
Optimal ross-validation in density estimationAlain CelisseLaboratoire de Mathématiques Painlevé,UMR 8524 CNRS-Université Lille 1, Modal team-projet INRIAF-59 655, Villeneuve d'Asq Cedexe-mail: elisse�math.univ-lille1.frAbstrat: The performane of ross-validation (CV) is analyzed in two ontexts: (i) risk estima-tion and (ii) model seletion in the density estimation framework. The main fous is given to oneCV algorithm alled leave-p-out (Lpo), where p denotes the ardinality of the test set. Closed-formexpressions are settled for the Lpo estimator of the risk of projetion estimators, whih makesV-fold ross-validation ompletely useless.From a theoretial point of view, these losed-form expressions enable to study the Lpo perfor-manes in terms of risk estimation. For instane, the optimality of leave-one-out (Loo), that is Lpowith p = 1, is proved among CV proedures. Two model seletion frameworks are also onsidered:estimation, as opposed to identi�ation.Unlike risk estimation, Loo is proved to be suboptimal as a model seletion proedure. In theestimation framework with �nite sample size n, optimality is ahieved for p large enough (with
p/n = o(1)) to balane over�tting. A link is also identi�ed between the optimal p and the strutureof the model olletion. These theoretial results are strongly supported by simulation experiments.When performing identi�ation, model onsisteny is also proved for Lpo with p/n → 1 as n → +∞.AMS 2000 subjet lassi�ations: Primary 62G09; seondary 62G07, 62E17.Keywords and phrases: Cross-validation, leave-p-out, resampling, risk estimation, model sele-tion, density estimation, orale inequality, projetion estimators, onentration inequalities.1. Introdution1.1. Model seletionFor estimating a target quantity denoted by s, let {Sm}m∈M denote a olletion of sets of andidateparameters and M denote a set of index. From eah Sm alled a model, an estimator ŝm of s is omputed.The goal of model seletion is to design a riterion crit : M → R

+ suh that minimizing crit(·) over
M provides a �nal estimator ŝ m̂ that is �optimal�. Among various strategies of model seletion, modelseletion via penalization has been introdued in the seminal papers by Akaike (1973); Mallows (1973);Shwarz (1978) on respetively AIC, Cp, and BIC riteria. However sine AIC and BIC are derived fromasymptoti arguments, their performanes ruially depend on model olletion and sample size (seeBaraud et al., 2009).More reently Birgé and Massart (1997, 2001, 2006) have developed a non-asymptoti approah in-spired from the pioneering work of Barron and Cover (1991). It relies on onentration inequalities(Ledoux, 2001; Talagrand, 1996) and aims at deriving orale inequalities suh as

ℓ (s, ŝ m̂) ≤ C inf
m∈M

{ℓ (s, ŝm)}+ rnwith probability larger than 1− c/n2, where c > 0 is a onstant, ℓ(s, t) is a measure of the gap betweenparameters s and t, rn is a remainder term with respet to infm ℓ (s, ŝm), and C ≥ 1 denotes a onstantindependent of s. The loser C to 1 and the smaller rn, the better the model seletion proedure. If
C = Cn → 1 and rn → 0 as n → +∞, the model seletion proedure is said asymptotially optimal (ore�ient) (see Arlot and Celisse, 2010, for instane). Note that other asymptoti optimality properties1imsart-generi ver. 2009/02/27 file: vhistoAOS.tex date: Marh 30, 2012
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A. Celisse/Optimal ross-validation 2have been studied in the literature. For instane, a model seletion proedure satisfying
P [ m̂ = m0 ] −−−−−→

n→+∞
1 ,where m0 denotes a �xed given model is said model onsistent (see Shao, 1997, for a study of variousmodel seletion proedures in terms of model onsisteny).In the density estimation framework, model seletion with deterministi penalties has been developed:(i) for Kullbak-Leibler divergene and histograms by Barron et al. (1999); Castellan (1999, 2003) andfurther studied in Birgé and Rozenhol (2006), and (ii) for quadrati risk and projetion estimators byBirgé and Massart (1997) and Barron et al. (1999).1.2. Cross-validationThe aforementioned approahes rely on some deterministi penalties suh as AIC or BIC. These penaltiesare derived in some spei� settings (for instane Birgé and Massart, 2006, assume a Gaussian noise ),whih makes their performanes setting dependent.Conversely, ross-validation (CV) is a resampling proedure based on a universal heuristis whihmakes it appliable in a wide range of settings. CV algorithms have been �rst studied in a regressionontext by Stone (1974, 1977) for the leave-one-out (Loo) and Geisser (1974, 1975) for the V -fold ross-validation (VFCV), and in the density estimation framework by Rudemo (1982); Stone (1984). Sinethese algorithms an be omputationally demanding or even intratable, Bowman (1984); Rudemo (1982)derived losed-form formulas for the Loo estimator of the risk of histograms or kernel estimators. Theseresults have been reently extended to the leave-p-out ross-validation (Lpo) by Celisse and Robin (2008).Although CV algorithms are extensively used in pratie, only few theoretial results exist on theirperformanes, most of them being of asymptoti nature. For instane in the regression framework, Burman(1989, 1990) proves Loo is asymptotially the best CV algorithm in terms of risk estimation. Several papersare dediated to show the equivalene between some CV algorithms and penalized riteria in terms ofasymptoti optimality properties: (i) e�ieny in Li (1987); Zhang (1993), and (ii) model onsistenyin Shao (1993); Yang (2007). We refer interested readers to Shao (1997) for an extensive review aboutasymptoti optimality properties in terms of e�ieny and model onsisteny of some penalized riteriaas well as CV algorithms.As for non-asymptoti results in the density framework, Birgé and Massart (1997) have settled anorale inequality that relies on a onjeture and may be applied to Loo. However to the best of ourknowledge, no result of this type has already been proved for Lpo in the density estimation framework.Reently in the regression setting, Arlot (2007) established orale inequalities for V -fold penalties, whileArlot and Celisse (2011) have arried out an extensive simulation study in the hange-point detetionproblem with heterosedasti observations.1.3. Main ontributionsIn the present paper, we derive losed-form expressions for the Lpo risk estimator of the broad lass ofprojetion estimators (Setion 2). Suh losed-form expressions make V -FCV ompletely useless sine itis more variable and omputationally demanding than Lpo (Setion 2.3). They also enable to study thetheoretial performane of CV in two respets: (i) for risk estimation (Setion 2.4), and (ii) for modelseletion (Setion 3). For instane, it is proved that Loo is the best CV algorithm for risk estimation(Theorem 2.1), while it is suboptimal for model seletion (Corollary 3.1 and Theorem 3.3).Moreover, two aspets of model seletion via CV have been explored. In Setion 3.1, the estimationpoint of view is desribed where it is shown that Lpo is optimal as long as p/n = o(1) and p is large enoughto balane the in�uene of the model olletion struture. All these new theoretial results are supportedimsart-generi ver. 2009/02/27 file: vhistoAOS.tex date: Marh 30, 2012



A. Celisse/Optimal ross-validation 3by simulation experiments detailed in Setion 3.1.4. Conversely, identi�ation is studied in Setion 3.2,where the optimal performane is obtained for p/n −−−−−→
n→+∞

1, whih is onsistent with previous resultssettled in the regression framework for instane by Shao (1993). However, our result is more preise sinewe were able to loalize the optimal rate of onvergene of 1 − p/n toward 0 between 1/n and 1/
√
n as

n tends to +∞. Finally, proofs and tehnial lemmas have been olleted in Appendix A.2. Cross-validation and risk estimation2.1. Statistial framework2.1.1. NotationThroughout the paper, X1, . . . , Xn ∈ [0, 1] are independent and identially distributed (i.i.d. ) randomvariables drawn from a probability distribution P of density s ∈ L2([0, 1]) with respet to Lebesgue'smeasure on [0, 1], and X1,n = (X1, . . . , Xn).Let S∗ denote the set of mesurable funtions on [0, 1]. The distane between s and any u ∈ S∗ ismeasured thanks to the quadrati loss denoted by
ℓ : (s, u) 7→ ℓ (s, u ) := ‖s− u‖2 =

∫

[0,1]

[ s(t)− u(t) ]
2
dt .It is related to the ontrast funtion

γ : (u, x) 7→ γ(u;x) := ‖u‖2 − 2u(x) , with ℓ (s, u ) = Pγ(u)− Pγ(s) (1)where Pγ(u) = P (γ(u; ·)) and Pf := E [ f (X1) ] for every f ∈ S∗. The performane of every estimator
ŝ = ŝ (X1, . . . , Xn) of s is assessed thanks to the quadrati risk

Rn( ŝ ) := E [ ℓ (s, ŝ ) ] = E

[
‖s− ŝ ‖2

]
.Estimating Pγ(u) is made through the empirial ontrast de�ned by

Pnγ(u) :=
1

n

n∑

i=1

γ (u;Xi) , where Pn = 1/n

n∑

i=1

δXidenotes the empirial measure and Pnf := 1/n
∑n

i=1 f(Xi) for every f ∈ S∗.Let us further introdue Mn a ountable set of indies and for every m ∈ Mn, Sm denote a set offuntions, alled model, used to estimate s. To eah Sm, an estimator ŝm orresponds that is de�ned asthe empirial ontrast minimizer
ŝm := Argminu∈Sm

Pnγ(u) . (2)It results a olletion {ŝm}m∈Mn
of estimators of s depending on the hoie of models Sms. Instanes ofsuh models and estimators are desribed in Setion 2.1.2.2.1.2. Projetion estimatorsLet Λn be a set of ountable indies and {ϕλ}λ∈Λn

a family of vetors in L2([0, 1]) suh that for every
m ∈ Mn, {ϕλ}λ∈Λ(m) denotes an orthonormal family of L2([0, 1]) with Λ(m) ⊂ Λn. For every m ∈ Mn,imsart-generi ver. 2009/02/27 file: vhistoAOS.tex date: Marh 30, 2012



A. Celisse/Optimal ross-validation 4
Sm denotes the linear spae spanned by {ϕλ}λ∈Λ(m), Dm = dim (Sm), and sm is the orthogonal projetionof s onto Sm

sm := Argminu∈Sm
Pγ(u) =

∑

λ∈Λ(m)

Pϕλ ϕλ, with Pϕλ = E [ϕλ(X) ] .De�nition 2.1. An estimator ŝ ∈ L2([0, 1]) is a projetion estimator if there exists a family {ϕλ}λ∈Λof orthonormal vetors of L2([0, 1]) suh that
ŝ =

∑

λ∈Λ

αλ ϕλ, with αλ =
1

n

n∑

i=1

Hλ(Xi),where {Hλ(·)}λ∈Λ depends on the family {ϕλ}λ∈Λ.As a onsequene, it is straightforward to hek that the empirial ontrast minimizer de�ned byEq. (2) over Sm = Span (ϕλ, λ ∈ Λ(m)) is a projetion estimator sine
ŝm =

∑

λ∈Λ(m)

Pnϕλ ϕλ , with Pnϕλ =
1

n

n∑

i=1

ϕλ(Xi) . (3)Here are a few examples of projetion estimators (see DeVore and Lorentz, 1993):
• Histograms : For every m ∈ Mn, let {Iλ}λ∈Λ(m) be a partition of [0, 1] in Dm = Card(Λ(m))intervals. Set ϕλ = 1Iλ/

√
|Iλ| for every λ ∈ Λ(m), with |Iλ| the Lebesgue measure of Iλ, and

1Iλ(x) = 1 if x ∈ Iλ and 0 otherwise. Then,
ŝm =

∑

λ∈Λ(m)

Pn1Iλ

1Iλ

|Iλ|
· (4)

• Trigonometri polynomials : For every λ ∈ Z, let ϕλ : t 7→ ϕλ(t) = e2πiλt. Then for any �nite
Λ(m) ⊂ Z,

ŝm(t) =
∑

λ∈Λ(m)

Pnϕλ e2πiλt, ∀t ∈ [0, 1] (5)is a trigonometri polynomial.
• Wavelet basis : Let {ϕλ}λ∈Λn

be an orthonormal basis of L2([0, 1]) made of ompat supportedwavelets, where Λn =
{
(j, k) | j ∈ N

∗ and 1 ≤ k ≤ 2j
}. Then for every subset Λ(m) of Λn,

ŝm =
∑

λ∈Λ(m)

Pnϕλ ϕλ . (6)Some of these estimators an take negative values for �nite sample size. The same phenomenon ariseswith kernel estimators (Tsybakov, 2003). A possible solution to avoid negative values is trunating andnormalizing the preliminary projetion estimator
s̃m = ŝm1ŝm≥0

(∫

[0,1]

1ŝm≥0(t)ŝm(t) dt

)−1

.Note that if s(x0) > 0 at a given x0 ∈ [0, 1] and ŝm(x)
P−−−−−→

n→+∞
s(x) for every x ∈ [0, 1], then ŝm(x0) ≥ 0for large enough values of n. imsart-generi ver. 2009/02/27 file: vhistoAOS.tex date: Marh 30, 2012



A. Celisse/Optimal ross-validation 52.2. Leave-p-out ross-validationIn the literature, several ross-validation (CV) algorithms have been suessively introdued to overomethe defets of already existing ones. The purpose of the present setion is to brie�y desribe the main CValgorithms that will be used throughout the paper with some emphasis to omputational aspets.2.2.1. Cross-validationFor every 1 ≤ p ≤ n − 1, let us de�ne Ep = {e ⊂ {1, . . . , n} , Card(e) = p} and for any suh e ∈ Ep,set Xe = {Xi, i ∈ e} (test set) and X(e) = {Xi, i ∈ {1, . . . , n} \ e} (training set). Let also P e
n :=

1/p
∑

i∈e δXi
and P

(e)
n := 1/(n− p)

∑
i∈(e) δXi

denote the empirial measures de�ned respetively fromthe test set Xe and the training set X(e).Hold-out Simple validation also alled Hold-out has been introdued at the early 30s (Larson, 1931).For every 1 ≤ p ≤ n−1, it onsists in randomly splitting observations into a training setX(e) of ardinality
n−p and a test setXe of ardinality p. Random data splitting is only made one and introdues additionalvariability. For every e ∈ Ep (randomly hosen), the hold-out estimator of Rn( ŝ ) is

R̂Ho,p( ŝ ) := P e
n γ
(
ŝ (X(e))

)
=

1

p

∑

i∈e

γ
(
ŝ (X(e));Xi

)
. (7)Hold-out has been studied for instane by Bartlett et al. (2002); Blanhard and Massart (2006) in las-si�ation and by Lugosi and Nobel (1999); Wegkamp (2003) in regression.Leave-p-out Unlike Eq. (7) where a single split e of the data is randomly hosen, whih introduesadditional unwanted variability, leave-p-out (Lpo) onsiders all the (np) = Card (Ep) splits. The Lpoestimator of Rn( ŝ ) is de�ned bŷ

Rp( ŝ ) =

(
n

p

)−1 ∑

e∈Ep

P e
n γ
(
ŝ (X(e))

)
. (8)For instane, it has been studied by Shao (1993), Zhang (1993), and Arlot and Celisse (2011) in theregression framework. With p = 1, Lpo redues to the elebrated leave-one-out (Loo) ross-validationintrodued by Mosteller and Tukey (1968) and further studied by Stone (1974). Note that omputingthe Lpo estimator requires a omputational omplexity of order (np) times that of omputing ŝ , whihquikly beomes intratable as n grows.

V -fold ross-validation To overome the high omputational burden of Lpo (Eq. (8)), Geisser (1974,1975) introdued the V-fold ross-validation (V-FCV). Instead of onsidering all the (np) possible splits,one (randomly or not) hooses a partition of X1, . . . , Xn into V subsets Xe1 , . . . , XeV of approximatelyequal size p = n/V = Card(ei), i = 1, . . . , V . Every Xei , i = 1, . . . , V is suessively used as a test setleading to the V-fold risk estimator of Rn( ŝ )

R̂V−FCV( ŝ ) =
1

V

V∑

v=1

P ev
n γ

(
ŝ (X(ev))

)
. (9)V-FCV has been studied in the regression framework by Burman (1989, 1990) who suggests a orretionto remove its bias. imsart-generi ver. 2009/02/27 file: vhistoAOS.tex date: Marh 30, 2012



A. Celisse/Optimal ross-validation 62.2.2. Lpo versus V-FCVAs explained in Setion 2.2.1, the Lpo omputational omplexity is roughly (np) times that of omputing
ŝ , whih an be highly time-onsuming. Unlike Lpo (and even Loo when p = 1), V-FCV involves only Vsuh omputations, whih is less demanding as long as V ≪ n. Note that usual values for V are 3, 5, and10 (exept V = n where V-FCV and Loo oinide).However, V-FCV relies on a preliminary (possibly random) partitioning of X1, . . . , Xn into V subsets.Unlike Lpo where an exhaustive splitting is performed, this preliminary partitioning indues some addi-tional variability, whih ould be misleading. For instane, Celisse and Robin (2008) have theoretiallyquanti�ed the amount of additional variability indued by V-FCV with respet to Lpo.On the one hand, Lpo an be seen as a �gold standard� among CV algorithms sine it relies onexhaustive splitting and does not introdue any additional variability. On the other hand, V-FCV appearsas an approximation to the �ideal Lpo� that annot be ahieved due to a prohibitive omputational ost.Note that other approximations to Lpo have been proposed suh as the repeated learning-testing ross-validation (Breiman et al., 1984; Burman, 1989; Zhang, 1993).2.3. Closed-form expressions for the Lpo risk estimatorIn Setion 2.2.2 it is laimed that as long as Lpo annot be omputed V-FCV is preferable. Closed-form formulas for the Lpo estimator are proved in the present setion, whih makes Lpo fully e�etivein pratie and always better than V-FCV. Besides, losed-form formulas also enable a more auratetheoretial analysis of CV algorithms both in terms of risk estimation (Setion 2.4) and model seletion(Setion 3).With the notation introdued at the beginning of Setion 2.2.1, let us onsider projetion estimators ŝmde�ned by Eq. (3). Closed-form formulas for the Lpo risk estimator are derived exploiting the �linearity�of projetion estimators. Sums over Ep (whih annot be omputed in general) then redue to binomialoe�ients. Realling the expression of the ontrast γ(· ; ·) (Eq. (1)), one has to ompute both quadratiand linear terms.Lemma 2.1. For every m ∈ Mn, let ŝm = ŝm(X1,n) denote a projetion estimator de�ned by Eq. (3)and set Xe = {Xi, i ∈ e} for every e ∈ Ep. Then for every p ∈ {1, . . . , n− 1},

∑

e∈Ep

∥∥∥ŝm(X(e))
∥∥∥
2

=
1

(n− p)2

∑

λ∈Λ(m)



(
n− 1

p

) n∑

k=1

ϕ2
λ(Xk) +

(
n− 2

p

)∑

k 6=ℓ

ϕλ(Xk)ϕλ(Xℓ)


 ,

∑

e∈Ep

∑

i∈e

ŝ (X(e))(Xi) =
1

n− p

∑

λ∈Λ(m)

(
n− 2

p− 1

)∑

i6=j

ϕλ(Xi)ϕλ(Xj) .Proof of Lemma 2.1. For every e ∈ Ep, and t ∈ [0, 1],
ŝm(X(e))(t) =

∑

λ

(P (e)
n ϕλ)ϕλ(t) =

1

n− p

n∑

j=1

∑

λ

ϕλ(Xj)ϕλ(t)1(j∈(e)) ,whih implies
∑

i∈e

ŝm(X(e))(Xi) =
1

n− p

∑

i6=j

∑

λ

ϕλ(Xj)ϕλ(Xi)1(j∈(e))1(i∈e) .imsart-generi ver. 2009/02/27 file: vhistoAOS.tex date: Marh 30, 2012



A. Celisse/Optimal ross-validation 7It remains to sum over e ∈ Ep, whih is made thanks to Lemma A.1.Lemma 2.1 enables to derive losed-form formulas for the Lpo risk estimator, whih makes Lpo algo-rithm fully e�ient in pratie.Proposition 2.1. For every m ∈ Mn, let ŝm = ŝm(X1,n) denote a projetion estimator de�ned byEq. (3). Then for every p ∈ {1, . . . , n− 1},
R̂p(m) = R̂p(ŝm) =

1

n(n− p)

∑

λ∈Λ(m)




n∑

j=1

ϕ2
λ(Xj)−

n− p+ 1

n− 1

∑

j 6=k

ϕλ(Xj)ϕλ(Xk)


 . (10)Proposition 2.1 enjoys a great interest. First it applies to the broad family of projetion estimators.Seond, it allows to redue the omputation time from an exponential to a linear omplexity sine om-puting (10) is of order O (n). Note that in the more spei� setting of histograms and kernel estimators,suh losed-form formulas have been derived by Celisse and Robin (2008).Proof of Proposition 2.1. From de�nitions of the ontrast (Eq. (1)) and the Lpo estimator Eq. (8), itomes

R̂p(m) =

(
n

p

)−1 ∑

e∈Ep

∥∥∥ŝm(X
(e)
1,n)
∥∥∥
2

− 2

p

(
n

p

)−1 ∑

e∈Ep

∑

i∈e

ŝm(X
(e)
1,n)(Xi) .Then, Lemma 2.1 provides the expeted onlusion.Let us now speify the Lpo estimator expressions for the three examples of projetion estimators inSetion 2.1.2.1. Corollary 2.1 (Histograms). For ŝm given by Eq. (4) and for p ∈ {1, . . . , n− 1},

R̂p(m) =
1

(n− 1)(n− p)

Dm∑

λ=1

1

|Iλ|

[
(2n− p)

nλ

n
− n(n− p+ 1)

(nλ

n

)2 ]
,where nλ = Card ({i |Xi ∈ Iλ}).2. Corollary 2.2 (Trigonometri polynomials). For every k ∈ N, let ϕλ denote either t 7→ cos(2πkt),if λ = 2k or t 7→ sin(2πkt), if λ = 2k + 1. Let us further assume Λ(m) = {0, . . . , 2K} for K ∈ N

∗.Then for every p ∈ {1, . . . , n− 1},
R̂p(m) = α(n, p)− β(n, p)

K∑

k=0








n∑

j=1

cos(2πkXj)





2

+





n∑

j=1

sin(2πkXj)





2

 ,where α(n, p) = (p− 2)(K + 1) [ (n− 1)(n− p) ]−1 and β(n, p) = (n− p+ 1) [n(n− 1)(n− p) ]−1.3. imsart-generi ver. 2009/02/27 file: vhistoAOS.tex date: Marh 30, 2012



A. Celisse/Optimal ross-validation 8Corollary 2.3 (Haar basis). Let us de�ne ϕ : t 7→ 1[0,1] and ϕj,k(t) = 2j/2ϕ(2j ·−k), where j ∈ Nand 0 ≤ k ≤ 2j −1, and assume Λ(m) ⊂
{
(j, k) | j ∈ N, 0 ≤ k ≤ 2j − 1

} for every m ∈ Mn. Then,
R̂p(m) =

1

(n− 1)(n− p)

∑

(j,k)∈Λ(m)

2j
[
(2n− p)

nj,k

n
− n(n− p+ 1)

(nj,k

n

)2 ]
,where nj,k = Card

({
i | Xi ∈ [k/2j, (k + 1)/2j]

}).2.4. Risk estimation: Leave-one-out optimalityFrom the general losed-form formula given by Eq. (10), one derives losed-form expressions for theexpetation and variane of the Lpo risk as well. These expressions will be useful to analyze the theoretialbehavior of CV in terms of risk estimation and model seletion (see Setion 3). In the present setion forinstane, they are used to prove the optimality of Loo for estimating the risk of any projetion estimator(Theorem 2.1).Proposition 2.2. For every m ∈ Mn, let ŝm = ŝm(X1,n) denote a projetion estimator de�ned byEq. (3). Then for every 1 ≤ p ≤ n− 1,
E

[
R̂p(m)

]
=

1

n− p

∑

λ∈Λ(m)

[
Eϕ2

λ(X)− (Eϕλ(X))2
]
−

∑

λ∈Λ(m)

(Eϕλ(X))2 ,and
Var

[
R̂p(m)

]
=

1

(n− 1)2

[
an +

bn
(n− p)

+
cn

(n− p)2

]
, (11)where an = Var

[∑
λ∈Λ(m)

(
n(Pnϕλ)

2 − Pnϕ
2
λ

) ] , cn = Var
[
n
∑

λ∈Λ(m)

(
Pnϕ

2
λ − (Pnϕλ)

2
) ] , and bn =

−2 Cov
[∑

λ∈Λ(m)

(
n(Pnϕλ)

2 − Pnϕ
2
λ

)
,
∑

λ∈Λ(m) n
(
Pnϕ

2
λ − (Pnϕλ)

2
) ] .The proof is a straightforward appliation of Proposition 2.1 and has been omitted. Note that theabove quantities do exist as long as P |ϕλ|3 < +∞ for any λ ∈ Λ(m), whih holds true if s is boundedfor instane and ∫ |ϕλ|3 < +∞ (ϕλ ontinuous and ompat supported for instane). In the varianeexpression, an, bn, and cn do not depend on p. Then knowing the behavior of the variane with respetto p only depends on the magnitude of an, bn, and cn, whih is lari�ed by Corollary 2.5.Let us �rst fous on the bias B [ R̂p(m)

]
:= ER̂p(m)−E

[
‖ŝm‖2 − 2

∫
[0,1] s ŝm

] of the Lpo estimator.Corollary 2.4 (Bias). For every m ∈ Mn, let ŝm = ŝm(X1,n) denote a projetion estimator de�ned byEq. (3). Then for every m ∈ Mn and 1 ≤ p ≤ n− 1,
B

[
R̂p(m)

]
=

p

n(n− p)

∑

λ∈Λ(m)

Var [ϕλ(X1) ] ≥ 0 .The bias is nonnegative and inreases with p, whih means Loo (p = 1) has the smallest bias amongCV algorithms. Besides if p = pn satis�es pn/n −−−−−→
n→+∞

q ∈ [0, 1), then B

[
R̂p(m)

]
−−−−−→
n→+∞

0. Thus, Loois asymptotially unbiased.Let us now desribe the behavior of the variane with respet to p.imsart-generi ver. 2009/02/27 file: vhistoAOS.tex date: Marh 30, 2012



A. Celisse/Optimal ross-validation 9Corollary 2.5 (Variane). With the same notation as Proposition 2.2, for every m ∈ Mn and 1 ≤ p ≤
n− 1,

Var
[
R̂p(m)

]
=

n

(n− 1)2

[
A+

B

n− p
+

C

(n− p)2
+O

(
1

n

)]
,where

A = 4Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]
≥ 0 ,

B = 8Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]
− 4Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X3)

]
,

C = 4Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]
− 4Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X3)

]

+Var

[
∑

λ

ϕ2
λ(X1)

]
≥ 0 .In the more spei� ase of histogram and kernel density estimators, Celisse and Robin (2008) deriveda similar (non asymptoti) result for the variane. Note that the monotoniity of the variane with respetto p depends on the sign of B sine x 7→ f(x) = Ax2 + Bx+ C has for derivative x 7→ f ′(x) = 2Ax+Band A ≥ 0. However in full generality, the sign of B is unknown.Proof of Corollary 2.5. Combining Proposition 2.2, Lemmas A.2 and A.3, and Proposition A.1, it omes

an = 4nβ +O(1) ,

bn = 8nβ − 4nγ +O(1) ,

cn = 4nβ − 4nγ + nδ +O(1) ,where β = Cov [
∑

λ ϕλ(X1)ϕλ(X2),
∑

λ ϕλ(X1)ϕλ(X3) ], γ = Cov
[∑

λ ϕ
2
λ(X1),

∑
λ ϕλ(X1)ϕλ(X3)

],and δ = Var
[∑

λ ϕ
2
λ(X1)

]. This provides the expeted onlusion with A = 4β, B = 8β − 4γ, and
C = 4β − 4γ + δ.The purpose of the following proposition is to desribe the monotoniity of the variane depending onthe sign of BProposition 2.3. Let us de�ne p0,n = Argmin1≤p≤n−1Var

[
R̂p(m)

] in Eq. (11). Then,
p0,n = n+

(
1− Cov

[∑
λ ϕ

2
λ(X1),

∑
λ ϕλ(X1)ϕλ(X3)

]

2Cov [
∑

λ ϕλ(X1)ϕλ(X2),
∑

λ ϕλ(X1)ϕλ(X3) ]

)
(1 + o(1)) .Furthermore,1. if

2Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]
≥ Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X3)

]
, (12)

p ∈ {1, . . . , n− 1} 7→ Var
[
R̂p(m)

] is inreasing.imsart-generi ver. 2009/02/27 file: vhistoAOS.tex date: Marh 30, 2012



A. Celisse/Optimal ross-validation 102. Otherwise, p 7→ Var
[
R̂p(m)

] is dereasing on [1, p0,n] and inreasing on [p0,n, n− 1].Eq. (12) is related to the sign of B in Corollary 2.5 and to the minimum loation value p0,n. Inpartiular if it holds true, then p0,n 6∈ {2, . . . , n− 1}, whih means Loo has the smallest variane amongCV algorithms.Theorem 2.1. For every m ∈ Mn, let us de�ne the mean-square error (MSE) of ŝm by MSE(m; p) =(
B

[
R̂p(m)

])2
+Var

[
R̂p(m)

], for every p ∈ {1, . . . , n− 1}.1. If (12) holds true, then for every m ∈ Mn, p 7→ MSE(m; p) is minimum for p = 1.2. Otherwise, for every p = pn ∈ {1, . . . , n− 1} suh that pn/n −−−−−→
n→+∞

q ∈ [0, 1), then
MSE(m; p) =

A

n
+O

(
1

n2

)
, as n → +∞ .If (12) holds true, Loo is the best CV algorithm in terms of MSE when estimating the risk of anestimator. Otherwise as long as pn/n 6→ 1 as n → +∞, hoosing a value of p 6= 1 is useless sine anyvalue in {1, . . . , n− 1} asymptotially leads to the same performane in terms of MSE. But sine Loohas a minimum bias (Corollary 2.4), one onludes Loo is optimal among CV algorithms for estimatingthe risk of an estimator. This result on�rms what has been previously stated by Burman (1989) in theregression framework.3. Optimal ross-validation for model seletionIn Setion 2.4, the optimality of Loo among CV algorithms has been proved in the ontext of riskestimation. However, the best possible algorithm for risk estimation is not neessarily the best one formodel seletion. For instane, empirial ontrast minimization (2) is used to design an estimator ŝm ∈

Sm. But using empirial ontrast minimization to hoose one m̂ ∈ Mn (without penalizing) wouldsystematially lead to over�tting. The purpose of the present setion is to study the performane of CVfor model seletion with respet to the ardinality p of the test set.In model seletion, two (ontraditory) purposes an be pursued: Estimation and Identi�ation (seeShao, 1997; Yang, 2005, for an extensive presentation). With the Estimation point of view, one fouseson minimizing the risk over a olletion of models without assuming the targeted s belongs to one ofthem. Conversely in Identi�ation, one assumes s belongs to at least one model of the olletion and thegoal is to reover the smallest model ontaining s.3.1. Optimal ross-validation for EstimationModel seletion by CV pursuing Estimation is our main onern here. First, the performane of CV withrespet to p is haraterized through a sharp orale inequality (Theorem 3.1) where onstants are relatedto the di�ulty of the estimation problem. In partiular, a leading onstant onverging to 1 as n → +∞is ahieved for given values of p. Seond, Loo is theoretially shown to be suboptimal for model seletion(Corollary 3.1), whih is also empirially supported by simulation experiments (Setion 3.1.4).3.1.1. Estimation point of viewWith the notation of Setion 2.1, let us onsider a family of projetion estimators {ŝm}m∈Mn
, where Mndenotes an (at most ountable) index set allowed to depend on n. The best possible model, alled theimsart-generi ver. 2009/02/27 file: vhistoAOS.tex date: Marh 30, 2012



A. Celisse/Optimal ross-validation 11orale model, is denoted by Sm∗ , where
m∗ := Argminm∈Mn

Pγ(ŝm)− Pγ(s) = Argminm∈Mn
‖s− ŝm‖2

= Argminm∈Mn
Pγ(ŝm) .Sine Pγ(ŝm) has to be estimated, one uses CV (Lpo) to hoose a andidate model. So for every 1 ≤ p ≤

n− 1,
m̂(p) := Argminm∈Mn

R̂p(m) , (13)and the �nal andidate model is denoted by Sm̂(p). The purpose is now to study the properties of ŝ m̂(p)with respet to p ∈ {1, . . . , n− 1} in terms of an orale inequality, that is an inequality suh that anevent of large probability exists on whih
‖s− ŝ m̂‖2 ≤ Cn inf

m∈Mn

{
‖s− ŝm‖2

}
+ rn , (14)where ŝ m̂ is the �nal estimator provided by the onsidered model seletion proedure, the onstant

Cn ≥ 1 does not depend on s, and rn is a remainder term. When Cn −−−−−→
n→+∞

1 on an event of probabilitylarger than 1−K/n2 (for some K > 0), the model seletion proedure is said e�ient (Arlot and Celisse,2010).3.1.2. Main orale inequalityLet us �rst introdue some notation and detail the main assumptions used along the following setions.Square-integrable density:
s ∈ L2([0, 1]) . (SqI)Unlike Castellan (2003) for instane, it is not assumed that s ≥ ρ for a onstant ρ > 0.Polynomial olletion: There exists aM ≥ 0 suh that

Card(Mn) ≤ naM . (Pol)In partiular, this holds true if there exists α ≥ 0 suh that Card ({m ∈ Mn, Dm = D}) ≤ Dα, for every
1 ≤ D ≤ n.Model regularity:

∃Φ > 0, sup
m∈Mn

‖φm‖∞
Dm

≤ Φ , with φm =
∑

λ∈Λ(m)

ϕ2
λ . (RegD)It relates the regularity of the orthonormal basis (measured in terms of sup-norm) to the dimension of themodel. For instane using (4), (RegD) requires |Iλ| ≥ (ΦDm)−1 for every λ ∈ Λ(m). Thus, the length ofintervals Iλ annot be too di�erent from one another.Maximal dimension:

∃Γ > 0, sup
m∈Mn

Dm ≤ Γ
n

(logn)2
. (Dmax)In the sequel, we always use Γ = 1 to simplify the notation. Note that proofs and onlusions are nothanged by this partiular hoie. imsart-generi ver. 2009/02/27 file: vhistoAOS.tex date: Marh 30, 2012



A. Celisse/Optimal ross-validation 12Estimation error and dimension:
∃ξ > 0, inf

m∈Mn

√
nE (‖sm − ŝm‖)√

Dm

≥
√
ξ . (LoEx)This assumption makes the estimation error E(‖sm − ŝm‖2

) and Dm omparable. For instane, (LoEx)is ful�lled if s ≥ ρ > 0.Rihness of the olletion: There exist m0 ∈ Mn and crich ≥ 1 suh that,
√
n ≤ Dm0

≤ crich
√
n . (Rih)Suh an assumption only depends on our hoie of model olletion and an always be ful�lled.Approximation property: There exist cℓ, cu > 0 and ℓ > u > 0 suh that, for every m ∈ Mn,

cℓD
−ℓ
m ≤ ‖s− sm‖2 ≤ cuD

−u
m . (Bias)This assumption quanti�es the bias (approximation error) inurred by model Sm in estimating s. Ittherefore relies on a smoothness assumption on s. Suh an upper bound is lassial for α-Hölderianfuntions with α ∈ (0, 1] and regular histograms (4) for instane. Note that Stone (1985) uses the sameassumption (lower bound), whih is the �nite sample ounterpart of the lassial assumption ‖s− sm‖ > 0for every m ∈ Mn usually made to prove asymptoti optimality for a model seletion proedure (seeBirgé and Massart, 2006).Rate of onvergene for the orale model:

nR∗
n(logn)

−2 −−−−→
n→∞

+∞, with R∗
n = inf

m∈Mn

Rn(ŝm) , (OrSp)This assumption implies the risk of the orale model R∗
n does not derease to 0 faster than (logn)2/n. Inpartiular, this holds true for densities in H(L, α) with L > 0 and α ∈ (0, 1] for instane (see Setion A.6).The performane of the Lpo estimator with respet to p is desribed by the following orale inequalitywhere the leading onstant Cn(p) relates the omplexity of the olletion of models {Sm}m∈Mn

to p.Theorem 3.1 (Optimal CV). Let s denote a density on [0, 1] suh that (SqI) holds true, set {Sm}m∈Mna olletion of models de�ned in Setion 2.1.2, and assume (Pol), (RegD), (Dmax), (Rih), (LoEx),(Bias), and (OrSp). Let m̂ = m̂(p) denote the model minimizing R̂p(m) over Mn for every p ∈
{1, . . . , n− 1}. Then, there exist a sequene (δn)N suh that δn → +∞, and nδn → +∞ as n → +∞, andan event Ω̃ with P(Ω̃) ≥ 1− 6/n2 on whih, for large enough values of n,

∥∥s− ŝ m̂(p)

∥∥2 ≤ Cn(p) inf
m∈Mn

{
‖s− ŝm‖2

}
with Cn(p) =

T+
B ∨ T+

V

T−
B ∧ T−

V

≥ 1 ,where
T−
B = 1− δnK(n, p) , T−

V =
1

1− p/n
(1 − δn) [ 1− 4δn ]− 2δnK(n, p) [ 3− 4δn ] ,

T+
B = 1 + δnK(n, p) , T+

V =
1

1− p/n
(1 + δn) [ 1 + 4δn ] + 2δnK(n, p) [ 3 + 4δn ] ,and K(n, p) = 1 + 2

n−1 + p
n−p

1
n−1 ·imsart-generi ver. 2009/02/27 file: vhistoAOS.tex date: Marh 30, 2012



A. Celisse/Optimal ross-validation 13First if p = pn = o(n), then p/n → 0 and Cn(p) → 1 as n → +∞. Then, suh values of p lead toe�ient (asymptotially optimal) model seletion proedures. In partiular, this holds true for p = 1,that is, Loo is asymptotially optimal sine
∥∥s− ŝ m̂(1)

∥∥2

infm∈Mn

{
‖s− ŝm‖2

} a.s.−−−−−→
n→+∞

1 .Seond, Cn(p) an be optimized as a funtion of p at eah �nite sample size n. Sine Cn(p) also dependson δn, whih is related to the struture of {Sm}m∈Mn
and the probability of the event Ω̃, minimizing

Cn(p) with respet to p enables to take into aount the di�ulty of the estimation problem at hand.Proof of Theorem 3.1.First let us use Proposition A.2 applied with m,m′ ∈ Mn suh that R̂p(m
′) ≤ R̂p(m). Then, it omes

n

n− p
E
[
Z2
m′

]
+ ‖s− sm′‖2 −K(n, p)

[
Z2
m′ − E

[
Z2
m′

] ]

≤ n

n− p
E
[
Z2
m

]
+ ‖s− sm‖2 −K(n, p)

[
Z2
m − E

[
Z2
m

] ]

− 2K(n, p) νn (sm′ − sm) +
1

n

(
K(n, p) +

n

n− p

)
νn (φm′ − φm) ,where K(n, p) = 1 + 2

n−1 + p
n−p

1
n−1 ·Then, ombining Propositions A.3 and A.4 to ontrol the remainder terms, there exist a sequene

(δn)N with δn → 0 and nδn → +∞ as n → +∞ and an event Ω = Ωrem,1 ∩Ωrem,2 of probability 1− 4/n2on whih
n

n− p
E
[
Z2
m′

]
+ ‖s− sm′‖2 −K(n, p)

[
Z2
m′ − E

[
Z2
m′

] ]

≤ n

n− p
E
[
Z2
m

]
+ ‖s− sm‖2 −K(n, p)

[
Z2
m − E

[
Z2
m

] ]

+ δnK(n, p)
(
‖s− sm′‖2 + E

[
Z2
m′

]
+ ‖s− sm‖2 + E

[
Z2
m

])

+ δn

(
K(n, p) +

n

n− p

)[
E
[
Z2
m′

]
+ E

[
Z2
m

] ]
.In the following, δn always denotes suh a sequene even if the preise expression of δn an di�er fromline to line.Let us now use onentration results stated in Corollaries A.1 and A.2 on the events Ωleft and Ωright.The important point in this proof is given by Lemmas A.4 and A.5, where it is proved that on the event

Ω = Ωleft∩Ωright ∩Ωrem,1 ∩Ωrem,1, min
{
Dm∗ , Dm̂(p)

}
≥ (logn)4 for large enough values of n. Therefore,one an apply Lemma A.8 and Corollaries A.1 and A.2 with Lm = 0 = rn(m) to get

Z2
m′

[(
n

n− p
(1− δn)− 2δnK(n, p)

)
(1− 4δn)− 4K(n, p)δn

]
+ [ 1− δnK(n, p) ] ‖s− sm′‖2

≤ Z2
m

[(
n

n− p
(1 + δn) + 2δnK(n, p)

)
(1 + 4δn) + 4K(n, p)δn

]
+ [ 1 + δnK(n, p) ] ‖s− sm‖2 .Choosing m′ = m̂, it omes

T−
V Z2

m̂ + T−
B ‖s− sm̂‖2 ≤ T+

V Z2
m + T+

B ‖s− sm‖2 ,imsart-generi ver. 2009/02/27 file: vhistoAOS.tex date: Marh 30, 2012



A. Celisse/Optimal ross-validation 14where
T−
B = 1− δnK(n, p) , T−

V =
n

n− p
(1 − δn) [ 1− 4δn ]− 2K(n, p)

[
3δn − 4δ2n

]
,

T+
B = 1 + δnK(n, p) , T+

V =
n

n− p
(1 + δn) [ 1 + 4δn ] + 2K(n, p)

[
3δn + 4δ2n

]
.Finally on the event Ω, the following orale inequality holds true for every p ∈ {1, n− 1}

∥∥s− ŝ m̂(p)

∥∥2 ≤ Cn(p) inf
m∈Mn

{
‖s− ŝm‖2

}
, with Cn(p) =

T+
B ∨ T+

V

T−
B ∧ T−

V

.Moreover, on the event Ω, Lemmas A.4 and A.5 show min
{
Dm∗ , Dm̂(p)

}
≥ (logn)4. Then, it is enoughto apply Propositions A.6 and A.5 to models satisfying this onstraint, whih leads to the new event Ω̃(where models with dimension smaller than (logn)4 have been omitted) of probability at least 1− 6/n2.While asymptoti optimality is proved in Theorem 3.1 for any CV proedure as long as p = o(n),it is also desirable to analyze the performane of CV for �nite samples. Minimizing Cn(p) as a fun-tion of p for eah n provides the value p∗ = p∗n for whih m̂(p∗) reahes the best performane among

{m̂(p), 1 ≤ p ≤ n− 1}. The following Corollary 3.1 proves Loo is suboptimal in terms of rate of onver-gene, whih an lead to over�tted models.Corollary 3.1 (Suboptimality of Leave-one-out). With the notation and assumptions of Theorem 3.1,the onstant Cn(p) is minimized over p ∈ {1, . . . , n− 1} for
0 < q∗n :=

p∗n
n

= 1−
1− 5δn + 4δ2n − 2

n−1 (3δn − 4δ2n) +
δn
n−1

1 + 2(1 + 1
n−1 )(3δn − 4δ2n)− δn(1 +

1
n−1 )

< 1 ·Furthermore, the optimal ratio q∗n = p∗/n is slowly dereasing to 0 as n tends to +∞
q∗n ∼+∞ 10δn , and p∗n ∼+∞ 10nδn −−−−−→

n→+∞
+∞ .In partiular, Loo (p = 1) is suboptimal in terms of rate of onvergene with respet to n.Whereas Theorem 3.1 settles Loo (and any CV algorithm with p = o(n)) is asymptotially optimal,Corollary 3.1 proves it is nevertheless suboptimal in terms of rate of onvergene. Indeed, the optimal rateis ahieved when pn/n is slowly dereasing to 0 like δn as n grows. Let us also reall that δn is stronglyrelated to the struture of the model olletion, so that the more omplex the olletion, the slower δn,and the larger pn should be to balane over�tting arising with too large models. As a onsequene, Loo(p = 1) does not adapt to the model olletion {Sm}m∈Mn

, whih results in over�tting, that is, hoosingtoo large models (see simulation experiments in Setion 3.1.4).Proof of Corollary 3.1. Let us reall the expression of the leading onstant
Cn(p) =

T+
B ∨ T+

V

T−
B ∧ T−

V

,with
T−
B = 1− δnK(n, p) , T−

V =
1

1− p/n
(1− δn) [ 1− 4δn ]− 2δnK(n, p) [ 3− 4δn ] ,

T+
B = 1 + δnK(n, p) , T+

V =
1

1− p/n
(1 + δn) [ 1 + 4δn ] + 2δnK(n, p) [ 3 + 4δn ] ,imsart-generi ver. 2009/02/27 file: vhistoAOS.tex date: Marh 30, 2012



A. Celisse/Optimal ross-validation 15and K(n, p) = 1 + 2
n−1 + p

n−p
1

n−1 .First as long as n is large enough, simple alulations when p = 1 show T−
V (1) ≤ T−

B (1). Notiingmoreover that T+
V (p) ≥ T+

B (p) for every p, it omes for p lose to 1
Cn(p) =

T+
V

T−
V

=
(1 + δn) [ 1 + 4δn ] + 2(1− p/n)δnK(n, p) [ 3 + 4δn ]

(1− δn) [ 1− 4δn ]− 2(1− p/n)δnK(n, p) [ 3− 4δn ]
·It is then easy to show that p 7→ Cn(p) is inreasing on {1, . . . , p∗}, where p∗ denotes the value of p suhthat T−

V (p) = T−
B (p). Hene,

p∗n
n

= 1−
1− 5δn + 4δ2n − 2

n−1 (3δn − 4δ2n) +
δn
n−1

1 + 2(1 + 1
n−1 )(3δn − 4δ2n)− δn(1 +

1
n−1 )

·It results that for every p ≥ p∗

Cn(p) =
T+
V

T−
B

,whih is inreasing with respet to p.In the same way, it is easy to hek that p∗n/(10nδn) −−−−−→n→+∞
1, whih enables to onlude.3.1.3. Adaptivity in the minimax senseAdaptivity in the minimax sense is a desirable property for model seletion proedures. It means theonsidered proedure automatially adapts to the unknown smoothness of the target funtion s to estimate(see Barron et al., 1999, for an extensive presentation).Several adaptivity in the minimax sense results are provided in the present setion. Deriving suhresults from orale inequalities suh as (14) is somewhat lassial. However, the novelty is �rst that CVas model seletion proedure enjoys suh a desirable property, seond that the leading onstant Cn(p) inTheorem 3.1 when onverging to 1 as n tends to +∞ provides aurate results.Let us �rst provide a general result from whih all adaptivity results will be immediate orollaries.Theorem 3.2. Let s denote a density on [0, 1] suh that (SqI) holds true, set {Sm}m∈Mn

a olletionof models de�ned in Setion 2.1.2, and assume (Pol), (RegD), (Dmax), (Rih), (LoEx), (Bias), and(OrSp). Let m̂ = m̂(p) denote the model minimizing R̂p(m) over Mn for every p ∈ {1, . . . , n− 1}. Thenfor every 1 ≤ p ≤ n− 1,
E

[ ∥∥s− ŝ m̂(p)

∥∥2
]
≤ Cn(p)E

[
inf

m∈Mn

‖s− ŝm‖2
]
+ (Φ + ‖s‖2) 12

n(log n)2
+

6cu
n2

, (15)where Cn(p) =
T+

B
∨T+

V

T−

B
∧T−

V

, with
T−
B = 1− δnK(n, p) , T−

V =
1

1− p/n
(1 − δn) [ 1− 4δn ]− 2δnK(n, p) [ 3− 4δn ] ,

T+
B = 1 + δnK(n, p) , T+

V =
1

1− p/n
(1 + δn) [ 1 + 4δn ] + 2δnK(n, p) [ 3 + 4δn ] ,and K(n, p) = 1 + 2

n−1 + p
n−p

1
n−1 ·imsart-generi ver. 2009/02/27 file: vhistoAOS.tex date: Marh 30, 2012



A. Celisse/Optimal ross-validation 16The last two terms in the right-hand side of (15) are remainder terms. They results from Assumptions(RegD), (Dmax), and (Bias). From remarks following Theorem 3.1, one dedues p = pn = o(n) implies
Cn(p) → 1 as n → +∞ and

E

[ ∥∥s− ŝ m̂(p)

∥∥2
]

E

[
infm∈Mn

‖s− ŝm‖2
] −−−−−→

n→+∞
1 .Proof of Theorem 3.2. Introduing the event Ω̃ of Theorem 3.1, it omes

E

[ ∥∥s− ŝ m̂(p)

∥∥2
]
= E

[ ∥∥s− ŝ m̂(p)

∥∥2 1Ω̃

]
+ E

[ ∥∥s− ŝ m̂(p)

∥∥2 1Ω̃c

]

≤ E

[
inf

m∈Mn

‖s− ŝm‖2
]
+ E

[ ∥∥s− ŝ m̂(p)

∥∥2 1Ω̃c

]
.Applying (Bias), one gets

E

[ ∥∥s− sm̂(p)

∥∥2 1Ω̃c

]
≤ E

[
cu

Du
m̂(p)

1Ω̃c

]
≤ cuP

(
Ω̃
)
≤ 6cu

n2
,and (RegD) and (Dmax) provide

E

[ ∥∥sm̂(p) − ŝ m̂(p)

∥∥2 1Ω̃c

]
= E


 ∑

λ∈Λ(m̂(p))

(Pnϕλ − Pϕλ)
2
1Ω̃c




≤ 2E


 ∑

λ∈Λ(m̂(p))

(Pnϕλ)
2
1Ω̃c


+ 2E


 ∑

λ∈Λ(m̂(p))

(Pϕλ)
2
1Ω̃c




≤ 2E


 ∑

λ∈Λ(m̂(p))

1

n2

n∑

i,j=1

ϕλ(Xi)ϕλ(Xj)1Ω̃c


+ 2 ‖s‖2 E

[
Dm̂(p)1Ω̃c

]

≤ 2(Φ + ‖s‖2) n

(log n)2
P

(
Ω̃c
)
≤ (Φ + ‖s‖2) 12

n(log n)2
·Applying Theorem 3.2 to the olletion of regular histograms de�ned by (4), the following orollarysettles an adaptivity property with respet to Hölder balls (see DeVore and Lorentz, 1993).Corollary 3.2. Let us onsider the model olletion of Setion 2.1.2 made of pieewise onstant funtionsand the assoiated histograms de�ned by (4) suh that, for every m ∈ Mn and λ ∈ Λ(m), |Iλ| = D−1

m(regular histograms). Let us also assume (Dmax) and (LoEx) hold true.If the target density s belongs to the Hölder ball H(L, α) for some L > 0 and α ∈ (0, 1], then for every
1 ≤ p ≤ n− 1 there exist onstants 0 < K−

α ≤ K+
α suh that

K−
α L

2
2α+1n− 2α

2α+1 ≤ sup
s∈H(L,α)

E

[ ∥∥s− ŝ m̂(p)

∥∥2
]
≤ Cn(p)K

+
αL

2
2α+1n− 2α

2α+1 +O

(
1

n(logn)2

)
,

K−
α and K+

α only depend on α (not on n or s).Furthermore sine this property holds for every L > 0 and α ∈ (0, 1], then { ŝ m̂(p)

}
n∈N∗

is adaptive inthe minimax sense with respet to {H(L, α)}L>0,α∈(0,1] for every 1 ≤ p ≤ n− 1.imsart-generi ver. 2009/02/27 file: vhistoAOS.tex date: Marh 30, 2012



A. Celisse/Optimal ross-validation 17The proof has been deferred to Setion A.6. The lower bound is not new and has been proved earlierby Ibragimov and Khas'minskij (1981). Besides, the upper bound is tight sine the rate n− 2α
2α+1 and thedependene on the radius L

2
2α+1 are the same as in the lower bound. Note that similar results an beeasily proved for instane for Besov balls Bα

∞,2(L), with α,L > 0 (see DeVore and Lorentz, 1993) by usingan appropriate olletion of models suh as trigonometri polynomials de�ned by (5).3.1.4. Simulation experimentsResults of simulation experiments are provided to support the theoretial analysis developed in Se-tion 3.1.2. Samples of size n = 100, 500, 1000, 2000, 3000, 4000, 5000, 6000, 10 000 have been generatedfrom a mixture of Beta distributions
∀x ∈ [0, 1], s(x) =

β(3, 7;x) + β(10, 5;x)

2
, (16)whih is a Hölderian density on [0, 1]. For eah n, every p ∈ {1, . . . , n− 1} have been onsidered. Notethat in these experiments, (Dmax) is ful�lled with Γ = 1 (Figure 1) and Γ = 2 (Figure 2).The model olletion we used is made of pieewise onstant funtions desribed in Setion 2.1.2 leadingto regular histogram estimators de�ned by (4). For every 1 ≤ p ≤ n− 1, m̂(p) is de�ned by (13).Let us also introdue

Cor,n(p) := E




∥∥s− ŝ m̂(p)

∥∥2

infm∈Mn

{
‖s− ŝm‖2

}


 and p0 := Argmin1≤p≤n−1Cor,n(p) , (17)whih measures the average performane of ŝ m̂(p) with respet to that of the orale estimator ŝm∗ .Thus the loser Cor,n(p) to 1, the better ŝ m̂(p). Then, minimizing Cor,n(p) as a funtion of p for variousvalues of n allows us to hek whether the onlusions drawn from minimizing Cn(p) with respet to p(Theorem 3.1 and Corollary 3.1) hold true or not, that is whether Cn(p) is an aurate approximationof Cor,n(p). For eah urve p 7→ Cor,n(p), a on�dene band has been also displayed. It is delimited by

p 7→ C−
or,n(p) and p 7→ C+

or,n(p) respetively de�ned by
C−

or,n(p) = Cor,n(p)−
σ̂√
N

, and C+
or,n(p) = Cor,n(p) +

σ̂√
N

, (18)where σ̂ denotes the empirial standard deviation.First from Figure 1, urves p/n 7→ Cor,n(p) (plain red lines) derease to 1 uniformly with p as n grows.This on�rms Theorem 3.1 where Cn(p) → 1 as n → +∞ when p is kept �xed. Furthermore, p 7→ Cn(p)and p 7→ Cor,n(p) have a similar behavior sine, as suggested by Corollary 3.1 when n is �xed, Cor,n(p)is minimized for p > 1 but inreases as p/n gets loser to 1. Realling Cor,n(p) measures the aurayof ŝ m̂(p), previous remarks show Theorem 3.1 is aurate enough to make Cn(p) a reliable measure ofthe performane of ŝ m̂(p) with respet to p. In partiular, optimizing Cn(p) as a funtion of p atuallyamounts to �nding the best estimator among { ŝ m̂(p)

}
1≤p≤n−1

.Seond from (a) to () (Figure 1), the shape of p/n 7→ Cor,n(p) hanges, its minimum loation beomingless lear as n grows from n = 100, to n = 10 000. Aording to Corollary 3.1, p is hosen large enoughto balane the deviations due to δn (model olletion omplexity). Sine δn → 0 as n → +∞, thisrequirement on p vanishes as n grows. This explanation is also supported by Figure 2 () where p0/n (seeEq. (17)) has been displayed for di�erent values of n. It shows p0/n slowly dereases as n grows, whihhas been proved in Corollary 3.1 (p∗/n ∼ 10δn with δn → 0 and nδn → +∞ as n tends to +∞).Finally, (a) and (b) in Figure 2 display p/n 7→ Cor,n(p) for n = 2 000 and (a) Γ = 1, (b) Γ = 2. Asindiated by (Dmax), an inrease of Γ results in a more omplex olletion of models, induing largerimsart-generi ver. 2009/02/27 file: vhistoAOS.tex date: Marh 30, 2012
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()Fig 1. From (a) to (), p/n 7→ Cor,n(p) (plain red line) is plotted for Γ = 1 (see (Dmax)) and di�erent values of n:(a) n = 100, (b) n = 1000, () and n = 10 000. p/n 7→ C+

oracle,n
(p) (blue dashed line) and p/n 7→ C−

oracle,n
(p) (blakdot-dashed line) have been plotted on the same graph as well (see (18)). In eah setting, N = 1000 samples have been drawnfrom the mixture of Beta distributions de�ned by (16).
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()Fig 2. For (a) and (b), p/n 7→ Cor,n(p) (plain red line) is plotted for n = 2000 and di�erent values of Γ(see (Dmax)):(a) Γ = 1 , (b) Γ = 2. p/n 7→ C+

oracle,n
(p) (blue dashed line) and p/n 7→ C−

oracle,n
(p) (blak dot-dashed line) have beenplotted on the same graph as well (see (18)). In eah setting, N = 1000 samples have been drawn from the mixture of Betadistributions de�ned by (16). For (), n 7→ p0/n is displayed, where p0 denotes the minimizer of Cor,n(p) as a funtion of

p.deviations (δn slower). On the one hand, the urve in (b) (Γ = 2) is above that in (a) (Γ = 1). Theperformane of ŝ m̂(p) worsens as the olletion of modes beomes more omplex. On the other hand,the minimum loation is also larger for Γ = 2 than for Γ = 1. Sine Γ is larger, so is δn. Then, p hasto be hosen larger to balane the e�et of δn. Sine the same phenomena have been observed in othersimulation experiments (not reported here), one onludes the optimal p is strongly linked with the modelolletion struture: the more omplex the model olletion, the larger the optimal p.3.2. Optimal ross-validation for Identi�ation3.2.1. Identi�ation point of viewWith the notation of Setion 2.1, {ŝm}m∈Mn
denotes a olletion of projetion estimators (Setion 2.1.2)whih is allowed to depend on n. From the Identi�ation point of view, one assumes

{m ∈ Mn, s ∈ Sm} 6= ∅ .imsart-generi ver. 2009/02/27 file: vhistoAOS.tex date: Marh 30, 2012



A. Celisse/Optimal ross-validation 19The purpose is to �nd the smallest model ontaining s, denoted by Sm̄ and de�ned by
m̄ := Argminm∈Mn

E

[
‖sm − ŝm‖2

]
, (19)where sm denotes the orthogonal projetion of s onto Sm. Note that Assumptions (LoEx) and (RegD)imply ξDm ≤ E

[
‖sm − ŝm‖2

]
≤ ‖s‖2 ΦDm. For every m ∈ Mn, E [ ‖sm − ŝm‖2

] is related to Dm asa measure of the size of Sm. However unlike the dimension Dm, E [ ‖sm − ŝm‖2
] measures the size of

Sm through s. Thus, a model Sm is not simply �too large� beause it depends on more parameters, butrather beause the estimation error E [ ‖sm − ŝm‖2
] inurred by Sm is too large.3.2.2. Main model onsisteny resultIn the following analysis, one further assumes m̄ does not depend on n for large enough values of n. First,it entails m̄ ∈ Mn for large enough values of n. Seond, letting Mn grow with n amounts for instaneto inlude too large models in {Sm}m∈Mn

without modifying m̄. In partiular, it is not required that
{Sm}m∈Mn

is nested.Let us �rst desribe the asymptoti behavior of R̂p as a funtion of 1 ≤ p ≤ n− 1.Theorem 3.3 (Asymptoti behavior of R̂p). Let ∪m∈Mn
Sm be a olletion of models satisfying (Pol),

m̄ ∈ M be de�ned by (19) suh that m̄ does not depend on n, and assume (SqI), (RegD), (Dmax),(LoEx) hold true. Then, an event Ωn exists with P [ Ωn ] ≥ 1− 8/n2 on whih for every p = pn suh that
n
(
1− p

n

)
−−−−−→
n→+∞

+∞ , (20)1. if s 6∈ Sm,
R̂p(m)− R̂p(m̄) = ‖s− sm‖2 + oP(1) > 0 ,2. if s ∈ Sm,

R̂p(m̄)− R̂p(m) ≤ n

n− p

[
(1 + δn)E

[
Z2
m̄

]
− (1− δn)E

[
Z2
m

] ]
+ 4Ln

(
E
[
Z2
m̄

]
+ E

[
Z2
m

]) (21)
R̂p(m̄)− R̂p(m) ≥ n

n− p

[
(1− δn)E

[
Z2
m̄

]
− (1 + δn)E

[
Z2
m

] ]
− 4Ln

(
E
[
Z2
m̄

]
+ E

[
Z2
m

])
,(22)where δn → 0 with nδn → +∞ as n → +∞, and Ln =

√
4
√
2Φn−1/2.On the one hand, the onstraint (20) ensures R̂p(m) is a onsistent estimator of Rn(ŝm). It only requires

1−p/n onverges to 0 slower than 1/n. Any p = pn satisfying (20) enables to disard too small models Smsuh that s 6∈ Sm sine R̂p(m) > R̂p(m̄). On the other hand when s ∈ Sm, upper and lower bounds (21)and (22) give possible deviations of R̂p(m)−R̂p(m̄) with high probability for large models. These boundsrelate p to δn and Ln whih are determined by the struture of the model olletion {Sm}m∈Mn
at handand the probability of the event Ωn.
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A. Celisse/Optimal ross-validation 20Proof of Theorem 3.3. From Proposition A.2, for every m,m′ ∈ M,
R̂p(m

′)− R̂p(m) = E

[
‖s− ŝm′‖2

]
− E

[
‖s− ŝm‖2

]

+
p

n− p

(
E
[
Z2
m′

]
− E

[
Z2
m

])

+K(n, p)
[
Z2
m − E

[
Z2
m

] ]
−K(n, p)

[
Z2
m′ − E

[
Z2
m′

] ]

− 2K(n, p) νn (sm′ − sm) +
1

n

(
K(n, p) +

n

n− p

)
νn (φm′ − φm) ,where K(n, p) = 1 + 2/(n− 1) + p/ [ (n− 1)(n− p) ] ·Setting ∆(m) = R̂p(m)− E

[
‖s− ŝm‖2

]
− p

n−pE
[
Z2
m

], it results
|∆(m′)−∆(m)| ≤ K(n, p)

∣∣[Z2
m − E

[
Z2
m

] ]
−
[
Z2
m′ − E

[
Z2
m′

] ]∣∣

+ 2K(n, p) |νn (sm′ − sm)|+ 1

n

(
K(n, p) +

n

n− p

)
|νn (φm′ − φm)| .First, Propositions A.5 and A.6 imply there exist an event Ωright ∩ Ωleft of probability at least 1 −

2/n2 − β1 − β2 on whih
K(n, p)

∣∣[Z2
m − E

[
Z2
m

] ]
−
[
Z2
m′ − E

[
Z2
m′

] ]∣∣ ≤ K(n, p)
[
(δn + Lm′)E

[
Z2
m

]
+ (δn + Lm)E

[
Z2
m

] ]
.(23)Let us notie that sine Dm does not depend from n, Lm > 0 for large enough values of n. Furthermorehoosing β1 = β2 = βn with βn → 0 as n → +∞, it omes Lm = Lm′ = Ln =

√
4
√
2Φβ

−1/4
n → +∞ as

n tends to +∞. Subsequently, hoosing βn suh that n4βn → +∞ as n → +∞ results in Ln/n → 0 as
n → +∞.Seond, Proposition A.3 entails there exists an event Ωrem,1 with probability at least 1−2/n2 on whih

1

n

(
K(n, p) +

n

n− p

)
|νn (φm′ − φm)| ≤ δn

(
K(n, p) +

n

n− p

)(
E(Z2

m) + E(Z2
m′)
)

≤ δn

(
3 +

n

n− p

)(
E(Z2

m) + E(Z2
m′)
)

, (24)sine K(n, p) ≤ 3 for n ≥ 4.Third form′ = m̄, Proposition A.8 entails there exists an event Ωrem,3 with probability at least 1−2/n2on whih
2K(n, p) |νn (sm̄ − sm)| ≤ 3δn ‖sm − sm̄‖2 + 3δn ‖s‖

√
Φ

√
Dm +Dm̄

n
+ 3δnΦ

Dm +Dm̄

n
. (25)Combining (23), (24), and (25), there exist an event Ωn := Ωright∩Ωleft∩Ωrem,1∩Ωrem,3 with probabilityat least 1− 6/n2 − 2βn on whih two settings our:1. If s 6∈ Sm,

|∆(m̄)−∆(m)| ≤
(
3Ln + 6δn +

n

n− p
δn

)(
E
[
Z2
m̄

]
+ E

[
Z2
m

])

+ 3δn ‖sm − sm̄‖2 + 3δn ‖s‖
√
Φ

√
Dm +Dm̄

n
+ 3δnΦ

Dm +Dm̄

n
· (26)imsart-generi ver. 2009/02/27 file: vhistoAOS.tex date: Marh 30, 2012



A. Celisse/Optimal ross-validation 212. If s ∈ Sm,
|∆(m̄)−∆(m)| ≤

(
3Ln + 6δn +

n

n− p
δn

)(
E
[
Z2
m̄

]
+ E

[
Z2
m

])
· (27)In these two settings for every m ∈ M, (RegD) and δn −−−−−→

n→+∞
0 imply

|∆(m̄)−∆(m)| = oP(1) ,hene,
R̂p(m)− R̂p(m̄) = E

[
‖s− ŝm‖2

]
− E

[
‖s− ŝ m̄‖2

]
+

p

n− p

(
E
[
Z2
m

]
− E

[
Z2
m̄

])
+ oP(1) .Hene, requiring R̂p(m) − R̂p(m̄) −

(
E

[
‖s− ŝm‖2

]
− E

[
‖s− ŝ m̄‖2

])
→ 0 as n → +∞ implies theneessary onstraint p/ [ (n− p)n ] → 0, whih amounts to

n
(
1− p

n

)
−−−−−→
n→+∞

+∞ . (28)On the one hand, it is then straightforward to hek that Eq. (26) leads, for every m ∈ M suh that
s 6∈ Sm, to

R̂p(m)− R̂p(m̄) = ‖s− sm‖2 + oP(1) .On the other hand, for every m ∈ M suh that s ∈ Sm, Eq. (27) provides
∣∣∣∣R̂p(m̄)− R̂p(m)− n

n− p

(
E
[
Z2
m̄

]
− E

[
Z2
m

])∣∣∣∣ ≤
(
4Ln +

n

n− p
δn

)(
E
[
Z2
m̄

]
+ E

[
Z2
m

])
,henê

Rp(m̄)− R̂p(m) ≤ n

n− p

[
(1 + δn)E

[
Z2
m̄

]
− (1− δn)E

[
Z2
m

] ]
+ 4Ln

(
E
[
Z2
m̄

]
+ E

[
Z2
m

])
, (29)and

R̂p(m̄)− R̂p(m) ≥ n

n− p

[
(1− δn)E

[
Z2
m̄

]
− (1 + δn)E

[
Z2
m

] ]
− 4Ln

(
E
[
Z2
m̄

]
+ E

[
Z2
m

])
.Using βn = 1/n2 enables to onlude.From the upper bound (21), one derives a su�ient ondition on p to disard too large models. Thisondition enables to determine the minimal rate at whih p/n has to derease to 0 as n tends to +∞,whih ensures model onsisteny for m̂.Corollary 3.3 (Model onsisteny). With the same notation and assumptions as Theorem 3.3, let usde�ne m̂ = m̂(p) = Argminm∈MR̂p(m) for every 1 ≤ p ≤ n− 1. Then any p = pn suh that

n
(
1− p

n

)
−−−−−→
n→+∞

+∞, and 0 < 1− p

n
<

K√
n

with K =

(
8

√√
2Φ

)−1

,leads to
P [ m̂ = m∗ ] −−−−−→

n→+∞
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A. Celisse/Optimal ross-validation 22First the main onlusion is that model onsisteny results from requiring pn/n → 1 as n → +∞.One therefore reovers previous results by Shao (1993) and Yang (2007) established in the regressionframework. However, our Corollary 3.3 is more preise than Shao (1993) sine it loalizes the optimalonvergene rate of 1 − p/n between 1/
√
n and 1/n. In partiular, Loo (and Lpo with any p = o(n)) isompletely misleading for identifying the model Sm̄. Seond, p has to be hosen large enough to balanethe deviations (Ln) in (30). Indeed, the rate 1/√n is determined by the struture of the model olletion

{Sm}m∈Mn
and the probability of the event Ωn. Another olletion of models ould have produedanother minimal rate.Proof of Corollary 3.3. Applying Eq. (29) for every m 6= m̄ ∈ M suh that s ∈ Sm, it results a su�ientondition on p suh that R̂p(m̄)− R̂p(m) < 0, that is

0 <

(
n

n− p
(1 + δn) + 4Ln

)
E
[
Z2
m̄

]
<

(
n

n− p
(1− δn)− 4Ln

)
E
[
Z2
m

]
. (30)This leads to require n

n−p > 4Ln(1 − δn)
−1 > 4Ln, whih an be reformulated as

1

1− p
n

> 4Ln = 8

√√
2Φβ−1/4

n ⇔ 0 < 1− p

n
<

β
1/4
n

8
√√

2Φ
·The onlusion results from hoosing βn = 1/n2 and P [ Ωn ] −−−−−→

n→+∞
1.4. DisussionFrom the present analysis of CV algorithms in te density estimation framework, we were able to provethe optimality of leave-one-out ross-validation for risk estimation. Besides when CV is used as modelseletion proedure, the optimal p strongly depends on the struture of the model olletion and on ourgoal (estimation or identi�ation). However this haraterization of the behavior of the optimal p providessome guidelines, but does not result in a data-driven hoie of p.A possible way to design suh a data-driven hoie is to follow the same idea as Shao (1997) exploitingthe deep onnetion between CV and penalized riteria. Let us desribe the heuristi argument leadingto this hoie. Arlot (2008) introdued the ideal penalty de�ned for every m ∈ Mn by

penid(m) = Pγ(ŝm)− Pnγ(ŝm) ,with the notation of Setion 2.1. It enables to rephrase ℓ(s, ŝm) in terms of a penalized riterion
ℓ(s, ŝm) = Pγ(ŝm)− Pγ(s) = Pnγ(ŝm) + penid(m)− Pγ(s) .Similarly for the Lpo risk estimator,̂

Rp(ŝm) = Pnγ(ŝm) + penLpo(m) ,where penLpo(m) = R̂p(ŝm)−Pnγ(ŝm) is alled the Lpo-penalty (see Celisse, 2008). Then in our setting,some simple algebra provides
E
[
penLpo(m)

]
=

2n− p

2(n− p)
E [ penid(m) ] ,showing that on average penLpo is equal to penid up to a multipliative onstant. Thus, using the so-alled slope heuristis (Arlot and Massart, 2009, in the regression framework) ould serve to alibrate theoptimal p of CV algorithms. imsart-generi ver. 2009/02/27 file: vhistoAOS.tex date: Marh 30, 2012



A. Celisse/Optimal ross-validation 23Appendix A: Proofs of Setions 2 and 3A.1. Closed-form expressionsLemma A.1. With the notation of Setion 2.2.1, for any i 6= j 6= k ∈ {1, . . . , n},
∑

e∈Ep

1(j∈(e)) =

(
n− 1

p

)
and

∑

e∈Ep

1(j∈(e))1(k∈(e)) =

(
n− 2

p− 1

)
,

∑

e∈Ep

1(i∈e)1(j∈(e))1(k∈(e)) =

(
n− 3

p− 1

)
and

∑

e∈Ep

1(i∈e)1(j∈(e)) =

(
n− 2

p− 1

)
.Lemma A.2. With the same notation as Proposition 2.2, it omes

an = n2Var



∑

λ∈Λ(m)

(Pnϕλ)
2


+Var

[
∑

λ

Pnϕ
2
λ

]
− 2nCov



∑

λ

Pnϕ
2
λ,

∑

λ∈Λ(m)

(Pnϕλ)
2


 ,

bn = 2n2


Var



∑

λ∈Λ(m)

(Pnϕλ)
2


− Cov



∑

λ

Pnϕ
2
λ,

∑

λ∈Λ(m)

(Pnϕλ)
2



(
1 +

1

n

)
+

1

n
Var

[
∑

λ

Pnϕ
2
λ

]
 ,

cn = n2Var

[
∑

λ

Pnϕ
2
λ

]
+ n2Var



∑

λ∈Λ(m)

(Pnϕλ)
2


− 2n2Cov



∑

λ

Pnϕ
2
λ,

∑

λ∈Λ(m)

(Pnϕλ)
2


 .Lemma A.3. With the notation of Setion 2.3, simple algebra leads to

Var

[
∑

λ

Pnϕ
2
λ

]
=

1

n
Var

[
∑

λ

ϕ2
λ(X1)

]
,

Cov

[
∑

λ

Pnϕ
2
λ,
∑

λ

(Pnϕλ)
2

]
=

1

n2
Var

[
∑

λ

ϕ2
λ(X1)

]
+ 2

n− 1

n2
Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X2)

]

Var

[
∑

λ

(Pnϕλ)
2

]
=

Var
[∑

λ ϕ
2
λ(X1)

]

n3
+ 4

n− 1

n3
Var

[
∑

λ

ϕλ(X1)ϕλ(X2)

]

+ 4
(n− 1)(n− 2)

n3
Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]

+ 4
n− 1

n3
Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X3)

]
.Proposition A.1. With the notation of Lemma A.2,

an = 4
n− 1

n
α+ 4

(n− 1)(n− 2)

n
β

bn = 8
n− 1

n
α+ 8

(n− 1)(n− 2)

n
β − 4(n− 1)

(
1− 1

n

)
γ

cn = 4
n− 1

n
α+ 4

(n− 1)(n− 2)

n
β − 4 (n− 1)

(
1− 1

n

)
γ +

(
n− 2 +

1

n

)
δ .imsart-generi ver. 2009/02/27 file: vhistoAOS.tex date: Marh 30, 2012



A. Celisse/Optimal ross-validation 24where α = Var [
∑

λ ϕλ(X1)ϕλ(X2) ], β = Cov [
∑

λ ϕλ(X1)ϕλ(X2),
∑

λ ϕλ(X1)ϕλ(X3) ], γ =
Cov

[∑
λ ϕ

2
λ(X1),

∑
λ ϕλ(X1)ϕλ(X3)

], and δ = Var
[∑

λ ϕ
2
λ(X1)

].Proof of Proposition A.1. Using Lemmas A.2 and A.3, it omes
an = n2

[
Var

[∑
λ ϕ

2
λ(X1)

]

n3
+ 4

n− 1

n3
Var

[
∑

λ

ϕλ(X1)ϕλ(X2)

]

+4
(n− 1)(n− 2)

n3
Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]

+4
n− 1

n3
Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X3)

]]
+

1

n
Var

[
∑

λ

ϕ2
λ(X1)

]

− 2n

[
1

n2
Var

[
∑

λ

ϕ2
λ(X1)

]
+ 2

n− 1

n2
Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X2)

]]

= 4
n− 1

n
Var

[
∑

λ

ϕλ(X1)ϕλ(X2)

]

+ 4
(n− 1)(n− 2)

n
Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]
.In the same way,

bn = 2n2


Var


 ∑

λ∈Λ(m)

(Pnϕλ)
2


− Cov


∑

λ

Pnϕ
2
λ,

∑

λ∈Λ(m)

(Pnϕλ)
2



(
1 +

1

n

)
+

1

n
Var

[
∑

λ

Pnϕ
2
λ

]


= 8
n− 1

n
Var

[
∑

λ

ϕλ(X1)ϕλ(X2)

]

+ 8
(n− 1)(n− 2)

n
Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]

− 4(n− 1)

(
1− 1

n

)
Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X3)

]
.Finally,

cn = n2Var

[
∑

λ

Pnϕ
2
λ

]
+ n2Var


 ∑

λ∈Λ(m)

(Pnϕλ)
2


− 2n2Cov


∑

λ

Pnϕ
2
λ,

∑

λ∈Λ(m)

(Pnϕλ)
2




=

(
n− 2 +

1

n

)
Var

[
∑

λ

ϕ2
λ(X1)

]
+ 4

n− 1

n
Var

[
∑

λ

ϕλ(X1)ϕλ(X2)

]

+ 4
(n− 1)(n− 2)

n
Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]

− 4 (n− 1)

(
1− 1

n

)
Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X3)

]
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A. Celisse/Optimal ross-validation 25
Proposition A.2. For every m,m′ ∈ M and p ∈ {1, . . . , n− 1}, it omes

R̂p(m
′)− R̂p(m)

=

(
n

n− p

)(
E

[
‖sm′ − ŝm′‖2

]
− E

[
‖sm − ŝm‖2

])
+
[
‖s− sm′‖2 − ‖s− sm‖2

]

−K(n, p)
[
‖sm′ − ŝm′‖2 − E

[
‖sm′ − ŝm′‖2

] ]
+K(n, p)

[
‖sm − ŝm‖2 − E

[
‖sm − ŝm‖2

] ]

− 2K(n, p) νn (sm′ − sm) +
1

n

(
K(n, p) +

n

n− p

)
νn (φm′ − φm) ,where

K(n, p) = 1 +
1

n− 1
+

n

n− p

1

n− 1
·A.2. Bounding remainder termsProposition A.3 (Bound on νn (φm − φm′)).Let us assume (RegD) and apply (42) with t = φm and x = xm = c1nE(Z

2
m) (c1 > 0). Then, an event

Ωrem,1 exists with P [ Ωrem,1 ] ≥ 1− 2
∑

m∈M e−xm, on whih for every m,m′ ∈ Mn

|νn (φm − φm′)| ≤ nE(Z2
m) + nE(Z2

m′)

logn
,where Zm = supt∈Sm

νn(t) for every m.Proof of Proposition A.3. A straightforward use of (42) leads to the expeted onlusion.Proposition A.4 (Bound on νn (sm − sm′)). Let us assume (Pol),(SqI), (RegD), (LoEx), and (OrSp)hold true. Then, there exists a sequene (δn)N suh that for every m,m′ ∈ M,
P

[
2 |νn(sm − sm′)| > δn

(
E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

) ]
≤ 2n−(2aM+2) ,with δn → 0 and nδn → +∞ as n → +∞, and 0 ≤ δn ≤ 1 for n large enough.Furthermore, an event Ωrem,2 exists with P [ Ωrem,2 ] ≥ 1− 2/n2, on whih for every m,m′ ∈ M

2 |νn(sm − sm′)| ≤ δn

(
E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

)
.Proof of Proposition A.4. For every η > 0,

2νn(sm − sm′) = 2 ‖sm − sm′‖ νn(tm,m′)

≤ η ‖sm − sm′‖2 + η−1 [ νn(tm,m′) ]2 ,where tm,m′ = (sm − sm′) / ‖sm − sm′‖.imsart-generi ver. 2009/02/27 file: vhistoAOS.tex date: Marh 30, 2012



A. Celisse/Optimal ross-validation 26Thanks to (42) where t = tm,m′ , it omes
|νn(tm,m′)| >

√
2
Var (tm,m′(X1))

n
x+

‖tm,m′‖∞
3n

x ,with probability not larger than 2 exp (−x), x > 0. Hene with (SqI), one has
2νn(sm − sm′) ≤ η ‖sm − sm′‖2 + 4η−1Var (tm,m′(X1))

n
x+ 2η−1

(‖tm,m′‖∞
3n

x

)2 (31)
≤ 2η

(
‖s− sm‖2 + ‖s− sm′‖2

)
+ 4η−1 ‖s‖ ‖tm,m′‖∞

n
x+ 2η−1

(‖tm,m′‖∞
3n

x

)2

.Moreover assuming (RegD), it omes
‖tm,m′‖∞ ≤

√
Φ (Dm +Dm′) .Then,

Var (tm,m′(X1))

n
x ≤ ‖s‖

√
Φ
√
(Dm +Dm′)

n
x ,

(‖tm,m′‖∞
3n

x

)2

≤ Φ (Dm +Dm′)
x2

9n2
·Let us take x = (2aM + 2) logn. Then,

Var (tm,m′(X1))

n
x ≤ ‖s‖

√
Φ
√
(Dm +Dm′)

n
(2aM + 2) logn ,

(‖tm,m′‖∞
3n

x

)2

≤ Φ (Dm +Dm′)
((2aM + 2) logn)

2

9n2
·Then,

2
νn(sm − sm′)

E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

≤ 2η + 4η−1 ‖s‖
√
Φ
√
(Dm +Dm′)

n
(
E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

) (2aM + 2) logn

+ 2η−1Φ
Dm +Dm′

n
(
E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

) ((2aM + 2) logn)
2

9n

≤ 2η + 4η−1
‖s‖

√
Φ
ξ√

n
(
E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

) (2aM + 2) logn

+ 2η−1Φ

ξ

((2aM + 2) logn)
2

9n
,thanks to (LoEx). Moreover using that

n
(
E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

)
≥ 2n inf

m
E ‖s− ŝm‖2 =: 2nR∗

n,imsart-generi ver. 2009/02/27 file: vhistoAOS.tex date: Marh 30, 2012



A. Celisse/Optimal ross-validation 27it omes
2

νn(sm − sm′)

E ‖s− ŝm‖2 + E ‖s− ŝm′‖2
≤ 2η + 4η−1 ‖s‖

√
Φ

2ξ
(2aM + 2)

1√
nR∗

n(log n)
−2

+ 2η−1Φ

ξ
(2aM + 2)2

(logn)
2

9n
.Then, (OrSp) entails there exists a sequene δn → 0, nδn → +∞ as n → +∞ (0 < δn < 1 for n largeenough) suh that

2νn(sm − sm′) ≤ δn

(
E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

)
.Finally, let us notie that ∑m,m′∈M 2n−(2aM+2) ≤ 2n2aMn−(2aM+2) = 2/n2.A.3. Deviations of √

nZmA.3.1. Right deviationProposition A.5 (Right deviation of √nZm). Let us assume (Pol), (SqI), (RegD), and (LoEx) holdtrue, and set Zm = supt∈Sm
νn(t), σ2

m = supt∈Sm
Var [ t(X1) ] and bm = supt∈Sm

‖t‖∞. Then, there existsa sequene (δn)n≥1 with δn → 0 and nδn → +∞ as n → +∞ suh that for every m ∈ M,
√
nZm ≤ √

nE(Zm)


 1 + δn +

√√√√4

√
Φ

ξ
C ‖s‖1(√Dm<(logn)2)


on an event Ωright with P [ Ωright ] ≥ 1− 1/n2 − β1, for any β1 ∈ (0, 1) and C ≥
√
2ξ/β1.Proof of Proposition A.5.Let us use Eq. (43) and upper bound the deviation terms. Assuming (SqI) and (RegD), Lemma A.6leads to

σ2
m ≤ ‖s‖

√
Φ
√
Dm , bm ≤

√
Φ
√
Dm .Furthermore, (LoEx) entails

σ2
m ≤ ‖s‖

√
Φ

ξ

√
nE(Zm) , bm ≤

√
Φ

ξ

√
nE(Zm) .Let us �rst upperbound √2 (σ2

m + 2bmE(Zm))xm:1. If √Dm ≥ (log n)2:Then hoosing xm = (aM + 2) logn, there exists a sequene δn dereasing to 0, nδn → +∞ as
n → +∞ suh that

√
2 (σ2

m + 2bmE(Zm)) xm ≤ √
nE(Zm)δn .imsart-generi ver. 2009/02/27 file: vhistoAOS.tex date: Marh 30, 2012



A. Celisse/Optimal ross-validation 282. Otherwise √Dm < (logn)2:Then, √2 (σ2
m + 2bmE(Zm))xm is no longer negligible with respet to √

nE(Zm). So, hoosing
xm = C

√
nE(Zm) (C > 0) leads to

√
2 (σ2

m + 2bmE(Zm))xm ≤ √
nE(Zm)

√√√√2

√
Φ

ξ
C (‖s‖+ 2E(Zm)) ≤ √

nE(Zm)

√√√√4

√
Φ

ξ
C ‖s‖ ,as long as n is large enough.Let us now upperbound bmxm

3
√
n
:

bmxm

3
√
n

≤ √
nE(Zm)

√
Φ

ξ

(aM+2) logn ∨ C(log n)2

3
√
n

·Finally, we an remark that
∑

m∈M
e−xm =

∑

Dm≥(logn)4

n−(aM+2) +
∑

Dm<(logn)4

e−C
√
nE(Zm) ≤ 1

n2
+ 2

ξ

c2
·

Corollary A.1. For Zm = supt∈Sm
νn(t), set Lm =

√
4
√

Φ
ξ C ‖s‖1(√Dm<(logn)2). Then on the event

Ωright de�ned in Proposition A.5,
Z2
m ≤ E(Z2

m) (1 + δn + Lm)
2

.A.3.2. Left deviationProposition A.6 (Left deviation of √nZm). Let us assume (Pol), (SqI), (RegD), and (LoEx) holdtrue, and set Zm = supt∈Sm
νn(t), σ2

m = supt∈Sm
Var [ t(X1) ] and bm = supt∈Sm

‖t‖∞. Then, there existsa sequene (δn)n≥1 with δn → 0 and nδn → +∞ as n → +∞ suh that for every m ∈ M,
√
nZm ≥ √

nE(Zm)


 1− δn −

√√√√4

√
Φ

ξ
C ‖s‖1(√Dm<(logn)2)


 , (32)on an event Ωleft with P [ Ωleft ] ≥ 1− 1/n2 − β2 for any β2 ∈ (0, 1) and C ≥

√
2ξ/β2.Proof of Proposition A.6. Similar to that of Proposition A.5 with the use of Eq. (44) and the additionalProposition A.7 whih provides an upper bound of E(Zm)2 depending on E(Z2

m).
imsart-generi ver. 2009/02/27 file: vhistoAOS.tex date: Marh 30, 2012



A. Celisse/Optimal ross-validation 29Proposition A.7 (Upper bound on Var(Z)). Let X1, . . . , Xn be i.i.d. random variables de�ned ona mesurable spae (X , T ). Let S denote a set of real valued funtions suh that supt∈S ‖t‖∞ ≤ b,
supt∈S Var (t(X1)) = σ2, and set Z = supt∈S νn(t). Then,

Var(Z) ≤ 2σ2 + 32bE(Z)

n
. (33)Let us assume (SqI), (RegD), and (LoEx). If S denotes a linear spae of dimension D, then thereexists a positive sequene (δn)n≥1 with δn → 0 and nδn → +∞ as n → +∞ (0 < δn < 1 for n largeenough), and every onstant θ > 0 suh that

E(Z2) ≤ (E(Z))2
(
1 + δn + θ

√
Φ

ξ
1(

√
Dm<(logn)2)

)
+ rn ,where rn = θ−1

√
Φ
ξ

2‖s‖2

n 1(
√
D<(logn)2).Proof of Proposition A.7. Assumptions (SqI), (RegD), and (LoEx) provide

E(Z2)− (E(Z))
2 ≤ 2

√
Φ

ξ
(E(Z))

2

( ‖s‖√
nE(Z)

+
16√
n

)
.1. If √nE(Z) ≥ √

ξD ≥ √
ξ(log n)2:

E(Z2)− (E(Z))
2 ≤ 2

√
Φ

ξ
(E(Z))

2

( ‖s‖√
ξ(logn)2

+
16√
n

)

≤ δ1,n (E(Z))
2

,with δ1,n = 2
√

Φ
ξ

(
‖s‖√

ξ(logn)2
+ 16√

n

).2. Otherwise √nE(Z) ≤
√
ΦD <

√
Φ(log n)2:

E(Z2)− (E(Z))
2 ≤ 2

√
Φ

ξ
E(Z)

(‖s‖√
n
+

16E(Z)√
n

)
≤ θ

√
Φ

ξ
(E(Z))

2
+ θ−1

√
Φ

ξ

1

n
(‖s‖+ 16E(Z))

2

≤ θ

√
Φ

ξ
(E(Z))

2
+ θ−1

√
Φ

ξ

1

n

(
2 ‖s‖2 + 32 (E(Z))

2
)

≤
(
δ2,n + θ

√
Φ

ξ

)
(E(Z))2 + rnfor every θ > 0, with δ2,n = θ−1

√
Φ
ξ

32
n and rn = θ−1

√
Φ
ξ

2‖s‖2

n .Then, there exists a positive sequene (δn)n≥1 with δn = max {δ1,n, δ2,n} dereasing to 0 with nδn → +∞as n → +∞, suh that
E(Z2)− rn

1 + δn + θ
√

Φ
ξ 1(

√
D<(logn)2)

≤ (E(Z))
2
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A. Celisse/Optimal ross-validation 30Corollary A.2. For Zm = supt∈Sm
νn(t), set Lm =

√
4
√

Φ
ξ C ‖s‖1(√Dm<(logn)2) and rn(m) =

θ−1
√

Φ
ξ

2‖s‖2

n 1(
√
Dm<(logn)2). Then on the event Ωleft de�ned in Proposition A.6,

E(Z2
m) ≤ Z2

m (1− δn − Lm)
−3

+ rn(m) .Proof of Corollary A.2. From Propositions A.6 and A.7, it omes that
E(Z2

m) ≤ Z2
m

1 + δn + θ
√

Φ
ξ 1(

√
Dm<(logn)2)

(1− δn − Lm)
2 + rn(m) .Then, Lemma A.9 enables to onlude.A.4. Dimension behavior with respet to nLemma A.4 (Orale dimension). Let us assume (Bias), (Rih), and (RegD) hold true. Then, on theevent Ω′ = Ωleft∩Ωright, where Ωleft and Ωright are respetively de�ned in Corollary A.1 and Corollary A.2,it omes

Dm∗ ≥ (log n)4 , (34)for large enough values of n.Proof of Lemma A.4. Sine m∗ = Argminm ‖s− ŝm‖2, it omes
‖s− ŝm∗‖2 ≤ ‖s− sm0

‖2 + ‖sm0
− ŝm0

‖2 ,with m0 de�ned by (Rih).First on the event Ω′, using E
(
Z2
m0

)
≤ ΦDm0

/n by (RegD) and Corollaries A.1 and A.2, there exists
δn suh that

∣∣Z2
m0

− E
(
Z2
m0

)∣∣ ≤ δnE
(
Z2
m0

)
≤ δnΦ

Dm0

n
·Then by use of (Bias) and (Rih) on Ω′,

cℓD
−ℓ
m∗ ≤ ‖s− sm∗‖2 ≤ ‖s− ŝm∗‖2 ≤ cun

−u/2 + crich(1 + δn)Φn
−1/2 ,whih is ontraditory with assuming Dm∗ < (logn)4 as long as n is large enough.Lemma A.5 (Chosen model dimension). Let us assume (Bias), (Rih), (LoEx), and (RegD) holdtrue. Then with the notation of Lemma A.4, on the event Ω = Ω′ ∩ (Ωrem,1 ∩ Ωrem,2), where Ωrem,1 and

Ωrem,2 are respetively de�ned in Proposition A.3 and Proposition A.4, it omes
Dm̂ ≥ (logn)4 , (35)for large enough values of n. imsart-generi ver. 2009/02/27 file: vhistoAOS.tex date: Marh 30, 2012



A. Celisse/Optimal ross-validation 31Proof of Lemma A.4. For any model m suh that R̂p(m) ≤ R̂p(m0), Proposition A.3, Proposition A.4,and Proposition A.2 lead to
[ 1−K(n, p)δn ] ‖s− sm‖2 +

[
n

n− p
−K(n, p)δn −

(
K(n, p) +

n

n− p

)
δn

]
E
(
Z2
m

)

−K(n, p)
[
Z2
m − E

(
Z2
m

) ]

≤ [ 1 +K(n, p)δn ] ‖s− sm0
‖2 +

[
n

n− p
+K(n, p)δn +

(
K(n, p) +

n

n− p

)
δn

]
E
(
Z2
m0

)

−K(n, p)
[
Z2
m0

− E
(
Z2
m0

) ]
.First, assuming Dm̂ < (logn)4 on Ω and ombining (LoEx) and (RegD) entail for m = m̂ that thereexists a onstant C > 0 suh that

∣∣∣∣
[

n

n− p
−K(n, p)δn −

(
K(n, p) +

n

n− p

)
δn

]
E
(
Z2
m

)
−K(n, p)

[
Z2
m − E

(
Z2
m

) ]∣∣∣∣ ≤ C
(logn)4

n
·Seond, using (Bias) provides

[ 1−K(n, p)δn ] ‖s− sm‖2 ≥ [ 1−K(n, p)δn ] cℓ(logn)
−4ℓ ,whih is larger than C (log n)4

n for large enough values of n.Using the same arguments as in Lemma A.4 for upper bounding the terms depending on m0, it resultsthat Dm̂ ≥ (log n)4 on Ω.A.5. Tehnial resultsLemma A.6. Let X1, . . . , Xn be i.i.d. random variables de�ned on a mesurable spae (X , T ). Let Sdenote a set of real valued funtions suh that supt∈S ‖t‖∞ ≤ b and supt∈S Var (t(X1)) = σ2. Let usassume (SqI). Then
σ2 ≤ ‖s‖ b . (36)Furthermore, (RegD) leads to

σ2 ≤ ‖s‖
√
ΦD , (37)where D denotes the dimension of the vetor spae S.Lemma A.7. (Dmax) implies

‖φm‖∞ ≤
√
Φ

n

(log n)2
,

Var (φm(X1)) ≤
(
nE(Z2) + ‖s‖2

)√
Φ

n

(logn)2
.
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A. Celisse/Optimal ross-validation 32Proof.
Var (φm(X1)) ≤ E

[
φ2
m(X1)

]
≤ ‖φm‖∞ E [φm(X1) ]

= ‖φm‖∞
(
nE(Z2) + ‖sm‖2

)
≤ ‖φm‖∞

(
nE(Z2) + ‖s‖2

)

≤
(
nE(Z2) + ‖s‖2

)√
Φ

n

(logn)2
.

Lemma A.8. Let us assume that 0 ≤ δn + Lm for every m ∈ M. Then on the event Ωleft ∩Ωright (with
Ωleft and Ωright de�ned in Proposition A.6 and Proposition A.5 respetively), for every m,m′ ∈ M,

Z2
m′ (1− 4(δn + Lm′)) ≤ E(Z2

m′), Z2
m′ − E(Z2

m′) ≤ 4Z2
m′(δn + Lm′) . (38)and

E(Z2
m) ≤ Z2

m (1 + 4(δn + Lm)) + rn, E(Z2
m)− Z2

m ≤ 4Z2
m(δn + Lm) + rn . (39)Proof of Lemma A.8.Proof of (38) From Corollary A.1, on the event Ωright, it omes

Z2
m ≤ (E(Zm))

2
(1 + δn + Lm)

2
.Then assuming moreover 0 ≤ δn + Lm < 1, Jensen's inequality and (1 − x)−2 < (1 + x2) for x ∈ [0, 1[lead to

Z2
m ≤ E(Z2

m) (1 + δn + Lm)2 ≤ E(Z2
m)

1

(1− δn − Lm)
2 ·Finally if 0 ≤ δn + Lm < 1/4, then

E(Z2
m) ≥ Z2

m (1− δn − Lm)
2 ≥ Z2

m [ 1− 2(δn + Lm) ] ≥ Z2
m [ 1− 4(δn + Lm) ] .Proof of (39) Assuming δn + Lm < 1/4, Corollary A.2 and Lemma A.10 provide

E(Z2
m) ≤ Z2

m (1 + 4(δn + Lm)) + rn(m) .Lemma A.9. For every a, b ∈ (0, 1) suh that a < b(1− b)−1,
1 + a

(1− b)
2 ≤ 1

(1− b)
3 . (40)Moreover if 0 < a = b < 1, then a < a(1− a)−1 and Eq. (40) holds true.Lemma A.10. For every interval I ⊂ [0, 1[ suh that 0 ∈ I, there exists a onstant ∆ > 3 suh that

∀x ∈ I, (1− x)−3 ≤ 1 + ∆x .In partiular for I = [0, 1/4], this property holds true with ∆ = 4. Furthermore for every x ∈]1,+∞[,
(1− x)−3 ≤ 1.imsart-generi ver. 2009/02/27 file: vhistoAOS.tex date: Marh 30, 2012



A. Celisse/Optimal ross-validation 33A.6. Adaptivity in the minimax senseA.6.1. Proof of Corollary 3.2The proof simply onsists in ombining Theorems 3.1 and 3.2 by heking their assumptions. First,
s ∈ H(L, α) implies (SqI). Combined with Lemma A.11, it shows (Bias) is ful�lled. Besides, (OrSp)holds true sine

inf
m∈Mn

E

[
‖s− ŝm‖2

]
≈ n− 2α

2α+1 ⇒ n

(log n)2
inf

m∈Mn

E

[
‖s− ŝm‖2

]
≈ n

1
2α+1 (logn)−2 ,where a ≈ b means there exist onstants 0 < c1 ≤ c2 suh that c1b ≤ a ≤ c2b.Seond, sine the model olletion is built from regular partitions of [0, 1], (RegD) is learly satis�ed,and (Dmax) entails (Rih) is ful�lled.A.6.2. Tehnial LemmaLemma A.11. Let s be a density suh that s ∈ H(L, α) for some α ∈ (0, 1] and L > 0. For every

D ∈ N
∗, let sD denote the orthogonal projetion of s de�ned in Setion 2.1.2 onto pieewise onstantfuntions built from a given regular partition of [0, 1] in D intervals. Then,

cℓ
Dℓ

≤ ‖s− sD‖2 ≤ cu
Du

, (41)where u = 2α, cu = L2, ℓ = 1 + 1/α and cℓ = ǫ2+1/α2−(5+2/α)L−1/α, for some ǫ > 0.Proof of Lemma A.11. First, let us notie (41) exludes s = 1[0,1]. Then, there exist x < y ∈ [0, 1] suhthat |x− y| ≤ η and |s(x)− s(y)| ≥ ǫ for some η, ǫ > 0. Besides for a regular partition of [0, 1] in intervals
I1, . . . , ID of Lebesgue measure |Ik| = 1/D, it omes

‖s− sD‖2 =

D∑

k=1

∫

Ik

[ s(t)− sD(t) ]
2
dt =

D∑

k=1

∫

Ik

[ s(t)− sIk ]
2
dt ,where sIk denotes the mean of s on interval Ik.Seond, let K(η) = {1 ≤ k ≤ D, Ik ∩ [x, y] 6= ∅} and N(η) denote the ardinality of K(η). Then,

N(η) ≤ 2 + ηD. Combined with Lemma A.12, it leads to
‖s− sD‖2 ≥

∑

k∈K(η)

∫

Ik

[ s(t)− sIk ]
2
dt ≥ 1

24+1/αL1/α

∑

k∈K(η)

∆
2+1/α
k ,where ∆k := supIk s− infIk s, for every 1 ≤ k ≤ D. Applying Hölder's inequality, it omes

∑

k∈K(η)

∆
2+1/α
k ≥ N(η)−(1+1/α)



∑

k∈K(η)

∆k




2+1/α

≥ N(η)−(1+1/α)ǫ2+1/α ,
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A. Celisse/Optimal ross-validation 34sine ∑k∈K(η) ∆k ≥ ǫ. Hene,
‖s− sD‖2 ≥

∑

k∈K(η)

∫

Ik

[ s(t)− sIk ]
2
dt ≥ 1

24+1/αL1/α

∑

k∈K(η)

∆
2+1/α
k

≥ 1

24+1/αL1/α
N(η)−(1+1/α)ǫ2+1/α

≥ 1

24+1/αL1/α
(1 + η)−(1+1/α)D−(1+1/α)ǫ2+1/α

≥ ǫ2+1/α

25+2/αL1/α
D−(1+1/α) ·

Lemma A.12. Let s denote a density de�ned on [0, 1] suh that s ∈ H(L, α), for some L > 0 and
α ∈ (0, 1]. Let us de�ne an interval I ⊂ [0, 1] and sI = |I|−1 ∫

I s(t) dt denotes the mean of s on I. Then,
∫

I

(s(t)− sI)
2
dt ≥ ∆2+1/α

24+1/αL1/α
,where ∆ = supI s− infI s.Proof of Lemma A.12. First, let us notie s− = infI s ≤ sI ≤ supI s = s+, whih implies

max
(
s+ − sI , sI − s−

)
≥ ∆/2 .Without loss of generality, let us assume max (s+ − sI , sI − s−) = s+ − sI . Then s+ − sI ≥ ∆/2.Seond, let us introdue x+ ∈ I suh that s+ = s(x+). By ontinuity of s, there exists an interval

J ⊂ I suh that x+ ∈ J and
∀x ∈ J, 0 ≤ s(x+)− s(x) ≤ ∆/4 .Then,

∀x ∈ J, s(x)− sI ≥ ∆/2−∆/4 = ∆/4 .Moreover,
|J | (∆/2)

2 ≤
∫

J

(
s(x+)− sI

)2
dx ≤

∫

J

(
s(x+)− s(x)

)2
dx ≤

∫

J

L2
∣∣x+ − x

∣∣2α dx ≤ |J |2α+1
L2 ,whih implies

|J | ≥
(

∆

2L

)1/α

·Finally,
∫

I

(s(x)− sI)
2
dx ≥

∫

J

(s(x) − sI)
2
dx ≥ (∆/4)

2 |J | ≥ (∆/4)
2

(
∆

2L

)1/α
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A. Celisse/Optimal ross-validation 35A.7. Identi�ation point of viewProposition A.8 (Bound on νn (sm − sm̄)). Let us assume (Pol),(SqI), (RegD) hold true. Then, thereexists a sequene (δn)N and an event Ωrem,3 with P [ Ωrem,3 ] ≥ 1− 2/n2, on whih for every m ∈ M,
2 |νn(sm − sm̄)| ≤ δn ‖sm − sm̄‖2 + δn ‖s‖

√
Φ

√
Dm +Dm̄

n
+ δnΦ

Dm +Dm̄

n
,with δn → 0 and nδn → +∞ as n → +∞, and 0 ≤ δn ≤ 1 for n large enough.Proof of Proposition A.8. Combining Eq. (31), (SqI), and (RegD) it omes for every η > 0,

2νn(sm − sm̄) ≤ η ‖sm − sm̄‖2 4η−1 ‖s‖
√
Φ
√
(Dm +Dm̄)

n
x+ 2η−1Φ (Dm +Dm̄)

x2

9n2
.with probability not larger than 2 exp (−x), for any x > 0.Let us further assume that (Pol) holds true. Then with x = xm = (aM + 2) logn, it omes

2νn(sm − sm̄)

≤ η ‖sm − sm̄‖2 + 4η−1 ‖s‖
√
Φ
√
(Dm +Dm̄)√
n

(aM + 2)
logn√

n
+ 2η−1Φ

Dm +Dm̄

n

((aM + 2) logn)
2

9n
·Let us hoose η = 1/ logn, then there exists a sequene (δn)N with δn → 0 and nδn → +∞ as n → +∞suh that.

2νn(sm − sm̄) ≤ δn ‖sm − sm̄‖2 + δn ‖s‖
√
Φ

√
Dm +Dm̄

n
+ δnΦ

Dm +Dm̄

n
·Finally, let us notie that ∑m∈M 2e−xm =

∑
m∈M 2n−(aM+2) ≤ 2naMn−(aM+2) = 2/n2.Appendix B: Key onentration inequalitiesTheorem B.1 (Bernstein's inequality). Let X1, . . . , Xn be i.i.d. random variables de�ned on a mesurablespae (X , T ), and let t denote a mesurable bounded real valued funtion. Then for every x > 0,

P

[
νn(t) >

√
2Var (t(X1))x

n
+

‖t‖∞ x

3n

]
≤ e−x . (42)Theorem B.2 (Bousquet's version of Talagrand's inequality (Bousquet, 2002)).Let X1, . . . , Xn be i.i.d. random variables de�ned on a mesurable spae (X , T ). Let S denote a set of realvalued funtions suh that supt∈S ‖t‖∞ ≤ b and supt∈S Var (t(X1)) = σ2. Denoting Z = supt∈S νn(t),then for every x > 0

P

[√
nZ ≤ √

nE(Z) +
√
2 (σ2 + 2bE(Z))x+

bx

3
√
n

]
≤ e−x . (43)Theorem B.3 (Rio's version of Talagrand's inequality (Klein and Rio, 2005)).Let X1, . . . , Xn be i.i.d. random variables de�ned on amesurable spae (X , T ). Let S denote a set of realvalued funtions suh that supt∈S ‖t‖∞ ≤ b and supt∈S Var (t(X1)) = σ2. Denoting Z = supt∈S νn(t),then for every x > 0

P

[√
nZ ≤ √

nE(Z)−
√
2 (σ2 + 2bE(Z))x− 8bx

3
√
n

]
≤ e−x . (44)imsart-generi ver. 2009/02/27 file: vhistoAOS.tex date: Marh 30, 2012
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