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Abstract

The present work aims at deriving theoretical guaranties on the behavior of some cross-
validation procedures applied to the k-nearest neighbors (kNN) rule in the context of binary
{0, 1}-classification. Here we focus on the leave-p-out cross-validation (LpO) used to assess
the performance of the kNN classifier. Remarkably this LpO estimator can be efficiently
computed using closed-form formulas derived by Celisse and Mary-Huard (2011).

We describe a general strategy to derive exponential concentration inequalities for the
LpO estimator applied to the kNN classifier. This relies on deriving upper bounds on
the polynomial moments of the centered LpO estimator by first deriving such bounds for
the leave-one-out (L1O) estimator. Such results are obtained by exploiting the connection
between the LpO estimator and U-statistics as well as by making an intensive use of the
generalized Efron-Stein inequality. One other contribution is the extension to the LpO of
the consistency results previously established by Rogers and Wagner (1978) for the L1O as
an estimator of the risk and/or the error rate of the kNN classifier.

Keywords: Classification, Cross-validation, Risk estimation

1. Introduction

The k-nearest neighbor (kNN) algorithm (Fix and Hodges, 1951) in binary classification is
a popular prediction algorithm based on the idea that the predicted value at a new point
is based on a majority vote from the k nearest neighbors of this point. Although quite
simple, the kNN classifier has been successfully applied to many difficult classification tasks
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(Li et al., 2004; Simard et al., 1998; Scheirer and Slaney, 2003). Efficient implementations
have been also developed to allow dealing with large datasets (Indyk and Motwani, 1998;
Andoni and Indyk, 2006).

The theoretical properties of the kNN classifier have been already extensively investi-
gated. In the context of binary classification, preliminary theoretical results date back to
Cover and Hart (1967); Cover (1968); Györfi (1981). More recently, Psaltis et al. (1994);
Kulkarni and Posner (1995) derived an asymptotic equivalent to the performance of the
1NN classification rule, further extended to kNN by Snapp and Venkatesh (1998). Hall
et al. (2008) also derived asymptotic expansions of the risk of the kNN classifier assum-
ing either a Poisson or a binomial model for the training points, which relates this risk to
the parameter k. By contrast to the aforementioned results, the work by Chaudhuri and
Dasgupta (2014) focuses on the finite sample framework. They typically provide upper
bounds with high probability on the risk of the kNN classifier where the bounds are not
distribution-free. Alternatively in the regression setting, Kulkarni and Posner (1995) pro-
vide a finite-sample bound on the performance of 1NN that has been further generalized
to the kNN rule (k ≥ 1) by Biau et al. (2010a), where a bagged version of the kNN rule is
also analyzed and then applied to functional data Biau et al. (2010b). We refer interested
readers to Biau and Devroye (2016) for an almost thorough presentation of known results
on the kNN algorithm in various contexts.

In numerous (if not all) practical applications, computing the cross-validation (CV)
estimator (Stone, 1974, 1982) has been among the most popular strategies to evaluate the
performance of the kNN classifier (Devroye et al., 1996, Section 24.3). All CV procedures
share a common principle which consists in splitting a sample of n points into two disjoint
subsets called training and test sets with respective cardinalities n − p and p, for any
1 ≤ p ≤ n−1. The n−p training set data serve to compute a classifier, while its performance
is evaluated from the p left out data of the test set. For a complete and comprehensive review
on cross-validation procedures, we refer the interested reader to Arlot and Celisse (2010).

In the present work, we focus on the leave-p-out (LpO) cross-validation. Among CV
procedures, it belongs to exhaustive strategies since it considers (and averages over) all the(
n
p

)
possible such splittings of {1, . . . , n} into training and test sets. Usually the induced

computation time of the LpO is prohibitive, which gives rise to its surrogate called V−fold
cross-validation (V-FCV) with V ≈ n/p (Geisser, 1975). However, Steele (2009); Celisse
and Mary-Huard (2011) recently derived closed-form formulas respectively for the bootstrap
and the LpO procedures applied to the kNN classification rule. Such formulas allow one
to efficiently compute the LpO estimator. Moreover since the V-FCV estimator suffers a
larger variance than the LpO one (Celisse and Robin, 2008; Arlot and Celisse, 2010), LpO
(with p = bn/V c) strictly improves upon V-FCV in the present context.

Although being favored in practice for assessing the risk of the kNN classifier, the use
of CV comes with very few theoretical guarantees regarding its performance. Moreover
probably for technical reasons, most existing results apply to Hold-out and leave-one-out
(L1O), that is LpO with p = 1 (Kearns and Ron, 1999). In this paper we rather consider
the general LpO procedure (for 1 ≤ p ≤ n − 1) used to estimate the risk (alternatively
the classification error rate) of the kNN classifier. Our main purpose is then to provide
theoretical guarantees on the behavior of LpO with respect to p. For instance we aim at

2



Performance of CV to estimate the risk of kNN

answering the question: “How would p influence the estimation of the risk of the kNN
classifier?”

Contributions. The main contribution of the present work is to describe a new general
strategy to derive exponential concentration inequalities for the LpO estimator applied to
the kNN binary classifier.

This strategy relies on several steps. We start by upper bounding the polynomial mo-
ments of the centered LpO estimator in terms of those of the L1O estimator. This is first
achieved by exploiting the connection between the LpO estimator and U-statistics (Koroljuk
and Borovskich, 1994), as well as the Rosenthal inequality (Ibragimov and Sharakhmetov,
2002). Then, we derive upper bounds on the moments of the L1O estimator using the gen-
eralized Efron-Stein inequality (Boucheron et al., 2005, 2013, Theorem 15.5) This allows us
to infer the influence of the parameter p on the concentration rate of the LpO estimator for
any k. We finally deduce the new exponential concentration inequalities for the LpO esti-
mator, which gives some insight on the behavior of the LpO estimator whatever the value of
the ratio p/n ∈ (0, 1). In particular while the upper bounds increase with 1 ≤ p ≤ n/2 + 1,
it is no longer the case if p > n/2 + 1.

The remainder of the paper is organized as follows. The connection between the LpO
estimator and U -statistics is clarified in Section 2. Order-q moments (q ≥ 2) of the LpO
estimator are then upper bounded in terms of those of the L1O estimator. Section 3
then specifies the previous upper bounds in the case of the kNN classifier. This leads,
for any k, to the main Theorem 3.2 characterizing the concentration behavior of the LpO
estimator with respect to p. Deriving exponential concentration inequalities for the LpO
estimator is the main concern of Section 4. We illustrate the strength of our strategy by first
providing concentration inequalities derived with less sophisticated tools, and then provide
our main inequality. Finally Section 5 collects new extensions to LpO of previous results
originally established for L1O. This section ends by assessing the discrepancy between the
LpO estimator and the risk of the kNN classifier.

2. U-statistics and LpO estimator

2.1 Statistical framework

We tackle the binary classification problem where the goal is to predict the unknown label
Y ∈ {0, 1} of an observation X ∈ X ⊂ Rd. The random variable (X,Y ) has an unknown
joint distribution P(X,Y ) defined by P(X,Y )(A) = P [ (X,Y ) ∈ A ] for any Borelian set in
X × {0, 1}, where P denotes a probability distribution. In what follows no particular dis-
tributional assumption is made regarding X. To predict the label, one aims at building
a classifier f̂ : X → {0, 1} on the basis of a set of random variables Z1,n = {Z1, . . . , Zn}
called the training sample, where Zi = (Xi, Yi), 1 ≤ i ≤ n represent n copies of (X,Y )
drawn independently from P(X,Y ). Any strategy to build such a classifier is called an
classification algorithm or classification rule, and can be formally defined as a function
A : ∪n≥1 {X × {0, 1}}n → F that maps a training sample Z1,n onto the corresponding

classifier A (Z1,n; ·) = f̂ ∈ F , where F is the set of all measurable functions from X to
{0, 1}. Numerous classification rules have been considered in the literature and it is out of
the scope of the present paper to review all of them (see Devroye et al. (1996) for many
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instances). Here we focus on the k-nearest neighbor rule (kNN) initially proposed by Fix
and Hodges (1951) and further studied for instance by Devroye and Wagner (1977); Rogers
and Wagner (1978). For 1 ≤ k ≤ n, the kNN rule, denoted by Ak, consists in classifying
any new observation x using a majority vote decision rule based on the label of the k points
X(1)(x), . . . , X(k)(x) closest to x among the training sample X1, . . . , Xn, according to some
distance function:

Ak(Z1,n;x) = f̂k(Z1,n;x) :=

{
1 if 1

k

∑
i∈Vk(x) Yi = 1

k

∑k
i=1 Y(i)(x) > 0.5

0 otherwise
, (2.1)

where Vk(x) =
{

1 ≤ i ≤ n, Xi ∈
{
X(1)(x), . . . , X(k)(x)

}}
denotes the set of indices of the

k nearest neighbors of x among X1, . . . , Xn, and Y(i)(x) is the label of the i-th nearest
neighbor of x for 1 ≤ i ≤ k. The choice of the distance function will typically depends
on the nature of the data to be dealt with, and will not be discussed here. While in some
applications adaptive metrics have been considered (see Hastie et al., 2001, , Chap. 14
for instance), in what follows we will assume the distance function to be fixed, i.e. that
its definition does not depend on the specific training sample at hand. Let us further as-
sume that ties are broken at random, for instance by choosing the smallest index among ties.

For a given sample Z1,n, the performance of any classifier f̂ = f̂(Z1,n; ·) is assessed by

the classification error L(f̂) (respectively the risk R(f̂)) defined by

L(f̂) = P
(
f̂(X) 6= Y | Z1,n

)
, and R(f̂) = E

[
P
(
f̂(X) 6= Y | Z1,n

) ]
.

In this paper we focus on the estimation of L(f̂) (and its expectation R(f̂)) by use of the
Leave-p-Out (LpO) cross-validation for 1 ≤ p ≤ n − 1 (Zhang, 1993; Celisse and Robin,
2008). LpO successively considers all possible splits of Z1,n into a training set of cardinality
n − p and a test set of cardinality p. Denoting by En−p the set of all possible subsets of
{1, . . . , n} with cardinality n − p, any e ∈ En−p defines a split of Z1,n into a training set
Ze = {Zi | i ∈ e} and a test set Z ē, where ē = {1, . . . , n} \ e. For a given classification
algorithm A, the final LpO estimator of the performance of A(Z1,n; ·) = f̂ is the average
(over all possible splits) of the classification error estimated on each test set, that is

R̂p(A, Z1,n) =

(
n

p

)−1 ∑
e∈En−p

(
1

p

∑
i∈ē

1{A(Ze;Xi)6=Yi}

)
, (2.2)

where A (Ze; ·) is the classifier built from Ze. We refer the reader to Arlot and Celisse
(2010) for a detailed description of LpO and other cross-validation procedures.

However unlike what arises from (2.2), the LpO estimator can be efficiently computed
by use of closed-form formulas with a time complexity linear in p when applied to the kNN
classification rule Celisse and Mary-Huard (2011). This property remains true in other
contexts such as density estimation Celisse and Robin (2008); Celisse (2014), regression
Celisse (2008); Arlot and Celisse (2011), and so on. In particular this property contrasts with
the usual prohibitive computational complexity suffered by LpO due to the high cardinality
of En−p that is equal to

(
n
p

)
.

Since no theoretical guarantee does exist on the performance of LpO applied to the kNN
classifier, one main goal in what follows is to design a general strategy to derive such results.
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2.2 U-statistics: General bounds on LpO moments

The purpose of the present section is to describe a general strategy allowing to derive
new upper bounds on the polynomial moments of the LpO estimator. As a first step of
this strategy, we establish the connection between the LpO risk estimator and U-statistics.
Second, we exploit this connection to derive new upper bounds on the order-q moments of
the LpO estimator for q ≥ 2. Note that these upper bounds, which relate moments of the
LpO estimator to those of the L1O estimator, hold true with any classifier.

Let us start by introducing U -statistics and recalling some of their basic properties that
will serve our purposes. For a thorough presentation, we refer to the books by Serfling
(1980); Koroljuk and Borovskich (1994). The first step is the definition of a U -statistic of
order m ∈ N∗ as an average over all m-tuples of distinct indices in {1, . . . , n}.

Definition 2.1 (Koroljuk and Borovskich (1994)). Let h : Xm −→ R (or Rk) denote
any Borelian function where m ≥ 1 is an integer. Let us further assume h is a symmetric
function of its arguments. Then any function Un : X n −→ R such that

Un(x1, . . . , xn) = Un(h)(x1, . . . , xn) =

(
n

m

)−1 ∑
1≤i1<...<im≤n

h (xi1 , . . . , xim)

where m ≤ n, is a U -statistic of order m and kernel h.

Before clarifying the connection between LpO and U -statistics, let us introduce the main
property of U -statistics our strategy relies on. It consists in representing any U-statistic as
an average, over all permutations, of sums of independent variables.

Proposition 2.1 (Eq. (5.5) in Hoeffding (1963)). With the notation of Definition 2.1, let
us define W : X n −→ R by

W (x1, . . . , xn) =
1

r

r∑
j=1

h
(
x(j−1)m+1, . . . , xjm

)
, (2.3)

where r = bn/mc denotes the integer part of n/m. Then

Un(x1, . . . , xn) =
1

n!

∑
σ

W
(
xσ(1), . . . , xσ(n)

)
,

where
∑

σ denotes the summation over all permutations σ of {1, . . . , n}.

We are now in position to state the key remark of the paper. All the developments
further exposed in the following result from this connection between the LpO estimator
defined by Eq. (2.2) and U -statistics.

Theorem 2.1. For any classification rule A and any 1 ≤ p ≤ n− 1 such that the following
quantities are well defined, the LpO estimator R̂p(A, Z1,n) is a U-statistic of order m =
n− p+ 1 with kernel hm : Xm −→ R defined by

hm(Z1, . . . , Zm) =
1

m

m∑
i=1

1{A(Z
(i)
1,m;Xi)6=Yi

},
where Z

(i)
1,m denotes the sample (Z1, . . . , Zm) with Zi withdrawn.
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Proof of Theorem 2.1.

From Eq. (2.2), the LpO estimator of the performance of any classification algorithm A
computed from Z1,n satisfies

R̂p(A, Z1,n) =
1(
n
p

) ∑
e∈En−p

1

p

∑
i∈ē

1{A(Ze;Xi)6=Yi}

=
1(
n
p

) ∑
e∈En−p

1

p

∑
i∈ē

 ∑
v∈En−p+1

1{v=e∪{i}}

1{A(Ze;Xi)6=Yi},

since there is a unique set of indices v with cardinality n−p+1 such that v = e∪{i}. Then

R̂p(A, Z1,n) =
1(
n
p

) ∑
v∈En−p+1

1

p

n∑
i=1

 ∑
e∈En−p

1{v=e∪{i}}1{i∈ē}

1{A(Zv\{i};Xi)6=Yi}.

Furthermore for v and i fixed,
∑

e∈En−p 1{v=e∪{i}}1{i∈ē} = 1{i∈v} since there is a unique set

of indices e such that e = v \ i. One gets

R̂p(A, Z1,n) =
1

p

1(
n
p

) ∑
v∈En−p+1

n∑
i=1

1{i∈v}1{A(Zv\{i};Xi) 6=Yi}

=
1(
n

n−p+1

) ∑
v∈En−p+1

1

n− p+ 1

∑
i∈v

1{A(Zv\{i};Xi)6=Yi},

by noticing p
(
n
p

)
= pn!

p!n−p! = n!
p−1!n−p! = (n− p+ 1)

(
n

n−p+1

)
.

The kernel hm is a deterministic and symmetric function of its arguments that does only
depend on m. Let us also notice that hm (Z1, . . . , Zm) reduces to the L1O estimator of the
risk of the classification rule A computed from Z1, . . . , Zm, that is

hm (Z1, . . . , Zm) = R̂1 (A, Z1,m) . (2.4)

In the context of testing whether two binary classifiers have different error rates, this fact
has already been pointed out by Fuchs et al. (2013).

We now derive a general upper bound on the q-th moment (q ≥ 1) of the LpO esti-
mator that holds true for any classification rule as long as the following quantities remain
meaningful.

Theorem 2.2. For any classification rule A, let A(Z1,n; ·) and A(Z1,m; ·) be the corre-
sponding classifiers built from respectively Z1, . . . , Zn and Z1, . . . , Zm, where m = n−p+ 1.
Then for every 1 ≤ p ≤ n − 1 such that the following quantities are well defined, and any
q ≥ 1,

E
[∣∣∣R̂p(A, Z1,n)− E

[
R̂p(A, Z1,n)

]∣∣∣q] ≤ E
[ ∣∣∣R̂1(A, Z1,m)− E

[
R̂1(A, Z1,m)

]∣∣∣q ] . (2.5)

Furthermore as long as p > n/2 + 1, one also gets

6



Performance of CV to estimate the risk of kNN

• for q = 2

E
[∣∣∣R̂p(A, Z1,n)− E

[
R̂p(A, Z1,n)

]∣∣∣2] ≤ E
[∣∣∣R̂1(A, Z1,m)− E

[
R̂1(A, Z1,m)

]∣∣∣2]⌊
n
m

⌋ ·

(2.6)

• for every q > 2

E
[∣∣∣R̂p(A, Z1,n)− E

[
R̂p(A, Z1,n)

]∣∣∣q] ≤ B(q, γ)×2qγ
⌊ n
m

⌋
E

 ∣∣∣∣∣∣
R̂1(A, Z1,m)− E

[
R̂1(A, Z1,m)

]
⌊
n
m

⌋
∣∣∣∣∣∣
q  ∨


√√√√2Var

(
R̂1(A, Z1,m)

)
⌊
n
m

⌋

q ,

(2.7)

where γ > 0 is a numeric constant and B(q, γ) denotes the optimal constant defined in
the Rosenthal inequality (Proposition D.2), and a ∨ b = max(a, b) for every a, b ∈ R.

The proof is given in Appendix A.1. Eq. (2.5) and Eq. (2.6) straightforwardly result
from the Jensen inequality applied to the average over all permutations provided in Proposi-
tion 2.1. If p > n/2+1, the integer part bn/mc becomes larger than 1 and Eq. (2.6) becomes
better than Eq. (2.5) for q = 2. As a consequence of our strategy of proof, the right-hand
side of Eq. (2.6) is equal to the classical upper bound on the variance of U-statistics.

Unlike the above ones, Eq. (2.7) is rather derived from the Rosenthal inequality, which
allows to upper bound a sum ‖

∑r
i=1 ξi‖q of independent and identically centered random

variables in terms of
∑r

i=1 ‖ξi‖q and
∑r

i=1 Var(ξi). Let us remark that, for q = 2, both
terms of the right-hand side of Eq. (2.7) are of the same order as Eq. (2.6) up to constants.
This allows us to take advantage of the integer part bn/mc when p > n/2 + 1, unlike what
we get by using Eq.(2.5) for q > 2. In particular it provides a new understanding of the
behavior of the LpO estimator where p/n→ 1 as highlighted by Proposition 4.2.

3. New bounds on LpO moments for the kNN classifier

Our goal is now to specify the general upper bounds provided by Theorem 2.2 in the case
of the kNN classification rule Ak (1 ≤ k ≤ n) introduced by (2.1).

Since Theorem 2.2 expresses the moments of the LpO estimator in terms of those of the
L1O estimator, the next step consists in focusing on the L1O moments. Deriving tight upper
bounds on the moments of the L1O is achieved using a generalization of the well-known
Efron-Stein inequality (see Theorem D.1 for Efron-Stein’s inequality and Theorem 15.5 in
Boucheron et al. (2013) for its generalization). For the sake of completeness, we first recall
a corollary of this generalization that is proved in Section D.1.4 (see Corollary D.1).

Proposition 3.1. Let X1, . . . , Xn denote n independent random variables and Z =
f(X1, . . . , Xn), where f : Rn → R is any Borelian function. With Z ′i =
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f(X1, . . . , X
′
i, . . . , Xn), where X ′1, . . . , X

′
n are independent copies of the Xis, there exists

a universal constant κ ≤ 1.271 such that for any q ≥ 2,

‖Z − EZ‖q ≤
√

2κq

√√√√∥∥∥∥∥
n∑
i=1

(Z − Z ′i)
2

∥∥∥∥∥
q/2

.

Then applying Proposition 3.1 with Z = R̂1(Ak (Z1,m; ·)) leads to the following Theo-
rem 3.1, which finally allows to control the order-q moments of the L1O estimator applied
to the kNN classifier.

Theorem 3.1. For every 1 ≤ k ≤ n− 1, let Ak (Z1,m; ·) (m = n− p+ 1) denote the kNN

classifier learnt from Z1,m and R̂1(Ak(Z1,m; ·)) be the corresponding L1O estimator given
by Eq. (2.2). Then

• for q = 2,

E
[(
R̂1(Ak, Z1,m)− E

[
R̂1(Ak, Z1,m)

])2
]
≤ C1

√
k

( √
k√
m

)2

;

• for every q > 2,

E
[ ∣∣∣R̂1(Ak, Z1,m)− E

[
R̂1(Ak, Z1,m)

]∣∣∣q ] ≤ (C2
√
q)q
(

k√
m

)q
,

with C1 = 2 + 16γd and C2 = 4γd
√

2κ, where γd is a constant (arising from Stone’s lemma,
see Lemma D.5) that grows exponentially with dimension d, and κ is defined in Proposi-
tion 3.1.

Its proof (detailed in Section A.2) involves the use of Stone’s lemma (Lemma D.5), which
enables to upper bound, for a given Xi, the number of points {Xj}j 6=i having Xi among
their k nearest neighbors by kγd.

First, the maths in these upper bounds have not been simplified on purpose to facilitate
their comparison and emphasize the difference in the dependence with respect to k. In
particular the larger dependence on k for q > 2 results from the difficulty to derive a tight
upper bound for the expectation of (

∑n
i=1 1

{
Ak

(
Z

(i)
1,m;Xi

)
6=Ak

(
Z

(i,j)
1,m ;Xi

)})q in this case, where

Z
(i)
1,m (resp. Z

(i,j)
1,m ) denotes the sample Z1,m where Zi has been (resp. Zi and Zj have been)

removed .

Second, the easier case q = 2 enables to exploit exact calculations (rather than upper
bounds) of the variance of the L1O. Note that this k3/2/m is better than than the ongo-
ing upper bound we would obtain from using the sub-Gaussian exponential concentration
inequality provided by Theorem 24.4 in Devroye et al. (1996), which only leads to a k2/m.

We are now in position to state the main result of this section. It follows from the
combination of Theorem 2.2 (connecting moments of the LpO estimator to those of the
L1O) and Theorem 3.1 (providing an upper bound on the order-q moments of the L1O).
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Theorem 3.2. For every p, k ≥ 1 such that p+k ≤ n, let R̂p(Ak, Z1,n) denote the LpO risk
estimator (see (2.2)) of the kNN classifier Ak (Z1,n; ·) defined by (2.1). Then there exist
(known) constants C1, C2 > 0 such that for every 1 ≤ p ≤ n− k,

• for q = 2,

E
[(
R̂p(Ak, Z1,n)− E

[
R̂p(Ak, Z1,n)

])2
]
≤ C1

k3/2

(n− p+ 1)
; (3.1)

• for every q > 2,

E
[ ∣∣∣R̂p(Ak, Z1,n)− E

[
R̂p(Ak, Z1,n)

]∣∣∣q ] ≤ (C2k)q
(

q
n−p+1

)q/2
, (3.2)

with C1 = 128κγd√
2π

and C2 = 4γd
√

2κ, where γd denotes the constant arising from Stone’s

lemma (Lemma D.5). Furthermore in the particular setting where n/2 + 1 < p ≤ n − k,
then

• for q = 2,

E
[(
R̂p(Ak, Z1,n)− E

[
R̂p(Ak, Z1,n)

])2
]
≤ C1

k3/2

(n− p+ 1)
⌊

n
n−p+1

⌋ , (3.3)

• for every q > 2,

E
[ ∣∣∣R̂p(Ak, Z1,n)− E

[
R̂p(Ak, Z1,n)

]∣∣∣q ]

≤
⌊

n

n− p+ 1

⌋
Γq

 k3/2

(n− p+ 1)
⌊

n
n−p+1

⌋ q ∨ k2

(n− p+ 1)
⌊

n
n−p+1

⌋2 q
3


q/2

, (3.4)

where Γ = 2
√

2emax
(√

2C1, 2C2

)
.

The straightforward proof is detailed in Section A.3.
Let us start by noticing that both Eq. (3.1) and Eq. (3.2) provide upper bounds which

deteriorate as p grows. This is no longer the case for Eq. (3.3) and Eq. (3.4), which are
specifically designed to cover the setup where p > n/2 + 1, that is where bn/mc is no longer
equal to 1. The interest of these last two inequalities is also illustrated by considering the
case where n−p remains fixed, that is independent of n. This is a particular instance of the
setup where p/n→ 1, as n→ +∞, which has been investigated in different frameworks by
Shao (1993); Yang (2006, 2007); Celisse (2014). In this context Eq. (3.1) and (3.2) provide
non informative upper bounds, whereas Eq. (3.3) and (3.4) lead to respective convergence
rates at worse k3/2/n (for q = 2) and kq/nq−1 (for q > 2).

One can also emphasize that, as a U-statistic of order m = n−p+ 1, the LpO estimator
has a known limiting distribution when its order m remains constant with respect to n,

9
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which amounts to require n − p is equal to a constant. In this setup, it is known (see
Theorem A, Section 5.5.1 Serfling, 1980) that

√
n

m

(
R̂p(Ak, Z1,n)− E

[
R̂p(Ak, Z1,n)

])
L−−−−−→

n→+∞
N (0, ζ1) ,

where ζ1 = Var [ g(Z1) ], with g(z) = E [hm(z, Z2, . . . , Zm) ]. Therefore the upper bound
given by Eq. (3.3) has the right magnitude with respect to n as long as m = n − p + 1 is
assumed to be constant.

Finally Eq. (3.4) has been derived using a specific version of the Rosenthal inequality
(Ibragimov and Sharakhmetov, 2002) stated with the optimal constant and involving a
“balancing factor”. In particular this balancing factor has allowed us to optimize the relative
weight of the two terms between brackets in Eq. (3.4). This leads us to claim that the
dependence of the upper bound with respect to q cannot be improved with this line of
proof. However we do not conclude that the term in q3 cannot be improved using other
technical arguments.

4. Exponential concentration inequalities

In this section, we provide exponential concentration inequalities for the LpO estimator
applied to the kNN classifier. The main inequalities we provide at the end of this section
heavily rely on the moments inequalities previously derived in Section 3, that is Theorem 3.2.
In order to emphasize the interest of our approach, we start this section by proving two
exponential inequalities obtained with less sophisticated tools. For each of them, we discuss
its strength and weakness to justify the additional refinements we further explore step by
step.

A first exponential concentration inequality for R̂p(Ak, Z1,n) can be derived by use
of the bounded difference inequality following the line of proof of Devroye et al. (1996,
Theorem 24.4) originally developed for the L1O estimator.

Proposition 4.1. For any integers p, k ≥ 1 such that p + k ≤ n, let R̂p(Ak, Z1,n) denote
the LpO estimator (2.2) of the classification error of the kNN classifier Ak(Z1,n; ·) defined
by (2.1). Then for every t > 0,

P
(∣∣∣R̂p(Ak, Z1,n)− E

(
R̂p(Ak, Z1,n)

)∣∣∣ > t
)
≤ 2e

−n t2

8(k+p−1)2γ2
d . (4.1)

where γd denotes the constant introduced in Stone’s lemma (Lemma D.5).

The proof is given in Appendix B.1 and relies on the McDiarmid inequality (Theo-
rem D.3).

The upper bound of Eq. (4.1) strongly exploits the facts that: (i) for Xj to be one of
the k nearest neighbors of Xi in at least one subsample Xe, it requires Xj to be one of the
k+ p− 1 nearest neighbors of Xi in the complete sample, and (ii) the number of points for
which Xj may be one of the k+ p− 1 nearest neighbors cannot be larger than (k+ p− 1)γd
by Stone’s Lemma (see Lemma D.5).

This reasoning results in a rough upper bound since the dominator in the exponent
exhibits a (k + p − 1)2 factor. This indicates we do not distinguish between points for

10
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which Xj is among the k nearest neighbors of Xi in the whole sample, or above the k-th
one. However these two setups lead to strongly different probabilities of being among the k
nearest neighbors in the training sample in practice. Consequently the dependence of the
convergence rate on k and p in Proposition 4.1 is not optimal, as confirmed by forthcoming
Theorems 4.1 and 4.2.

Based on the previous comments, a sharper quantification of the influence of each nearest
neighbor among the k+p−1 ones of a given point in the complete sample leads to the next
result.

Theorem 4.1. For every p, k ≥ 1 such that p + k ≤ n, let R̂p(Ak, Z1,n) denote the LpO
estimator (2.2) of the classification error of the kNN classifier Ak(Z1,n; ·) defined by (2.1).
Then there exists a numeric constant � > 0 such that for every t > 0,

P
(
R̂p(Ak, Z1,n)− E

(
R̂p(Ak, Z1,n)

)
> t
)
∨ P

(
E
(
R̂p(Ak, Z1,n)

)
− R̂p(Ak, Z1,n) > t

)
≤ exp

− nt2

�k2
[

1 + (k + p) p−1
n−1

]
 ,

with � = 1024eκ(1+γd), where γd is introduced in Lemma D.5 and κ ≤ 1.271 is a universal
constant.

The proof is given in Section B.2.

Let us first remark that, in accordance with the previous comments on the deficiencies of
Proposition 4.1, taking into account the rank of each neighbor in the whole sample enables
to considerably reduce the weight of the denominator in the exponent. In particular, one
observes that letting p/n→ 0 as n→ +∞ (with k assumed to be fixed for instance) makes
the influence of the k + p factor asymptotically negligible. This would allow to recover (up
to numeric constants) a similar upper bound to that of Devroye et al. (1996, Theorem 24.4),
which is achieved by ours in the particular case where p = 1.

However the upper bound of Theorem 4.1 does not reflect the same dependencies with
respect to k and p as what has been proved for polynomial moments in Theorem 3.2. In
particular the upper bound seems to strictly deteriorate as p increases, which contrasts with
the upper bounds derived for p > n/2 + 1 in Theorem 3.2. This drawback is overcome by
the following result, which is our main contribution in the present section.

Theorem 4.2. For every p, k ≥ 1 such that p + k ≤ n, let R̂p(Ak, Z1,n) denote the LpO

estimator of the classification error of the kNN classifier f̂k = Ak(Z1,n; ·) defined by (2.1).
Then for every t > 0,

P
(
R̂p(Ak, Z1,n)− E

[
R̂p(Ak, Z1,n)

]
> t
)
∨ P

(
E
[
R̂p(Ak, Z1,n)

]
− R̂p(Ak, Z1,n) > t

)
≤ exp

(
−(n− p+ 1)

t2

∆2k2

)
, (4.2)

where ∆ = 4
√
emax

(
C2,
√
C1

)
with C1, C2 > 0 defined in Theorem 3.1.
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Furthermore in the particular setting where p > n/2 + 1, it comes

P
(
R̂p(Ak, Z1,n)− E

[
R̂p(Ak, Z1,n)

]
> t
)
∨ P

(
E
[
R̂p(Ak, Z1,n)

]
− R̂p(Ak, Z1,n) > t

)
≤ e

⌊
n

n− p+ 1

⌋
×

exp

− 1

2e
min

(n− p+ 1)

⌊
n

n− p+ 1

⌋
t2

4Γ2k3/2
,

(
(n− p+ 1)

⌊
n

n− p+ 1

⌋2 t2

4Γ2k2

)1/3

,

(4.3)

where Γ arises in Eq. (3.4) and γd denotes the constant introduced in Stone’s lemma
(Lemma D.5).

The proof has been postponed to Appendix B.3. It involves different arguments for the
two inequalities (4.2) and (4.3) depending on the range of p. Firstly, for p ≤ n/2 + 1, the
two corresponding inequalities of Theorem 3.2 on the moments of the LpO estimator allow
to characterize its sub-Gaussian behavior in terms of its even moments. Ineq. (4.2) then
straightforwardly results from Lemma D.2. Secondly, for p > n/2+1, we rather exploit: (i)
the appropriate upper bounds on the moments of the LpO estimator given by Theorem 3.2,
and (ii) a dedicated Proposition D.1 which relates moment upper bounds to exponential
concentration inequalities.

In accordance with the conclusions drawn about Theorem 3.2, one observes that the
upper bound of Eq. (4.2) increases as p grows, unlike that of Eq. (4.3) which improves as p
increases. In particular the best concentration rate in Eq. (4.3) is achieved for p = n − 1,
whereas Eq. (4.2) turns out to be useless in that setting. Let us also notice that Eq. (4.2)
is strictly better than Theorem 4.1 as long as p/n→ δ ∈ [0, 1[, as n→ +∞.

In order to allow an easier interpretation of the last Ineq. (4.3), we also provide the
following proposition (proved in Appendix B.3) which focuses on the description of each
deviation term in the particular case where p > n/2 + 1.

Proposition 4.2. With the same notation as Theorem 4.2, for any p, k ≥ 1 such that
p+ k ≤ n, p > n/2 + 1, and for every t > 0

P

 ∣∣∣R̂p(Ak, Z1,n)− E
[
R̂p(Ak, Z1,n)

]∣∣∣ > √
2eΓ√

n− p+ 1

√√√√ k3/2⌊
n

n−p+1

⌋ t+ 2e
k⌊
n

n−p+1

⌋ t3/2



≤
⌊

n

n− p+ 1

⌋
e · e−t,

where Γ > 0 is the constant arising from (3.4).

By comparison with the well-known Bernstein inequality (Boucheron et al., 2013, The-
orem 2.10), let us remark the present inequality is very similar, except the second deviation
term in t3/2 instead of t (for the Bernstein inequality). The first deviation term is of or-
der ≈ k3/4/

√
n, which is the same order with respect to n as what we would get in the
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Bernstein inequality. The second deviation term is of a somewhat different order, that is
≈ k
√
n− p+ 1/n as compared with the usual 1/n in the Bernstein inequality. This means

that varying p allows to interpolate between the k/
√
n rate and the k/n rate achieved for

instance with p = n− 1.

Note also that the dependence of the first (sub-Gaussian) deviation term with respect
to k is only k

√
k, which improves upon the k2 which would result from Ineq. (4.2) in

Theorem 4.2. However since the dependence of the two deviation terms is inherited from
the upper bound on the L1 stability established by Devroye and Wagner (1979, Eq. (14)),
any improvement of the latter would lead to enhance the present concentration inequality.

5. Assessing the gap between LpO and prediction error

In the present section, we derive new upper bounds on different measures of the discrepancy

between R̂p(Ak, Z1,n) and L(f̂k) or R(f̂k) = E
[
L(f̂k)

]
. These bounds on the LpO estimator

are completely new for 1 < p ≤ n−k. Some of them are extensions of former ones specifically
derived for the L1O estimator applied to the kNN classifier.

Theorem 5.1. For every p, k ≥ 1 such that p + k ≤ n, let R̂p(Ak, Z1,n) denote the LpO

risk estimator (see (2.2)) of the kNN classifier f̂k = Ak(Z1,n; ·) defined by (2.1). Then,

∣∣∣E [ R̂p(Ak, Z1,n)
]
−R(f̂k)

∣∣∣ ≤ 4√
2π

p
√
k

n
, (5.1)

and

E
[(
R̂p(Ak, Z1,n)−R(f̂k)

)2
]
≤ 128κγd√

2π

k3/2

n− p+ 1
+

16

2π

p2k

n2
· (5.2)

Moreover,

E
[(
R̂p(Ak, Z1,n)− L(f̂k)

)2
]
≤ 2
√

2√
π

(2p+ 3)
√
k

n
+

1

n
· (5.3)

Proof of Theorem 5.1.
Proof of (5.1): Lemma D.6 immediately provides

∣∣∣E [R̂p(Ak, Z1,n)− L(f̂k)
]∣∣∣ =

∣∣∣E [L(f̂ek)
]
− E

[
L(f̂k)

]∣∣∣
≤ E

[∣∣1{Ak(Ze;X)6=Y } − 1{Ak(Z1,n;X)6=Y }
∣∣]

= P (Ak(Ze;X) 6= Ak(Z1,n;X)) ≤ 4√
2π

p
√
k

n
·
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Proof of (5.2): The proof combines the previous upper bound with the one established for
the variance of the LpO estimator, that is Eq. (3.1).

E
[(
R̂p(Ak, Z1,n)− E

[
L(f̂k)

])2
]

= E
[(
R̂p(Ak, Z1,n)− E

[
R̂p(Ak, Z1,n)

])2
]

+
(
E
[
R̂p(Ak, Z1,n)

]
− E

[
L(f̂k)

])2

≤ 128κγd√
2π

k3/2

n− p+ 1
+

(
4√
2π

p
√
k

n

)2

,

which concludes the proof.
The proof of Ineq. (5.3) is more intricate and has been postponed to Appendix C.1.

Keeping in mind that E
[
R̂p(Ak, Z1,n)

]
= R(Ak(Z1,m)) (with m = n − p + 1), the

right-hand side of Ineq. (5.1) is an upper bound on the bias of the LpO estimator, that
is on the difference between the risks of the classifiers built from respectively n − p and
n points. Therefore, the fact that this upper bound increases with p is reliable since the
classifiers Ak(Z1,m; ·) and Ak(Z1,n; ·) can become more and more different from one another
as p increases.

More precisely, the upper bound in Ineq. (5.1) goes to 0 provided p
√
k/n does. It

seems somewhat more restrictive than the usual condition on k and n, that is k/n → 0 as
n→ +∞ (see Devroye et al., 1996, Chap. 6.6 for instance). However if one rather assumes
p/n → δ ∈ (0, 1], then this upper bound does no longer decrease to 0. Here again this
seemingly restriction is straightforwardly inherited from the bound on the L1 stability of
the kNN classifier (Devroye and Wagner, 1979, Eq. (14)). Therefore any improvement of
this L1 stability upper bound would enhance Ineq. (5.1).

Let us further notice that this restriction to values of p such that p/n→ 0 justifies the
use of Eq. (3.1) along the derivation of Ineq. (5.2), which is relevant with p ≤ n/2 + 1. Note
that an upper bound similar to that of Ineq. (5.2) can be easily derived for any order-q
moment (q ≥ 2) at the price of increasing the constants by using (a+ b)q ≤ 2q−1(aq + bq),
for every a, b ≥ 0. We also emphasize that Ineq. (5.2) allows to control the discrepancy
between the LpO estimator and the risk of the kNN classifier, that is the expectation of its
classification error. Ideally we would have liked to replace the risk R(f̂k) by the prediction
error L(f̂k). But using our strategy of proof, this would require an additional distribution-
free concentration inequality on the prediction error of the kNN classifier. To the best of
our knowledge, such a concentration inequality is not available up to now.

Finally upper bounding the squared difference between the LpO estimator and the
prediction error is precisely the purpose of Ineq. (5.3). Proving the latter inequality requires
a completely different strategy of proof which can be traced back to an earlier proof by
Rogers and Wagner (1978, see the proof of Theorem 2.1) applying to the L1O estimator.
It is also noticeable that Ineq. (5.3) combined with the Jensen inequality lead to a less
accurate upper bound than Ineq. (5.1).

Let us conclude this section with a corollary, which provides a finite-sample bound on

the gap between R̂p(Ak, Z1,n) and R(f̂k) = E
[
L(f̂k)

]
with high probability. It is stated
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under the same restriction on p as the previous Theorem 5.1 it is based on, that is mainly
for small values of p.

Corollary 5.1. With the notation of Theorems 4.2 and 5.1, let us assume p, k ≥ 1 with
p+ k ≤ n, and p ≤ n/2 + 1. Then for every x > 0, there exists an event with probability at
least 1− 2e−x such that∣∣∣R(f̂k))− R̂p(Ak, Z1,n)

∣∣∣ ≤√√√√ ∆2k2

n
(

1− p−1
n

)x+
4√
2π

p
√
k

n
, (5.4)

where f̂k = Ak(Z1,n; ·).

Proof of Corollary 5.1. Ineq. (5.4) results from combining Ineq. (4.2) (from Theorem 4.2)
and Ineq. (5.1).∣∣∣R(f̂k))− R̂p(Ak, Z1,n)

∣∣∣ ≤ ∣∣∣R(f̂k))− E
[
R̂p(Ak, Z1,n)

]∣∣∣+
∣∣∣E [ R̂p(Ak, Z1,n)

]
− R̂p(Ak, Z1,n)

∣∣∣
≤ 4√

2π

p
√
k

n
+

√
∆2k2

n− p+ 1
x ·

It relies on the combination of the exponential concentration result derived for R̂p(Ak, Z1,n)
(Theorem 4.2) with the upper bound on the bias, that is Ineq. (5.1).

Note that the right-hand side of Ineq. (5.4) could be used to derive bounds on R(f̂k)
that are similar to confidence bounds. However we emphasize these confidence bounds have
not been optimized with respect to the constants, which somewhat limits their practical
applicability in finite-sample size settings.

Let us also recall that the last Ineq. (5.1) essentially applies to small values of p, which
justifies the restriction in Corollary 5.1 to p ≤ n/2 + 1. Indeed choosing p such that n− p
remains constant would make the right-hand side of Ineq. (5.1) nondecreasing. However let
us assume a tighter upper bound than that of Ineq. (5.1) can be derived in the setting where
p > n/2 + 1. Then one would get an inequality similar to Ineq. (5.4) by solely replacing
Theorem 4.2 by Proposition 4.2, which applies to p > n/2 + 1.

6. Discussion

The present work provides theoretical guarantees on the performance of LpO used for esti-
mating the risk of the kNN classifier. First the results derived in Section 4 give some new
insight on the concentration of the LpO estimator around its expectation for different rates
of p/n. Furthermore the upper bounds in Ineq. (5.2) and (5.3) of Section 5 straightforwardly
imply the consistency of the LpO estimator towards the risk (or the classification error rate)
of the kNN classifier.

It is worth mentioning that the upper-bounds derived in Sections 4 and 5 — see for
instance Theorem 5.1 — can be minimized by choosing p = 1, suggesting that the L1O
estimator is optimal in terms of risk estimation when applied to the kNN classification
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algorithm. This observation corroborates the results of the simulation study presented in
Celisse and Mary-Huard (2011), where it is empirically shown that small values of p (and
in particular p = 1) lead to the best estimation of the risk, whatever the value of parameter
k or the level of noise in the data. The suggested optimality of L1O (for risk estimation)
is also consistent with results by Burman (1989) and Celisse (2014), where it is proved
that L1O is the best cross-validation procedure to perform risk estimation in the context
of regression and density estimation respectively. However, note that Theorem 5.1 only
provides an upper-bound of the risk, whereas a thorough analysis would rather require (at
least) an asymptotic equivalent of the measure of the discrepancy between R̂p(Ak, Z1,n) and

L(f̂k).

Alternatively, the LpO estimator can be also used as a data-dependent calibration pro-
cedure to choose k: the value k̂p corresponding to the minimum LpO estimate will be
selected. Although the focus of the present paper is different, it is worth mentioning that
the concentration results established in Section 4 are a significant early step towards de-
riving theoretical guarantees on LpO as a model selection procedure. Indeed, exponential
concentration inequalities have been a key ingredient to assess model selection consistency
or model selection efficiency in various contexts (see for instance Celisse (2014) or Arlot
and Lerasle (2012) in the density estimation framework). Still risk estimation and model
selection are different objectives, and it is well known that the best estimator in terms of
risk estimation can be different from the best one in terms of model selection. For instance
in the regression context, L1O is known to provide the best estimator of the risk (Burman,
1989). But it leads to an inconsistent model selection procedure (Shao, 1997).

Investigating the behavior of k̂p requires some further dedicated theoretical develop-
ments. One first step towards such results is to derive a tighter upper bound on the bias
between the LpO estimator and the risk. The best known upper bound currently available
is derived from Devroye and Wagner (1980, see Lemma D.6 in the present paper). Unfor-
tunately it does not fully capture the true behavior of the LpO estimator with respect to p
(at least as p becomes large) and could be improved as emphasized in the comments at the
end of Section 5. Another important direction for studying the model selection behavior
of the LpO procedure is to prove a concentration inequality for the classification error rate
of the kNN classifier around its expectation. While such concentration results have been
established for the kNN algorithm in the (fixed-design) regression framework (Arlot and
Bach, 2009), deriving similar results in the classification context remains a widely open
problem to the best of our knowledge.
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Appendix A. Proofs of polynomial moment upper bounds

A.1 Proof of Theorem 2.2

The proof relies on Proposition 2.1 that allows to relate the LpO estimator to a sum of
independent random variables. In the following, we distinguish between the two settings
q = 2 (where exact calculations can be carried out), and q > 2 where only upper bounds
can be derived.

When q > 2, our proof deals separately with the cases p ≤ n/2 + 1 and p > n/2 + 1. In
the first one, a straightforward use of Jensen’s inequality leads to the result. In the second
setting, one has to be more cautious when deriving upper bounds. This is done by using
the more sophisticated Rosenthal’s inequality, namely Proposition D.2.

A.1.1 Exploiting Proposition 2.1

According to the proof of Proposition 2.1, it arises that the LpO estimator can be expressed
as a U -statistic since

R̂p(A, Z1,n) =
1

n!

∑
σ

W
(
Zσ(1), . . . , Zσ(n)

)
,

with

W (Z1, . . . , Zn) =
⌊ n
m

⌋−1
b nmc∑
a=1

hm
(
Z(a−1)m+1, . . . , Zam

)
(with m = n− p+ 1)

and hm (Z1, . . . , Zm) =
1

m

m∑
i=1

1{A(Z
(i)
1,m;Xi)6=Yi

} = R̂1(A, Z1,n−p+1) ,

whereA(Z
(i)
1,m; .) denotes the classifier based on sample Z

(i)
1,m = ()Z1, . . . , Zi−1, Zi+1, . . . , Zm).

Further centering the LpO estimator, it comes

R̂p(A, Z1,n)− E
[
R̂p(A, Z1,n)

]
=

1

n!

∑
σ

W̄
(
Zσ(1), . . . , Zσ(n)

)
,

where W̄ (Z1, . . . , Zn) = W (Z1, . . . , Zn)− E [W (Z1, . . . , Zn) ].

Then with h̄m(Z1, . . . , Zm) = hm(Z1, . . . , Zm)− E [hm(Z1, . . . , Zm) ], one gets

E
[∣∣∣R̂p(A, Z1,n)− E

[
R̂p(A, Z1,n)

]∣∣∣q] ≤ E
[∣∣W̄ (Z1, . . . , Zn)

∣∣q] (Jensen′s inequality)

= E


∣∣∣∣∣∣∣
⌊ n
m

⌋−1
b nmc∑
i=1

h̄m
(
Z(i−1)m+1, . . . , Zim

)∣∣∣∣∣∣∣
q (A.1)

=
⌊ n
m

⌋−q
E


∣∣∣∣∣∣∣
b nmc∑
i=1

h̄m
(
Z(i−1)m+1, . . . , Zim

)∣∣∣∣∣∣∣
q .
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A.1.2 The setting q = 2

If q = 2, then by independence it comes

E
[∣∣∣R̂p(A, Z1,n)− E

[
R̂p(A, Z1,n)

]∣∣∣q] ≤ ⌊ n
m

⌋−2
Var

b
n
mc∑
i=1

hm
(
Z(i−1)m+1, . . . , Zim

)
=
⌊ n
m

⌋−2
b nmc∑
i=1

Var
[
hm
(
Z(i−1)m+1, . . . , Zim

) ]
=
⌊ n
m

⌋−1
Var

(
R̂1(A, Z1,n−p+1)

)
,

which leads to the result.

A.1.3 The setting q > 2

If p ≤ n/2 + 1: A straightforward use of Jensen’s inequality from (A.1) provides

E
[∣∣∣R̂p(A, Z1,n)− E

[
R̂p(A, Z1,n)

]∣∣∣q] ≤ ⌊ n
m

⌋−1
b nmc∑
i=1

E
[∣∣h̄m (Z(i−1)m+1, . . . , Zim

)∣∣q]
= E

[∣∣∣R̂1(A, Z1,n−p+1)− E
[
R̂1(A, Z1,n−p+1)

]∣∣∣q] .
If p > n/2 + 1: Let us now use Rosenthal’s inequality (Proposition D.2) by introducing
symmetric random variables ζ1, . . . , ζbn/mc such that

∀1 ≤ i ≤ bn/mc , ζi = hm
(
Z(i−1)m+1, . . . , Zim

)
− hm

(
Z ′(i−1)m+1, . . . , Z

′
im

)
,

where Z ′1, . . . , Z
′
n are i.i.d. copies of Z1, . . . , Zn. Then it comes for every γ > 0

E


∣∣∣∣∣∣∣
b nmc∑
i=1

h̄m
(
Z(i−1)m+1, . . . , Zim

)∣∣∣∣∣∣∣
q ≤ E


∣∣∣∣∣∣∣
b nmc∑
i=1

ζi

∣∣∣∣∣∣∣
q ,

which implies

E


∣∣∣∣∣∣∣
b nmc∑
i=1

h̄m
(
Z(i−1)m+1, . . . , Zim

)∣∣∣∣∣∣∣
q ≤ B(q, γ)

γ
b nmc∑
i=1

E [ |ζi|q ] ∨


√√√√√b nmc∑

i=1

E
[
ζ2
i

]
q .

Then using for every i that

E [ |ζi|q ] ≤ 2qE
[ ∣∣h̄m (Z(i−1)m+1, . . . , Zim

)∣∣q ] ,
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it comes

E


∣∣∣∣∣∣∣
b nmc∑
i=1

h̄m
(
Z(i−1)m+1, . . . , Zim

)∣∣∣∣∣∣∣
q

≤ B(q, γ)
(

2qγ
⌊ n
m

⌋
E
[ ∣∣∣R̂1(A, Z1,m)− E

[
R̂1(A, Z1,m)

]∣∣∣q ]∨(√⌊ n
m

⌋
2Var

(
R̂1(A, Z1,m)

))q)
.

Hence, it results for every q > 2

E
[∣∣∣R̂p(A, Z1,n)− E

[
R̂p(A, Z1,n)

]∣∣∣q]
≤ B(q, γ)

(
2qγ

⌊ n
m

⌋−q+1
E
[ ∣∣∣R̂1(A, Z1,m)− E

[
R̂1(A, Z1,m)

]∣∣∣q ]∨
⌊ n
m

⌋−q/2(√
2Var

(
R̂1(A, Z1,m)

))q)
,

which concludes the proof.

A.2 Proof of Theorem 3.1

Our strategy of proof follows several ideas. The first one consists in using Proposition 3.1
which says that, for every q ≥ 2,

∥∥h̄m(Z1, . . . , Zm)
∥∥
q
≤
√

2κq

√√√√√
∥∥∥∥∥∥
m∑
j=1

(
hm(Z1, . . . , Zm)− hm(Z1, . . . , Z ′j , . . . , Zm)

)2

∥∥∥∥∥∥
q/2

,

where hm(Z1, . . . , Zm) = R̂1 (Ak (Z1,m; ·)) by Eq. (2.4), and h̄m(Z1, . . . , Zm) = hm(Z1, . . . , Zm)−
E [hm(Z1, . . . , Zm) ]. The second idea consists in deriving upper bounds of

∆jhm = hm(Z1, . . . , Zm)− hm(Z1, . . . , Z
′
j , . . . , Zm)

by repeated uses of Stone’s lemma, that is Lemma D.5 which upper bounds by kγd the
maximum number of Xis that can have a given Xj among their k nearest neighbors. Finally,
for technical reasons we have to distinguish the case q = 2 where we get tighter bounds,
and q > 2.

A.2.1 Upper bounding ∆jhm

Let us now introduce the notation Z(i) = Z
(i)
1,m (see Theorem 2.1), and Zj,(i) =

(
Zj1,m

)(i)

with Zj1,m =
(
Z1, . . . , Z

′
j , . . . , Zn

)
. Then, ∆jhm = hm(Z1, . . . , Zm)−hm(Z1, . . . , Z

′
j , . . . , Zm)
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is now upper bounded by

∣∣∆jhm
∣∣ ≤ 1

m
+

1

m

∑
i 6=j

∣∣∣1{Ak(Z(i);Xi) 6=Yi} − 1{Ak(Zj,(i);Xi)6=Yi}
∣∣∣

≤ 1

m
+

1

m

∑
i 6=j

∣∣∣1{Ak(Z(i);Xi) 6=Ak(Zj,(i);Xi)}
∣∣∣ . (A.2)

Furthermore, let us introduce for every 1 ≤ j ≤ n,

Aj = {1 ≤ i ≤ m, i 6= j, j ∈ Vk(Xi)} and A′j =
{

1 ≤ i ≤ m, i 6= j, j ∈ V ′k(Xi)
}

where Vk(Xi) and V ′k(Xi) denote the indices of the k nearest neighbors of Xi respectively
among X1, . . . , Xj−1, Xj , Xj+1, . . . , Xm and X1, ..., Xj−1, X

′
j , Xj+1, . . . , Xm. Setting Bj =

Aj ∪A′j , one obtains

∣∣∆jhm
∣∣ ≤ 1

m
+

1

m

∑
i∈Bj

∣∣∣1{Ak(Z(i);Xi) 6=Ak(Zj,(i);Xi)}
∣∣∣ . (A.3)

From now on, we distinguish between q = 2 and q > 2 because we will be able to derive
a tighter bound for q = 2 than for q > 2.

A.2.2 Case q > 2

From (A.3), Stone’s lemma (Lemma D.5) provides

∣∣∆jhm
∣∣ ≤ 1

m
+

1

m

∑
i∈Bj

1{Ak(Z(i);Xi) 6=Ak(Zj,(i);Xi)} ≤
1

m
+

2kγd
m

·

Summing over 1 ≤ j ≤ n and applying (a+ b)q ≤ 2q−1 (aq + bq) (a, b ≥ 0 and q ≥ 1), it
comes ∑

j

(
∆jhm

)2 ≤ 2

m

(
1 + (2kγd)

2
)
≤ 4

m
(2kγd)

2 ,

hence ∥∥∥∥∥∥
m∑
j=1

(
hm(Z1, . . . , Zm)− hm(Z1, . . . , Z

′
j , . . . , Zm)

)2∥∥∥∥∥∥
q/2

≤ 4

m
(2kγd)

2.

This leads for every q > 2 to

∥∥h̄m(Z1, . . . , Zm)
∥∥
q
≤ q1/2

√
2κ

4kγd√
m

,

which enables to conclude.
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A.2.3 Case q = 2

It is possible to obtain a slightly better upper bound in the case q = 2 with the following
reasoning. With the same notation as above and from (A.3), one has

E
[(

∆jhm
)2]

=
2

m2
+

2

m2
E

∑
i∈Bj

1{Ak(Z(i);Xi)6=Ak(Zj,(i);Xi)}

2
≤ 2

m2
+

2

m2
E

|Bj |∑
i∈Bj

1{Ak(Z(i);Xi)6=Ak(Zj,(i);Xi)}



using Jensen’s inequality. Lemma D.5 implies |Bj | ≤ 2kγd, which allows to conclude

E
[(

∆jhm
)2] ≤ 2

m2
+

4kγd
m2

E

∑
i∈Bj

1{Ak(Z(i);Xi)6=Ak(Zj,(i);Xi)}

 .
Summing over j, one derives

m∑
j=1

E
[(
hm(Z1, . . . , Zm)− hm(Z1, . . . , Z

′
j , . . . , Zm)

)2]

≤ 2

m
+

4kγd
m

E

∑
i∈Bj

1{Ak(Z(i);Xi)6=Ak(Zj,(i);Xi)}


≤ 2

m
+

4kγd
m

m∑
i=1

E
[
1{Ak(Z(i);Xi)6=Ak({Z(i),Z0};Xi)} + 1{Ak({Z(i),Z0};Xi)6=Ak(Zj,(i);Xi)}

]
≤ 2

m
+ 4kγd × 2

4
√
k√

2πm
=

2

m
+

32γd√
2π

k
√
k

m
≤ (2 + 16γd)

k
√
k

m
, (A.4)

where Z0 is an independent copy of Z1, and the last but one inequality results from
Lemma D.6.

A.3 Proof of Theorem 3.2

The idea is to plug the upper bounds previously derived for the L1O estimator, namely
Ineq. (2.5) and (2.6) from Theorem 2.2, in the inequalities proved for the moments of the
LpO estimator in Theorem 2.2.

Proof of Ineq. (3.1), (3.2), and (3.3): These inequalities straightforwardly result from
the combination of Theorem 2.2 and Ineq. (2.5) and (2.6) from Theorem 3.1.
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Proof of Ineq. (3.4): It results from the upper bounds proved in Theorem 3.1 and plugged
in Ineq. (2.7) (derived from Rosenthal’s inequality with optimized constant γ, namely Propo-
sition D.3).

Then it comes

E
[ ∣∣∣R̂p(Ak, Z1,n)− E

[
R̂p(Ak, Z1,n)

]∣∣∣q ] ≤ (2
√

2e
)q
×(

√
q)

q


√√√√⌊ n

n− p+ 1

⌋−1
2C1

√
k

( √
k√

n− p+ 1

)2


q

∨ qq
⌊

n

n− p+ 1

⌋−q+1

(2C2
√
q)q
(

k√
n− p+ 1

)q


=
(

2
√

2e
)q
×(

√
q)

q

√2C1

√
k

√√√√ k

(n− p+ 1)
⌊

n
n−p+1

⌋


q

∨
(
q3/2

)q ⌊ n

n− p+ 1

⌋2C2
k⌊

n
n−p+1

⌋√
n− p+ 1

q


≤
⌊

n

n− p+ 1

⌋{(
λ1q

1/2
)q
∨
(
λ2q

3/2
)q}

,

with

λ1 = 2
√

2e

√
2C1

√
k

√√√√ k

(n− p+ 1)
⌊

n
n−p+1

⌋ , λ2 = 2
√

2e2C2
k⌊

n
n−p+1

⌋√
n− p+ 1

·

Finally introducing Γ = 2
√

2emax
(

2C2,
√

2C1
)

provides the result.
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Appendix B. Proofs of exponential concentration inequalities

B.1 Proof of Proposition 4.1

The proof relies on two successive ingredients: McDiarmid’s inequality (Theorem D.3), and
Stone’s lemma (Lemma D.5).

First, let us start by upper bounding
∣∣∣R̂p(Ak (Z1,n; ·))− R̂p(Ak(Z ′,j1,n; ·))

∣∣∣ for every 1 ≤

j ≤ n, where Z ′,j1,n = (Z1, . . . , Zj−1, Z
′
j , Zj+1, . . . , Zn).

Using Eq. (2.2), one has∣∣∣R̂p(Ak (Z1,n; ·))− R̂p(Ak(Z ′,j1,n; ·))
∣∣∣

≤ 1

p

n∑
i=1

(
n
p

)−1
∑
e

∣∣1{Ak(Ze;Xi)6=Yi} − 1{Ak(Z′,j,e;Xi)6=Yi}
∣∣1{i 6∈e}

≤ 1

p

n∑
i=1

(
n
p

)−1
∑
e

1{Ak(Ze;Xi)6=Ak(Z′,j,e;Xi)}1{i 6∈e}

≤ 1

p

n∑
i 6=j

(
n
p

)−1
∑
e

[
1{j∈V ek (Xi)} + 1{j∈V ′,j,ek (Xi)}

]
1{i 6∈e} +

1

p

(
n
p

)−1
∑
e

1{j 6∈e},

where Z ′,j,e denotes the set of random variables among Z ′,j1,n having indices in e, and V e
k (Xi)

(resp. V ′,j,ek (Xi)) denotes the set of indices of the k nearest neighbors of Xi among Ze (resp.
Z ′,j,e).

Second, let us now introduce

B
En−p
j = ∪

e∈En−p

{
1 ≤ i ≤ n, i 6∈ e ∪ {j} , V ′,j,ek (Xi) 3 j or V e

k (Xi) 3 j
}
.

Then Lemma D.5 implies Card(B
En−p
j ) ≤ 2(k + p− 1)γd, hence∣∣∣R̂p(Ak (Z1,n; ·))− R̂p(Ak(Z ′,j1,n; ·))

∣∣∣ ≤ 1

p

∑
i∈B

En−p
j

(
n
p

)−1
∑
e

2 · 1{i 6∈e} +
1

n

≤ 4(k + p− 1)γd
n

+
1

n
·

The conclusion results from McDiarmid’s inequality (Section D.1.5).

B.2 Proof of Theorem 4.1

In this proof, we use the same notation as in that of Proposition 4.1.

The goal of the proof is to provide a refined version of previous Proposition 4.1 by taking
into account the status of each Xj as one of the k nearest neighbors of a given Xi (or not).

To do so, our strategy is to prove a sub-Gaussian concentration inequality by use of
Lemma D.2, which requires the control of the even moments of the LpO estimator R̂p.

Such upper bounds are derived
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• First, by using Ineq. (D.5) (generalized Efron-Stein inequality), which amounts to
control the q-th moments of the differences

∆j
n = R̂p(Ak(Z1,n; ·))− R̂p(Ak(Z ′,j1,n; ·)).

• Second, by precisely evaluating the contribution of each neighborXi of a givenXj , that
is by computing quantities such as Pe [ j ∈ e, i ∈ ē, j ∈ V e

k (Xi) ], where Pe [ · ] denotes
the probability measure with respect to the uniform random variable e over En−p, and
V e
k (Xi) denotes the indices of the k nearest neighbors of Xi among Xe = {X`, ` ∈ e}.

B.2.1 Upper bounding ∆j
n

For every 1 ≤ j ≤ n, one gets

∆j
n =

(
n

p

)−1∑
e

{
1{j∈ē}

1

p

(
1{Ak(Ze;Xj)6=Yj} − 1{Ak(Ze;X′j)6=Y ′j}

)
+ 1{j∈e}

1

p

∑
i∈ē

(
1{Ak(Ze;Xi)6=Yi} − 1{Ak(Z′,e,j ;Xi) 6=Yi}

)}
.

Absolute values and Jensen’s inequality then provide∣∣∣R̂p(Ak(Z1,n; ·))− R̂p(Ak(Z ′,j1,n; ·))
∣∣∣

≤
(
n

p

)−1∑
e

{
1{j∈ē}

1

p
+ 1{j∈e}

1

p

∑
i∈ē

1{Ak(Ze;Xi)6=Ak(Z′,e,j ;Xi)}

}

≤ 1

n
+

(
n

p

)−1∑
e

1{j∈e}
1

p

∑
i∈ē

1{Ak(Ze;Xi)6=Ak(Z′,e,j ;Xi)}

=
1

n
+

1

p

n∑
i=1

Pe
[
j ∈ e, i ∈ ē, Ak(Ze;Xi) 6= Ak(Z ′,e,j ;Xi)

]
.

where Pe denotes the discrete uniform probability over the set En−p of all n − p distinct
indices among {1, . . . , n}.

Let us further notice that
{
Ak(Ze;Xi) 6= Ak(Z ′,e,j ;Xi)

}
⊂
{
j ∈ V e

k (Xi) ∪ V ′,j,ek (Xi)
}

,

where V ′,j,ek (Xi) denotes the set of indices of the k nearest neighbors of Xi among Z ′,j,e

with the notation of the proof of Proposition 4.1. Then it results
n∑
i=1

Pe
[
j ∈ e, i ∈ ē, Ak(Ze;Xi) 6= Ak(Z ′,e,j ;Xi)

]
≤

n∑
i=1

Pe
[
j ∈ e, i ∈ ē, j ∈ V e

k (Xi) ∪ V ′,j,ek (Xi)
]

≤
n∑
i=1

(
Pe [ j ∈ e, i ∈ ē, j ∈ V e

k (Xi) ] + Pe
[
j ∈ e, i ∈ ē, j ∈ V e

k (Xi) ∪ V ′,j,ek (Xi)
])

≤ 2
n∑
i=1

Pe [ j ∈ e, i ∈ ē, j ∈ V e
k (Xi) ] ,
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which leads to ∣∣∆j
n

∣∣ ≤ 1

n
+

2

p

n∑
i=1

Pe [ j ∈ e, i ∈ ē, j ∈ V e
k (Xi) ] .

Summing over 1 ≤ j ≤ n the square of the above quantity, it results

n∑
j=1

(
∆j
n

)2 ≤ n∑
j=1

{
1

n
+

2

p

n∑
i=1

Pe [ j ∈ e, i ∈ ē, j ∈ V e
k (Xi) ]

}2

≤ 2
n∑
j=1

1

n2
+ 2

{
2

p

n∑
i=1

Pe [ j ∈ e, i ∈ ē, j ∈ V e
k (Xi) ]

}2

≤ 2

n
+ 8

n∑
j=1

{
1

p

n∑
i=1

Pe [ j ∈ e, i ∈ ē, j ∈ V e
k (Xi) ]

}2

.

B.2.2 Evaluating the influence of each neighbor

Further using that

n∑
j=1

(
1

p

n∑
i=1

Pe [ j ∈ e, i ∈ ē, j ∈ V e
k (Xi) ]

)2

=
n∑
j=1

1

p2

n∑
i=1

(Pe [ j ∈ e, i ∈ ē, j ∈ V e
k (Xi) ])2 +

n∑
j=1

1

p2

∑
1≤i 6=`≤n

Pe [ j ∈ e, i ∈ ē, j ∈ V e
k (Xi) ]Pe [ j ∈ e, i ∈ ē, j ∈ V e

k (X`) ]

= T1 + T2 ,

let us now successively deal with each of these two terms.

Upper bound on T1 First, we start by partitioning the sum over j depending on the
rank of Xj as a neighbor of Xi in the whole sample (X1, . . . , Xn). It comes

=

n∑
j=1

n∑
i=1

{Pe [ j ∈ e, i ∈ ē, j ∈ V e
k (Xi) ]}2

=

n∑
i=1

 ∑
j∈Vk(Xi)

{Pe [ j ∈ e, i ∈ ē, j ∈ V e
k (Xi) ]}2 +

∑
j∈Vk+p(Xi)\Vk(Xi)

{Pe [ j ∈ e, i ∈ ē, j ∈ V e
k (Xi) ]}2

 .

Then Lemma D.4 leads to∑
j∈Vk(Xi)

{Pe [ j ∈ e, i ∈ ē, j ∈ V e
k (Xi) ]}2 +

∑
j∈Vk+p(Xi)\Vk(Xi)

{Pe [ j ∈ e, i ∈ ē, j ∈ V e
k (Xi) ]}2

≤
∑

j∈Vk(Xi)

(
p

n

n− p
n− 1

)2

+
∑

j∈Vk+p(Xi)\Vk(Xi)

Pe [ j ∈ e, i ∈ ē, j ∈ V e
k (Xi) ]

p

n

n− p
n− 1

= k

(
p

n

n− p
n− 1

)2

+
kp

n

p− 1

n− 1

p

n

n− p
n− 1

= k
( p
n

)2 n− p
n− 1

,
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where the upper bound results from
∑

j a
2
j ≤ (maxj aj)

∑
j aj , for aj ≥ 0. It results

T1 =
1

p2

n∑
j=1

n∑
i=1

{Pe [ j ∈ e, i ∈ ē, j ∈ V e
k (Xi) ]}2 ≤ 1

p2
n

[
k
( p
n

)2 n− p
n− 1

]
=
k

n

n− p
n− 1

·

Upper bound on T2 Let us now apply the same idea to the second sum, partitioning
the sum over j depending on the rank of j as a neighbor of ` in the whole sample. Then,

T2 =
1

p2

n∑
j=1

∑
1≤i 6=`≤n

Pe [ j ∈ e, i ∈ ē, j ∈ V e
k (Xi) ]Pe [ j ∈ e, ` ∈ ē, j ∈ V e

k (X`) ]

≤ 1

p2

n∑
i=1

∑
6̀=i

∑
j∈Vk(X`)

Pe [ j ∈ e, i ∈ ē, j ∈ V e
k (Xi) ]

p

n

n− p
n− 1

+
1

p2

n∑
i=1

∑
` 6=i

∑
j∈Vk+p(X`)\Vk(X`

Pe [ j ∈ e, i ∈ ē, j ∈ V e
k (Xi) ]

kp

n

p− 1

n− 1
·

We then apply Stone’s lemma (Lemma D.5) to get

T2

=
1

p2

n∑
i=1

n∑
j=1

Pe [ j ∈ e, i ∈ ē, j ∈ V e
k (Xi) ]

∑
6̀=i

1j∈Vk(X`)
p

n

n− p
n− 1

+
∑
` 6=i

1j∈Vk+p(X`)\Vk(X`

kp

n

p− 1

n− 1


≤ 1

p2

n∑
i=1

kp

n

(
kγd

p

n

n− p
n− 1

+ (k + p)γd
kp

n

p− 1

n− 1

)
= γd

k2

n

(
n− p
n− 1

+ (k + p)
p− 1

n− 1

)
= γd

k2

n

(
1 + (k + p− 1)

p− 1

n− 1

)
.

Gathering the upper bounds The two previous bounds provide

n∑
j=1

{
1

p

n∑
i=1

Pe [ j ∈ e, i ∈ ē, j ∈ V e
k (Xi) ]

}2

= T1 + T2

≤ k

n

n− p
n− 1

+ γd
k2

n

(
1 + (k + p− 1)

p− 1

n− 1

)
,

which enables to conclude

n∑
j=1

(
R̂p(Ak(Z1,n; ·))− R̂p(Ak(Z ′,j1,n; ·))

)2

≤ 2

n

(
1 + 4k + 4k2γd

[
1 + (k + p)

p− 1

n− 1

])
≤ 8k2(1 + γd)

n

[
1 + (k + p)

p− 1

n− 1

]
.
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B.2.3 Generalized Efron-Stein inequality

Then (D.5) provides for every q ≥ 1

∥∥∥R̂p(Ak, Z1,n)− E
[
R̂p(Ak, Z1,n)

]∥∥∥
2q
≤ 4
√
κq

√
8(1 + γd)k2

n

[
1 + (k + p)

p− 1

n− 1

]
.

Hence combined with q! ≥ qqe−q
√

2πq, it comes

E
[(
R̂p(Ak, Z1,n)− E

[
R̂p(Ak, Z1,n)

])2q
]
≤ (16κq)q

(
8(1 + γd)k

2

n

[
1 + (k + p)

p− 1

n− 1

])q
≤ q!

(
16eκ

8(1 + γd)k
2

n

[
1 + (k + p)

p− 1

n− 1

])q
.

The conclusion follows from Lemma D.2 with C = 16eκ8(1+γd)k2

n

[
1 + (k + p) p−1

n−1

]
. Then

for every t > 0,

P
(
R̂p(Ak, Z1,n)− E

(
R̂p(Ak, Z1,n)

)
> t
)
∨ P

(
E
(
R̂p(Ak, Z1,n)

)
− R̂p(Ak, Z1,n) > t

)
≤ exp

− nt2

1024eκk2(1 + γd)
[

1 + (k + p) p−1
n−1

]
 ·

B.3 Proof of Theorem 4.2 and Proposition 4.2

B.3.1 Proof of Theorem 4.2

If p < n/2 + 1:
In what follows, we exploit a characterization of sub-Gaussian random variables by their
2q-th moments (Lemma D.2).

From (3.1) and (3.2) applied with 2q, and further introducing a constant ∆ =

4
√
emax

(√
C1/2, C2

)
> 0, it comes for every q ≥ 1

E
[ ∣∣∣R̂p(Ak, Z1,n)− E

[
R̂p(Ak, Z1,n)

]∣∣∣2q ] ≤ (∆2

16e

k2

n− p+ 1

)q
(2q)q ≤

(
∆2

8

k2

n− p+ 1

)q
q! ,

(B.1)

with qq ≤ q!eq/
√

2πq. Then Lemma D.2 provides for every t > 0

P
(
R̂p(Ak, Z1,n)− E

[
R̂p(Ak, Z1,n)

]
> t
)
∨ P

(
E
[
R̂p(Ak, Z1,n)

]
− R̂p(Ak, Z1,n) > t

)
≤ exp

(
−(n− p+ 1)

t2

∆2k2

)
.

If p ≥ n/2 + 1:
This part of the proof relies on Proposition D.1 which provides an exponential concentration
inequality from upper bounds on the moments of a random variable.
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Let us now use (3.1) and (3.4) combined with (D.1), where C =
⌊

n
n−p+1

⌋
, q0 = 2, and

minj αj = 1/2. This provides for every t > 0

P
[ ∣∣∣R̂p(Ak, Z1,n)− E

[
R̂p(Ak, Z1,n)

]∣∣∣ > t
]
≤
⌊

n

n− p+ 1

⌋
e×

exp

− 1

2e
min

(n− p+ 1)

⌊
n

n− p+ 1

⌋
t2

4Γ2k
√
k
,

(
(n− p+ 1)

⌊
n

n− p+ 1

⌋2 t2

4Γ2k2

)1/3

 ,

where Γ arises from Eq. (3.4).

B.3.2 Proof of Proposition 4.2

As in the previous proof, the derivation of the deviation terms results from Proposition D.1.

With the same notation and reasoning as in the previous proof, let us combine (3.1)

and (3.4). From (D.2) of Proposition D.1 where C =
⌊

n
n−p+1

⌋
, q0 = 2, and minj αj = 1/2,

it results for every t > 0

P

 ∣∣∣R̂p(Ak, Z1,n)− E
[
R̂p(Ak, Z1,n)

]∣∣∣ > Γ

√
2e

(n− p+ 1)

√√√√ k3/2⌊
n

n−p+1

⌋ t+ 2e
k⌊
n

n−p+1

⌋ t3/2



≤
⌊

n

n− p+ 1

⌋
e · e−t,

where Γ > 0 is given by Eq. (3.4).
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Appendix C. Proofs of deviation upper bounds

C.1 Proof of Ineq. (5.3) in Theorem 5.1

The proof follows the same strategy as that of Theorem 2.1 in Rogers and Wagner (1978).

Along the proof, we will repeatedly use some notation that we briefly introduce here.
First, let us introduce Z0 = (X0, Y0) and Zn+1 = (Xn+1, Yn+1) that are independent
copies of Z1. Second to ease the reading of the proof, we also use several shortcuts:
f̂k(X0) = Ak (Z1,n;X0), and f̂k(e,X0) = Ak

(
Ze1,n;X0

)
for every set of indices e ∈ En−p

(with cardinality n−p). Finally along the proof, e, e′ ∈ En−p denote random sets of distinct
indices with discrete uniform distribution over En−p. Therefore the notation Pe (resp. Pe,e′)
is used to emphasize that integration is made with respect to e (resp. to e, e′).

C.1.1 Main part of the proof

Starting from

E
[
(R̂p(Ak, Z1,n)− L(Ak, Z1,n))2

]
= E

[
R̂2
p(Ak, Z1,n)

]
+ E

[
L2
n

]
− 2E

[
R̂p(Ak, Z1,n)L(Ak, Z1,n)

]
,

let us notice that

E
[
L2
n

]
= P

(
f̂k(X0) 6= Y0, f̂k(Xn+1) 6= Yn+1

)
,

and

E
[
R̂p(Ak, Z1,n)L(Ak, Z1,n)

]
= P

(
f̂k(X0) 6= Y0, f̂k(e,Xi) 6= Yi| i /∈ e

)
Pe (i 6∈ e) .

It immediately comes

E
[
(R̂p(Ak, Z1,n)− L(Ak, Z1,n))2

]
= E

[
R̂2
p(Ak, Z1,n)

]
− P

(
f̂k(X0) 6= Y0, f̂k(e,Xi) 6= Yi | i /∈ e

)
Pe (i 6∈ e) (C.1)

+
[
P
(
f̂k(X0) 6= Y0, f̂k(Xn+1) 6= Yn+1

)
− P

(
f̂k(X0) 6= Y0, f̂k(e,Xi) 6= Yi| i /∈ e

)
Pe (i /∈ e)

]
.

(C.2)

The proof then consists in successively upper bounding the two terms (C.1) and (C.2) of
the last equality.

Upper bound of (C.1) First, we have

p2E
[
R̂2
p(Ak, Z1,n)

]
=

∑
i,j

E
[
1{f̂k(e,Xi) 6=Yi}1{i/∈e}1{f̂k(e′,Xj) 6=Yj}1{j /∈e′}

]
=

∑
i

E
[
1{f̂k(e,Xi) 6=Yi}1{i/∈e}1{f̂k(e′,Xi) 6=Yi}1{i/∈e′}

]
+
∑
i 6=j

E
[
1{f̂k(e,Xi) 6=Yi}1{i/∈e}1{f̂k(e′,Xj) 6=Yj}1{j /∈e′}

]
.
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Let us now introduce the following events.

Ae,e′,i = {i /∈ e, i /∈ e′},
A1
e,e′,i,j = {i /∈ e, j /∈ e′, i /∈ e′, j /∈ e}, A2

e,e′,i,j = {i /∈ e, j /∈ e′, i /∈ e′, j ∈ e},
A3
e,e′,i,j = {i /∈ e, j /∈ e′, i ∈ e′, j /∈ e}, A4

e,e′,i,j = {i /∈ e, j /∈ e′, i ∈ e′, j ∈ e}.

Then,

p2E
[
R̂2
p(Ak, Z1,n)

]
=
∑
i

P
(
f̂k(e,Xi) 6= Yi, f̂k(e

′, Xi) 6= Yi|Ae,e′,i
)
Pe,e′

(
Ae,e′,i

)
+
∑
i 6=j

4∑
`=1

P
(
f̂k(e,Xi) 6= Yi, f̂k(e

′, Xi) 6= Yi|A`e,e′,i,j
)
Pe,e′

(
A`e,e′,i,j

)
= nP

(
f̂k(e,X1) 6= Y1, f̂k(e

′, X1) 6= Y1|Ae,e′,1
)
Pe,e′

(
Ae,e′,1

)
+ n(n− 1)

4∑
`=1

P
(
f̂k(e,X1) 6= Y1, f̂k(e

′, X2) 6= Y2 | A`e,e′,1,2
)
Pe,e′

(
A`e,e′,1,2

)
.

Furthermore since

1

p2

[
nPe,e′

(
Ae,e′,1

)
+ n(n− 1)

4∑
`=1

Pe,e′
(
A`e,e′,1,2

)]
=

1

p2

∑
i,j

Pe,e′
(
i /∈ e, j /∈ e′

)
= 1,

it comes

E
[
R̂2
p(Ak, Z1,n)

]
− P

(
f̂k(X0) 6= Y0, f̂k(e,X1) 6= Y1

)
=

n

p2
A+

n(n− 1)

p2
B, (C.3)

where

A =
[
P
(
f̂k(e,X1) 6= Y1, f̂k(e

′, X1) 6= Y1 | Ae,e′,1
)

−P
(
f̂k(X0) 6= Y0, f̂k(e,X1) 6= Y1 | Ae,e′,1

)]
Pe,e′

(
Ae,e′,1

)
,

and B =
4∑
`=1

[
P
(
f̂k(e,X1) 6= Y1, f̂k(e

′, X2) 6= Y2 | A`e,e′,1,2
)

−P
(
f̂k(X0) 6= Y0, f̂k(e,X1) 6= Y1 | A`e,e′,1,2

)]
Pe,e′

(
A`e,e′,1,2

)
.

• Upper bound for A:
To upper bound A, simply notice that:

A ≤ Pe,e′
(
Ae,e′,i

)
≤ Pe,e′

(
i /∈ e, i /∈ e′

)
≤
( p
n

)2

• Upper bound for B:
To obtain an upper bound for B, one needs to upper bound

P
(
f̂k(e,X1) 6= Y1, f̂k(e

′, X2) 6= Y2 | A`e,e′,1,2
)
− P

(
f̂k(X0) 6= Y0, f̂k(e,X1) 6= Y1 | A`e,e′,1,2

)
(C.4)
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which depends on `, i.e. on the fact that index 2 belongs or not to the training set indices
e.

• If 2 6∈ e (i.e. ` = 1 or 3): Then, Lemma C.2 proves

(C.4) ≤ 4p
√
k√

2πn
·

• If 2 ∈ e (i.e. ` = 2 or 4): Then, Lemma C.3 settles

(C.4) ≤ 8
√
k√

2π(n− p)
+

4p
√
k√

2πn
·

Combining the previous bounds and Lemma C.1 leads to

B ≤

[(
4p
√
k√

2πn

)[
Pe,e′

(
A1
e,e′,1,2

)
+ Pe,e′

(
A3
e,e′,1,2

) ]
+

(
8
√
k√

2π(n− p)
+

4p
√
k√

2πn

)[
Pe,e′

(
A2
e,e′,1,2

)
+ Pe,e′

(
A4
e,e′,1,2

) ]]

≤ 2
√

2√
π

√
k
[ p
n

[
Pe,e′

(
A1
e,e′,1,2

)
+ Pe,e′

(
A3
e,e′,1,2

) ]
+

(
2

n− p
+
p

n

)[
Pe,e′

(
A2
e,e′,1,2

)
+ Pe,e′

(
A4
e,e′,1,2

) ]]
≤ 2
√

2√
π

√
k

[
p

n
Pe,e′

(
i /∈ e, j /∈ e′

)
+

2

n− p
(
Pe,e′

(
A2
e,e′,1,2

)
+ Pe,e′

(
A4
e,e′,1,2

))]
≤ 2
√

2√
π

√
k

[
p

n

( p
n

)2
+

2

n− p

(
(n− p)p2(p− 1)

n2(n− 1)2
+

(n− p)2p2

n2(n− 1)2

)]
≤ 2
√

2√
π

√
k
( p
n

)2
[
p

n
+

2

n− 1

]
.

Back to Eq. (C.3), one deduces

E
[
R̂2
p(Ak, Z1,n)

]
− P

(
f̂k(X0) 6= Y0, f̂k(e,X1) 6= Y1

)
=

n

p2
A+

n(n− 1)

p2
B

≤ 1

n
+

2
√

2√
π

(p+ 2)
√
k

n
·

Upper bound of (C.2) First observe that

P
(
f̂k(X0) 6= Y0, f̂k(e,Xi) 6= Yi | i /∈ e

)
= P

(
f̂

(−1)
k (X0) 6= Y0, f̂k(e,Xn+1) 6= Yn+1

)
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where f̂k
(−1)

is built on sample (X2, Y2), ..., (Xn+1, Yn+1). One has

P
(
f̂k(X0) 6= Y0, f̂k(Xn+1) 6= Yn+1

)
− P

(
f̂k(X0) 6= Y0, f̂k(e,Xi) 6= Yi | i /∈ e

)
= P

(
f̂k(X0) 6= Y0, f̂k(Xn+1) 6= Yn+1

)
− P

(
f̂k

(−1)
(X0) 6= Y0, f̂k(e,Xn+1) 6= Yn+1

)
≤ P

(
f̂k(X0) 6= f̂k

(−1)
(X0)

)
+ P

(
f̂k(e,Xn+1) 6= f̂k(Xn+1)

)
≤ 4

√
k√

2πn
+

4p
√
k√

2πn
,

where we used Lemma D.6 again to obtain the last inequality.

Conclusion:

The conclusion simply results from combining bonds (C.1) and (C.2), which leads to

E
[(
R̂p(Ak, Z1,n)− L(Ak, Z1,n)

)2
]
≤ 2
√

2√
π

(2p+ 3)
√
k

n
+

1

n
·

C.1.2 Combinatorial lemmas

All the lemmas of the present section are proved with the same notation as in the proof of
Theorem 5.1 (see Section C.1.1).

Lemma C.1.

Pe,e′
(
A1
e,e′,1,2

)
=

(n−2
n−p)

(nn−p)
×

(n−2
n−p)

(nn−p)
, Pe,e′

(
A2
e,e′,i,j

)
=

(n−p−1
n−2 )

(nn−p)
×

(n−pn−2)

(nn−p)
,

Pe,e′
(
A3
e,e′,i,j

)
=

(n−pn−2)

(nn−p)

(n−p−1
n−2 )

(nn−p)
, Pe,e′

(
A4
e,e′,i,j

)
=

(n−p−1
n−2 )

(nn−p)
×

(n−p−1
n−2 )

(nn−p)
·
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Proof of Lemma C.1.

Pe,e′
(
A1
e,e′,1,2

)
= Pe,e′

(
i /∈ e, j /∈ e′, i /∈ e′, j /∈ e

)
= Pe,e′ (i /∈ e, j /∈ e)Pe,e′

(
j /∈ e′, i /∈ e′

)
=

(n−2
n−p)

(nn−p)
×

(n−2
n−p)

(nn−p)
·

Pe,e′
(
A2
e,e′,i,j

)
= Pe,e′

(
i /∈ e, j /∈ e′, i /∈ e′, j ∈ e

)
= Pe,e′ (i /∈ e, j ∈ e)Pe,e′

(
j /∈ e′, i /∈ e′

)
=

(n−p−1
n−2 )

(nn−p)
×

(n−pn−2)

(nn−p)
·

Pe,e′
(
A3
e,e′,i,j

)
= Pe,e′

(
i /∈ e, j /∈ e′, i ∈ e′, j /∈ e

)
= Pe,e′ (i /∈ e, j /∈ e)Pe,e′

(
j /∈ e′, i ∈ e′

)
=

(n−pn−2)

(nn−p)

(n−p−1
n−2 )

(nn−p)
·

Pe,e′
(
A4
e,e′,i,j

)
= Pe,e′

(
i /∈ e, j /∈ e′, i ∈ e′, j ∈ e

)
= Pe,e′ (i /∈ e, j ∈ e)Pe,e′

(
j /∈ e′, i ∈ e′

)
=

(n−p−1
n−2 )

(nn−p)
×

(n−p−1
n−2 )

(nn−p)
·

Lemma C.2. With the above notation, for ` ∈ {1, 3}, it comes

P
(
f̂k(e,X1) 6= Y1, f̂k(e′, X2) 6= Y2 | A`

e,e′,1,2

)
− P

(
f̂k(X0) 6= Y0, f̂k(e,X1) 6= Y1 | A`

e,e′,1,2

)
≤ 4p

√
k√

2πn
·

Proof of Lemma C.2. First remind that Z0 is a test sample, i.e. Z0 cannot belong to either
e or e′. Consequently, an exhaustive formulation of

P
(
f̂k(X0) 6= Y0, f̂k(e,X1) 6= Y1 | A`e,e′,1,2

)
is

P
(
f̂k(X0) 6= Y0, f̂k(e,X1) 6= Y1 | A`e,e′,1,2, 0 /∈ e, 0 /∈ e′

)
.

Then one has

P
(
f̂k(X0) 6= Y0, f̂k(e,X1) 6= Y1 | A`e,e′,1,2

)
= P

(
f̂k

(−2)
(X2) 6= Y2, f̂k(e,X1) 6= Y1 | A`e,e′,1,2, 0 /∈ e, 0 /∈ e′

)
36



Performance of CV to estimate the risk of kNN

where f̂k
(−2)

is built on sample (X0, Y0), (X1, Y1), (X3, Y3), ..., (Xn, Yn). Hence

P
(
f̂k(e,X1) 6= Y1, f̂k(e

′, X2) 6= Y2 | A`e,e′,1,2
)
− P

(
f̂k(X0) 6= Y0, f̂k(e,X1) 6= Y1 | A`e,e′,1,2

)
= P

(
f̂k(e,X1) 6= Y1, f̂k(e

′, X2) 6= Y2 | A`e,e′,1,2, 0 /∈ e, 0 /∈ e′
)

− P
(
f̂k

(−2)
(X2) 6= Y2, f̂k(e,X1) 6= Y1 | A`e,e′,1,2, 0 /∈ e, 0 /∈ e′

)
≤ P

({
f̂k(e,X1) 6= Y1

}
4
{
f̂k(e,X1) 6= Y1

}
| A`e,e′,1,2, 0 /∈ e, 0 /∈ e′

)
+ P

({
f̂k

(−2)
(X2) 6= Y2

}
4
{
f̂k(e

′, X2) 6= Y2

}
| A`e,e′,1,2, 0 /∈ e, 0 /∈ e′

)
= P

(
f̂k

(−2)
(X2) 6= f̂k(e

′, X2) | A`e,e′,1,2
)
≤ 4p

√
k√

2πn
,

by Lemma D.6.

Lemma C.3. With the above notation, for ` ∈ {2, 4}, it comes

P
(
f̂k(e,X1) 6= Y1, f̂k(e

′, X2) 6= Y2 | A`e,e′,1,2
)
− P

(
f̂k(X0) 6= Y0, f̂k(e,X1) 6= Y1 | A`e,e′,1,2

)
≤ 8

√
k√

2π(n− p)
+

4p
√
k√

2πn
·

Proof of Lemma C.3. As for the previous lemma, first notice that

P
(
f̂k(X0) 6= Y0, f̂k(e,X1) 6= Y1 | A`e,e′,1,2

)
= P

(
f̂k

(−2)
(X2) 6= Y2, f̂k

e0
(X1) 6= Y1 | A`e,e′,1,2

)
,

where f̂k
e0

is built on sample e with observation (X2, Y2) replaced with (X0, Y0). Then

P
(
f̂k(e,X1) 6= Y1, f̂k(e′, X2) 6= Y2 | A`

e,e′,1,2

)
− P

(
f̂k(X0) 6= Y0, f̂k(e,X1) 6= Y1 | A`

e,e′,1,2

)
= P

(
f̂k(e,X1) 6= Y1, f̂k(e′, X2) 6= Y2 | A`

e,e′,1,2

)
− P

(
f̂k

(−2)
(X2) 6= Y2, f̂k

e0
(X1) 6= Y1 | A`

e,e′,1,2

)
≤ P

({
f̂k(e,X1) 6= Y1

}
4
{
f̂k

e0
(X1) 6= Y1

}
| A`

e,e′,1,2

)
+ P

({
f̂k

(−2)
(X2) 6= Y2

}
4
{
f̂k(e′, X2) 6= Y2

}
| A`

e,e′,1,2

)
= P

(
f̂k(e,X1) 6= f̂k

e0
(X1) | A`

e,e′,1,2

)
+ P

(
f̂k

(−2)
(X2) 6= f̂k(e′, X2) | A`

e,e′,1,2

)
≤ 8

√
k√

2π(n− p)
+

4p
√
k√

2πn
·
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Appendix D. Technical results

D.1 Main inequalities

D.1.1 From moment to exponential inequalities

Proposition D.1 (see also Arlot (2007), Lemma 8.10). Let X denote a real valued random
variable, and assume there exist C > 0, λ1, . . . , λN > 0, and α1, . . . , αN > 0 (N ∈ N∗) such
that for every q ≥ q0,

E [ |X|q ] ≤ C

(
N∑
i=1

λiq
αi

)q
.

Then for every t > 0,

P [ |X| > t ] ≤ Ceq0 minj αje
−(mini αi)e

−1 minj


(

t
Nλj

) 1
αj


, (D.1)

Furthermore for every x > 0, it results

P

[
|X| >

N∑
i=1

λi

(
ex

minj αj

)αi ]
≤ Ceq0 minj αj · e−x. (D.2)

Proof of Proposition D.1. By use of Markov’s inequality applied to |X|q (q > 0), it comes
for every t > 0

P [ |X| > t ] ≤ 1q≥q0
E [ |X|q ]

tq
+ 1q<q0 ≤ 1q≥q0C

(∑N
i=1 λiq

αi

t

)q
+ 1q<q0 .

Now using the upper bound
∑N

i=1 λiq
αi ≤ N maxi {λiqαi} and choosing the particular value

q̃ = q̃(t) = e−1 minj

{(
t

Nλj

) 1
αj

}
, one gets

P [ |X| > t ] ≤ 1q̃≥q0C

maxi

{
Nλi

(
e−αi minj

{(
t

Nλj

) 1
αj

})αi}
t


q̃

+ 1q̃<q0

≤ 1q̃≥q0Ce
−(mini αi)

 e−1 minj


(

t
Nλj

) 1
αj




+ 1q̃<q0 ,

which provides (D.1).

Let us now turn to the proof of (D.2). From t∗ =
∑N

i=1 λi

(
ex

minj αj

)αi
combined with

q∗ = x
minj αj

, it arises for every x > 0

∑N
i=1 λi(q

∗)αi

t∗
=

∑N
i=1 λi

(
e−1 ex

minj αj

)αi
∑N

i=1 λi

(
ex

minj αj

)αi ≤
(

max
k

e−αk
) ∑N

i=1 λi

(
ex

minj αj

)αi
∑N

i=1 λi

(
ex

minj αj

)αi = e−mink αk .
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Then,

C

(∑N
i=1 λi(q

∗)αi

t∗

)q∗
≤ Ce−(mink αk) x

minj αj = Ce−x.

Hence,

P

[
|X| >

N∑
i=1

λi

(
ex

minj αj

)αi ]
≤ Ce−x1q∗≥q0 + 1q∗<q0 ≤ Ceq0 minj αj · e−x,

since eq0 minj αj ≥ 1 and −x+ q0 minj αj ≥ 0 if q < q0.

D.1.2 Sub-Gaussian random variables

Lemma D.1 (Theorem 2.1 in Boucheron et al. (2013) first part). Any centered random
variable X such that P (X > t) ∨ P (−X > t) ≤ e−t2/(2ν) satisfies

E
[
X2q

]
≤ q! (4ν)q .

for all q in N+.

Lemma D.2 (Theorem 2.1 in Boucheron et al. (2013) second part). Any centered random
variable X such that

E
[
X2q

]
≤ q!Cq.

for some C > 0 and q in N+ satisfies P (X > t) ∨ P (−X > t) ≤ e−t2/(2ν) with ν = 4C.

D.1.3 The Efron-Stein inequality

Theorem D.1 (Efron-Stein’s inequality Boucheron et al. (2013), Theorem 3.1). Let
X1, . . . , Xn be independent random variables and let Z = f (X1, . . . , Xn) be a square-
integrable function. Then

Var(Z) ≤
n∑
i=1

E
[
(Z − E [Z | (Xj)j 6=i])

2
]

= ν.

Moreover if X ′1, . . . , X
′
n denote independent copies of X1, . . . , Xn and if we define for every

1 ≤ i ≤ n

Z ′i = f
(
X1, . . . , X

′
i, . . . , Xn

)
,

then

ν =
1

2

n∑
i=1

E
[(
Z − Z ′i

)2]
.
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D.1.4 Generalized Efron-Stein’s inequality

Theorem D.2 (Theorem 15.5 in Boucheron et al. (2013)). Let X1, . . . , Xn n independent
random variables, f : Rn → R a measurable function, and define Z = f(X1, . . . , Xn) and
Z ′i = f(X1, . . . , X

′
i, . . . , Xn), with X ′1, . . . , X

′
n independent copies of Xi. Furthermore let

V+ = E
[∑n

i

[
(Z − Z ′i)+

]2 | Xn
1

]
and V− = E

[∑n
i

[
(Z − Z ′i)−

]2 | Xn
1

]
. Then there exists

a constant κ ≤ 1, 271 such that for all q in [2,+∞[,

∥∥(Z − EZ)+

∥∥
q
≤
√

2κq ‖V+‖q/2 ,∥∥(Z − EZ)−
∥∥
q
≤
√

2κq ‖V−‖q/2 .

Corollary D.1. With the same notation, it comes

‖Z − EZ‖q ≤
√

2κq

√∥∥∥∑n
i=1 (Z − Z ′i)

2
∥∥∥
q/2

(D.3)

≤
√

4κq

√∥∥∥∑n
i=1 (Z − E [Z | (Xj)j 6=i])

2
∥∥∥
q/2

. (D.4)

Moreover considering Zj = f(X1, . . . , Xj−1, Xj+1, . . . , Xn) for every 1 ≤ j ≤ n, it results

‖Z − EZ‖q ≤ 2
√

2κq

√∥∥∥∑n
i=1 (Z − Zj)2

∥∥∥
q/2

. (D.5)

Proof of Corollary D.1.
First note that ∥∥(Z − EZ)+

∥∥q
q

+
∥∥(Z − EZ)−

∥∥q
q

= ‖Z − EZ‖qq .

Consequently,

‖Z − EZ‖qq ≤
√

2κq
q
(√
‖V+‖q/2

q
+
√
‖V−‖q/2

q)
≤
√

2κq
q
(
‖V+‖q/2q/2 + ‖V−‖q/2q/2

)
≤
√

2κq
q

∥∥∥∥∥
n∑
i=1

E
[(
Z − Z ′i

)2 | Xn
1

]∥∥∥∥∥
q/2

q/2

.

Besides,

E
[(
Z − Z ′i

)2 | Xn
1

]
= E

[(
Z − E [Z | (Xj)j 6=i] + E [Z | (Xj)j 6=i]− Z ′i

)2 | Xn
1

]
= E

[
(Z − E [Z | (Xj)j 6=i])

2 +
(
E [Z | (Xj)j 6=i]− Z ′i

)2 | Xn
1

]
= E

[
(Z − E [Z | (Xj)j 6=i])

2 | Xn
1

]
+ E

[(
E
[
Z ′i | (Xj)j 6=i

]
− Z ′i

)2 | Xn
1

]
.
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Combining the two previous results leads to

‖Z − EZ‖q

≤
√

2κq

√√√√∥∥∥∥∥
n∑
i=1

(Z − E [Z | (Xj)j 6=i])
2

∥∥∥∥∥
q/2

+

∥∥∥∥∥
n∑
i=1

E
[
(E [Z ′i | (Xj)j 6=i]− Z ′i)

2 | Xn
1

]∥∥∥∥∥
q/2

=
√

4κq

√√√√∥∥∥∥∥
n∑
i=1

(Z − E [Z | (Xj)j 6=i])
2

∥∥∥∥∥
q/2

.

D.1.5 McDiarmid’s inequality

Theorem D.3. Let X1, ..., Xn be independent random variables taking values in a set A,
and assume that f : An → R satisfies

sup
x1,...,xn,x′i

∣∣f(x1, ..., xi, ..., xn)− f(x1, ..., x
′
i, ..., xn)

∣∣ ≤ ci, 1 ≤ i ≤ n .

Then for all ε > 0, one has

P (f(X1, ..., Xn)− E [f(X1, ..., Xn)] ≥ ε) ≤ e−2ε2/
∑n
i=1 c

2
i

P (E [f(X1, ..., Xn)]− f(X1, ..., Xn) ≥ ε) ≤ e−2ε2/
∑n
i=1 c

2
i

A proof can be found in Devroye et al. (1996) (see Theorem 9.2).

D.1.6 Rosenthal’s inequality

Proposition D.2 (Eq. (20) in Ibragimov and Sharakhmetov (2002)). Let X1, . . . , Xn de-
note independent real random variables with symmetric distributions. Then for every q > 2
and γ > 0,

E

[ ∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
q ]
≤ B(q, γ)

γ
n∑
i=1

E [ |Xi|q ] ∨

√√√√ n∑
i=1

E
[
X2
i

]q ,

where a ∨ b = max(a, b) (a, b ∈ R), and B(q, γ) denotes a positive constant only depending
on q and γ. Furthermore, the optimal value of B(q, γ) is given by

B∗(q, γ) = 1 + E[ |N |q ]
γ , if 2 < q ≤ 4,

= γ−q/(q−1)E [ |Z − Z ′|q ] , if 4 < q,

where N denotes a standard Gaussian variable, and Z,Z ′ are i.i.d. random variables with

Poisson distribution P
(
γ1/(q−1)

2

)
.
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Proposition D.3. Let X1, . . . , Xn denote independent real random variables with symmet-
ric distributions. Then for every q > 2,

E

[ ∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
q ]
≤
(

2
√

2e
)qqq

n∑
i=1

E [ |Xi|q ] ∨ (
√
q)q

√√√√ n∑
i=1

E
[
X2
i

]q .

Proof of Proposition D.3. From Lemma D.3, let us observe

• if 2 < q ≤ 4,

B∗(q, γ) ≤
(

2
√

2e
√
q
)q

by choosing γ = 1.

• if 4 < q,

B∗(q, γ) ≤ q−q/2
(√

4eq
(
q1/2 + q

))q
≤ q−q/2

(√
8eq
)q

=
(

2
√

2e
√
q
)q
,

with γ = q(q−1)/2.

Plugging the previous upper bounds in Rosenthal’s inequality (Proposition D.2), it results
for every q > 2

E

[ ∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
q ]
≤
(

2
√

2e
√
q
)q(

√
q)q

n∑
i=1

E [ |Xi|q ] ∨

√√√√ n∑
i=1

E
[
X2
i

]q ,

which leads to the conclusion.

Lemma D.3. With the same notation as Proposition D.2 and for every γ > 0, it comes

• for every 2 < q ≤ 4,

B∗(q, γ) ≤ 1 +

(√
2e
√
q
)q

γ
,

• for every 4 < q,

B∗(q, γ) ≤ γ−q/(q−1)

(√
4eq

(
γ1/(q−1) + q

))q
.

Proof of Lemma D.3. If 2 < q ≤ 4,

B∗(q, γ) = 1 +
E [ |N |q ]

γ
≤ 1 +

√
2e
√
q
( q
e

) q
2

γ
≤ 1 +

√
2e
q√
e
q ( q

e

) q
2

γ
= 1 +

(√
2e
√
q
)q

γ
,

42



Performance of CV to estimate the risk of kNN

by use of Lemma D.9 and
√
q1/q ≤

√
e for every q > 2.

If q > 4,

B∗(q, γ) = γ−q/(q−1)E
[ ∣∣Z − Z ′∣∣q ]

≤ γ−q/(q−1)2q/2+1e
√
q
[ q
e

(
γ1/(q−1) + q

) ]q/2
≤ γ−q/(q−1)2q/2

√
2e
q√
e
q
[ q
e

(
γ1/(q−1) + q

) ]q/2
≤ γ−q/(q−1)

[
4eq

(
γ1/(q−1) + q

) ]q/2
= γ−q/(q−1)

(√
4eq

(
γ1/(q−1) + q

))q
,

applying Lemma D.11 with λ = 1/2γ1/(q−1).

D.2 Technical lemmas

D.2.1 Basic computations for resampling applied to the kNN algorithm

Lemma D.4. For every 1 ≤ i ≤ n and 1 ≤ p ≤ n, one has

Pe (i ∈ ē) = p
n (D.6)

n∑
j=1

Pe [ i ∈ ē, j ∈ V e
k (Xi) ] = kp

n · (D.7)

In the same way, ∑
k<σi(j)≤k+p

Pe [ i ∈ ē, j ∈ V e
k (Xi) ] = kp

n
p−1
n−1 · (D.8)

Proof of Lemma D.4. The first equality is straightforward. The second one results from
simple calculations as follows.

n∑
j=1

Pe [ i ∈ ē, j ∈ V e
k (Xi) ] =

n∑
j=1

(
n

p

)−1∑
e

1i∈ē1j∈V ek (Xi)

=

(
n

p

)−1∑
e

1i∈ē

 n∑
j=1

1j∈V ek (Xi)


=

((
n

p

)−1∑
e

1i∈ē

)
k =

p

n
k .

For the last equality, let us notice every j ∈ Vi satisfies

Pe [ i ∈ ē, j ∈ V e
k (Xi) ] = Pe [ j ∈ V e

k (Xi) | i ∈ ē ]Pe [ i ∈ ē ] =
n− 1

n− p
p

n
,
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hence

∑
k<σi(j)≤k+p

Pe [ i ∈ ē, j ∈ V e
k (Xi) ] =

n∑
j=1

Pe [ i ∈ ē, j ∈ V e
k (Xi) ]−

∑
σi(j)≤k

Pe [ i ∈ ē, j ∈ V e
k (Xi) ]

= k
p

n
− kn− 1

n− p
p

n
= k

p

n

p− 1

n− 1
·

D.2.2 Stone’s lemma

Lemma D.5 (Devroye et al. (1996), Corollary 11.1, p. 171). Given n points (x1, ..., xn) in
Rd, any of these points belongs to the k nearest neighbors of at most kγd of the other points,
where γd increases on d.

D.2.3 Stability of the kNN classifier when removing p observations

Lemma D.6 (Devroye and Wagner (1979), Eq. (14)). For every 1 ≤ k ≤ n, let Ak denote
k-NN classification algorithm defined by Eq. (2.1), and let Z1, . . . , Zn denote n i.i.d. random
variables such that for every 1 ≤ i ≤ n, Zi = (Xi, Yi) ∼ P . Then for every 1 ≤ p ≤ n− k,

P [Ak(Z1,n;X) 6= Ak(Z1,n−p;X) ] ≤ 4√
2π

p
√
k

n
,

where Z1,i = (Z1, . . . , Zi) for every 1 ≤ i ≤ n, and (X,Y ) ∼ P is independent of Z1,n.

D.2.4 Exponential concentration inequality for the L1O estimator

Lemma D.7 (Devroye et al. (1996), Theorem 24.4). For every 1 ≤ k ≤ n, let Ak denote
k-NN classification algorithm defined by Eq. (2.1). Let also R̂1(·) denote the L1O estimator
defined by Eq. (2.2) with p = 1. Then for every ε > 0,

P
(∣∣∣R̂1(Ak, Z1,n)− E

[
R̂1(Ak, Z1,n)

]∣∣∣ > ε
)
≤ 2 exp

{
−n ε2

γ2
dk

2

}
.

D.2.5 Moment upper bounds for the L1O estimator

Lemma D.8. For every 1 ≤ k ≤ n, let Ak denote k-NN classification algorithm defined by
Eq. (2.1). Let also R̂1(·) denote the L1O estimator defined by Eq. (2.2) with p = 1. Then
for every q ≥ 1,

E
[∣∣∣R̂1 (Ak, Z1,n)− E

[
R̂1 (Ak, Z1,n)

]∣∣∣2q] ≤ q!(2
(kγd)

2

n

)q
. (D.9)

The proof is straightforward from the combination of Lemmas D.1 and D.7.
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D.2.6 Upper bound on the optimal constant in the Rosenthal’s inequality

Lemma D.9. Let N denote a real-valued standard Gaussian random variable. Then for
every q > 2, one has

E [ |N |q ] ≤
√

2e
√
q
(q
e

) q
2
.

Proof of Lemma D.9. If q is even (q = 2k > 2), then

E [ |N |q ] = 2

∫ +∞

0
xq

1√
2π
e−

x2

2 dx =

√
2

π
(q − 1)

∫ +∞

0
xq−2e−

x2

2 dx

=

√
2

π

(q − 1)!

2k−1(k − 1)!
=

√
2

π

q!

2q/2(q/2)!
·

Then using for any positive integer a

√
2πa

(a
e

)a
< a! <

√
2eπa

(a
e

)a
,

it results

q!

2q/2(q/2)!
<
√

2e e−q/2qq/2,

which implies

E [ |N |q ] ≤ 2

√
e

π

(q
e

)q/2
<
√

2e
√
q
(q
e

) q
2 ·

If q is odd (q = 2k + 1 > 2), then

E [ |N |q ] =

√
2

π

∫ +∞

0
xqe−

x2

2 dx =

√
2

π

∫ +∞

0

√
2t
q
e−t

dt√
2t
,

by setting x =
√

2t. In particular, this implies

E [ |N |q ] ≤
√

2

π

∫ +∞

0
(2t)k e−tdt =

√
2

π
2kk! =

√
2

π
2
q−1
2

(
q − 1

2

)
! <
√

2e
√
q
(q
e

) q
2
.

Lemma D.10. Let S denote a binomial random variable such that S ∼ B(k, 1/2) (k ∈ N∗).
Then for every q > 3, it comes

E [ |S − E [S ]|q ] ≤ 4
√
e
√
q

√
qk

2e

q

·
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Proof of Lemma D.10. Since S − E(S) is symmetric, it comes

E [ |S − E [S ]|q ] = 2

∫ +∞

0
P
[
S < E [S ]− t1/q

]
dt = 2q

∫ +∞

0
P [S < E [S ]− u ]uq−1 du.

Using Chernoff’s inequality and setting u =
√
k/2v, it results

E [ |S − E [S ]|q ] ≤ 2q

∫ +∞

0
uq−1e−

u2

k du = 2q

√
k

2

q ∫ +∞

0
vq−1e−

v2

2 dv.

If q is even, then q−1 > 2 is odd and the same calculations as in the proof of Lemma D.9
apply, which leads to

E [ |S − E [S ]|q ] ≤ 2

√
k

2

q

2q/2
(q

2

)
! ≤ 2

√
k

2

q

2q/2
√
πeq

( q
2e

)q/2
= 2
√
πe
√
q

√
qk

2e

q

< 4
√
e
√
q

√
qk

2e

q

·

If q is odd, then q − 1 > 2 is even and another use of the calculations in the proof of
Lemma D.9 provides

E [ |S − E [S ]|q ] ≤ 2q

√
k

2

q
(q − 1)!

2(q−1)/2 q−1
2 !

= 2

√
k

2

q
q!

2(q−1)/2 q−1
2 !

.

Let us notice

q!

2(q−1)/2 q−1
2 !
≤

√
2πeq

( q
e

)q
2(q−1)/2

√
π(q − 1)

(
q−1
2e

)(q−1)/2
=
√

2e

√
q

q − 1

( q
e

)q(
q−1
e

)(q−1)/2

=
√

2e

√
q

q − 1

(q
e

)(q+1)/2
(

q

q − 1

)(q−1)/2

and also that √
q

q − 1

(
q

q − 1

)(q−1)/2

≤
√

2e.

This implies

q!

2(q−1)/2 q−1
2 !
≤ 2e

(q
e

)(q+1)/2
= 2
√
e
√
q
(q
e

)q/2
,

hence

E [ |S − E [S ]|q ] ≤ 2

√
k

2

q

2
√
e
√
q
(q
e

)q/2
= 4
√
e
√
q

√
qk

2e

q

·
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Lemma D.11. Let X,Y be two i.i.d. random variables with Poisson distribution P(λ)
(λ > 0). Then for every q > 3, it comes

E [ |X − Y |q ] ≤ 2q/2+1e
√
q
[ q
e

(2λ+ q)
]q/2

.

Proof of Lemma D.11. Let us first remark that

E [ |X − Y |q ] = EN [E [ |X − Y |q | N ] ] = 2qEN [E [ |X −N/2|q | N ] ] ,

where N = X + Y . Furthermore, the conditional distribution of X given N = X + Y is a
binomial distribution B(N, 1/2). Then Lemma D.10 provides that

E [ |X −N/2|q | N ] ≤ 4
√
e
√
q

√
qN

2e

q

a.s. ,

which entails that

E [ |X − Y |q ] ≤ 2qEN

[
4
√
e
√
q

√
qN

2e

q ]
= 2q/2+2√e√q

√
q

e

q

EN
[
N q/2

]
.

It only remains to upper bound the last expectation where N is a Poisson random variable
P(2λ) (since X,Y are i.i.d. ):

EN
[
N q/2

]
≤
√

EN [N q ]

by Jensen’s inequality. Further introducing Touchard polynomials and using a classical
upper bound, it comes

EN
[
N q/2

]
≤

√√√√ q∑
i=1

(2λ)i
1

2

(
q

i

)
iq−i ≤

√√√√ q∑
i=0

(2λ)i
1

2

(
q

i

)
qq−i

=

√√√√1

2

q∑
i=0

(
q

i

)
(2λ)iqq−i =

√
1

2
(2λ+ q)q

= 2
−1
2 (2λ+ q)q/2 .

Finally, one concludes

E [ |X − Y |q ] ≤ 2q/2+2√e√q
√
q

e

q

2
−1
2 (2λ+ q)q/2 < 2q/2+1e

√
q
[ q
e

(2λ+ q)
]q/2

.
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