Supplementary Material

Anonymous Author(s)

Affiliation
Address
email

1 Proof of Proposition 1

With the notations used in the article, one has

$$
\begin{align*}
& R_{L p O}=\binom{n}{p}^{-1} \sum_{e} \sum_{i \in \bar{e}} \mathbb{I}_{\left\{f^{e}\left(x_{i}\right) \neq y_{i}\right\}} \\
&=\sum_{i=1}^{n}\left({ }_{p}^{n}\right)^{-1} \sum_{e} \mathbb{I}_{\left\{f^{e}\left(x_{i}\right) \neq y_{i}\right\}} \mathbb{I}_{\{i \in \bar{e}\}} \\
&=\sum_{i=1}^{n} \sum_{e} \mathbb{I}_{\left\{f^{e}\left(x_{i}\right) \neq y_{i}\right\}} \cap\{i \in \bar{e}\} \\
&=\sum_{i=1}^{n} P(E=e) \\
&\left.=\sum_{i=1}^{n} P\left(f^{E}\left(x_{i}\right) \neq y_{i}\right\} \bigcap\{i \in \bar{E}\}\right) \\
&\left.=\sum_{i=1}^{n}\left(x_{i}\right) \neq y_{i} \mid i \in \bar{E}\right) P(i \in \bar{E}) \\
&=\sum_{i=1}^{n} P\left(f^{E}\left(x_{i}\right) \neq y_{i} \mid i \in \bar{E}, V_{k}^{i}=j\right) P\left(V_{k}^{i}=j \mid i \in \bar{E}\right) P(i \in \bar{E}) \tag{1}\\
& j=\sum_{j=k}^{k+p-1} P\left(V_{k}^{i}=j \mid i \in \bar{E}\right) P\left(f^{E}\left(x_{i}\right) \neq y_{i} \mid i \in \bar{E}, V_{k}^{i}=j\right),
\end{align*}
$$

which achieves the proof.

2 Algorithms for W k NN Leave- p-out

2.1 Algorithms

Positive weights First, the following problem is considered: assuming that m objects have positive values $w_{1} \leq \ldots \leq w_{m}$, how many combinations (without replacement) of k of these objects among m lead to a total value higher than s, with $s>0$? Denote $W=\left(w_{1}, \ldots, w_{m}\right)$, and $N(W, s, k)$ the number of combinations for which the condition is fulfilled, and $I(W, s)$ the breakpoint index of W. The breakpoint index is the smallest j such that $\sum_{i \leq j} w_{i} \geq S$ (if for all j $\sum_{i \leq j} w_{i}<S$ then $I(W, s)=m+1$ by convention $)$.

There are several convenient settings where $N(W, s, k)$ can be computed:

- if $k=1$, then $N(W, s, k)=m-\max \left\{j / w_{j}<s\right\}$,
- if W is of length k, then $N(W, s, k)=0$ or 1 ,
- if $I(W, s) \leq k$ then $N(W, s, k)=\binom{m}{k}$,
- if $I(W, s)=m+1$ then $N(W, s, k)=0$.

Based on these remarks, the proposed algorithm is:

```
Require: \(W, s, k\)
    \(L \leftarrow\) length \((W)\)
    \(B I \leftarrow\) breakpoint_index \((W, s, k)\)
    BoolCond \(\leftarrow\) check_conv_settings \((W, s, k, L, B I)\)
    if BoolCond \(=1\) then
        \(N u m b C o m b \leftarrow\) compute_numb_comb \((W, s, k, L)\)
    else
        NumbComb \(=0\)
        for \(i=B I\) to \(L\) do
            \(N u m b C o m b \leftarrow N u m b C o m b+\) Pos_Weights \((W[1: i-1], s-W[i], K-1)\)
        end for
    end if
    return NumbComb
```

In practice, this algorithm is faster than the naive algorithm based on recursive programming only (i.e. where the breakpoint index is not computed).

Positive and negative weights We now assume that m_{0} objects have negative values $w_{1}^{0} \leq \ldots \leq$ $w_{m_{0}}^{0}$, and m_{1} objects have positive values $w_{1}^{1} \leq \ldots \leq w_{m_{1}}^{1}$, and we wonder how many combinations (without replacement) of k of objects among $m_{0}+m_{1}$ lead to a total value higher than s. We note $W_{i}=\left(w_{1}^{i}, \ldots, w_{m_{i}}^{i}\right)$ for $i=0,1, W=\left(W_{0}, W_{1}\right)$, and denote $N\left(W_{0}, W_{1}, s, k\right)$ the number of combinations for which the condition is satisfied.

The convenient settings where $N\left(W_{0}, W_{1}, s, k\right)$ can be computed are the following ones:

- if $k=1$, then $N\left(W_{0}, W_{1}, s, k\right)=m-\max \left\{j \mid w_{j}<s, w_{j} \in W\right\}$,
- if W is of length k, then $N\left(W_{0}, W_{1}, s, k\right)=0$ or 1 ,

Besides, if either W_{0} or W_{1} is empty we can use algorithm 2.1 proposed in the previous paragraph. The new algorithm is then:

```
Require: \(W_{0}, W_{1}, s, k\)
    \(L_{1} \leftarrow\) length \(\left(W_{1}\right)\)
    \(L_{2} \leftarrow\) length \(\left(W_{2}\right)\)
    BoolCond \(\leftarrow\) check_conv_settings \(\left(W_{1}, W_{2}, s, k, L_{1}, L_{2}\right)\)
    if BoolCond \(=1\) then
        NumbComb \(\leftarrow\) compute_numb_comb \(\left(W_{1}, W_{2}, s, k, L_{1}, L_{2}\right)\)
    else if is empty \(\left(W_{0}\right)\) then
        \(N u m b C o m b \leftarrow\) Pos_Weights \(\left(W_{1}, s, K\right)\)
    else if is_empty \(\left(W_{1}\right)\) then
        \(N u m b C o m b \leftarrow\binom{k}{m_{1}}\) - Pos_Weights \(\left(-W_{0},-s, K\right)\)
    else
        \(N u m b C o m b \leftarrow\) PosNeg_Weights \(\left(W_{0}, W_{1}\left[1: L_{1}-1\right], K-1, s-w_{L_{1}}^{1}\right)\)
                        + PosNeg_Weights \(\left(W_{0}, W_{1}\left[1: L_{1}-1\right], K, s\right)\)
    end if
    return \(N u m b C o m b\)
```

Notice that the recursive call of the algorithm can be refined by reducing either W_{0} or W_{1} (depending on which one has the smallest number of items) instead of W_{1} only. In this case, the "worst" cases are the one where W_{0} and W_{1} are of equal size, i.e. intuitively cases where the noise level is high.

2.2 Computational time

Table 2.2 provides the computation time of the weighted procedure, on a sample of 500 observations. The complete distance matrix between observations is calculated beforehand. For each observation, the label is drawn in a Bernoulli distribution $\mathcal{B}(q)$, results are presented for $q=0.1$ and 0.5 . Weights in the majority voting rule are all equal to 1 . We observe that the computational times highly depends on the noise level q. As a comparison, for $k=9$ and $p=25$, the exact $\mathrm{L} p \mathrm{O}$ procedure is run within a second.

3 Influence of p on k_{p}, n fixed

k / m	5	10	15	20	25
3	0.55	1.21	2.16	3.10	4.52
5	0.93	3.53	9.41	19.97	38.79
7	1.35	8.62	42.75	163.67	506.24
9	1.90	22.98	229.55	1484.52	7247.31
			$q=0.1$		
k / m	5	10	15	20	25
3	0.65	1.86	3.32	5.34	7.78
5	1.95	11.29	35.80	90.75	192.18
7	3.76	44.60	281.77	1162.73	3822.56
9	6.95	159.37	1774.14	12225.48	57212.10
			$q=0.5$		

	$1<p<10$	$11<p<30$	$40<p<80$	$p>80$	Test
k	21	19	$17-15$	$13-9$	17

Table 1: Choice of parameter k by $\mathrm{L} p \mathrm{O}$ for different values of p, or by test sample, when $q=0.3$.

