Supplementary Material

Anonymous Author(s) Affiliation Address email

1 Proof of Proposition 1

With the notations used in the article, one has

$$R_{LpO} = {\binom{n}{p}}^{-1} \sum_{e} \sum_{i \in \bar{e}} \mathbb{I}_{\{f^{e}(x_{i}) \neq y_{i}\}}$$

$$= \sum_{i=1}^{n} {\binom{n}{p}}^{-1} \sum_{e} \mathbb{I}_{\{f^{e}(x_{i}) \neq y_{i}\}} \mathbb{I}_{\{i \in \bar{e}\}}$$

$$= \sum_{i=1}^{n} \sum_{e} \mathbb{I}_{\{f^{e}(x_{i}) \neq y_{i}\}} \bigcap_{\{i \in \bar{e}\}} P(E = e)$$

$$= \sum_{i=1}^{n} P\left(\{f^{E}(x_{i}) \neq y_{i}\} \bigcap_{\{i \in \bar{E}\}}\right)$$

$$= \sum_{i=1}^{n} P\left(f^{E}(x_{i}) \neq y_{i}|i \in \bar{E}\right) P\left(i \in \bar{E}\right)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} P\left(f^{E}(x_{i}) \neq y_{i}|i \in \bar{E}, V_{k}^{i} = j\right) P\left(V_{k}^{i} = j|i \in \bar{E}\right) P\left(i \in \bar{E}\right)$$

$$= \sum_{i=1}^{n} P\left(i \in \bar{E}\right) \sum_{j=k}^{k+p-1} P\left(V_{k}^{i} = j|i \in \bar{E}\right) P\left(f^{E}(x_{i}) \neq y_{i}|i \in \bar{E}, V_{k}^{i} = j\right) , (1)$$

which achieves the proof.

2 Algorithms for WkNN Leave-*p*-out

2.1 Algorithms

Positive weights First, the following problem is considered: assuming that m objects have positive values $w_1 \leq ... \leq w_m$, how many combinations (without replacement) of k of these objects among m lead to a total value higher than s, with s > 0? Denote $W = (w_1, ..., w_m)$, and N(W, s, k) the number of combinations for which the condition is fulfilled, and I(W, s) the breakpoint index of W. The breakpoint index is the smallest j such that $\sum_{i \leq j} w_i \geq S$ (if for all j) $\sum_{i < j} w_i < S$ then I(W, s) = m + 1 by convention).

There are several convenient settings where N(W, s, k) can be computed: - if k = 1, then $N(W, s, k) = m - \max\{j/w_j < s\}$, - if W is of length k, then N(W, s, k) = 0 or 1, - if $I(W, s) \le k$ then $N(W, s, k) = \binom{m}{k}$, - if I(W, s) = m + 1 then N(W, s, k) = 0.

Based on these remarks, the proposed algorithm is:

```
Require: W, s, k

L \leftarrow length(W)

BI \leftarrow breakpoint_index(W,s,k)

BoolCond \leftarrow check\_conv\_settings(W,s,k,L,BI)

if BoolCond = 1 then

NumbComb \leftarrow compute\_numb\_comb(W,s,k,L)

else

NumbComb \leftarrow compute\_numb\_comb(W,s,k,L)

else

NumbComb = 0

for i = BI to L do

NumbComb \leftarrow NumbComb + Pos\_Weights(W[1:i-1], s - W[i], K - 1)

end for

end if

return NumbComb
```

In practice, this algorithm is faster than the naive algorithm based on recursive programming only (i.e. where the breakpoint index is not computed).

Positive and negative weights We now assume that m_0 objects have negative values $w_1^0 \leq ... \leq w_{m_0}^0$, and m_1 objects have positive values $w_1^1 \leq ... \leq w_{m_1}^1$, and we wonder how many combinations (without replacement) of k of objects among $m_0 + m_1$ lead to a total value higher than s. We note $W_i = (w_1^i, ..., w_{m_i}^i)$ for $i = 0, 1, W = (W_0, W_1)$, and denote $N(W_0, W_1, s, k)$ the number of combinations for which the condition is satisfied.

The convenient settings where $N(W_0, W_1, s, k)$ can be computed are the following ones: - if k = 1, then $N(W_0, W_1, s, k) = m - \max\{j \mid w_j < s, w_j \in W\}$, - if W is of length k, then $N(W_0, W_1, s, k) = 0$ or 1,

Besides, if either W_0 or W_1 is empty we can use algorithm 2.1 proposed in the previous paragraph. The new algorithm is then:

```
 \begin{array}{l} \textbf{Require: } W_0, W_1, s, k \\ L_1 \leftarrow \text{length}(W_1) \\ L_2 \leftarrow \text{length}(W_2) \\ BoolCond \leftarrow \text{check\_conv\_settings}(W_1, W_2, s, k, L_1, L_2) \\ \textbf{if } BoolCond = 1 \textbf{ then} \\ NumbComb \leftarrow \text{compute\_numb\_comb}(W_1, W_2, s, k, L_1, L_2) \\ \textbf{else if } \text{is\_empty}(W_0) \textbf{ then} \\ NumbComb \leftarrow \text{Pos\_Weights}(W_1, s, K) \\ \textbf{else if } \text{is\_empty}(W_1) \textbf{ then} \\ NumbComb \leftarrow \binom{k}{m_1} - \text{Pos\_Weights}(-W_0, -s, K) \\ \textbf{else} \\ NumbComb \leftarrow \text{PosNeg\_Weights}(W_0, W_1[1:L_1-1], K-1, s-w_{L_1}^1) \\ + \text{PosNeg\_Weights}(W_0, W_1[1:L_1-1], K, s) \\ \textbf{end if} \\ \textbf{return } NumbComb \end{array}
```

Notice that the recursive call of the algorithm can be refined by reducing either W_0 or W_1 (depending on which one has the smallest number of items) instead of W_1 only. In this case, the "worst" cases are the one where W_0 and W_1 are of equal size, i.e. intuitively cases where the noise level is high.

2.2 Computational time

Table 2.2 provides the computation time of the weighted procedure, on a sample of 500 observations. The complete distance matrix between observations is calculated beforehand. For each observation, the label is drawn in a Bernoulli distribution $\mathcal{B}(q)$, results are presented for q = 0.1 and 0.5. Weights in the majority voting rule are all equal to 1. We observe that the computational times highly depends on the noise level q. As a comparison, for k = 9 and p = 25, the exact LpO procedure is run within a second.

3 Influence of p on k_p , n fixed

k/m	5	10	15	20	25
3	0.55	1.21	2.16	3.10	4.52
5	0.93	3.53	9.41	19.97	38.79
7	1.35	8.62	42.75	163.67	506.24
9	1.90	22.98	229.55	1484.52	7247.31
	1				

q = 0	.1
-------	----

k/m	5	10	15	20	25
3	0.65	1.86	3.32	5.34	7.78
5	1.95	11.29	35.80	90.75	192.18
7	3.76	44.60	281.77	1162.73	3822.56
9	6.95	159.37	1774.14	12225.48	57212.10

$$q = 0.5$$

	1	11	40	p > 80	Test
k	21	19	17-15	13-9	17

Table 1: Choice of parameter k by LpO for different values of p, or by test sample, when q = 0.3.