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t INRIAF-59 655, Villeneuve d'As
q Cedexe-mail: 
elisse�math.univ-lille1.frAbstra
t: The performan
e of 
ross-validation (CV) is analyzed in two 
ontexts: (i) risk estima-tion and (ii) model sele
tion in the density estimation framework. The main fo
us is given to oneCV algorithm 
alled leave-p-out (Lpo), where p denotes the 
ardinality of the test set. Closed-formexpressions are settled for the Lpo estimator of the risk of proje
tion estimators, whi
h makesV-fold 
ross-validation 
ompletely useless.From a theoreti
al point of view, these 
losed-form expressions enable to study the Lpo perfor-man
es in terms of risk estimation. For instan
e, the optimality of leave-one-out (Loo), that is Lpowith p = 1, is proved among CV pro
edures. Two model sele
tion frameworks are also 
onsidered:estimation, as opposed to identi�
ation.Unlike risk estimation, Loo is proved to be suboptimal as a model sele
tion pro
edure. In theestimation framework with �nite sample size n, optimality is a
hieved for p large enough (with
p/n = o(1)) to balan
e over�tting. A link is also identi�ed between the optimal p and the stru
tureof the model 
olle
tion. These theoreti
al results are strongly supported by simulation experiments.When performing identi�
ation, model 
onsisten
y is also proved for Lpo with p/n → 1 as n → +∞.AMS 2000 subje
t 
lassi�
ations: Primary 62G09; se
ondary 62G07, 62E17.Keywords and phrases: Cross-validation, leave-p-out, resampling, risk estimation, model sele
-tion, density estimation, ora
le inequality, proje
tion estimators, 
on
entration inequalities.1. Introdu
tion1.1. Model sele
tionFor estimating a target quantity denoted by s, let {Sm}m∈M denote a 
olle
tion of sets of 
andidateparameters and M denote a set of index. From ea
h Sm 
alled a model, an estimator ŝm of s is 
omputed.The goal of model sele
tion is to design a 
riterion crit : M → R

+ su
h that minimizing crit(·) over
M provides a �nal estimator ŝ m̂ that is �optimal�. Among various strategies of model sele
tion, modelsele
tion via penalization has been introdu
ed in the seminal papers by Akaike (1973); Mallows (1973);S
hwarz (1978) on respe
tively AIC, Cp, and BIC 
riteria. However sin
e AIC and BIC are derived fromasymptoti
 arguments, their performan
es 
ru
ially depend on model 
olle
tion and sample size (seeBaraud et al., 2009).More re
ently Birgé and Massart (1997, 2001, 2006) have developed a non-asymptoti
 approa
h in-spired from the pioneering work of Barron and Cover (1991). It relies on 
on
entration inequalities(Ledoux, 2001; Talagrand, 1996) and aims at deriving ora
le inequalities su
h as

ℓ (s, ŝ m̂) ≤ C inf
m∈M

{ℓ (s, ŝm)}+ rnwith probability larger than 1− c/n2, where c > 0 is a 
onstant, ℓ(s, t) is a measure of the gap betweenparameters s and t, rn is a remainder term with respe
t to infm ℓ (s, ŝm), and C ≥ 1 denotes a 
onstantindependent of s. The 
loser C to 1 and the smaller rn, the better the model sele
tion pro
edure. If
C = Cn → 1 and rn → 0 as n → +∞, the model sele
tion pro
edure is said asymptoti
ally optimal (ore�
ient) (see Arlot and Celisse, 2010, for instan
e). Note that other asymptoti
 optimality properties1imsart-generi
 ver. 2009/02/27 file: 
vhistoAOS.tex date: Mar
h 30, 2012

mailto:celisse@math.univ-lille1.fr


A. Celisse/Optimal 
ross-validation 2have been studied in the literature. For instan
e, a model sele
tion pro
edure satisfying
P [ m̂ = m0 ] −−−−−→

n→+∞
1 ,where m0 denotes a �xed given model is said model 
onsistent (see Shao, 1997, for a study of variousmodel sele
tion pro
edures in terms of model 
onsisten
y).In the density estimation framework, model sele
tion with deterministi
 penalties has been developed:(i) for Kullba
k-Leibler divergen
e and histograms by Barron et al. (1999); Castellan (1999, 2003) andfurther studied in Birgé and Rozenhol
 (2006), and (ii) for quadrati
 risk and proje
tion estimators byBirgé and Massart (1997) and Barron et al. (1999).1.2. Cross-validationThe aforementioned approa
hes rely on some deterministi
 penalties su
h as AIC or BIC. These penaltiesare derived in some spe
i�
 settings (for instan
e Birgé and Massart, 2006, assume a Gaussian noise ),whi
h makes their performan
es setting dependent.Conversely, 
ross-validation (CV) is a resampling pro
edure based on a universal heuristi
s whi
hmakes it appli
able in a wide range of settings. CV algorithms have been �rst studied in a regression
ontext by Stone (1974, 1977) for the leave-one-out (Loo) and Geisser (1974, 1975) for the V -fold 
ross-validation (VFCV), and in the density estimation framework by Rudemo (1982); Stone (1984). Sin
ethese algorithms 
an be 
omputationally demanding or even intra
table, Bowman (1984); Rudemo (1982)derived 
losed-form formulas for the Loo estimator of the risk of histograms or kernel estimators. Theseresults have been re
ently extended to the leave-p-out 
ross-validation (Lpo) by Celisse and Robin (2008).Although CV algorithms are extensively used in pra
ti
e, only few theoreti
al results exist on theirperforman
es, most of them being of asymptoti
 nature. For instan
e in the regression framework, Burman(1989, 1990) proves Loo is asymptoti
ally the best CV algorithm in terms of risk estimation. Several papersare dedi
ated to show the equivalen
e between some CV algorithms and penalized 
riteria in terms ofasymptoti
 optimality properties: (i) e�
ien
y in Li (1987); Zhang (1993), and (ii) model 
onsisten
yin Shao (1993); Yang (2007). We refer interested readers to Shao (1997) for an extensive review aboutasymptoti
 optimality properties in terms of e�
ien
y and model 
onsisten
y of some penalized 
riteriaas well as CV algorithms.As for non-asymptoti
 results in the density framework, Birgé and Massart (1997) have settled anora
le inequality that relies on a 
onje
ture and may be applied to Loo. However to the best of ourknowledge, no result of this type has already been proved for Lpo in the density estimation framework.Re
ently in the regression setting, Arlot (2007) established ora
le inequalities for V -fold penalties, whileArlot and Celisse (2011) have 
arried out an extensive simulation study in the 
hange-point dete
tionproblem with heteros
edasti
 observations.1.3. Main 
ontributionsIn the present paper, we derive 
losed-form expressions for the Lpo risk estimator of the broad 
lass ofproje
tion estimators (Se
tion 2). Su
h 
losed-form expressions make V -FCV 
ompletely useless sin
e itis more variable and 
omputationally demanding than Lpo (Se
tion 2.3). They also enable to study thetheoreti
al performan
e of CV in two respe
ts: (i) for risk estimation (Se
tion 2.4), and (ii) for modelsele
tion (Se
tion 3). For instan
e, it is proved that Loo is the best CV algorithm for risk estimation(Theorem 2.1), while it is suboptimal for model sele
tion (Corollary 3.1 and Theorem 3.3).Moreover, two aspe
ts of model sele
tion via CV have been explored. In Se
tion 3.1, the estimationpoint of view is des
ribed where it is shown that Lpo is optimal as long as p/n = o(1) and p is large enoughto balan
e the in�uen
e of the model 
olle
tion stru
ture. All these new theoreti
al results are supportedimsart-generi
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ross-validation 3by simulation experiments detailed in Se
tion 3.1.4. Conversely, identi�
ation is studied in Se
tion 3.2,where the optimal performan
e is obtained for p/n −−−−−→
n→+∞

1, whi
h is 
onsistent with previous resultssettled in the regression framework for instan
e by Shao (1993). However, our result is more pre
ise sin
ewe were able to lo
alize the optimal rate of 
onvergen
e of 1 − p/n toward 0 between 1/n and 1/
√
n as

n tends to +∞. Finally, proofs and te
hni
al lemmas have been 
olle
ted in Appendix A.2. Cross-validation and risk estimation2.1. Statisti
al framework2.1.1. NotationThroughout the paper, X1, . . . , Xn ∈ [0, 1] are independent and identi
ally distributed (i.i.d. ) randomvariables drawn from a probability distribution P of density s ∈ L2([0, 1]) with respe
t to Lebesgue'smeasure on [0, 1], and X1,n = (X1, . . . , Xn).Let S∗ denote the set of mesurable fun
tions on [0, 1]. The distan
e between s and any u ∈ S∗ ismeasured thanks to the quadrati
 loss denoted by
ℓ : (s, u) 7→ ℓ (s, u ) := ‖s− u‖2 =

∫

[0,1]

[ s(t)− u(t) ]
2
dt .It is related to the 
ontrast fun
tion

γ : (u, x) 7→ γ(u;x) := ‖u‖2 − 2u(x) , with ℓ (s, u ) = Pγ(u)− Pγ(s) (1)where Pγ(u) = P (γ(u; ·)) and Pf := E [ f (X1) ] for every f ∈ S∗. The performan
e of every estimator
ŝ = ŝ (X1, . . . , Xn) of s is assessed thanks to the quadrati
 risk

Rn( ŝ ) := E [ ℓ (s, ŝ ) ] = E

[
‖s− ŝ ‖2

]
.Estimating Pγ(u) is made through the empiri
al 
ontrast de�ned by

Pnγ(u) :=
1

n

n∑

i=1

γ (u;Xi) , where Pn = 1/n

n∑

i=1

δXidenotes the empiri
al measure and Pnf := 1/n
∑n

i=1 f(Xi) for every f ∈ S∗.Let us further introdu
e Mn a 
ountable set of indi
es and for every m ∈ Mn, Sm denote a set offun
tions, 
alled model, used to estimate s. To ea
h Sm, an estimator ŝm 
orresponds that is de�ned asthe empiri
al 
ontrast minimizer
ŝm := Argminu∈Sm

Pnγ(u) . (2)It results a 
olle
tion {ŝm}m∈Mn
of estimators of s depending on the 
hoi
e of models Sms. Instan
es ofsu
h models and estimators are des
ribed in Se
tion 2.1.2.2.1.2. Proje
tion estimatorsLet Λn be a set of 
ountable indi
es and {ϕλ}λ∈Λn

a family of ve
tors in L2([0, 1]) su
h that for every
m ∈ Mn, {ϕλ}λ∈Λ(m) denotes an orthonormal family of L2([0, 1]) with Λ(m) ⊂ Λn. For every m ∈ Mn,imsart-generi
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Sm denotes the linear spa
e spanned by {ϕλ}λ∈Λ(m), Dm = dim (Sm), and sm is the orthogonal proje
tionof s onto Sm

sm := Argminu∈Sm
Pγ(u) =

∑

λ∈Λ(m)

Pϕλ ϕλ, with Pϕλ = E [ϕλ(X) ] .De�nition 2.1. An estimator ŝ ∈ L2([0, 1]) is a proje
tion estimator if there exists a family {ϕλ}λ∈Λof orthonormal ve
tors of L2([0, 1]) su
h that
ŝ =

∑

λ∈Λ

αλ ϕλ, with αλ =
1

n

n∑

i=1

Hλ(Xi),where {Hλ(·)}λ∈Λ depends on the family {ϕλ}λ∈Λ.As a 
onsequen
e, it is straightforward to 
he
k that the empiri
al 
ontrast minimizer de�ned byEq. (2) over Sm = Span (ϕλ, λ ∈ Λ(m)) is a proje
tion estimator sin
e
ŝm =

∑

λ∈Λ(m)

Pnϕλ ϕλ , with Pnϕλ =
1

n

n∑

i=1

ϕλ(Xi) . (3)Here are a few examples of proje
tion estimators (see DeVore and Lorentz, 1993):
• Histograms : For every m ∈ Mn, let {Iλ}λ∈Λ(m) be a partition of [0, 1] in Dm = Card(Λ(m))intervals. Set ϕλ = 1Iλ/

√
|Iλ| for every λ ∈ Λ(m), with |Iλ| the Lebesgue measure of Iλ, and

1Iλ(x) = 1 if x ∈ Iλ and 0 otherwise. Then,
ŝm =

∑

λ∈Λ(m)

Pn1Iλ

1Iλ

|Iλ|
· (4)

• Trigonometri
 polynomials : For every λ ∈ Z, let ϕλ : t 7→ ϕλ(t) = e2πiλt. Then for any �nite
Λ(m) ⊂ Z,

ŝm(t) =
∑

λ∈Λ(m)

Pnϕλ e2πiλt, ∀t ∈ [0, 1] (5)is a trigonometri
 polynomial.
• Wavelet basis : Let {ϕλ}λ∈Λn

be an orthonormal basis of L2([0, 1]) made of 
ompa
t supportedwavelets, where Λn =
{
(j, k) | j ∈ N

∗ and 1 ≤ k ≤ 2j
}. Then for every subset Λ(m) of Λn,

ŝm =
∑

λ∈Λ(m)

Pnϕλ ϕλ . (6)Some of these estimators 
an take negative values for �nite sample size. The same phenomenon ariseswith kernel estimators (Tsybakov, 2003). A possible solution to avoid negative values is trun
ating andnormalizing the preliminary proje
tion estimator
s̃m = ŝm1ŝm≥0

(∫

[0,1]

1ŝm≥0(t)ŝm(t) dt

)−1

.Note that if s(x0) > 0 at a given x0 ∈ [0, 1] and ŝm(x)
P−−−−−→

n→+∞
s(x) for every x ∈ [0, 1], then ŝm(x0) ≥ 0for large enough values of n. imsart-generi
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ross-validation 52.2. Leave-p-out 
ross-validationIn the literature, several 
ross-validation (CV) algorithms have been su

essively introdu
ed to over
omethe defe
ts of already existing ones. The purpose of the present se
tion is to brie�y des
ribe the main CValgorithms that will be used throughout the paper with some emphasis to 
omputational aspe
ts.2.2.1. Cross-validationFor every 1 ≤ p ≤ n − 1, let us de�ne Ep = {e ⊂ {1, . . . , n} , Card(e) = p} and for any su
h e ∈ Ep,set Xe = {Xi, i ∈ e} (test set) and X(e) = {Xi, i ∈ {1, . . . , n} \ e} (training set). Let also P e
n :=

1/p
∑

i∈e δXi
and P

(e)
n := 1/(n− p)

∑
i∈(e) δXi

denote the empiri
al measures de�ned respe
tively fromthe test set Xe and the training set X(e).Hold-out Simple validation also 
alled Hold-out has been introdu
ed at the early 30s (Larson, 1931).For every 1 ≤ p ≤ n−1, it 
onsists in randomly splitting observations into a training setX(e) of 
ardinality
n−p and a test setXe of 
ardinality p. Random data splitting is only made on
e and introdu
es additionalvariability. For every e ∈ Ep (randomly 
hosen), the hold-out estimator of Rn( ŝ ) is

R̂Ho,p( ŝ ) := P e
n γ
(
ŝ (X(e))

)
=

1

p

∑

i∈e

γ
(
ŝ (X(e));Xi

)
. (7)Hold-out has been studied for instan
e by Bartlett et al. (2002); Blan
hard and Massart (2006) in 
las-si�
ation and by Lugosi and Nobel (1999); Wegkamp (2003) in regression.Leave-p-out Unlike Eq. (7) where a single split e of the data is randomly 
hosen, whi
h introdu
esadditional unwanted variability, leave-p-out (Lpo) 
onsiders all the (np) = Card (Ep) splits. The Lpoestimator of Rn( ŝ ) is de�ned bŷ

Rp( ŝ ) =

(
n

p

)−1 ∑

e∈Ep

P e
n γ
(
ŝ (X(e))

)
. (8)For instan
e, it has been studied by Shao (1993), Zhang (1993), and Arlot and Celisse (2011) in theregression framework. With p = 1, Lpo redu
es to the 
elebrated leave-one-out (Loo) 
ross-validationintrodu
ed by Mosteller and Tukey (1968) and further studied by Stone (1974). Note that 
omputingthe Lpo estimator requires a 
omputational 
omplexity of order (np) times that of 
omputing ŝ , whi
hqui
kly be
omes intra
table as n grows.

V -fold 
ross-validation To over
ome the high 
omputational burden of Lpo (Eq. (8)), Geisser (1974,1975) introdu
ed the V-fold 
ross-validation (V-FCV). Instead of 
onsidering all the (np) possible splits,one (randomly or not) 
hooses a partition of X1, . . . , Xn into V subsets Xe1 , . . . , XeV of approximatelyequal size p = n/V = Card(ei), i = 1, . . . , V . Every Xei , i = 1, . . . , V is su

essively used as a test setleading to the V-fold risk estimator of Rn( ŝ )

R̂V−FCV( ŝ ) =
1

V

V∑

v=1

P ev
n γ

(
ŝ (X(ev))

)
. (9)V-FCV has been studied in the regression framework by Burman (1989, 1990) who suggests a 
orre
tionto remove its bias. imsart-generi
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A. Celisse/Optimal 
ross-validation 62.2.2. Lpo versus V-FCVAs explained in Se
tion 2.2.1, the Lpo 
omputational 
omplexity is roughly (np) times that of 
omputing
ŝ , whi
h 
an be highly time-
onsuming. Unlike Lpo (and even Loo when p = 1), V-FCV involves only Vsu
h 
omputations, whi
h is less demanding as long as V ≪ n. Note that usual values for V are 3, 5, and10 (ex
ept V = n where V-FCV and Loo 
oin
ide).However, V-FCV relies on a preliminary (possibly random) partitioning of X1, . . . , Xn into V subsets.Unlike Lpo where an exhaustive splitting is performed, this preliminary partitioning indu
es some addi-tional variability, whi
h 
ould be misleading. For instan
e, Celisse and Robin (2008) have theoreti
allyquanti�ed the amount of additional variability indu
ed by V-FCV with respe
t to Lpo.On the one hand, Lpo 
an be seen as a �gold standard� among CV algorithms sin
e it relies onexhaustive splitting and does not introdu
e any additional variability. On the other hand, V-FCV appearsas an approximation to the �ideal Lpo� that 
annot be a
hieved due to a prohibitive 
omputational 
ost.Note that other approximations to Lpo have been proposed su
h as the repeated learning-testing 
ross-validation (Breiman et al., 1984; Burman, 1989; Zhang, 1993).2.3. Closed-form expressions for the Lpo risk estimatorIn Se
tion 2.2.2 it is 
laimed that as long as Lpo 
annot be 
omputed V-FCV is preferable. Closed-form formulas for the Lpo estimator are proved in the present se
tion, whi
h makes Lpo fully e�e
tivein pra
ti
e and always better than V-FCV. Besides, 
losed-form formulas also enable a more a

uratetheoreti
al analysis of CV algorithms both in terms of risk estimation (Se
tion 2.4) and model sele
tion(Se
tion 3).With the notation introdu
ed at the beginning of Se
tion 2.2.1, let us 
onsider proje
tion estimators ŝmde�ned by Eq. (3). Closed-form formulas for the Lpo risk estimator are derived exploiting the �linearity�of proje
tion estimators. Sums over Ep (whi
h 
annot be 
omputed in general) then redu
e to binomial
oe�
ients. Re
alling the expression of the 
ontrast γ(· ; ·) (Eq. (1)), one has to 
ompute both quadrati
and linear terms.Lemma 2.1. For every m ∈ Mn, let ŝm = ŝm(X1,n) denote a proje
tion estimator de�ned by Eq. (3)and set Xe = {Xi, i ∈ e} for every e ∈ Ep. Then for every p ∈ {1, . . . , n− 1},

∑

e∈Ep

∥∥∥ŝm(X(e))
∥∥∥
2

=
1

(n− p)2

∑

λ∈Λ(m)



(
n− 1

p

) n∑

k=1

ϕ2
λ(Xk) +

(
n− 2

p

)∑

k 6=ℓ

ϕλ(Xk)ϕλ(Xℓ)


 ,

∑

e∈Ep

∑

i∈e

ŝ (X(e))(Xi) =
1

n− p

∑

λ∈Λ(m)

(
n− 2

p− 1

)∑

i6=j

ϕλ(Xi)ϕλ(Xj) .Proof of Lemma 2.1. For every e ∈ Ep, and t ∈ [0, 1],
ŝm(X(e))(t) =

∑

λ

(P (e)
n ϕλ)ϕλ(t) =

1

n− p

n∑

j=1

∑

λ

ϕλ(Xj)ϕλ(t)1(j∈(e)) ,whi
h implies
∑

i∈e

ŝm(X(e))(Xi) =
1

n− p

∑

i6=j

∑

λ

ϕλ(Xj)ϕλ(Xi)1(j∈(e))1(i∈e) .imsart-generi
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A. Celisse/Optimal 
ross-validation 7It remains to sum over e ∈ Ep, whi
h is made thanks to Lemma A.1.Lemma 2.1 enables to derive 
losed-form formulas for the Lpo risk estimator, whi
h makes Lpo algo-rithm fully e�
ient in pra
ti
e.Proposition 2.1. For every m ∈ Mn, let ŝm = ŝm(X1,n) denote a proje
tion estimator de�ned byEq. (3). Then for every p ∈ {1, . . . , n− 1},
R̂p(m) = R̂p(ŝm) =

1

n(n− p)

∑

λ∈Λ(m)




n∑

j=1

ϕ2
λ(Xj)−

n− p+ 1

n− 1

∑

j 6=k

ϕλ(Xj)ϕλ(Xk)


 . (10)Proposition 2.1 enjoys a great interest. First it applies to the broad family of proje
tion estimators.Se
ond, it allows to redu
e the 
omputation time from an exponential to a linear 
omplexity sin
e 
om-puting (10) is of order O (n). Note that in the more spe
i�
 setting of histograms and kernel estimators,su
h 
losed-form formulas have been derived by Celisse and Robin (2008).Proof of Proposition 2.1. From de�nitions of the 
ontrast (Eq. (1)) and the Lpo estimator Eq. (8), it
omes

R̂p(m) =

(
n

p

)−1 ∑

e∈Ep

∥∥∥ŝm(X
(e)
1,n)
∥∥∥
2

− 2

p

(
n

p

)−1 ∑

e∈Ep

∑

i∈e

ŝm(X
(e)
1,n)(Xi) .Then, Lemma 2.1 provides the expe
ted 
on
lusion.Let us now spe
ify the Lpo estimator expressions for the three examples of proje
tion estimators inSe
tion 2.1.2.1. Corollary 2.1 (Histograms). For ŝm given by Eq. (4) and for p ∈ {1, . . . , n− 1},

R̂p(m) =
1

(n− 1)(n− p)

Dm∑

λ=1

1

|Iλ|

[
(2n− p)

nλ

n
− n(n− p+ 1)

(nλ

n

)2 ]
,where nλ = Card ({i |Xi ∈ Iλ}).2. Corollary 2.2 (Trigonometri
 polynomials). For every k ∈ N, let ϕλ denote either t 7→ cos(2πkt),if λ = 2k or t 7→ sin(2πkt), if λ = 2k + 1. Let us further assume Λ(m) = {0, . . . , 2K} for K ∈ N

∗.Then for every p ∈ {1, . . . , n− 1},
R̂p(m) = α(n, p)− β(n, p)

K∑

k=0








n∑

j=1

cos(2πkXj)





2

+





n∑

j=1

sin(2πkXj)





2

 ,where α(n, p) = (p− 2)(K + 1) [ (n− 1)(n− p) ]−1 and β(n, p) = (n− p+ 1) [n(n− 1)(n− p) ]−1.3. imsart-generi
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A. Celisse/Optimal 
ross-validation 8Corollary 2.3 (Haar basis). Let us de�ne ϕ : t 7→ 1[0,1] and ϕj,k(t) = 2j/2ϕ(2j ·−k), where j ∈ Nand 0 ≤ k ≤ 2j −1, and assume Λ(m) ⊂
{
(j, k) | j ∈ N, 0 ≤ k ≤ 2j − 1

} for every m ∈ Mn. Then,
R̂p(m) =

1

(n− 1)(n− p)

∑

(j,k)∈Λ(m)

2j
[
(2n− p)

nj,k

n
− n(n− p+ 1)

(nj,k

n

)2 ]
,where nj,k = Card

({
i | Xi ∈ [k/2j, (k + 1)/2j]

}).2.4. Risk estimation: Leave-one-out optimalityFrom the general 
losed-form formula given by Eq. (10), one derives 
losed-form expressions for theexpe
tation and varian
e of the Lpo risk as well. These expressions will be useful to analyze the theoreti
albehavior of CV in terms of risk estimation and model sele
tion (see Se
tion 3). In the present se
tion forinstan
e, they are used to prove the optimality of Loo for estimating the risk of any proje
tion estimator(Theorem 2.1).Proposition 2.2. For every m ∈ Mn, let ŝm = ŝm(X1,n) denote a proje
tion estimator de�ned byEq. (3). Then for every 1 ≤ p ≤ n− 1,
E

[
R̂p(m)

]
=

1

n− p

∑

λ∈Λ(m)

[
Eϕ2

λ(X)− (Eϕλ(X))2
]
−

∑

λ∈Λ(m)

(Eϕλ(X))2 ,and
Var

[
R̂p(m)

]
=

1

(n− 1)2

[
an +

bn
(n− p)

+
cn

(n− p)2

]
, (11)where an = Var

[∑
λ∈Λ(m)

(
n(Pnϕλ)

2 − Pnϕ
2
λ

) ] , cn = Var
[
n
∑

λ∈Λ(m)

(
Pnϕ

2
λ − (Pnϕλ)

2
) ] , and bn =

−2 Cov
[∑

λ∈Λ(m)

(
n(Pnϕλ)

2 − Pnϕ
2
λ

)
,
∑

λ∈Λ(m) n
(
Pnϕ

2
λ − (Pnϕλ)

2
) ] .The proof is a straightforward appli
ation of Proposition 2.1 and has been omitted. Note that theabove quantities do exist as long as P |ϕλ|3 < +∞ for any λ ∈ Λ(m), whi
h holds true if s is boundedfor instan
e and ∫ |ϕλ|3 < +∞ (ϕλ 
ontinuous and 
ompa
t supported for instan
e). In the varian
eexpression, an, bn, and cn do not depend on p. Then knowing the behavior of the varian
e with respe
tto p only depends on the magnitude of an, bn, and cn, whi
h is 
lari�ed by Corollary 2.5.Let us �rst fo
us on the bias B [ R̂p(m)

]
:= ER̂p(m)−E

[
‖ŝm‖2 − 2

∫
[0,1] s ŝm

] of the Lpo estimator.Corollary 2.4 (Bias). For every m ∈ Mn, let ŝm = ŝm(X1,n) denote a proje
tion estimator de�ned byEq. (3). Then for every m ∈ Mn and 1 ≤ p ≤ n− 1,
B

[
R̂p(m)

]
=

p

n(n− p)

∑

λ∈Λ(m)

Var [ϕλ(X1) ] ≥ 0 .The bias is nonnegative and in
reases with p, whi
h means Loo (p = 1) has the smallest bias amongCV algorithms. Besides if p = pn satis�es pn/n −−−−−→
n→+∞

q ∈ [0, 1), then B

[
R̂p(m)

]
−−−−−→
n→+∞

0. Thus, Loois asymptoti
ally unbiased.Let us now des
ribe the behavior of the varian
e with respe
t to p.imsart-generi
 ver. 2009/02/27 file: 
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ross-validation 9Corollary 2.5 (Varian
e). With the same notation as Proposition 2.2, for every m ∈ Mn and 1 ≤ p ≤
n− 1,

Var
[
R̂p(m)

]
=

n

(n− 1)2

[
A+

B

n− p
+

C

(n− p)2
+O

(
1

n

)]
,where

A = 4Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]
≥ 0 ,

B = 8Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]
− 4Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X3)

]
,

C = 4Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]
− 4Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X3)

]

+Var

[
∑

λ

ϕ2
λ(X1)

]
≥ 0 .In the more spe
i�
 
ase of histogram and kernel density estimators, Celisse and Robin (2008) deriveda similar (non asymptoti
) result for the varian
e. Note that the monotoni
ity of the varian
e with respe
tto p depends on the sign of B sin
e x 7→ f(x) = Ax2 + Bx+ C has for derivative x 7→ f ′(x) = 2Ax+Band A ≥ 0. However in full generality, the sign of B is unknown.Proof of Corollary 2.5. Combining Proposition 2.2, Lemmas A.2 and A.3, and Proposition A.1, it 
omes

an = 4nβ +O(1) ,

bn = 8nβ − 4nγ +O(1) ,

cn = 4nβ − 4nγ + nδ +O(1) ,where β = Cov [
∑

λ ϕλ(X1)ϕλ(X2),
∑

λ ϕλ(X1)ϕλ(X3) ], γ = Cov
[∑

λ ϕ
2
λ(X1),

∑
λ ϕλ(X1)ϕλ(X3)

],and δ = Var
[∑

λ ϕ
2
λ(X1)

]. This provides the expe
ted 
on
lusion with A = 4β, B = 8β − 4γ, and
C = 4β − 4γ + δ.The purpose of the following proposition is to des
ribe the monotoni
ity of the varian
e depending onthe sign of BProposition 2.3. Let us de�ne p0,n = Argmin1≤p≤n−1Var

[
R̂p(m)

] in Eq. (11). Then,
p0,n = n+

(
1− Cov

[∑
λ ϕ

2
λ(X1),

∑
λ ϕλ(X1)ϕλ(X3)

]

2Cov [
∑

λ ϕλ(X1)ϕλ(X2),
∑

λ ϕλ(X1)ϕλ(X3) ]

)
(1 + o(1)) .Furthermore,1. if

2Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]
≥ Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X3)

]
, (12)

p ∈ {1, . . . , n− 1} 7→ Var
[
R̂p(m)

] is in
reasing.imsart-generi
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ross-validation 102. Otherwise, p 7→ Var
[
R̂p(m)

] is de
reasing on [1, p0,n] and in
reasing on [p0,n, n− 1].Eq. (12) is related to the sign of B in Corollary 2.5 and to the minimum lo
ation value p0,n. Inparti
ular if it holds true, then p0,n 6∈ {2, . . . , n− 1}, whi
h means Loo has the smallest varian
e amongCV algorithms.Theorem 2.1. For every m ∈ Mn, let us de�ne the mean-square error (MSE) of ŝm by MSE(m; p) =(
B

[
R̂p(m)

])2
+Var

[
R̂p(m)

], for every p ∈ {1, . . . , n− 1}.1. If (12) holds true, then for every m ∈ Mn, p 7→ MSE(m; p) is minimum for p = 1.2. Otherwise, for every p = pn ∈ {1, . . . , n− 1} su
h that pn/n −−−−−→
n→+∞

q ∈ [0, 1), then
MSE(m; p) =

A

n
+O

(
1

n2

)
, as n → +∞ .If (12) holds true, Loo is the best CV algorithm in terms of MSE when estimating the risk of anestimator. Otherwise as long as pn/n 6→ 1 as n → +∞, 
hoosing a value of p 6= 1 is useless sin
e anyvalue in {1, . . . , n− 1} asymptoti
ally leads to the same performan
e in terms of MSE. But sin
e Loohas a minimum bias (Corollary 2.4), one 
on
ludes Loo is optimal among CV algorithms for estimatingthe risk of an estimator. This result 
on�rms what has been previously stated by Burman (1989) in theregression framework.3. Optimal 
ross-validation for model sele
tionIn Se
tion 2.4, the optimality of Loo among CV algorithms has been proved in the 
ontext of riskestimation. However, the best possible algorithm for risk estimation is not ne
essarily the best one formodel sele
tion. For instan
e, empiri
al 
ontrast minimization (2) is used to design an estimator ŝm ∈

Sm. But using empiri
al 
ontrast minimization to 
hoose one m̂ ∈ Mn (without penalizing) wouldsystemati
ally lead to over�tting. The purpose of the present se
tion is to study the performan
e of CVfor model sele
tion with respe
t to the 
ardinality p of the test set.In model sele
tion, two (
ontradi
tory) purposes 
an be pursued: Estimation and Identi�
ation (seeShao, 1997; Yang, 2005, for an extensive presentation). With the Estimation point of view, one fo
useson minimizing the risk over a 
olle
tion of models without assuming the targeted s belongs to one ofthem. Conversely in Identi�
ation, one assumes s belongs to at least one model of the 
olle
tion and thegoal is to re
over the smallest model 
ontaining s.3.1. Optimal 
ross-validation for EstimationModel sele
tion by CV pursuing Estimation is our main 
on
ern here. First, the performan
e of CV withrespe
t to p is 
hara
terized through a sharp ora
le inequality (Theorem 3.1) where 
onstants are relatedto the di�
ulty of the estimation problem. In parti
ular, a leading 
onstant 
onverging to 1 as n → +∞is a
hieved for given values of p. Se
ond, Loo is theoreti
ally shown to be suboptimal for model sele
tion(Corollary 3.1), whi
h is also empiri
ally supported by simulation experiments (Se
tion 3.1.4).3.1.1. Estimation point of viewWith the notation of Se
tion 2.1, let us 
onsider a family of proje
tion estimators {ŝm}m∈Mn
, where Mndenotes an (at most 
ountable) index set allowed to depend on n. The best possible model, 
alled theimsart-generi
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ross-validation 11ora
le model, is denoted by Sm∗ , where
m∗ := Argminm∈Mn

Pγ(ŝm)− Pγ(s) = Argminm∈Mn
‖s− ŝm‖2

= Argminm∈Mn
Pγ(ŝm) .Sin
e Pγ(ŝm) has to be estimated, one uses CV (Lpo) to 
hoose a 
andidate model. So for every 1 ≤ p ≤

n− 1,
m̂(p) := Argminm∈Mn

R̂p(m) , (13)and the �nal 
andidate model is denoted by Sm̂(p). The purpose is now to study the properties of ŝ m̂(p)with respe
t to p ∈ {1, . . . , n− 1} in terms of an ora
le inequality, that is an inequality su
h that anevent of large probability exists on whi
h
‖s− ŝ m̂‖2 ≤ Cn inf

m∈Mn

{
‖s− ŝm‖2

}
+ rn , (14)where ŝ m̂ is the �nal estimator provided by the 
onsidered model sele
tion pro
edure, the 
onstant

Cn ≥ 1 does not depend on s, and rn is a remainder term. When Cn −−−−−→
n→+∞

1 on an event of probabilitylarger than 1−K/n2 (for some K > 0), the model sele
tion pro
edure is said e�
ient (Arlot and Celisse,2010).3.1.2. Main ora
le inequalityLet us �rst introdu
e some notation and detail the main assumptions used along the following se
tions.Square-integrable density:
s ∈ L2([0, 1]) . (SqI)Unlike Castellan (2003) for instan
e, it is not assumed that s ≥ ρ for a 
onstant ρ > 0.Polynomial 
olle
tion: There exists aM ≥ 0 su
h that

Card(Mn) ≤ naM . (Pol)In parti
ular, this holds true if there exists α ≥ 0 su
h that Card ({m ∈ Mn, Dm = D}) ≤ Dα, for every
1 ≤ D ≤ n.Model regularity:

∃Φ > 0, sup
m∈Mn

‖φm‖∞
Dm

≤ Φ , with φm =
∑

λ∈Λ(m)

ϕ2
λ . (RegD)It relates the regularity of the orthonormal basis (measured in terms of sup-norm) to the dimension of themodel. For instan
e using (4), (RegD) requires |Iλ| ≥ (ΦDm)−1 for every λ ∈ Λ(m). Thus, the length ofintervals Iλ 
annot be too di�erent from one another.Maximal dimension:

∃Γ > 0, sup
m∈Mn

Dm ≤ Γ
n

(logn)2
. (Dmax)In the sequel, we always use Γ = 1 to simplify the notation. Note that proofs and 
on
lusions are not
hanged by this parti
ular 
hoi
e. imsart-generi
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ross-validation 12Estimation error and dimension:
∃ξ > 0, inf

m∈Mn

√
nE (‖sm − ŝm‖)√

Dm

≥
√
ξ . (LoEx)This assumption makes the estimation error E(‖sm − ŝm‖2

) and Dm 
omparable. For instan
e, (LoEx)is ful�lled if s ≥ ρ > 0.Ri
hness of the 
olle
tion: There exist m0 ∈ Mn and crich ≥ 1 su
h that,
√
n ≤ Dm0

≤ crich
√
n . (Ri
h)Su
h an assumption only depends on our 
hoi
e of model 
olle
tion and 
an always be ful�lled.Approximation property: There exist cℓ, cu > 0 and ℓ > u > 0 su
h that, for every m ∈ Mn,

cℓD
−ℓ
m ≤ ‖s− sm‖2 ≤ cuD

−u
m . (Bias)This assumption quanti�es the bias (approximation error) in
urred by model Sm in estimating s. Ittherefore relies on a smoothness assumption on s. Su
h an upper bound is 
lassi
al for α-Hölderianfun
tions with α ∈ (0, 1] and regular histograms (4) for instan
e. Note that Stone (1985) uses the sameassumption (lower bound), whi
h is the �nite sample 
ounterpart of the 
lassi
al assumption ‖s− sm‖ > 0for every m ∈ Mn usually made to prove asymptoti
 optimality for a model sele
tion pro
edure (seeBirgé and Massart, 2006).Rate of 
onvergen
e for the ora
le model:

nR∗
n(logn)

−2 −−−−→
n→∞

+∞, with R∗
n = inf

m∈Mn

Rn(ŝm) , (OrSp)This assumption implies the risk of the ora
le model R∗
n does not de
rease to 0 faster than (logn)2/n. Inparti
ular, this holds true for densities in H(L, α) with L > 0 and α ∈ (0, 1] for instan
e (see Se
tion A.6).The performan
e of the Lpo estimator with respe
t to p is des
ribed by the following ora
le inequalitywhere the leading 
onstant Cn(p) relates the 
omplexity of the 
olle
tion of models {Sm}m∈Mn

to p.Theorem 3.1 (Optimal CV). Let s denote a density on [0, 1] su
h that (SqI) holds true, set {Sm}m∈Mna 
olle
tion of models de�ned in Se
tion 2.1.2, and assume (Pol), (RegD), (Dmax), (Ri
h), (LoEx),(Bias), and (OrSp). Let m̂ = m̂(p) denote the model minimizing R̂p(m) over Mn for every p ∈
{1, . . . , n− 1}. Then, there exist a sequen
e (δn)N su
h that δn → +∞, and nδn → +∞ as n → +∞, andan event Ω̃ with P(Ω̃) ≥ 1− 6/n2 on whi
h, for large enough values of n,

∥∥s− ŝ m̂(p)

∥∥2 ≤ Cn(p) inf
m∈Mn

{
‖s− ŝm‖2

}
with Cn(p) =

T+
B ∨ T+

V

T−
B ∧ T−

V

≥ 1 ,where
T−
B = 1− δnK(n, p) , T−

V =
1

1− p/n
(1 − δn) [ 1− 4δn ]− 2δnK(n, p) [ 3− 4δn ] ,

T+
B = 1 + δnK(n, p) , T+

V =
1

1− p/n
(1 + δn) [ 1 + 4δn ] + 2δnK(n, p) [ 3 + 4δn ] ,and K(n, p) = 1 + 2

n−1 + p
n−p

1
n−1 ·imsart-generi
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ross-validation 13First if p = pn = o(n), then p/n → 0 and Cn(p) → 1 as n → +∞. Then, su
h values of p lead toe�
ient (asymptoti
ally optimal) model sele
tion pro
edures. In parti
ular, this holds true for p = 1,that is, Loo is asymptoti
ally optimal sin
e
∥∥s− ŝ m̂(1)

∥∥2

infm∈Mn

{
‖s− ŝm‖2

} a.s.−−−−−→
n→+∞

1 .Se
ond, Cn(p) 
an be optimized as a fun
tion of p at ea
h �nite sample size n. Sin
e Cn(p) also dependson δn, whi
h is related to the stru
ture of {Sm}m∈Mn
and the probability of the event Ω̃, minimizing

Cn(p) with respe
t to p enables to take into a

ount the di�
ulty of the estimation problem at hand.Proof of Theorem 3.1.First let us use Proposition A.2 applied with m,m′ ∈ Mn su
h that R̂p(m
′) ≤ R̂p(m). Then, it 
omes

n

n− p
E
[
Z2
m′

]
+ ‖s− sm′‖2 −K(n, p)

[
Z2
m′ − E

[
Z2
m′

] ]

≤ n

n− p
E
[
Z2
m

]
+ ‖s− sm‖2 −K(n, p)

[
Z2
m − E

[
Z2
m

] ]

− 2K(n, p) νn (sm′ − sm) +
1

n

(
K(n, p) +

n

n− p

)
νn (φm′ − φm) ,where K(n, p) = 1 + 2

n−1 + p
n−p

1
n−1 ·Then, 
ombining Propositions A.3 and A.4 to 
ontrol the remainder terms, there exist a sequen
e

(δn)N with δn → 0 and nδn → +∞ as n → +∞ and an event Ω = Ωrem,1 ∩Ωrem,2 of probability 1− 4/n2on whi
h
n

n− p
E
[
Z2
m′

]
+ ‖s− sm′‖2 −K(n, p)

[
Z2
m′ − E

[
Z2
m′

] ]

≤ n

n− p
E
[
Z2
m

]
+ ‖s− sm‖2 −K(n, p)

[
Z2
m − E

[
Z2
m

] ]

+ δnK(n, p)
(
‖s− sm′‖2 + E

[
Z2
m′

]
+ ‖s− sm‖2 + E

[
Z2
m

])

+ δn

(
K(n, p) +

n

n− p

)[
E
[
Z2
m′

]
+ E

[
Z2
m

] ]
.In the following, δn always denotes su
h a sequen
e even if the pre
ise expression of δn 
an di�er fromline to line.Let us now use 
on
entration results stated in Corollaries A.1 and A.2 on the events Ωleft and Ωright.The important point in this proof is given by Lemmas A.4 and A.5, where it is proved that on the event

Ω = Ωleft∩Ωright ∩Ωrem,1 ∩Ωrem,1, min
{
Dm∗ , Dm̂(p)

}
≥ (logn)4 for large enough values of n. Therefore,one 
an apply Lemma A.8 and Corollaries A.1 and A.2 with Lm = 0 = rn(m) to get

Z2
m′

[(
n

n− p
(1− δn)− 2δnK(n, p)

)
(1− 4δn)− 4K(n, p)δn

]
+ [ 1− δnK(n, p) ] ‖s− sm′‖2

≤ Z2
m

[(
n

n− p
(1 + δn) + 2δnK(n, p)

)
(1 + 4δn) + 4K(n, p)δn

]
+ [ 1 + δnK(n, p) ] ‖s− sm‖2 .Choosing m′ = m̂, it 
omes

T−
V Z2

m̂ + T−
B ‖s− sm̂‖2 ≤ T+

V Z2
m + T+

B ‖s− sm‖2 ,imsart-generi
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ross-validation 14where
T−
B = 1− δnK(n, p) , T−

V =
n

n− p
(1 − δn) [ 1− 4δn ]− 2K(n, p)

[
3δn − 4δ2n

]
,

T+
B = 1 + δnK(n, p) , T+

V =
n

n− p
(1 + δn) [ 1 + 4δn ] + 2K(n, p)

[
3δn + 4δ2n

]
.Finally on the event Ω, the following ora
le inequality holds true for every p ∈ {1, n− 1}

∥∥s− ŝ m̂(p)

∥∥2 ≤ Cn(p) inf
m∈Mn

{
‖s− ŝm‖2

}
, with Cn(p) =

T+
B ∨ T+

V

T−
B ∧ T−

V

.Moreover, on the event Ω, Lemmas A.4 and A.5 show min
{
Dm∗ , Dm̂(p)

}
≥ (logn)4. Then, it is enoughto apply Propositions A.6 and A.5 to models satisfying this 
onstraint, whi
h leads to the new event Ω̃(where models with dimension smaller than (logn)4 have been omitted) of probability at least 1− 6/n2.While asymptoti
 optimality is proved in Theorem 3.1 for any CV pro
edure as long as p = o(n),it is also desirable to analyze the performan
e of CV for �nite samples. Minimizing Cn(p) as a fun
-tion of p for ea
h n provides the value p∗ = p∗n for whi
h m̂(p∗) rea
hes the best performan
e among

{m̂(p), 1 ≤ p ≤ n− 1}. The following Corollary 3.1 proves Loo is suboptimal in terms of rate of 
onver-gen
e, whi
h 
an lead to over�tted models.Corollary 3.1 (Suboptimality of Leave-one-out). With the notation and assumptions of Theorem 3.1,the 
onstant Cn(p) is minimized over p ∈ {1, . . . , n− 1} for
0 < q∗n :=

p∗n
n

= 1−
1− 5δn + 4δ2n − 2

n−1 (3δn − 4δ2n) +
δn
n−1

1 + 2(1 + 1
n−1 )(3δn − 4δ2n)− δn(1 +

1
n−1 )

< 1 ·Furthermore, the optimal ratio q∗n = p∗/n is slowly de
reasing to 0 as n tends to +∞
q∗n ∼+∞ 10δn , and p∗n ∼+∞ 10nδn −−−−−→

n→+∞
+∞ .In parti
ular, Loo (p = 1) is suboptimal in terms of rate of 
onvergen
e with respe
t to n.Whereas Theorem 3.1 settles Loo (and any CV algorithm with p = o(n)) is asymptoti
ally optimal,Corollary 3.1 proves it is nevertheless suboptimal in terms of rate of 
onvergen
e. Indeed, the optimal rateis a
hieved when pn/n is slowly de
reasing to 0 like δn as n grows. Let us also re
all that δn is stronglyrelated to the stru
ture of the model 
olle
tion, so that the more 
omplex the 
olle
tion, the slower δn,and the larger pn should be to balan
e over�tting arising with too large models. As a 
onsequen
e, Loo(p = 1) does not adapt to the model 
olle
tion {Sm}m∈Mn

, whi
h results in over�tting, that is, 
hoosingtoo large models (see simulation experiments in Se
tion 3.1.4).Proof of Corollary 3.1. Let us re
all the expression of the leading 
onstant
Cn(p) =

T+
B ∨ T+

V

T−
B ∧ T−

V

,with
T−
B = 1− δnK(n, p) , T−

V =
1

1− p/n
(1− δn) [ 1− 4δn ]− 2δnK(n, p) [ 3− 4δn ] ,

T+
B = 1 + δnK(n, p) , T+

V =
1

1− p/n
(1 + δn) [ 1 + 4δn ] + 2δnK(n, p) [ 3 + 4δn ] ,imsart-generi
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ross-validation 15and K(n, p) = 1 + 2
n−1 + p

n−p
1

n−1 .First as long as n is large enough, simple 
al
ulations when p = 1 show T−
V (1) ≤ T−

B (1). Noti
ingmoreover that T+
V (p) ≥ T+

B (p) for every p, it 
omes for p 
lose to 1
Cn(p) =

T+
V

T−
V

=
(1 + δn) [ 1 + 4δn ] + 2(1− p/n)δnK(n, p) [ 3 + 4δn ]

(1− δn) [ 1− 4δn ]− 2(1− p/n)δnK(n, p) [ 3− 4δn ]
·It is then easy to show that p 7→ Cn(p) is in
reasing on {1, . . . , p∗}, where p∗ denotes the value of p su
hthat T−

V (p) = T−
B (p). Hen
e,

p∗n
n

= 1−
1− 5δn + 4δ2n − 2

n−1 (3δn − 4δ2n) +
δn
n−1

1 + 2(1 + 1
n−1 )(3δn − 4δ2n)− δn(1 +

1
n−1 )

·It results that for every p ≥ p∗

Cn(p) =
T+
V

T−
B

,whi
h is in
reasing with respe
t to p.In the same way, it is easy to 
he
k that p∗n/(10nδn) −−−−−→n→+∞
1, whi
h enables to 
on
lude.3.1.3. Adaptivity in the minimax senseAdaptivity in the minimax sense is a desirable property for model sele
tion pro
edures. It means the
onsidered pro
edure automati
ally adapts to the unknown smoothness of the target fun
tion s to estimate(see Barron et al., 1999, for an extensive presentation).Several adaptivity in the minimax sense results are provided in the present se
tion. Deriving su
hresults from ora
le inequalities su
h as (14) is somewhat 
lassi
al. However, the novelty is �rst that CVas model sele
tion pro
edure enjoys su
h a desirable property, se
ond that the leading 
onstant Cn(p) inTheorem 3.1 when 
onverging to 1 as n tends to +∞ provides a

urate results.Let us �rst provide a general result from whi
h all adaptivity results will be immediate 
orollaries.Theorem 3.2. Let s denote a density on [0, 1] su
h that (SqI) holds true, set {Sm}m∈Mn

a 
olle
tionof models de�ned in Se
tion 2.1.2, and assume (Pol), (RegD), (Dmax), (Ri
h), (LoEx), (Bias), and(OrSp). Let m̂ = m̂(p) denote the model minimizing R̂p(m) over Mn for every p ∈ {1, . . . , n− 1}. Thenfor every 1 ≤ p ≤ n− 1,
E

[ ∥∥s− ŝ m̂(p)

∥∥2
]
≤ Cn(p)E

[
inf

m∈Mn

‖s− ŝm‖2
]
+ (Φ + ‖s‖2) 12

n(log n)2
+

6cu
n2

, (15)where Cn(p) =
T+

B
∨T+

V

T−

B
∧T−

V

, with
T−
B = 1− δnK(n, p) , T−

V =
1

1− p/n
(1 − δn) [ 1− 4δn ]− 2δnK(n, p) [ 3− 4δn ] ,

T+
B = 1 + δnK(n, p) , T+

V =
1

1− p/n
(1 + δn) [ 1 + 4δn ] + 2δnK(n, p) [ 3 + 4δn ] ,and K(n, p) = 1 + 2

n−1 + p
n−p

1
n−1 ·imsart-generi
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ross-validation 16The last two terms in the right-hand side of (15) are remainder terms. They results from Assumptions(RegD), (Dmax), and (Bias). From remarks following Theorem 3.1, one dedu
es p = pn = o(n) implies
Cn(p) → 1 as n → +∞ and

E

[ ∥∥s− ŝ m̂(p)

∥∥2
]

E

[
infm∈Mn

‖s− ŝm‖2
] −−−−−→

n→+∞
1 .Proof of Theorem 3.2. Introdu
ing the event Ω̃ of Theorem 3.1, it 
omes

E

[ ∥∥s− ŝ m̂(p)

∥∥2
]
= E

[ ∥∥s− ŝ m̂(p)

∥∥2 1Ω̃

]
+ E

[ ∥∥s− ŝ m̂(p)

∥∥2 1Ω̃c

]

≤ E

[
inf

m∈Mn

‖s− ŝm‖2
]
+ E

[ ∥∥s− ŝ m̂(p)

∥∥2 1Ω̃c

]
.Applying (Bias), one gets

E

[ ∥∥s− sm̂(p)

∥∥2 1Ω̃c

]
≤ E

[
cu

Du
m̂(p)

1Ω̃c

]
≤ cuP

(
Ω̃
)
≤ 6cu

n2
,and (RegD) and (Dmax) provide

E

[ ∥∥sm̂(p) − ŝ m̂(p)

∥∥2 1Ω̃c

]
= E


 ∑

λ∈Λ(m̂(p))

(Pnϕλ − Pϕλ)
2
1Ω̃c




≤ 2E


 ∑

λ∈Λ(m̂(p))

(Pnϕλ)
2
1Ω̃c


+ 2E


 ∑

λ∈Λ(m̂(p))

(Pϕλ)
2
1Ω̃c




≤ 2E


 ∑

λ∈Λ(m̂(p))

1

n2

n∑

i,j=1

ϕλ(Xi)ϕλ(Xj)1Ω̃c


+ 2 ‖s‖2 E

[
Dm̂(p)1Ω̃c

]

≤ 2(Φ + ‖s‖2) n

(log n)2
P

(
Ω̃c
)
≤ (Φ + ‖s‖2) 12

n(log n)2
·Applying Theorem 3.2 to the 
olle
tion of regular histograms de�ned by (4), the following 
orollarysettles an adaptivity property with respe
t to Hölder balls (see DeVore and Lorentz, 1993).Corollary 3.2. Let us 
onsider the model 
olle
tion of Se
tion 2.1.2 made of pie
ewise 
onstant fun
tionsand the asso
iated histograms de�ned by (4) su
h that, for every m ∈ Mn and λ ∈ Λ(m), |Iλ| = D−1

m(regular histograms). Let us also assume (Dmax) and (LoEx) hold true.If the target density s belongs to the Hölder ball H(L, α) for some L > 0 and α ∈ (0, 1], then for every
1 ≤ p ≤ n− 1 there exist 
onstants 0 < K−

α ≤ K+
α su
h that

K−
α L

2
2α+1n− 2α

2α+1 ≤ sup
s∈H(L,α)

E

[ ∥∥s− ŝ m̂(p)

∥∥2
]
≤ Cn(p)K

+
αL

2
2α+1n− 2α

2α+1 +O

(
1

n(logn)2

)
,

K−
α and K+

α only depend on α (not on n or s).Furthermore sin
e this property holds for every L > 0 and α ∈ (0, 1], then { ŝ m̂(p)

}
n∈N∗

is adaptive inthe minimax sense with respe
t to {H(L, α)}L>0,α∈(0,1] for every 1 ≤ p ≤ n− 1.imsart-generi
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A. Celisse/Optimal 
ross-validation 17The proof has been deferred to Se
tion A.6. The lower bound is not new and has been proved earlierby Ibragimov and Khas'minskij (1981). Besides, the upper bound is tight sin
e the rate n− 2α
2α+1 and thedependen
e on the radius L

2
2α+1 are the same as in the lower bound. Note that similar results 
an beeasily proved for instan
e for Besov balls Bα

∞,2(L), with α,L > 0 (see DeVore and Lorentz, 1993) by usingan appropriate 
olle
tion of models su
h as trigonometri
 polynomials de�ned by (5).3.1.4. Simulation experimentsResults of simulation experiments are provided to support the theoreti
al analysis developed in Se
-tion 3.1.2. Samples of size n = 100, 500, 1000, 2000, 3000, 4000, 5000, 6000, 10 000 have been generatedfrom a mixture of Beta distributions
∀x ∈ [0, 1], s(x) =

β(3, 7;x) + β(10, 5;x)

2
, (16)whi
h is a Hölderian density on [0, 1]. For ea
h n, every p ∈ {1, . . . , n− 1} have been 
onsidered. Notethat in these experiments, (Dmax) is ful�lled with Γ = 1 (Figure 1) and Γ = 2 (Figure 2).The model 
olle
tion we used is made of pie
ewise 
onstant fun
tions des
ribed in Se
tion 2.1.2 leadingto regular histogram estimators de�ned by (4). For every 1 ≤ p ≤ n− 1, m̂(p) is de�ned by (13).Let us also introdu
e

Cor,n(p) := E




∥∥s− ŝ m̂(p)

∥∥2

infm∈Mn

{
‖s− ŝm‖2

}


 and p0 := Argmin1≤p≤n−1Cor,n(p) , (17)whi
h measures the average performan
e of ŝ m̂(p) with respe
t to that of the ora
le estimator ŝm∗ .Thus the 
loser Cor,n(p) to 1, the better ŝ m̂(p). Then, minimizing Cor,n(p) as a fun
tion of p for variousvalues of n allows us to 
he
k whether the 
on
lusions drawn from minimizing Cn(p) with respe
t to p(Theorem 3.1 and Corollary 3.1) hold true or not, that is whether Cn(p) is an a

urate approximationof Cor,n(p). For ea
h 
urve p 7→ Cor,n(p), a 
on�den
e band has been also displayed. It is delimited by

p 7→ C−
or,n(p) and p 7→ C+

or,n(p) respe
tively de�ned by
C−

or,n(p) = Cor,n(p)−
σ̂√
N

, and C+
or,n(p) = Cor,n(p) +

σ̂√
N

, (18)where σ̂ denotes the empiri
al standard deviation.First from Figure 1, 
urves p/n 7→ Cor,n(p) (plain red lines) de
rease to 1 uniformly with p as n grows.This 
on�rms Theorem 3.1 where Cn(p) → 1 as n → +∞ when p is kept �xed. Furthermore, p 7→ Cn(p)and p 7→ Cor,n(p) have a similar behavior sin
e, as suggested by Corollary 3.1 when n is �xed, Cor,n(p)is minimized for p > 1 but in
reases as p/n gets 
loser to 1. Re
alling Cor,n(p) measures the a

ura
yof ŝ m̂(p), previous remarks show Theorem 3.1 is a

urate enough to make Cn(p) a reliable measure ofthe performan
e of ŝ m̂(p) with respe
t to p. In parti
ular, optimizing Cn(p) as a fun
tion of p a
tuallyamounts to �nding the best estimator among { ŝ m̂(p)

}
1≤p≤n−1

.Se
ond from (a) to (
) (Figure 1), the shape of p/n 7→ Cor,n(p) 
hanges, its minimum lo
ation be
omingless 
lear as n grows from n = 100, to n = 10 000. A

ording to Corollary 3.1, p is 
hosen large enoughto balan
e the deviations due to δn (model 
olle
tion 
omplexity). Sin
e δn → 0 as n → +∞, thisrequirement on p vanishes as n grows. This explanation is also supported by Figure 2 (
) where p0/n (seeEq. (17)) has been displayed for di�erent values of n. It shows p0/n slowly de
reases as n grows, whi
hhas been proved in Corollary 3.1 (p∗/n ∼ 10δn with δn → 0 and nδn → +∞ as n tends to +∞).Finally, (a) and (b) in Figure 2 display p/n 7→ Cor,n(p) for n = 2 000 and (a) Γ = 1, (b) Γ = 2. Asindi
ated by (Dmax), an in
rease of Γ results in a more 
omplex 
olle
tion of models, indu
ing largerimsart-generi
 ver. 2009/02/27 file: 
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(
)Fig 1. From (a) to (
), p/n 7→ Cor,n(p) (plain red line) is plotted for Γ = 1 (see (Dmax)) and di�erent values of n:(a) n = 100, (b) n = 1000, (
) and n = 10 000. p/n 7→ C+

oracle,n
(p) (blue dashed line) and p/n 7→ C−

oracle,n
(p) (bla
kdot-dashed line) have been plotted on the same graph as well (see (18)). In ea
h setting, N = 1000 samples have been drawnfrom the mixture of Beta distributions de�ned by (16).
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(
)Fig 2. For (a) and (b), p/n 7→ Cor,n(p) (plain red line) is plotted for n = 2000 and di�erent values of Γ(see (Dmax)):(a) Γ = 1 , (b) Γ = 2. p/n 7→ C+

oracle,n
(p) (blue dashed line) and p/n 7→ C−

oracle,n
(p) (bla
k dot-dashed line) have beenplotted on the same graph as well (see (18)). In ea
h setting, N = 1000 samples have been drawn from the mixture of Betadistributions de�ned by (16). For (
), n 7→ p0/n is displayed, where p0 denotes the minimizer of Cor,n(p) as a fun
tion of

p.deviations (δn slower). On the one hand, the 
urve in (b) (Γ = 2) is above that in (a) (Γ = 1). Theperforman
e of ŝ m̂(p) worsens as the 
olle
tion of modes be
omes more 
omplex. On the other hand,the minimum lo
ation is also larger for Γ = 2 than for Γ = 1. Sin
e Γ is larger, so is δn. Then, p hasto be 
hosen larger to balan
e the e�e
t of δn. Sin
e the same phenomena have been observed in othersimulation experiments (not reported here), one 
on
ludes the optimal p is strongly linked with the model
olle
tion stru
ture: the more 
omplex the model 
olle
tion, the larger the optimal p.3.2. Optimal 
ross-validation for Identi�
ation3.2.1. Identi�
ation point of viewWith the notation of Se
tion 2.1, {ŝm}m∈Mn
denotes a 
olle
tion of proje
tion estimators (Se
tion 2.1.2)whi
h is allowed to depend on n. From the Identi�
ation point of view, one assumes

{m ∈ Mn, s ∈ Sm} 6= ∅ .imsart-generi
 ver. 2009/02/27 file: 
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A. Celisse/Optimal 
ross-validation 19The purpose is to �nd the smallest model 
ontaining s, denoted by Sm̄ and de�ned by
m̄ := Argminm∈Mn

E

[
‖sm − ŝm‖2

]
, (19)where sm denotes the orthogonal proje
tion of s onto Sm. Note that Assumptions (LoEx) and (RegD)imply ξDm ≤ E

[
‖sm − ŝm‖2

]
≤ ‖s‖2 ΦDm. For every m ∈ Mn, E [ ‖sm − ŝm‖2

] is related to Dm asa measure of the size of Sm. However unlike the dimension Dm, E [ ‖sm − ŝm‖2
] measures the size of

Sm through s. Thus, a model Sm is not simply �too large� be
ause it depends on more parameters, butrather be
ause the estimation error E [ ‖sm − ŝm‖2
] in
urred by Sm is too large.3.2.2. Main model 
onsisten
y resultIn the following analysis, one further assumes m̄ does not depend on n for large enough values of n. First,it entails m̄ ∈ Mn for large enough values of n. Se
ond, letting Mn grow with n amounts for instan
eto in
lude too large models in {Sm}m∈Mn

without modifying m̄. In parti
ular, it is not required that
{Sm}m∈Mn

is nested.Let us �rst des
ribe the asymptoti
 behavior of R̂p as a fun
tion of 1 ≤ p ≤ n− 1.Theorem 3.3 (Asymptoti
 behavior of R̂p). Let ∪m∈Mn
Sm be a 
olle
tion of models satisfying (Pol),

m̄ ∈ M be de�ned by (19) su
h that m̄ does not depend on n, and assume (SqI), (RegD), (Dmax),(LoEx) hold true. Then, an event Ωn exists with P [ Ωn ] ≥ 1− 8/n2 on whi
h for every p = pn su
h that
n
(
1− p

n

)
−−−−−→
n→+∞

+∞ , (20)1. if s 6∈ Sm,
R̂p(m)− R̂p(m̄) = ‖s− sm‖2 + oP(1) > 0 ,2. if s ∈ Sm,

R̂p(m̄)− R̂p(m) ≤ n

n− p

[
(1 + δn)E

[
Z2
m̄

]
− (1− δn)E

[
Z2
m

] ]
+ 4Ln

(
E
[
Z2
m̄

]
+ E

[
Z2
m

]) (21)
R̂p(m̄)− R̂p(m) ≥ n

n− p

[
(1− δn)E

[
Z2
m̄

]
− (1 + δn)E

[
Z2
m

] ]
− 4Ln

(
E
[
Z2
m̄

]
+ E

[
Z2
m

])
,(22)where δn → 0 with nδn → +∞ as n → +∞, and Ln =

√
4
√
2Φn−1/2.On the one hand, the 
onstraint (20) ensures R̂p(m) is a 
onsistent estimator of Rn(ŝm). It only requires

1−p/n 
onverges to 0 slower than 1/n. Any p = pn satisfying (20) enables to dis
ard too small models Smsu
h that s 6∈ Sm sin
e R̂p(m) > R̂p(m̄). On the other hand when s ∈ Sm, upper and lower bounds (21)and (22) give possible deviations of R̂p(m)−R̂p(m̄) with high probability for large models. These boundsrelate p to δn and Ln whi
h are determined by the stru
ture of the model 
olle
tion {Sm}m∈Mn
at handand the probability of the event Ωn.
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A. Celisse/Optimal 
ross-validation 20Proof of Theorem 3.3. From Proposition A.2, for every m,m′ ∈ M,
R̂p(m

′)− R̂p(m) = E

[
‖s− ŝm′‖2

]
− E

[
‖s− ŝm‖2

]

+
p

n− p

(
E
[
Z2
m′

]
− E

[
Z2
m

])

+K(n, p)
[
Z2
m − E

[
Z2
m

] ]
−K(n, p)

[
Z2
m′ − E

[
Z2
m′

] ]

− 2K(n, p) νn (sm′ − sm) +
1

n

(
K(n, p) +

n

n− p

)
νn (φm′ − φm) ,where K(n, p) = 1 + 2/(n− 1) + p/ [ (n− 1)(n− p) ] ·Setting ∆(m) = R̂p(m)− E

[
‖s− ŝm‖2

]
− p

n−pE
[
Z2
m

], it results
|∆(m′)−∆(m)| ≤ K(n, p)

∣∣[Z2
m − E

[
Z2
m

] ]
−
[
Z2
m′ − E

[
Z2
m′

] ]∣∣

+ 2K(n, p) |νn (sm′ − sm)|+ 1

n

(
K(n, p) +

n

n− p

)
|νn (φm′ − φm)| .First, Propositions A.5 and A.6 imply there exist an event Ωright ∩ Ωleft of probability at least 1 −

2/n2 − β1 − β2 on whi
h
K(n, p)

∣∣[Z2
m − E

[
Z2
m

] ]
−
[
Z2
m′ − E

[
Z2
m′

] ]∣∣ ≤ K(n, p)
[
(δn + Lm′)E

[
Z2
m

]
+ (δn + Lm)E

[
Z2
m

] ]
.(23)Let us noti
e that sin
e Dm does not depend from n, Lm > 0 for large enough values of n. Furthermore
hoosing β1 = β2 = βn with βn → 0 as n → +∞, it 
omes Lm = Lm′ = Ln =

√
4
√
2Φβ

−1/4
n → +∞ as

n tends to +∞. Subsequently, 
hoosing βn su
h that n4βn → +∞ as n → +∞ results in Ln/n → 0 as
n → +∞.Se
ond, Proposition A.3 entails there exists an event Ωrem,1 with probability at least 1−2/n2 on whi
h

1

n

(
K(n, p) +

n

n− p

)
|νn (φm′ − φm)| ≤ δn

(
K(n, p) +

n

n− p

)(
E(Z2

m) + E(Z2
m′)
)

≤ δn

(
3 +

n

n− p

)(
E(Z2

m) + E(Z2
m′)
)

, (24)sin
e K(n, p) ≤ 3 for n ≥ 4.Third form′ = m̄, Proposition A.8 entails there exists an event Ωrem,3 with probability at least 1−2/n2on whi
h
2K(n, p) |νn (sm̄ − sm)| ≤ 3δn ‖sm − sm̄‖2 + 3δn ‖s‖

√
Φ

√
Dm +Dm̄

n
+ 3δnΦ

Dm +Dm̄

n
. (25)Combining (23), (24), and (25), there exist an event Ωn := Ωright∩Ωleft∩Ωrem,1∩Ωrem,3 with probabilityat least 1− 6/n2 − 2βn on whi
h two settings o

ur:1. If s 6∈ Sm,

|∆(m̄)−∆(m)| ≤
(
3Ln + 6δn +

n

n− p
δn

)(
E
[
Z2
m̄

]
+ E

[
Z2
m

])

+ 3δn ‖sm − sm̄‖2 + 3δn ‖s‖
√
Φ

√
Dm +Dm̄

n
+ 3δnΦ

Dm +Dm̄

n
· (26)imsart-generi
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ross-validation 212. If s ∈ Sm,
|∆(m̄)−∆(m)| ≤

(
3Ln + 6δn +

n

n− p
δn

)(
E
[
Z2
m̄

]
+ E

[
Z2
m

])
· (27)In these two settings for every m ∈ M, (RegD) and δn −−−−−→

n→+∞
0 imply

|∆(m̄)−∆(m)| = oP(1) ,hen
e,
R̂p(m)− R̂p(m̄) = E

[
‖s− ŝm‖2

]
− E

[
‖s− ŝ m̄‖2

]
+

p

n− p

(
E
[
Z2
m

]
− E

[
Z2
m̄

])
+ oP(1) .Hen
e, requiring R̂p(m) − R̂p(m̄) −

(
E

[
‖s− ŝm‖2

]
− E

[
‖s− ŝ m̄‖2

])
→ 0 as n → +∞ implies thene
essary 
onstraint p/ [ (n− p)n ] → 0, whi
h amounts to

n
(
1− p

n

)
−−−−−→
n→+∞

+∞ . (28)On the one hand, it is then straightforward to 
he
k that Eq. (26) leads, for every m ∈ M su
h that
s 6∈ Sm, to

R̂p(m)− R̂p(m̄) = ‖s− sm‖2 + oP(1) .On the other hand, for every m ∈ M su
h that s ∈ Sm, Eq. (27) provides
∣∣∣∣R̂p(m̄)− R̂p(m)− n

n− p

(
E
[
Z2
m̄

]
− E

[
Z2
m

])∣∣∣∣ ≤
(
4Ln +

n

n− p
δn

)(
E
[
Z2
m̄

]
+ E

[
Z2
m

])
,hen
ê

Rp(m̄)− R̂p(m) ≤ n

n− p

[
(1 + δn)E

[
Z2
m̄

]
− (1− δn)E

[
Z2
m

] ]
+ 4Ln

(
E
[
Z2
m̄

]
+ E

[
Z2
m

])
, (29)and

R̂p(m̄)− R̂p(m) ≥ n

n− p

[
(1− δn)E

[
Z2
m̄

]
− (1 + δn)E

[
Z2
m

] ]
− 4Ln

(
E
[
Z2
m̄

]
+ E

[
Z2
m

])
.Using βn = 1/n2 enables to 
on
lude.From the upper bound (21), one derives a su�
ient 
ondition on p to dis
ard too large models. This
ondition enables to determine the minimal rate at whi
h p/n has to de
rease to 0 as n tends to +∞,whi
h ensures model 
onsisten
y for m̂.Corollary 3.3 (Model 
onsisten
y). With the same notation and assumptions as Theorem 3.3, let usde�ne m̂ = m̂(p) = Argminm∈MR̂p(m) for every 1 ≤ p ≤ n− 1. Then any p = pn su
h that

n
(
1− p

n

)
−−−−−→
n→+∞

+∞, and 0 < 1− p

n
<

K√
n

with K =

(
8

√√
2Φ

)−1

,leads to
P [ m̂ = m∗ ] −−−−−→

n→+∞
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A. Celisse/Optimal 
ross-validation 22First the main 
on
lusion is that model 
onsisten
y results from requiring pn/n → 1 as n → +∞.One therefore re
overs previous results by Shao (1993) and Yang (2007) established in the regressionframework. However, our Corollary 3.3 is more pre
ise than Shao (1993) sin
e it lo
alizes the optimal
onvergen
e rate of 1 − p/n between 1/
√
n and 1/n. In parti
ular, Loo (and Lpo with any p = o(n)) is
ompletely misleading for identifying the model Sm̄. Se
ond, p has to be 
hosen large enough to balan
ethe deviations (Ln) in (30). Indeed, the rate 1/√n is determined by the stru
ture of the model 
olle
tion

{Sm}m∈Mn
and the probability of the event Ωn. Another 
olle
tion of models 
ould have produ
edanother minimal rate.Proof of Corollary 3.3. Applying Eq. (29) for every m 6= m̄ ∈ M su
h that s ∈ Sm, it results a su�
ient
ondition on p su
h that R̂p(m̄)− R̂p(m) < 0, that is

0 <

(
n

n− p
(1 + δn) + 4Ln

)
E
[
Z2
m̄

]
<

(
n

n− p
(1− δn)− 4Ln

)
E
[
Z2
m

]
. (30)This leads to require n

n−p > 4Ln(1 − δn)
−1 > 4Ln, whi
h 
an be reformulated as

1

1− p
n

> 4Ln = 8

√√
2Φβ−1/4

n ⇔ 0 < 1− p

n
<

β
1/4
n

8
√√

2Φ
·The 
on
lusion results from 
hoosing βn = 1/n2 and P [ Ωn ] −−−−−→

n→+∞
1.4. Dis
ussionFrom the present analysis of CV algorithms in te density estimation framework, we were able to provethe optimality of leave-one-out 
ross-validation for risk estimation. Besides when CV is used as modelsele
tion pro
edure, the optimal p strongly depends on the stru
ture of the model 
olle
tion and on ourgoal (estimation or identi�
ation). However this 
hara
terization of the behavior of the optimal p providessome guidelines, but does not result in a data-driven 
hoi
e of p.A possible way to design su
h a data-driven 
hoi
e is to follow the same idea as Shao (1997) exploitingthe deep 
onne
tion between CV and penalized 
riteria. Let us des
ribe the heuristi
 argument leadingto this 
hoi
e. Arlot (2008) introdu
ed the ideal penalty de�ned for every m ∈ Mn by

penid(m) = Pγ(ŝm)− Pnγ(ŝm) ,with the notation of Se
tion 2.1. It enables to rephrase ℓ(s, ŝm) in terms of a penalized 
riterion
ℓ(s, ŝm) = Pγ(ŝm)− Pγ(s) = Pnγ(ŝm) + penid(m)− Pγ(s) .Similarly for the Lpo risk estimator,̂

Rp(ŝm) = Pnγ(ŝm) + penLpo(m) ,where penLpo(m) = R̂p(ŝm)−Pnγ(ŝm) is 
alled the Lpo-penalty (see Celisse, 2008). Then in our setting,some simple algebra provides
E
[
penLpo(m)

]
=

2n− p

2(n− p)
E [ penid(m) ] ,showing that on average penLpo is equal to penid up to a multipli
ative 
onstant. Thus, using the so-
alled slope heuristi
s (Arlot and Massart, 2009, in the regression framework) 
ould serve to 
alibrate theoptimal p of CV algorithms. imsart-generi
 ver. 2009/02/27 file: 
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ross-validation 23Appendix A: Proofs of Se
tions 2 and 3A.1. Closed-form expressionsLemma A.1. With the notation of Se
tion 2.2.1, for any i 6= j 6= k ∈ {1, . . . , n},
∑

e∈Ep

1(j∈(e)) =

(
n− 1

p

)
and

∑

e∈Ep

1(j∈(e))1(k∈(e)) =

(
n− 2

p− 1

)
,

∑

e∈Ep

1(i∈e)1(j∈(e))1(k∈(e)) =

(
n− 3

p− 1

)
and

∑

e∈Ep

1(i∈e)1(j∈(e)) =

(
n− 2

p− 1

)
.Lemma A.2. With the same notation as Proposition 2.2, it 
omes

an = n2Var



∑

λ∈Λ(m)

(Pnϕλ)
2


+Var

[
∑

λ

Pnϕ
2
λ

]
− 2nCov



∑

λ

Pnϕ
2
λ,

∑

λ∈Λ(m)

(Pnϕλ)
2


 ,

bn = 2n2


Var



∑

λ∈Λ(m)

(Pnϕλ)
2


− Cov



∑

λ

Pnϕ
2
λ,

∑

λ∈Λ(m)

(Pnϕλ)
2



(
1 +

1

n

)
+

1

n
Var

[
∑

λ

Pnϕ
2
λ

]
 ,

cn = n2Var

[
∑

λ

Pnϕ
2
λ

]
+ n2Var



∑

λ∈Λ(m)

(Pnϕλ)
2


− 2n2Cov



∑

λ

Pnϕ
2
λ,

∑

λ∈Λ(m)

(Pnϕλ)
2


 .Lemma A.3. With the notation of Se
tion 2.3, simple algebra leads to

Var

[
∑

λ

Pnϕ
2
λ

]
=

1

n
Var

[
∑

λ

ϕ2
λ(X1)

]
,

Cov

[
∑

λ

Pnϕ
2
λ,
∑

λ

(Pnϕλ)
2

]
=

1

n2
Var

[
∑

λ

ϕ2
λ(X1)

]
+ 2

n− 1

n2
Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X2)

]

Var

[
∑

λ

(Pnϕλ)
2

]
=

Var
[∑

λ ϕ
2
λ(X1)

]

n3
+ 4

n− 1

n3
Var

[
∑

λ

ϕλ(X1)ϕλ(X2)

]

+ 4
(n− 1)(n− 2)

n3
Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]

+ 4
n− 1

n3
Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X3)

]
.Proposition A.1. With the notation of Lemma A.2,

an = 4
n− 1

n
α+ 4

(n− 1)(n− 2)

n
β

bn = 8
n− 1

n
α+ 8

(n− 1)(n− 2)

n
β − 4(n− 1)

(
1− 1

n

)
γ

cn = 4
n− 1

n
α+ 4

(n− 1)(n− 2)

n
β − 4 (n− 1)

(
1− 1

n

)
γ +

(
n− 2 +

1

n

)
δ .imsart-generi
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ross-validation 24where α = Var [
∑

λ ϕλ(X1)ϕλ(X2) ], β = Cov [
∑

λ ϕλ(X1)ϕλ(X2),
∑

λ ϕλ(X1)ϕλ(X3) ], γ =
Cov

[∑
λ ϕ

2
λ(X1),

∑
λ ϕλ(X1)ϕλ(X3)

], and δ = Var
[∑

λ ϕ
2
λ(X1)

].Proof of Proposition A.1. Using Lemmas A.2 and A.3, it 
omes
an = n2

[
Var

[∑
λ ϕ

2
λ(X1)

]

n3
+ 4

n− 1

n3
Var

[
∑

λ

ϕλ(X1)ϕλ(X2)

]

+4
(n− 1)(n− 2)

n3
Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]

+4
n− 1

n3
Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X3)

]]
+

1

n
Var

[
∑

λ

ϕ2
λ(X1)

]

− 2n

[
1

n2
Var

[
∑

λ

ϕ2
λ(X1)

]
+ 2

n− 1

n2
Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X2)

]]

= 4
n− 1

n
Var

[
∑

λ

ϕλ(X1)ϕλ(X2)

]

+ 4
(n− 1)(n− 2)

n
Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]
.In the same way,

bn = 2n2


Var


 ∑

λ∈Λ(m)

(Pnϕλ)
2


− Cov


∑

λ

Pnϕ
2
λ,

∑

λ∈Λ(m)

(Pnϕλ)
2



(
1 +

1

n

)
+

1

n
Var

[
∑

λ

Pnϕ
2
λ

]


= 8
n− 1

n
Var

[
∑

λ

ϕλ(X1)ϕλ(X2)

]

+ 8
(n− 1)(n− 2)

n
Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]

− 4(n− 1)

(
1− 1

n

)
Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X3)

]
.Finally,

cn = n2Var

[
∑

λ

Pnϕ
2
λ

]
+ n2Var


 ∑

λ∈Λ(m)

(Pnϕλ)
2


− 2n2Cov


∑

λ

Pnϕ
2
λ,

∑

λ∈Λ(m)

(Pnϕλ)
2




=

(
n− 2 +

1

n

)
Var

[
∑

λ

ϕ2
λ(X1)

]
+ 4

n− 1

n
Var

[
∑

λ

ϕλ(X1)ϕλ(X2)

]

+ 4
(n− 1)(n− 2)

n
Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]

− 4 (n− 1)

(
1− 1

n

)
Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X3)

]
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Proposition A.2. For every m,m′ ∈ M and p ∈ {1, . . . , n− 1}, it 
omes

R̂p(m
′)− R̂p(m)

=

(
n

n− p

)(
E

[
‖sm′ − ŝm′‖2

]
− E

[
‖sm − ŝm‖2

])
+
[
‖s− sm′‖2 − ‖s− sm‖2

]

−K(n, p)
[
‖sm′ − ŝm′‖2 − E

[
‖sm′ − ŝm′‖2

] ]
+K(n, p)

[
‖sm − ŝm‖2 − E

[
‖sm − ŝm‖2

] ]

− 2K(n, p) νn (sm′ − sm) +
1

n

(
K(n, p) +

n

n− p

)
νn (φm′ − φm) ,where

K(n, p) = 1 +
1

n− 1
+

n

n− p

1

n− 1
·A.2. Bounding remainder termsProposition A.3 (Bound on νn (φm − φm′)).Let us assume (RegD) and apply (42) with t = φm and x = xm = c1nE(Z

2
m) (c1 > 0). Then, an event

Ωrem,1 exists with P [ Ωrem,1 ] ≥ 1− 2
∑

m∈M e−xm, on whi
h for every m,m′ ∈ Mn

|νn (φm − φm′)| ≤ nE(Z2
m) + nE(Z2

m′)

logn
,where Zm = supt∈Sm

νn(t) for every m.Proof of Proposition A.3. A straightforward use of (42) leads to the expe
ted 
on
lusion.Proposition A.4 (Bound on νn (sm − sm′)). Let us assume (Pol),(SqI), (RegD), (LoEx), and (OrSp)hold true. Then, there exists a sequen
e (δn)N su
h that for every m,m′ ∈ M,
P

[
2 |νn(sm − sm′)| > δn

(
E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

) ]
≤ 2n−(2aM+2) ,with δn → 0 and nδn → +∞ as n → +∞, and 0 ≤ δn ≤ 1 for n large enough.Furthermore, an event Ωrem,2 exists with P [ Ωrem,2 ] ≥ 1− 2/n2, on whi
h for every m,m′ ∈ M

2 |νn(sm − sm′)| ≤ δn

(
E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

)
.Proof of Proposition A.4. For every η > 0,

2νn(sm − sm′) = 2 ‖sm − sm′‖ νn(tm,m′)

≤ η ‖sm − sm′‖2 + η−1 [ νn(tm,m′) ]2 ,where tm,m′ = (sm − sm′) / ‖sm − sm′‖.imsart-generi
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ross-validation 26Thanks to (42) where t = tm,m′ , it 
omes
|νn(tm,m′)| >

√
2
Var (tm,m′(X1))

n
x+

‖tm,m′‖∞
3n

x ,with probability not larger than 2 exp (−x), x > 0. Hen
e with (SqI), one has
2νn(sm − sm′) ≤ η ‖sm − sm′‖2 + 4η−1Var (tm,m′(X1))

n
x+ 2η−1

(‖tm,m′‖∞
3n

x

)2 (31)
≤ 2η

(
‖s− sm‖2 + ‖s− sm′‖2

)
+ 4η−1 ‖s‖ ‖tm,m′‖∞

n
x+ 2η−1

(‖tm,m′‖∞
3n

x

)2

.Moreover assuming (RegD), it 
omes
‖tm,m′‖∞ ≤

√
Φ (Dm +Dm′) .Then,

Var (tm,m′(X1))

n
x ≤ ‖s‖

√
Φ
√
(Dm +Dm′)

n
x ,

(‖tm,m′‖∞
3n

x

)2

≤ Φ (Dm +Dm′)
x2

9n2
·Let us take x = (2aM + 2) logn. Then,

Var (tm,m′(X1))

n
x ≤ ‖s‖

√
Φ
√
(Dm +Dm′)

n
(2aM + 2) logn ,

(‖tm,m′‖∞
3n

x

)2

≤ Φ (Dm +Dm′)
((2aM + 2) logn)

2

9n2
·Then,

2
νn(sm − sm′)

E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

≤ 2η + 4η−1 ‖s‖
√
Φ
√
(Dm +Dm′)

n
(
E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

) (2aM + 2) logn

+ 2η−1Φ
Dm +Dm′

n
(
E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

) ((2aM + 2) logn)
2

9n

≤ 2η + 4η−1
‖s‖

√
Φ
ξ√

n
(
E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

) (2aM + 2) logn

+ 2η−1Φ

ξ

((2aM + 2) logn)
2

9n
,thanks to (LoEx). Moreover using that

n
(
E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

)
≥ 2n inf

m
E ‖s− ŝm‖2 =: 2nR∗
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omes
2

νn(sm − sm′)

E ‖s− ŝm‖2 + E ‖s− ŝm′‖2
≤ 2η + 4η−1 ‖s‖

√
Φ

2ξ
(2aM + 2)

1√
nR∗

n(log n)
−2

+ 2η−1Φ

ξ
(2aM + 2)2

(logn)
2

9n
.Then, (OrSp) entails there exists a sequen
e δn → 0, nδn → +∞ as n → +∞ (0 < δn < 1 for n largeenough) su
h that

2νn(sm − sm′) ≤ δn

(
E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

)
.Finally, let us noti
e that ∑m,m′∈M 2n−(2aM+2) ≤ 2n2aMn−(2aM+2) = 2/n2.A.3. Deviations of √

nZmA.3.1. Right deviationProposition A.5 (Right deviation of √nZm). Let us assume (Pol), (SqI), (RegD), and (LoEx) holdtrue, and set Zm = supt∈Sm
νn(t), σ2

m = supt∈Sm
Var [ t(X1) ] and bm = supt∈Sm

‖t‖∞. Then, there existsa sequen
e (δn)n≥1 with δn → 0 and nδn → +∞ as n → +∞ su
h that for every m ∈ M,
√
nZm ≤ √

nE(Zm)


 1 + δn +

√√√√4

√
Φ

ξ
C ‖s‖1(√Dm<(logn)2)


on an event Ωright with P [ Ωright ] ≥ 1− 1/n2 − β1, for any β1 ∈ (0, 1) and C ≥
√
2ξ/β1.Proof of Proposition A.5.Let us use Eq. (43) and upper bound the deviation terms. Assuming (SqI) and (RegD), Lemma A.6leads to

σ2
m ≤ ‖s‖

√
Φ
√
Dm , bm ≤

√
Φ
√
Dm .Furthermore, (LoEx) entails

σ2
m ≤ ‖s‖

√
Φ

ξ

√
nE(Zm) , bm ≤

√
Φ

ξ

√
nE(Zm) .Let us �rst upperbound √2 (σ2

m + 2bmE(Zm))xm:1. If √Dm ≥ (log n)2:Then 
hoosing xm = (aM + 2) logn, there exists a sequen
e δn de
reasing to 0, nδn → +∞ as
n → +∞ su
h that

√
2 (σ2

m + 2bmE(Zm)) xm ≤ √
nE(Zm)δn .imsart-generi
 ver. 2009/02/27 file: 
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ross-validation 282. Otherwise √Dm < (logn)2:Then, √2 (σ2
m + 2bmE(Zm))xm is no longer negligible with respe
t to √

nE(Zm). So, 
hoosing
xm = C

√
nE(Zm) (C > 0) leads to

√
2 (σ2

m + 2bmE(Zm))xm ≤ √
nE(Zm)

√√√√2

√
Φ

ξ
C (‖s‖+ 2E(Zm)) ≤ √

nE(Zm)

√√√√4

√
Φ

ξ
C ‖s‖ ,as long as n is large enough.Let us now upperbound bmxm

3
√
n
:

bmxm

3
√
n

≤ √
nE(Zm)

√
Φ

ξ

(aM+2) logn ∨ C(log n)2

3
√
n

·Finally, we 
an remark that
∑

m∈M
e−xm =

∑

Dm≥(logn)4

n−(aM+2) +
∑

Dm<(logn)4

e−C
√
nE(Zm) ≤ 1

n2
+ 2

ξ

c2
·

Corollary A.1. For Zm = supt∈Sm
νn(t), set Lm =

√
4
√

Φ
ξ C ‖s‖1(√Dm<(logn)2). Then on the event

Ωright de�ned in Proposition A.5,
Z2
m ≤ E(Z2

m) (1 + δn + Lm)
2

.A.3.2. Left deviationProposition A.6 (Left deviation of √nZm). Let us assume (Pol), (SqI), (RegD), and (LoEx) holdtrue, and set Zm = supt∈Sm
νn(t), σ2

m = supt∈Sm
Var [ t(X1) ] and bm = supt∈Sm

‖t‖∞. Then, there existsa sequen
e (δn)n≥1 with δn → 0 and nδn → +∞ as n → +∞ su
h that for every m ∈ M,
√
nZm ≥ √

nE(Zm)


 1− δn −

√√√√4

√
Φ

ξ
C ‖s‖1(√Dm<(logn)2)


 , (32)on an event Ωleft with P [ Ωleft ] ≥ 1− 1/n2 − β2 for any β2 ∈ (0, 1) and C ≥

√
2ξ/β2.Proof of Proposition A.6. Similar to that of Proposition A.5 with the use of Eq. (44) and the additionalProposition A.7 whi
h provides an upper bound of E(Zm)2 depending on E(Z2

m).
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ross-validation 29Proposition A.7 (Upper bound on Var(Z)). Let X1, . . . , Xn be i.i.d. random variables de�ned ona mesurable spa
e (X , T ). Let S denote a set of real valued fun
tions su
h that supt∈S ‖t‖∞ ≤ b,
supt∈S Var (t(X1)) = σ2, and set Z = supt∈S νn(t). Then,

Var(Z) ≤ 2σ2 + 32bE(Z)

n
. (33)Let us assume (SqI), (RegD), and (LoEx). If S denotes a linear spa
e of dimension D, then thereexists a positive sequen
e (δn)n≥1 with δn → 0 and nδn → +∞ as n → +∞ (0 < δn < 1 for n largeenough), and every 
onstant θ > 0 su
h that

E(Z2) ≤ (E(Z))2
(
1 + δn + θ

√
Φ

ξ
1(

√
Dm<(logn)2)

)
+ rn ,where rn = θ−1

√
Φ
ξ

2‖s‖2

n 1(
√
D<(logn)2).Proof of Proposition A.7. Assumptions (SqI), (RegD), and (LoEx) provide

E(Z2)− (E(Z))
2 ≤ 2

√
Φ

ξ
(E(Z))

2

( ‖s‖√
nE(Z)

+
16√
n

)
.1. If √nE(Z) ≥ √

ξD ≥ √
ξ(log n)2:

E(Z2)− (E(Z))
2 ≤ 2

√
Φ

ξ
(E(Z))

2

( ‖s‖√
ξ(logn)2

+
16√
n

)

≤ δ1,n (E(Z))
2

,with δ1,n = 2
√

Φ
ξ

(
‖s‖√

ξ(logn)2
+ 16√

n

).2. Otherwise √nE(Z) ≤
√
ΦD <

√
Φ(log n)2:

E(Z2)− (E(Z))
2 ≤ 2

√
Φ

ξ
E(Z)

(‖s‖√
n
+

16E(Z)√
n

)
≤ θ

√
Φ

ξ
(E(Z))

2
+ θ−1

√
Φ

ξ

1

n
(‖s‖+ 16E(Z))

2

≤ θ

√
Φ

ξ
(E(Z))

2
+ θ−1

√
Φ

ξ

1

n

(
2 ‖s‖2 + 32 (E(Z))

2
)

≤
(
δ2,n + θ

√
Φ

ξ

)
(E(Z))2 + rnfor every θ > 0, with δ2,n = θ−1

√
Φ
ξ

32
n and rn = θ−1

√
Φ
ξ

2‖s‖2

n .Then, there exists a positive sequen
e (δn)n≥1 with δn = max {δ1,n, δ2,n} de
reasing to 0 with nδn → +∞as n → +∞, su
h that
E(Z2)− rn

1 + δn + θ
√

Φ
ξ 1(

√
D<(logn)2)

≤ (E(Z))
2
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A. Celisse/Optimal 
ross-validation 30Corollary A.2. For Zm = supt∈Sm
νn(t), set Lm =

√
4
√

Φ
ξ C ‖s‖1(√Dm<(logn)2) and rn(m) =

θ−1
√

Φ
ξ

2‖s‖2

n 1(
√
Dm<(logn)2). Then on the event Ωleft de�ned in Proposition A.6,

E(Z2
m) ≤ Z2

m (1− δn − Lm)
−3

+ rn(m) .Proof of Corollary A.2. From Propositions A.6 and A.7, it 
omes that
E(Z2

m) ≤ Z2
m

1 + δn + θ
√

Φ
ξ 1(

√
Dm<(logn)2)

(1− δn − Lm)
2 + rn(m) .Then, Lemma A.9 enables to 
on
lude.A.4. Dimension behavior with respe
t to nLemma A.4 (Ora
le dimension). Let us assume (Bias), (Ri
h), and (RegD) hold true. Then, on theevent Ω′ = Ωleft∩Ωright, where Ωleft and Ωright are respe
tively de�ned in Corollary A.1 and Corollary A.2,it 
omes

Dm∗ ≥ (log n)4 , (34)for large enough values of n.Proof of Lemma A.4. Sin
e m∗ = Argminm ‖s− ŝm‖2, it 
omes
‖s− ŝm∗‖2 ≤ ‖s− sm0

‖2 + ‖sm0
− ŝm0

‖2 ,with m0 de�ned by (Ri
h).First on the event Ω′, using E
(
Z2
m0

)
≤ ΦDm0

/n by (RegD) and Corollaries A.1 and A.2, there exists
δn su
h that

∣∣Z2
m0

− E
(
Z2
m0

)∣∣ ≤ δnE
(
Z2
m0

)
≤ δnΦ

Dm0

n
·Then by use of (Bias) and (Ri
h) on Ω′,

cℓD
−ℓ
m∗ ≤ ‖s− sm∗‖2 ≤ ‖s− ŝm∗‖2 ≤ cun

−u/2 + crich(1 + δn)Φn
−1/2 ,whi
h is 
ontradi
tory with assuming Dm∗ < (logn)4 as long as n is large enough.Lemma A.5 (Chosen model dimension). Let us assume (Bias), (Ri
h), (LoEx), and (RegD) holdtrue. Then with the notation of Lemma A.4, on the event Ω = Ω′ ∩ (Ωrem,1 ∩ Ωrem,2), where Ωrem,1 and

Ωrem,2 are respe
tively de�ned in Proposition A.3 and Proposition A.4, it 
omes
Dm̂ ≥ (logn)4 , (35)for large enough values of n. imsart-generi
 ver. 2009/02/27 file: 
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A. Celisse/Optimal 
ross-validation 31Proof of Lemma A.4. For any model m su
h that R̂p(m) ≤ R̂p(m0), Proposition A.3, Proposition A.4,and Proposition A.2 lead to
[ 1−K(n, p)δn ] ‖s− sm‖2 +

[
n

n− p
−K(n, p)δn −

(
K(n, p) +

n

n− p

)
δn

]
E
(
Z2
m

)

−K(n, p)
[
Z2
m − E

(
Z2
m

) ]

≤ [ 1 +K(n, p)δn ] ‖s− sm0
‖2 +

[
n

n− p
+K(n, p)δn +

(
K(n, p) +

n

n− p

)
δn

]
E
(
Z2
m0

)

−K(n, p)
[
Z2
m0

− E
(
Z2
m0

) ]
.First, assuming Dm̂ < (logn)4 on Ω and 
ombining (LoEx) and (RegD) entail for m = m̂ that thereexists a 
onstant C > 0 su
h that

∣∣∣∣
[

n

n− p
−K(n, p)δn −

(
K(n, p) +

n

n− p

)
δn

]
E
(
Z2
m

)
−K(n, p)

[
Z2
m − E

(
Z2
m

) ]∣∣∣∣ ≤ C
(logn)4

n
·Se
ond, using (Bias) provides

[ 1−K(n, p)δn ] ‖s− sm‖2 ≥ [ 1−K(n, p)δn ] cℓ(logn)
−4ℓ ,whi
h is larger than C (log n)4

n for large enough values of n.Using the same arguments as in Lemma A.4 for upper bounding the terms depending on m0, it resultsthat Dm̂ ≥ (log n)4 on Ω.A.5. Te
hni
al resultsLemma A.6. Let X1, . . . , Xn be i.i.d. random variables de�ned on a mesurable spa
e (X , T ). Let Sdenote a set of real valued fun
tions su
h that supt∈S ‖t‖∞ ≤ b and supt∈S Var (t(X1)) = σ2. Let usassume (SqI). Then
σ2 ≤ ‖s‖ b . (36)Furthermore, (RegD) leads to

σ2 ≤ ‖s‖
√
ΦD , (37)where D denotes the dimension of the ve
tor spa
e S.Lemma A.7. (Dmax) implies

‖φm‖∞ ≤
√
Φ

n

(log n)2
,

Var (φm(X1)) ≤
(
nE(Z2) + ‖s‖2

)√
Φ

n

(logn)2
.
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ross-validation 32Proof.
Var (φm(X1)) ≤ E

[
φ2
m(X1)

]
≤ ‖φm‖∞ E [φm(X1) ]

= ‖φm‖∞
(
nE(Z2) + ‖sm‖2

)
≤ ‖φm‖∞

(
nE(Z2) + ‖s‖2

)

≤
(
nE(Z2) + ‖s‖2

)√
Φ

n

(logn)2
.

Lemma A.8. Let us assume that 0 ≤ δn + Lm for every m ∈ M. Then on the event Ωleft ∩Ωright (with
Ωleft and Ωright de�ned in Proposition A.6 and Proposition A.5 respe
tively), for every m,m′ ∈ M,

Z2
m′ (1− 4(δn + Lm′)) ≤ E(Z2

m′), Z2
m′ − E(Z2

m′) ≤ 4Z2
m′(δn + Lm′) . (38)and

E(Z2
m) ≤ Z2

m (1 + 4(δn + Lm)) + rn, E(Z2
m)− Z2

m ≤ 4Z2
m(δn + Lm) + rn . (39)Proof of Lemma A.8.Proof of (38) From Corollary A.1, on the event Ωright, it 
omes

Z2
m ≤ (E(Zm))

2
(1 + δn + Lm)

2
.Then assuming moreover 0 ≤ δn + Lm < 1, Jensen's inequality and (1 − x)−2 < (1 + x2) for x ∈ [0, 1[lead to

Z2
m ≤ E(Z2

m) (1 + δn + Lm)2 ≤ E(Z2
m)

1

(1− δn − Lm)
2 ·Finally if 0 ≤ δn + Lm < 1/4, then

E(Z2
m) ≥ Z2

m (1− δn − Lm)
2 ≥ Z2

m [ 1− 2(δn + Lm) ] ≥ Z2
m [ 1− 4(δn + Lm) ] .Proof of (39) Assuming δn + Lm < 1/4, Corollary A.2 and Lemma A.10 provide

E(Z2
m) ≤ Z2

m (1 + 4(δn + Lm)) + rn(m) .Lemma A.9. For every a, b ∈ (0, 1) su
h that a < b(1− b)−1,
1 + a

(1− b)
2 ≤ 1

(1− b)
3 . (40)Moreover if 0 < a = b < 1, then a < a(1− a)−1 and Eq. (40) holds true.Lemma A.10. For every interval I ⊂ [0, 1[ su
h that 0 ∈ I, there exists a 
onstant ∆ > 3 su
h that

∀x ∈ I, (1− x)−3 ≤ 1 + ∆x .In parti
ular for I = [0, 1/4], this property holds true with ∆ = 4. Furthermore for every x ∈]1,+∞[,
(1− x)−3 ≤ 1.imsart-generi
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A. Celisse/Optimal 
ross-validation 33A.6. Adaptivity in the minimax senseA.6.1. Proof of Corollary 3.2The proof simply 
onsists in 
ombining Theorems 3.1 and 3.2 by 
he
king their assumptions. First,
s ∈ H(L, α) implies (SqI). Combined with Lemma A.11, it shows (Bias) is ful�lled. Besides, (OrSp)holds true sin
e

inf
m∈Mn

E

[
‖s− ŝm‖2

]
≈ n− 2α

2α+1 ⇒ n

(log n)2
inf

m∈Mn

E

[
‖s− ŝm‖2

]
≈ n

1
2α+1 (logn)−2 ,where a ≈ b means there exist 
onstants 0 < c1 ≤ c2 su
h that c1b ≤ a ≤ c2b.Se
ond, sin
e the model 
olle
tion is built from regular partitions of [0, 1], (RegD) is 
learly satis�ed,and (Dmax) entails (Ri
h) is ful�lled.A.6.2. Te
hni
al LemmaLemma A.11. Let s be a density su
h that s ∈ H(L, α) for some α ∈ (0, 1] and L > 0. For every

D ∈ N
∗, let sD denote the orthogonal proje
tion of s de�ned in Se
tion 2.1.2 onto pie
ewise 
onstantfun
tions built from a given regular partition of [0, 1] in D intervals. Then,

cℓ
Dℓ

≤ ‖s− sD‖2 ≤ cu
Du

, (41)where u = 2α, cu = L2, ℓ = 1 + 1/α and cℓ = ǫ2+1/α2−(5+2/α)L−1/α, for some ǫ > 0.Proof of Lemma A.11. First, let us noti
e (41) ex
ludes s = 1[0,1]. Then, there exist x < y ∈ [0, 1] su
hthat |x− y| ≤ η and |s(x)− s(y)| ≥ ǫ for some η, ǫ > 0. Besides for a regular partition of [0, 1] in intervals
I1, . . . , ID of Lebesgue measure |Ik| = 1/D, it 
omes

‖s− sD‖2 =

D∑

k=1

∫

Ik

[ s(t)− sD(t) ]
2
dt =

D∑

k=1

∫

Ik

[ s(t)− sIk ]
2
dt ,where sIk denotes the mean of s on interval Ik.Se
ond, let K(η) = {1 ≤ k ≤ D, Ik ∩ [x, y] 6= ∅} and N(η) denote the 
ardinality of K(η). Then,

N(η) ≤ 2 + ηD. Combined with Lemma A.12, it leads to
‖s− sD‖2 ≥

∑

k∈K(η)

∫

Ik

[ s(t)− sIk ]
2
dt ≥ 1

24+1/αL1/α

∑

k∈K(η)

∆
2+1/α
k ,where ∆k := supIk s− infIk s, for every 1 ≤ k ≤ D. Applying Hölder's inequality, it 
omes

∑

k∈K(η)

∆
2+1/α
k ≥ N(η)−(1+1/α)



∑

k∈K(η)

∆k




2+1/α

≥ N(η)−(1+1/α)ǫ2+1/α ,
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ross-validation 34sin
e ∑k∈K(η) ∆k ≥ ǫ. Hen
e,
‖s− sD‖2 ≥

∑

k∈K(η)

∫

Ik

[ s(t)− sIk ]
2
dt ≥ 1

24+1/αL1/α

∑

k∈K(η)

∆
2+1/α
k

≥ 1

24+1/αL1/α
N(η)−(1+1/α)ǫ2+1/α

≥ 1

24+1/αL1/α
(1 + η)−(1+1/α)D−(1+1/α)ǫ2+1/α

≥ ǫ2+1/α

25+2/αL1/α
D−(1+1/α) ·

Lemma A.12. Let s denote a density de�ned on [0, 1] su
h that s ∈ H(L, α), for some L > 0 and
α ∈ (0, 1]. Let us de�ne an interval I ⊂ [0, 1] and sI = |I|−1 ∫

I s(t) dt denotes the mean of s on I. Then,
∫

I

(s(t)− sI)
2
dt ≥ ∆2+1/α

24+1/αL1/α
,where ∆ = supI s− infI s.Proof of Lemma A.12. First, let us noti
e s− = infI s ≤ sI ≤ supI s = s+, whi
h implies

max
(
s+ − sI , sI − s−

)
≥ ∆/2 .Without loss of generality, let us assume max (s+ − sI , sI − s−) = s+ − sI . Then s+ − sI ≥ ∆/2.Se
ond, let us introdu
e x+ ∈ I su
h that s+ = s(x+). By 
ontinuity of s, there exists an interval

J ⊂ I su
h that x+ ∈ J and
∀x ∈ J, 0 ≤ s(x+)− s(x) ≤ ∆/4 .Then,

∀x ∈ J, s(x)− sI ≥ ∆/2−∆/4 = ∆/4 .Moreover,
|J | (∆/2)

2 ≤
∫

J

(
s(x+)− sI

)2
dx ≤

∫

J

(
s(x+)− s(x)

)2
dx ≤

∫

J

L2
∣∣x+ − x

∣∣2α dx ≤ |J |2α+1
L2 ,whi
h implies

|J | ≥
(

∆

2L

)1/α

·Finally,
∫

I

(s(x)− sI)
2
dx ≥

∫

J

(s(x) − sI)
2
dx ≥ (∆/4)

2 |J | ≥ (∆/4)
2

(
∆

2L

)1/α
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ross-validation 35A.7. Identi�
ation point of viewProposition A.8 (Bound on νn (sm − sm̄)). Let us assume (Pol),(SqI), (RegD) hold true. Then, thereexists a sequen
e (δn)N and an event Ωrem,3 with P [ Ωrem,3 ] ≥ 1− 2/n2, on whi
h for every m ∈ M,
2 |νn(sm − sm̄)| ≤ δn ‖sm − sm̄‖2 + δn ‖s‖

√
Φ

√
Dm +Dm̄

n
+ δnΦ

Dm +Dm̄

n
,with δn → 0 and nδn → +∞ as n → +∞, and 0 ≤ δn ≤ 1 for n large enough.Proof of Proposition A.8. Combining Eq. (31), (SqI), and (RegD) it 
omes for every η > 0,

2νn(sm − sm̄) ≤ η ‖sm − sm̄‖2 4η−1 ‖s‖
√
Φ
√
(Dm +Dm̄)

n
x+ 2η−1Φ (Dm +Dm̄)

x2

9n2
.with probability not larger than 2 exp (−x), for any x > 0.Let us further assume that (Pol) holds true. Then with x = xm = (aM + 2) logn, it 
omes

2νn(sm − sm̄)

≤ η ‖sm − sm̄‖2 + 4η−1 ‖s‖
√
Φ
√
(Dm +Dm̄)√
n

(aM + 2)
logn√

n
+ 2η−1Φ

Dm +Dm̄

n

((aM + 2) logn)
2

9n
·Let us 
hoose η = 1/ logn, then there exists a sequen
e (δn)N with δn → 0 and nδn → +∞ as n → +∞su
h that.

2νn(sm − sm̄) ≤ δn ‖sm − sm̄‖2 + δn ‖s‖
√
Φ

√
Dm +Dm̄

n
+ δnΦ

Dm +Dm̄

n
·Finally, let us noti
e that ∑m∈M 2e−xm =

∑
m∈M 2n−(aM+2) ≤ 2naMn−(aM+2) = 2/n2.Appendix B: Key 
on
entration inequalitiesTheorem B.1 (Bernstein's inequality). Let X1, . . . , Xn be i.i.d. random variables de�ned on a mesurablespa
e (X , T ), and let t denote a mesurable bounded real valued fun
tion. Then for every x > 0,

P

[
νn(t) >

√
2Var (t(X1))x

n
+

‖t‖∞ x

3n

]
≤ e−x . (42)Theorem B.2 (Bousquet's version of Talagrand's inequality (Bousquet, 2002)).Let X1, . . . , Xn be i.i.d. random variables de�ned on a mesurable spa
e (X , T ). Let S denote a set of realvalued fun
tions su
h that supt∈S ‖t‖∞ ≤ b and supt∈S Var (t(X1)) = σ2. Denoting Z = supt∈S νn(t),then for every x > 0

P

[√
nZ ≤ √

nE(Z) +
√
2 (σ2 + 2bE(Z))x+

bx

3
√
n

]
≤ e−x . (43)Theorem B.3 (Rio's version of Talagrand's inequality (Klein and Rio, 2005)).Let X1, . . . , Xn be i.i.d. random variables de�ned on amesurable spa
e (X , T ). Let S denote a set of realvalued fun
tions su
h that supt∈S ‖t‖∞ ≤ b and supt∈S Var (t(X1)) = σ2. Denoting Z = supt∈S νn(t),then for every x > 0

P

[√
nZ ≤ √

nE(Z)−
√
2 (σ2 + 2bE(Z))x− 8bx

3
√
n

]
≤ e−x . (44)imsart-generi
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