic as T → ∞ outcome of the evolution will be a ‘soliton
train’ consisting of N free solitons ordered by their amplitudes
an = 2κ2

n , n = 1, . . . ,N and propagating on a zero background. The
number of solitons in the train having the amplitude within the interval
(a, a + da) is f (a)da where the soliton amplitude distribution function
f (a) follows from Weyl’s law (61):

f (a) =
1

8πǫ

∮

dX
√

u0(X)− a/2
. (66)

The formula (66) was obtained for the first time by Karpman (1967).
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