
Supplementary Material

Anonymous Author(s)
Affiliation
Address
email

1 Proof of Proposition 1

With the notations used in the article, one has

RLpO = (np)−1
∑
e

∑
i∈ē

I{fe(xi)6=yi}

=

n∑
i=1

(np)−1
∑
e

I{fe(xi) 6=yi}I{i∈ē}

=

n∑
i=1

∑
e

I{fe(xi)6=yi}
⋂
{i∈ē}P (E = e)

=

n∑
i=1

P
(
{fE(xi) 6= yi}

⋂
{i ∈ Ē}

)
=

n∑
i=1

P
(
fE(xi) 6= yi|i ∈ Ē

)
P
(
i ∈ Ē

)
=

n∑
i=1

n∑
j=1

P
(
fE(xi) 6= yi|i ∈ Ē, V i

k = j
)
P
(
V i
k = j|i ∈ Ē

)
P
(
i ∈ Ē

)
=

n∑
i=1

P
(
i ∈ Ē

) k+p−1∑
j=k

P
(
V i
k = j|i ∈ Ē

)
P
(
fE(xi) 6= yi|i ∈ Ē, V i

k = j
)

, (1)

which achieves the proof.

2 Algorithms for WkNN Leave-p-out

2.1 Algorithms

Positive weights First, the following problem is considered: assuming that m objects have
positive values w1 ≤ ... ≤ wm, how many combinations (without replacement) of k of these
objects among m lead to a total value higher than s, with s > 0 ? Denote W = (w1, ..., wm),
and N(W, s, k) the number of combinations for which the condition is fulfilled, and I(W, s) the
breakpoint index of W . The breakpoint index is the smallest j such that

∑
i≤j wi ≥ S (if for all j∑

i≤j wi < S then I(W, s) = m + 1 by convention).

There are several convenient settings where N(W, s, k) can be computed:
- if k = 1, then N(W, s, k) = m−max{j/wj < s},
- if W is of length k, then N(W, s, k) = 0 or 1,
- if I(W, s) ≤ k then N(W, s, k) = (mk),

1

- if I(W, s) = m + 1 then N(W, s, k) = 0.

Based on these remarks, the proposed algorithm is:

Require: W , s, k
L← length(W)
BI ← breakpoint index(W ,s,k)
BoolCond← check conv settings(W ,s,k,L,BI)
if BoolCond = 1 then
NumbComb← compute numb comb(W ,s,k,L)

else
NumbComb = 0
for i = BI to L do

NumbComb← NumbComb + Pos Weights(W [1 : i− 1], s−W [i],K − 1)
end for

end if
return NumbComb

In practice, this algorithm is faster than the naive algorithm based on recursive programming only
(i.e. where the breakpoint index is not computed).

Positive and negative weights We now assume that m0 objects have negative values w0
1 ≤ ... ≤

w0
m0

, and m1 objects have positive values w1
1 ≤ ... ≤ w1

m1
, and we wonder how many combinations

(without replacement) of k of objects among m0 + m1 lead to a total value higher than s. We note
Wi = (wi

1, ..., w
i
mi

) for i = 0, 1, W = (W0,W1), and denote N(W0,W1, s, k) the number of
combinations for which the condition is satisfied.

The convenient settings where N(W0,W1, s, k) can be computed are the following ones:
- if k = 1, then N(W0,W1, s, k) = m−max{j | wj < s, wj ∈W},
- if W is of length k, then N(W0,W1, s, k) = 0 or 1,

Besides, if either W0 or W1 is empty we can use algorithm 2.1 proposed in the previous paragraph.
The new algorithm is then:

Require: W0, W1, s, k
L1 ← length(W1)
L2 ← length(W2)
BoolCond← check conv settings(W1,W2,s,k,L1,L2)
if BoolCond = 1 then
NumbComb← compute numb comb(W1,W2,s,k,L1,L2)

else if is empty(W0) then
NumbComb← Pos Weights(W1, s,K)

else if is empty(W1) then
NumbComb← (k

m1
) - Pos Weights(−W0,−s,K)

else
NumbComb← PosNeg Weights(W0,W1[1 : L1 − 1],K − 1, s− w1

L1
)

+ PosNeg Weights(W0,W1[1 : L1 − 1],K, s)
end if
return NumbComb

Notice that the recursive call of the algorithm can be refined by reducing either W0 or W1 (depending
on which one has the smallest number of items) instead of W1 only. In this case, the ”worst” cases
are the one where W0 and W1 are of equal size, i.e. intuitively cases where the noise level is high.

2

2.2 Computational time

Table 2.2 provides the computation time of the weighted procedure, on a sample of 500 observations.
The complete distance matrix between observations is calculated beforehand. For each observation,
the label is drawn in a Bernoulli distribution B(q), results are presented for q = 0.1 and 0.5. Weights
in the majority voting rule are all equal to 1. We observe that the computational times highly depends
on the noise level q. As a comparison, for k = 9 and p = 25, the exact LpO procedure is run within
a second.

3 Influence of p on kp, n fixed

3

k/m 5 10 15 20 25
3 0.55 1.21 2.16 3.10 4.52
5 0.93 3.53 9.41 19.97 38.79
7 1.35 8.62 42.75 163.67 506.24
9 1.90 22.98 229.55 1484.52 7247.31

q = 0.1

k/m 5 10 15 20 25
3 0.65 1.86 3.32 5.34 7.78
5 1.95 11.29 35.80 90.75 192.18
7 3.76 44.60 281.77 1162.73 3822.56
9 6.95 159.37 1774.14 12225.48 57212.10

q = 0.5

1 < p < 10 11 < p < 30 40 < p < 80 p > 80 Test
k 21 19 17-15 13-9 17

Table 1: Choice of parameter k by LpO for different values of p, or by test sample, when q = 0.3.

4

