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Abstract

The present paper focuses on the problem of detecting abrupt changes arising in the full distribution

of the observations (not only in the mean or variance). Several statistical approaches based on kernels

have been proposed to tackle this problem. Although they enjoy good statistical properties (oracle

inequality,. . . ), they suffer a high computational cost (in terms of time and memory) which makes

them computationally inefficient even with small to medium sample sizes (< 104).

Our work addresses this computational issue by first describing a new efficient and exact algorithm

for kernel multiple change-point detection with an improved worst-case complexity that is quadratic

in time and linear in space. It allows to deal with medium size signals (≈ 105).

Secondly, we also design a faster (but approximate) algorithm based on a low-rank approximation

to the Gram matrix, which is linear in time and space. This algorithm can be applied to large-scale

signals (n = 106). These exact and approximate algorithms have been implemented in R and C for

various kernels.

The computational and statistical performances of these new algorithms have been assessed through

empirical experiments. The runtime of our algorithms is observed to be faster than that of other

considered procedures. Finally the simulation results empirically confirm the higher statistical accuracy

of kernel-based approaches (and their flexibility) to analyze biological profiles made of DNA copy

numbers and allele B frequencies.

Keywords: Kernel method, Gram matrix, nonparametric change-point detection, model selection,

algorithms, dynamic programming, DNA copy number, allele B fraction

1. Background

1.1. Change-point detection with kernel

In this paper we consider the change-point detection problem [1] where the goal is to recover

abrupt changes arising in the distribution of a sequence of n independent random variables X1, . . . , Xn
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observed at respective time t1 < t2 < . . . < tn.5

State-of-the-art. Many parametric models (Normal, Poisson,. . . ) have been proposed [2? ? ]. These

models allow to detect different types of changes: in the mean, in the variance, and in both the mean

and variance (see also [2, 3, 4], . . . ) Efficient algorithms and heuristics have been proposed for these

models. Some of them scale in O(n log(n)) or even in O(n). In practice, these parametric approaches

have proven to be successful in various applications (see for example [5, 6]). However one of their main10

drawbacks is their lack of flexibility. For instance any change of distributional assumption requires the

development of a new dedicated inference scheme.

By contrast, the recently proposed kernel change-point detection approach [7, 8] is more generic

and has the potential to detect any change arising in the full distribution, which is not easily captured

by standard parametric models. More precisely in this approach, the observations are first mapped15

into a Reproducing Kernel Hilbert Space (RKHS) through a kernel function [9]. The difficult problem

of detecting changes in the distribution is then recast as simply detecting changes in the mean element

of observations in the RKHS, which is made possible using the well-known kernel trick.

One practical limitation of this kernel-based approach is its considerable computational cost owing

to the use of a n × n Gram matrix combined with the dynamic programming algorithm [? ]. More20

precisely [7] describe a dynamic programming algorithm to recover the best segmentation from 1 to

Dmax segments. They claim their algorithm has a O(Dmaxn
2) time complexity, but the latter is not

described in full details and its straightforward implementation requires the storage of a n × n cost

matrix (personal communication of the first author of [7] who was kind enough to send us his code).

The algorithm has a O(n2) space complexity, which is a severe limitation in practice with nowadays25

sample sizes. For instance analyzing a signal of length n = 105 requires to store a 105 × 105 matrix

of doubles, which takes 80 Go. Furthermore computing this cost matrix is not straightforward. In

fact simply using formula (8) of [7] to compute each term of this cost matrix leads to an O(n4) time

complexity.

Contributions. The present paper contains several contributions to the computational aspects and the30

statistical performance of the kernel change-point procedure introduced by [8].

The first one is to describe a new algorithm to simultaneously perform the dynamic programming

step of [7] and also compute the required elements of the cost matrix on the fly. On the one hand, this

algorithm has a complexity of order O(Dmaxn
2) in time and O(Dmaxn) in space (including both the

dynamic programming and the cost matrix computation). We also emphasize that this improved space35

complexity comes without an increased time complexity. This is a great algorithmic improvement upon

the change-point detection approach described by [8] since it allows the efficient analysis of signals with

up to n = 105 data-points in a matter of a few minutes on a standard laptop.

2



On the other hand, our approach is generic in the sense that it works for any positive semidef-

inite kernels. Importantly one cannot expect to exactly recover the best segmentations from 1 to40

Dmax segments in less than O(Dmaxn
2) without additional specific assumptions on the kernel. Indeed

computing the cost of a given segmentation has already a time complexity of order O(n2). It is also

noticeable that the improvement allowed by our approach can be applied to other existing strategies

such as the so-called ECP one [10]. In particular we show that the divisive clustering algorithm it is

based on (which provides an approximate solution with a complexity of order O(n2) in time) can be45

replaced by our algorithm which provides the exact solution with the same time complexity.

Our second contribution is a new algorithm dealing with larger signals (n > 105) based on a low-

rank approximation to the Gram matrix. This computational improvement is possible at the price

of an approximation, which leads to (almost) the best segmentations from 1 to Dmax segments with

a complexity of order O(Dmaxp
2n) in time and O((Dmax + p)n) in space, where p is the rank of the50

approximation.

The last contribution of the paper is the empirical assessment of the statistical performance of the

procedure introduced by [8]. This empirical analysis is carried out in the biological context of detecting

abrupt changes from a two-dimensional signal made of DNA copy numbers and allele B fractions [11].

The assessment is done by comparing our approach to state-of-the-art alternatives on resampled real55

DNA copy number data [12]. This illustrates the versatility of the kernel-based approach allowing

to detect changes in the distribution of such complex signals without explicitly modeling the type of

change we are looking for.

1.2. Outline of the paper

The remainder of the paper is organized as follows. In Section 2, we describe our kernel-based60

framework and detail the connection between detecting abrupt changes in the distribution and model

selection following [8]. The versatility of this kernel-based framework is emphasized by Section 2.5

where it is shown how the ECP approach [10] can be rephrased in terms of kernels.

Our main algorithmic improvements are detailed and justified in Section 3. We empirically illustrate

the improved runtime of our algorithm and compare it to that of ECP in Section 3.1.3. In Section 3.265

we detail our faster (but approximate) algorithm used to analyze larger signals (n > 105). It is based

on the combination of a low-rank approximation to the Gram matrix and the binary segmentation

heuristic [13]. An empirical comparison of the runtimes of the exact and approximate algorithms is

provided in Section 3.2.3.

Finally, Section 4 illustrates the statistical performance of our kernel-based change-point procedure70

in comparison with state-of-the-art alternatives in the context of biological signals such as DNA copy

numbers and allele B fractions [11].
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2. Kernel framework

In this section we recall the framework of [7] where detecting changes in the distribution of a

complex signal is rephrased as detecting changes of the mean element of a sequence of point in a75

Hilbert space. Then we detail the so-called KCP model selection procedure [8], which has been proved

to be optimal in terms of an oracle inequality.

2.1. Notation

Let X1, X2, . . . , Xn ∈ X be a time-series of n independent random variables, where X denotes any

set assumed to be separable [? ] throughout the paper. Let k : X × X → R denote a symmetric

positive semi-definite kernel [9], and H be the associated reproducing kernel Hilbert space (RKHS).

We refer to [? ] for an extensive presentation about kernels and RKHS. Let us also introduce the

canonical feature map Φ : X → H defined by Φ(x) = k(x, ·) ∈ H, for every x ∈ X . This canonical

feature map allows to define the inner product on H from the kernel k, by

∀x, y ∈ X , 〈Φ(x),Φ(y)〉H = k(x, y). (1)

The asset of kernels. One main interest of kernels is to enable dealing with complex data of any type

provided a kernel can be defined. In particular no vector space structure is required on X . For instance80

X can be a set of DNA sequences, a set of graphs or a set of distributions to name but a few examples

[see 14, for various instances of X and related kernels]. Therefore as long as a kernel k can be defined

on X , any element x ∈ X is mapped, through the canonical feature map Φ, to an element of the

Hilbert space H. This provides a unified way to deal with different types of (simple or complex) data.

Then for every index 1 ≤ t ≤ n, let us note85

Yt = Φ(Xt) ∈ H. (2)

From now on, we will only consider the following sequence Y1, . . . , Yn ∈ H of independent Hilbert-

valued random vectors.

The kernel trick. As a space of functions from X to R, the RKHS H can be infinite dimensional. From

a computational perspective one could be worried that manipulating such objects is computationally

prohibitive. However this is actually not the case and our algorithm relies on the so-called kernel trick,

which consists in translating any inner product in H in terms of the kernel k by use of Eq. (1). For

every 1 ≤ i, j ≤ n, it results

〈Yi, Yj〉H = k(Xi, Xj) = Ki,j ,

where Ki,j denotes the (i, j)-th coefficient of the n× n Gram matrix K = [ k(Xi, Xj) ]1≤i,j≤n.

4



2.2. Detecting changes in the distribution using kernels

Let us consider the model introduced by [8], which connects every Yt to its “mean” µ?t ∈ H by90

∀1 ≤ t ≤ n, Yt = Φ(Xt) = µ?t + εt ∈ H, (3)

where µ?t denotes the mean element associated with the distribution PXt of Xt, and εt = Yt−µ?t . Let

us also recall [15] that, if X is separable and E [ k(Xt, Xt) ] < +∞, then µ?t exists and is defined as the

unique element in H such that

∀f ∈ H, 〈µ?t , f〉H = E 〈Φ(Xt), f〉H . (4)

For our purpose we will now exploit the strong connection between µ?t and PXt . More precisely

for characteristic kernels [16], a change in the distribution of Xt implies a change in the mean element95

µ?t , that is

∀1 ≤ i 6= j ≤ n, PXi 6= PXj ⇒ µ?i 6= µ?j , (5)

the converse implication being true by definition of µ?t in Eq. (4). Exploiting this remark, the idea

behind kernel change-point detection [8] is to translate the problem of detecting changes in the dis-

tribution into detecting changes in the mean of Hilbert-valued vectors. Let us also notice that the

procedure developed by [8] can be interpreted as a “kernelized version” of the procedure proposed by100

[17], which was originally designed to detect changes in the mean of real-valued variables.

2.3. Statistical framework

From Eq. (5) it results that any sequence of abrupt changes in the distribution along the time then

implies there exists a sequence of D∗− 1 true change-points 1 = τ∗0 < τ∗1 < . . . < τ∗D∗−1 < n+ 1 = τ∗D∗

such that

µ∗1 = . . . = µ∗τ∗1−1 6= µ∗τ∗1 = . . . = µ∗τ∗2−1 6= . . . 6= µ∗τ∗
D∗−1

= . . . = µ∗n.

In other words we get that µ∗ = (µ∗1, . . . , µ
∗
n)′ ∈ Hn is piecewise constant.

From a set of D − 1 candidate change-points 1 < τ1 < . . . < τD−1 < n+ 1, let τ be defined by

τ = (τ0, τ1, τ2, . . . , τD−1, τD) ,

with the convention τ0 = 1 and τD = n + 1. With a slight abuse of notation, we also call τ the

segmentation of {1, . . . , n} associated with the change-points 1 < τ1 < . . . < τD−1 < n + 1. Then105

following [8], the estimator µ̂τ = (µ̂τ1 , . . . , µ̂
τ
n)
′ ∈ Hn of µ∗ = (µ∗1, . . . , µ

∗
n)
′

is defined by

∀0 ≤ i ≤ D − 1, ∀τi ≤ t ≤ τi+1 − 1, µ̂τt =
1

τi+1 − τi

τi+1−1∑
t′=τi

Yt′ .
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The performance of µ̂τ is measured by the quadratic risk

R(µ̂τ ) = E
[
‖µ∗ − µ̂τ‖2H,n

]
= E

[
n∑
i=1

‖µ∗i − µ̂τi ‖
2
H

]
,

where ‖·‖H denotes the norm in the Hilbert space H.

2.4. Model selection

As long as the signal-to-noise ratio remains small, [8] emphasized that all true change-points cannot

be recovered without including false change-points. This leadsthem to define the best segmentation

τ∗ (for a finite sample size) as

τ∗ = arg min
τ∈Tn

‖µ∗ − µ̂τ‖H,n ,

where Tn denotes the collection of all possible segmentations τ of {1, . . . , n} with at most Dmax

segments. When the signal-to-noise ratio is large enough, τ∗ coincides with the true segmentation.110

As a surrogate to the previous unknown criterion, [8] optimize the following penalized criterion

τ̂ = arg min
τ∈Tn

{
‖Y − µ̂τ‖2H,n + pen(τ)

}
, with pen(τ) = CDτ

[
1 + log

(
n

Dτ

)]
, (6)

where C ≥ 1 is a constant to be fixed and Dτ denotes the number of segments of the segmentation τ .

Since this penalty only depends on τ through Dτ , optimizing (6) can be formulated as a two-step

procedure. The first step consists in solving

∀1 ≤ D ≤ Dmax, τ̂D = arg min
τ∈TD

‖Y − µ̂τ‖2H,n , (7)

where TD denotes the set of segmentations with D segments. This optimization problem, which is

usually solved by dynamic programming [? ? ], is computationally hard since the cardinality of TD is(
n−1
D−1

)
. The second step relies on the straightforward optimization of

D̂ = arg min
D

{
‖Y − µ̂τ̂D‖

2
H,n + pen(τ̂D)

}
and τ̂ = τ̂D̂. (8)

From a theoretical point of view, this model selection procedure has been proved to be optimal

in terms of an oracle inequality by [8], which is the usual non-asymptotic optimality result for model

selection procedures [? ]. However from a practical point of view, the first step (i.e. solving Eq. (7))

remains highly challenging. Indeed existing dynamic programming algorithms are time and space115

consuming when used in the kernel framework as it will be clarified in Section 3.1.1. The main

purpose of the present paper is to provide a new computationally efficient algorithm to solve Eq. (7)).

Our new algorithm has a reduced space and time complexity and allows the analysis of signals much

larger than n = 104.
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2.5. A link between kernels and energy based distances120

Note that the kernel-based framework developed in Sections 2.1–2.3 is very general. Various existing

procedures can be rephrased in this framework by use of a particular kernel. For example the procedure

of [17], which is devoted to the detection of changes in the mean of a one-dimensional real-valued signal,

reduces to ours by use of the linear kernel. More interestingly the procedure called ECP and developed

by [10], which relies on an energy-based distance to detect changes in multivariate distributions, can125

also be integrated into our framework using a particular kernel as explained in what follows.

For every α ∈ (0, 2), let us define ρα(x, y) = ‖x− y‖α, where x, y ∈ Rd and ‖·‖ denotes the euclidean

norm on Rd. Then ρα is a semimetric of negative type [18], and for any independent random variables

X,X ′, Y, Y ′ ∈ Rd with respective probability distributions satisfying PX = PX′ and PY = PY ′ , [10]

introduce the energy-based distance:

E(X,Y ;α) = 2E [ ρα(X,Y ) ]− E [ ρα(X,X ′) ]− E [ ρα(Y, Y ′) ] . (9)

Then following [19] and for every x0 ∈ Rd, we define

kx0
α (x, y) =

1

2
[ ρα(x, x0) + ρα(y, x0)− ρα(x, y) ] ,

which is a positive semi-definite kernel leading to an RKHS H0
α. Plugging this in Eq. (9), one can

easily check that

E(X,Y ;α) = 2E [ ρα(X,x0) + ρα(Y, x0)− 2kx0
α (X,Y ) ]

− E [ ρα(X,x0) + ρα(X ′, x0)− 2kx0
α (X,X ′) ]

− E [ ρα(Y, x0) + ρα(Y ′, x0)− 2kx0
α (Y, Y ′) ]

= 2E [ kx0
α (X,X ′) + kx0

α (Y, Y ′)− 2kx0
α (X,Y ) ]

= 2
∥∥µαPX − µαPY ∥∥2H0

α
,

where µαPX , µ
α
PY
∈ H0

α respectively denote the mean element of distributions PX and PY , and ‖·‖H0
α

is

the norm in H0
α.

An important consequence of this derivation is that the exact and approximation algorithms de-

scribed in following Section 3 immediately apply to procedures relying on the optimization of the130

energy-based distance E(X,Y ;α).

This is all the more interesting as our exact algorithm (detailed in Section 3.1.2) has a time com-

plexity that is close to that of the heuristic optimization algorithm involved in the ECP procedure

and called divisive or agglomerative clustering. Therefore for the same computational time, our exact

optimization algorithm can replace the approximate one originally used in ECP. Let us also emphasize135

that our approximate algorithm (exposed in Section 3.2) is even faster.
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3. New algorithms

In this section we first show how to avoid the preliminary calculation of the cost matrix required by

[7] to apply dynamic programming. The key idea is to compute the elements of the cost matrix on the

fly when they are required by the dynamic programming algorithm. Roughly, this can be efficiently140

done by reordering the loops involved in Algorithm 1 [7]. This leads to our new exact algorithm

(Algorithm 3), which has a reduced space complexity of order O(Dmaxn) compared to O(n2) for the

one used in [7].

Secondly, we provide a faster but approximate algorithm (Section 3.2), which enjoys a smaller

complexity of order O(Dmaxn) in time. It combine a low-rank approximation to the Gram matrix and145

the use of the binary segmentation heuristic. This approximate algorithm allows the analysis of very

large signals (n > 106).

3.1. New efficient algorithm to recover the best segmentation from the Gram matrix

As exposed in Section 2.4, the main computational cost results from Eq. (7), which consists in

recovering the best segmentation with 1 ≤ D ≤ Dmax segments, that is solving

LD,n+1 = min
τ∈TD

‖Y − µ̂τ‖2H,n (best fit to the data)

m̂D = arg min
τ∈TD

‖Y − µ̂τ‖2H,n (best segmentation) (10)

for every 1 ≤ D ≤ Dmax, where TD denotes the collection of segmentations of {1, . . . , n} with D

segments. This challenging step involves the use of dynamic programming [20, 21], which provides the150

exact solution to the optimization problem (10). Let us first provide some details on the usual way

dynamic programming is implemented.

3.1.1. Limitations of the standard dynamic programming algorithm for kernels

Let τ denote a segmentation in D segments (with the convention that τ1 = 1 and τD+1 = n + 1).

For any 1 ≤ d ≤ D, the segment {τd, ..., τd+1 − 1} of the segmentation τ has a cost that is equal to

Cτd,τd+1
=

τd+1−1∑
i=τd

k(Xi, Xi) −
1

τd+1 − τd

τd+1−1∑
i=τd

τd+1−1∑
j=τd

k(Xi, Xj). (11)

Then the cost of the segmentation τ is given by

‖Y − µ̂τ‖2H,n =
∑
d

Cτd,τd+1
,

which is clearly segment additive [7, 8].

Dynamic programming solves (10) for all 1 ≤ D ≤ Dmax by applying the following update rules

∀2 ≤ D ≤ Dmax, LD,n+1 = min
τ≤n
{ LD−1,τ + Cτ,n+1 }, (12)
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which exploits the property that the optimal segmentation in D segments over {1, . . . , n} can be155

computed from optimal ones with D − 1 segments over {1, . . . , τ} (τ ≤ n). Furthermore making the

key assumption that the cost matrix {Ci,j}1≤i,j≤n+1 has been stored, we can compute LD,n+1 following

Algorithm 1.

Algorithm 1 Basic use of Dynamic Programming

1: for D = 2 to Dmax do

2: for τ ′ = D to n do

3: LD,τ ′+1 = minτ≤τ ′{ LD−1,τ + Cτ,τ ′+1 }

4: end for

5: end for

This algorithm, which is the one used by [7], suffers two main limitations. First it assumes that the

Cτ,τ ′ have been already computed, and does not take into account the resulting computational cost.160

Second, it stores all Cτ,τ ′ in a O(n2) matrix, which is memory expensive.

A quick inspection of the algorithm reveals that the main step at Line 3 requires O(τ ′) operations

(assuming the Ci,js have been already computed). Therefore with the two for loops we get a complexity

of O(Dmaxn
2) in time. Note that without any particular assumption on the kernel k(·, ·), computing

‖Y − µ̂τ‖2H,n for a given segmentation τ is already of order O(n2) in time since it involves summing165

over a quadratic number of terms of the Gram matrix (see Eq. (11)). Therefore there is no hope to

solve (10) exactly in less than quadratic time without additional assumptions on the kernel.

From Eq. (11) let us also remark that computing each Ci,j (1 ≤ i < j ≤ n) naively requires itself a

quadratic number of operations, hence a O(n4) time complexity for computing the whole cost matrix.

Then the dynamic programming step (Line 3 of Algorithm 1) is not the limiting factor in that case170

and the overall time complexity of Agorithm 1 is O(Dmaxn
4).

Finally let us also emphasize that this high computational burden is not specific of detecting

change-points with kernels. It is rather representative of most learning procedures based on positive

semi-definite kernels and the associated Gram matrix [22].

3.1.2. Improved use of dynamic programming for kernel methods175

Reducing space complexity. From Algorithm 1, let us first remark that each Cτ,τ ′ is used several times

along the algorithm. A simple idea to avoid that is to swap the two for loops in Algorithm 1. This

leads to the following modified Algorithm 2, where each column C·,τ ′+1 of the cost matrix is only used

once unlike Algorithm 1.
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Algorithm 2 Improved space complexity

1: for τ ′ = 2 to n do

2: for D = 2 to min(τ ′, Dmax) do

3: LD,τ ′+1 = minτ≤τ ′{ LD−1,τ + Cτ,τ ′+1 }

4: end for

5: end for

Importantly this swap does not change the output of the algorithm and does not induce any180

additional calculations. Furthemore at step τ ′ of the first for loop we do not need the whole n × n

cost matrix to be stored, but only the column C·,τ ′+1 of the cost matrix. This column is of size at

most O(n). Storing only this column leads to a much improved O(Dmaxn) space complexity.

Algorithm 2 finally requires to store coefficients {Ld,τ}1≤d≤D, 2≤τ≤n that are computed along the

algorithm as well as successive column vectors {C·,τ}2≤τ≤n (of size at most n) of the cost matrix.185

This leads to an overall complexity of O(Dmaxn) in space. The only remaining problem is to compute

these successive column vectors efficiently. Let us recall that a naive implementation is prohibitive:

each coefficient of the column vector can be computed in O(n2), which would lead to O(n3) to get the

whole column.

Iterative computation of the columns of the cost matrix. The last ingredient of our final algorithm190

is the efficient computation of each column vector {C·,τ}2≤τ≤n. Let us explain how to iteratively

compute each vector in linear time.

First it can be easily observed that Eq. (11) can be rephrased as follows

Cτ,τ ′ =

τ ′−1∑
i=τ

(
k (Xi, Xi)−

Ai,τ ′

τ ′ − τ

)
= Dτ,τ ′ −

1

τ ′ − τ

τ ′−1∑
i=τ

Ai,τ ′ ,

where Dτ,τ ′ =
∑τ ′−1
i=τ k (Xi, Xi) and

Ai,τ ′ = −k(Xi, Xi) + 2

τ ′−1∑
j=i

k(Xi, Xj).

Second, both Dτ,τ ′ and {Ai,τ ′}i≤τ ′ can be iteratively computed from τ ′ to τ ′ + 1 by use of the two

following equations:

Dτ,τ ′+1 = Dτ,τ ′ + k(Xτ ′ , Xτ ′), and Ai,τ ′+1 = Ai,τ ′ + 2k(Xτ ′ , Xτ ′), ∀i ≤ τ ′,

with Aτ ′+1,τ ′+1 = −k(Xτ ′ + 1, Xτ ′ + 1). Therefore as long as computing k(xi, xj) is in O(1), updating

from τ ′ to τ ′ + 1 requires O (τ ′) operations. Note that for many classical kernels, computing k(xi, xj)

is indeed in O(1). For example if xi ∈ Rq with q a constant larger or equal to 1 and k(·, ·) denotes the195

Gaussian kernel, each evaluation of k(xi, xj) has a O(q) = O(1) time complexity. If q is not negligible,
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the last example illustrates that the resulting time complexity is only increased by a multiplicative

factor.

This update rule leads us to the following Algorithm 3, where each column C·,τ ′+1 in the first for

loop is computed only once:200

Algorithm 3 Improved space and time complexity

1: for τ ′ = 2 to n do

2: Compute the (τ ′ + 1)-th column C·,τ ′+1 from C·,τ ′

3: for D = 2 to min(τ ′, Dmax) do

4: LD,τ ′+1 = minτ≤τ ′{LD−1,τ + Cτ,τ ′+1}

5: end for

6: end for

From a computational point of view, each step of the first for loop in Algorithm 3 requires O(τ ′)

operations to compute C·,τ ′+1 and at most O(Dmaxτ
′) additional operations to perform the dynamic

programming step at Line 4. Then the overall complexity is O(Dmaxn
2) in time and O(Dmaxn) in

space. This should be compared to the O(Dmaxn
4) time complexity of the naive calculation of the

cost matrix and to the O(n2) space complexity of the standard Algorithm 1 from [7].205

3.1.3. Runtimes comparison to other implementations

The purpose of the present section is to perform the comparison between Algorithm 3 and other

competitors to illustrate their performances as the sample size increases with Dmax = 40.

The first comparison has been carried out between Algorithm 3 and the naive quartic computation

of the cost matrix. These two algorithms have been implemented in C and packaged in R. Results for210

these algorithms are reported in Figure 1 (Left). Unsurpisingly, our exact algorithm is faster than a

quartic computation of the cost matrix even for very small sample size (n < 320).

Second, we also compare the runtime of Algorithm 3 with that of ECP discussed in Section 2.5

implemented in the R-package [23] (see the left panel of Figure 1). Since ECP is based on the binary

segmentation heuristic [24] applied to an energy-based distance, its worst-case complexity is at most215

O(Dmaxn
2) in time, which is the same as that of Algorithm 3. Note also that the native implementation

of ECP involves an additional procedure relying on permutations to choose the number of change-

points. If B denotes the number of permutations, the induced complexity is then O(BDmaxn
2) in

time. To be fair, we compare our approach and ECP with and without the permutation layer. Finally

it is also necessary to emphasize that unlike Algorithm 3, ECP does not provide the exact but only an220

approximate solution to the optimization problem in Eq. (10). Results are summarized in Figure 1

(Right). It illustrates that our exact algorithm (Algorithm 3) has a quadratic complexity similar to that
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KernSeg and quartic KCP KernSeg and ECP

Figure 1: (Left) Runtime for n < 250 of Algorithm 1 and Algorithm 3 as a function of the length of the signal (n)

for Dmax = 40. (1-red) and a quartic computation of the cost matrix (2-violet). (Right) Runtime for n < 2500 of

Algorithm 3 as a function of the length of the signal (1-red) and of ECP without permutation (2-blue) and ECP with

the default number of permutations (3-green).

of ECP with and without permutations. Our algorithm is the overall fastest one even for small sample

size (n < 1 000). Although this probably results from implementation differences it is still noteworthy

since Algorithm 3 is exact unlike ECP. Let us also mention that for n = 105 (with Dmax = 40), our225

exact approach runs in 40 minutes (see also Figure 2), whereas ECP (without permutation) would

require 7 hours (time estimated from Figure 2 by assuming a quadratic dependency with respect to

n).

3.2. Approximating the Gram matrix to speed up the algorithm

In Section 3.1.2, we described an improved algorithm based on carefully combining dynamic pro-230

gramming and the computation of the cost matrix elements. This new algorithm (Algorithm 3) pro-

vides the exact solution to the optimization problem given by Eq. (10). However without any further

assumption on the underlying kernel, this algorithm only achieves the complexity O(n2) in time, which

is a clear limitation with large scale signals (n > 106). Note also that this limitation results from the

use of positive semi-definite kernels (and related Gram matrices) and cannot be improved by existing235

algorithms to the best of our knowledge. For instance, the binary segmentation heuristic [24], which is

known to be computationally efficient for parametric models, suffers the same O(n2) time complexity

when used in the kernel framework (see Section 3.2.2).

Let us remark however that for some kernels it is possible to reduce this time complexity. For
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example for the linear one k(x, y) = 〈x, y〉Rd , x, y ∈ Rd, one can use the following trick

∑
1≤i6=j≤n

k(Xi, Xj) =
∑

1≤i 6=j≤n

〈Xi, Xj〉Rd =
∑

1≤i≤n

〈
Xi,

n∑
j=1

Xj −Xi

〉
(13)

=

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
2

−
n∑
i=1

‖Xi‖2 ,

where ‖·‖ denotes the Euclidean norm in Rd.

The purpose of the present section is to describe a general strategy (i.e applicable to any kernel)240

relying on a low-rank approximation to the Gram matrix [25, 26, 27]. This approximation allows

to considerably reduce the computation time by exploiting (13). Note however that the resulting

procedure achieves this lower time complexity at the price of only providing an approximation to the

exact solution to (10) (unlike the algorithm described in Section 3.1.2).

3.2.1. Low-rank approximation to the Gram matrix245

The main idea is to follow the same strategy as the one described by [28] to derive a low-rank

approximation to the Gram matrix K = {Ki,j}1≤i,j≤n, where Ki,j = k(Xi, Xj).

Assuming K has rank rk(K) � n, we could be tempted to compute the best rank approximation

to K by computing the rk(K) largest eigenvalues (and corresponding eigenvectors) of K. However

such computations induce a O(n3) time complexity which is prohibitive.250

Instead, [28] suggest applying this idea on a square sub-matrix of K with size p � n. For any

subsets I, J ⊂ {1, . . . , n}, let KI,J denote the sub-Gram matrix with respectively row and column

indices in I and J . Let Jp ⊂ {1, . . . , n} denote such a subset with cardinality p, and consider the sub-

Gram matrix KJp,Jp which is of rank r ≤ p. Further assuming r = p, the best rank p approximation

to KJp,Jp is KJp,Jp itself. This leads to the final approximation to the Gram Matrix K [28, 22] by

K̃ = KIn,Jp K+
Jp,Jp

KJp,In ,

where In = {1, . . . , n}, and K+
Jp,Jp

denotes the pseudo-inverse of KJp,Jp . Further considering the SVD

decomposition of KJp,Jp = U′ΛU, for an orthonormal matrix U, we can rewrite

K̃ = Z′Z, with Z = Λ−1/2U KJp,In ∈Mp,n(R).

Note that the resulting time complexity is O(p2n), which is smaller than the former O(n3) as long as

p = o(
√
n). This way, columns {Zi}1≤i≤n of Z act as new p-dimensional observations and each K̃i,j

can be seen as the inner product between two vectors of Rp, that is

K̃i,j = Z ′iZj . (14)

The main interest of this approximation is that, using Eq. (13), computing the cost of a segment of

length t has a complexity O(t) in time unlike the usual O(t2) that holds with general kernels.
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Note that choosing the set Jp of columns/rows leading to the approximation K̃ is of great interest

in itself for at least two reasons. First from a computational point of view, the p columns have to

be selected following a process that does not require to compute the n possible columns beforehand255

(which would induce an O(n2) time complexity otherwise). Second, the quality of K̃ to approximate

K crucially depends on the rank of K̃ that has to be as close as possible to that of K, which remains

unknown for computational reasons. However such questions are out of scope of the present paper and

we refer interested readers to [25, 28, 22] where this point has been extensively discussed.

3.2.2. Binary segmentation heuristic260

Since the low-rank approximation of the Gram matrix detailed in Section 3.2.1 leads to deal with

finite dimensional vectors in Rp (14), the change-point detection problem described in Section 2.3

amounts to recover abrupt changes of the mean of a p-dimensional time-series. Therefore any existing

algorithm usually used to solve this problem in the p-dimensional framework can be applied. An

exhaustive review of such algorithms is out of the scope of the present paper. However we will mention265

only a few of them to highlight their drawbacks and motivate our choice. Let us also recall that our

purpose is to provide an efficient algorithm allowing: (i) to (approximately) solve Eq. (10) for each

1 ≤ D ≤ Dmax, and (ii) to deal with large sample sizes (n > 106).

The first algorithm is the usual version of constrained dynamic programming [21]. Although it

has been recently revisited by [29, 30], this algorithm suffers a worst-case complexity of O(n2) in270

time, which excludes dealing with large sample sizes. In the same line, another version of regularized

dynamic programming has been explored by [31] who designed the PELT procedure. It provides

the best segmentation over all segmentations with a penalty of λ per change-point with an O(n)

complexity in time if the number of change-points is linear in n. On the one hand, with PELT it is

not straightforward to efficiently solve Eq. (10) for each 1 ≤ D ≤ Dmax, which is precisely the goal we275

pursue. On the other hand the complexity of the pruning inside PELT depends on the true number

of change-points and number of dimensions. In particular for a small number of change-points it is

quadratic.

A second possible algorithm is the so-called binary segmentation [32, 13, 24] that is a standard

heuristic for approximately solving Eq. (10) for each 1 ≤ D ≤ Dmax. This iterative algorithm computes

the new segmentation τ̃ (D + 1) with D+1 segments from τ̃ (D) by splitting one segment of τ̃ (D) into

two new ones without modifying other segments. More precisely considering the set of change-points

τ̃ (D) = {τ1, . . . , τD+1}, binary segmentation provides

τ̃ (D + 1) = arg min
τ∈TD+1|τ∩τ̃(D)=τ̃(D)

{
‖Y − µ̂τ‖2H,n

}
.

Since only one segment of the previous segmentation is divided into two new segments at each step,

the binary segmentation algorithm provides a simple (but only approximate) solution to Eq. (10) for280
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each 1 ≤ D ≤ Dmax. Furthermore if computing the cost of any segment is linear in its length, then the

time complexity of binary segmentation for splitting one segment of length t into two new ones is O(t).

Therefore the overall time complexity of binary segmentation for recovering approximate solutions to

(10) for all 1 ≤ D ≤ Dmax is only O (log(Dmax)n) on average and O (Dmaxn) at worse.

An important remark is that binary segmentation only achieves this reduced time complexity285

provided computing the cost of one segment has a complexity linear in its length. This is precisely

what has been allowed by the low-rank matrix approximation summarized by Eq. (14). Otherwise

with a quadratic complexity for computing the cost of one segment, binary segmentation would suffer

an overall time complexity of order O(Dmaxn
2).

3.2.3. Implementation and runtimes of the approximate solution290

The approximate algorithm we recommend is the combination of the low-rank approximation step

detailed in Section 3.2.1 and of the binary segmentation discussed in Section 3.2.2. The resulting

worst-case time complexity is then O(p2n + Dmaxn), which allows to deal with large sample sizes

(n > 106).

From this time complexity it arises that an influential parameter is the number p of columns of295

the Gram matrix used to build the low-rank approximation. In particular this low-rank approxima-

tion remains computationally attractive as long as p = o(
√
n). Figure 2 illustrates the actual time

complexity of this fast algorithm (implemented in C) with respect to n for various values of p: (i) a

constant value of p, and (ii) p =
√
n. To ease the comparison, we also potted the runtime of the exact

algorithm (Algorithm 3) detailed in Section 3.1.2.300

Our fast approximate algorithm recovers a quadratic complexity if p =
√
n. However its overhead

is much smaller than that of the exact algorithm, which makes it more applicable than the latter in

practice with large signals. Note also that Figure 2 illustrates our approximate algorithm returns the

solution in a matter of seconds with a sample size of n = 105, which is much faster than the exact

algorithm (based on dynamic programming) that requires a few minutes.305

4. Segmentation assessment

From a statistical point of view our exact algorithm provides the same results as that of [8]. However

it greatly improves on the latter in terms of computational complexity as proved in Section 3.1. In their

simulation experiments [8] mainly focus on detecting change-points in the distribution of R-valued data

as well as of more structured objects such as histograms. Here we rather investigate the performance of310

the kernel change-point procedure on specific two-dimensional biological data: the DNA copy number

and the BAF profiles (see Section 4.1.1). More precisely our experiments highlight two main assets of

applying positive semi-definite kernels to these biological data: (i) kernels avoid the need for modeling
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KernSeg Exact and Heuristic

Figure 2: Runtime for n < 105 of our exact algorithm (Algorithm 3) as a function of n (length of the signal) for

Dmax = 10. (1-red), of our approximate algorithm with p =
√
n (2-orange) and p = 100 (3-black).

.

the type of change-points we are interested in and improve upon state-of-the-art approaches in this

biological context, and (ii) the high flexibility of kernels facilitates data fusion, allowing to combine315

different data-types and get more power to detect true change-points.

In the following we first briefly introduce the type of data we are looking at, and describe our

simulation experiments obtained by resampling from a set of real annotated DNA profiles. Second,

we provide details about the change-point procedures involved in our comparison. We also define the

criteria used to assess the performance of the estimated segmentations. Finally, we report and discuss320

the results of these experiments.

4.1. Data description

4.1.1. DNA copy number data

DNA copy number alterations are a hallmark of cancer cells [33]. The accurate detection and

interpretation of such changes are two important steps toward improved diagnosis and treatment.325

Normal cells have two copies of DNA, inherited from each biological parent of the individual. In tumor

cells, parts of a chromosome of various sizes (from kilobases to a chromosome arm) can be deleted,

or copied several times. As a result, DNA copy numbers in tumor cells are piecewise constant along

the genome. Copy numbers can be measured using microarray or sequencing experiments. Figure 3

displays an example of copy number profiles that can be obtained from SNP-array data [34]. The330

top panel (denoted by c) represents estimates of the total copy number (TCN). The bottom panel
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(denoted by b) represents estimates of allele B fractions (BAF). We refer to [34] for an explanation

of how these estimates are obtained. In the normal region [0-2200], the TCN is centered around two

copies and BAF has three modes at 0, 1/2 and 1. Importantly any change in only one of the parental
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0 2000 4000 6000 8000 10000
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(1,1) (1,2) (0,2)

Figure 3: SNP array data. Total copy numbers (c), allelic ratios (b) along 10,000 genomic loci. Red vertical lines

represent change-points, and red horizontal lines represent estimated mean signal levels between two change-points.

SNPs that are heterozygous in the germline are colored in black; all others are colored in gray.

copy numbers is reflected in both c and b for heterozygous SNPs. Therefore it makes sense to jointly335

analyze both dimensions to ease the identification of change-points.

4.1.2. Generated data

Realistic DNA profiles with known truth (similar to that of Figure 3) have been generated using the

acnr package [12]. The constituted benchmark consists of profiles with 5, 000 positions of heterozygous

SNPs and exactly K = 10 change-points. As in [12] we impose the constraint that segments are either340

normal, copy-neutral LOH1, single copy-gain or hemizygous deletion. The acnr package allows to vary

the difficulty level by adding normal cell contamination, thus degrading tumor purity. Three levels of

difficulty have been considered by varying tumor purity with proportions 100% (easy case), 70%, and

50% (difficult case). Figure 4 displays three examples of simulated profiles (one for each tumor purity

level).345

For each level, N = 200 profiles (with the same segment states and change-points) are generated

making a total of 600 simulated profiles both for BAF and TCN.

1A region where one of parental chromosome has been duplicated and the other one deleted
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Figure 4: Benchmark1: Simulated profiles with acnr package. Each line corresponds to a tumor purity level (100%, 70%

and 50%) and column to the copy number (c) and the allele B fraction (b)

4.2. Competing procedures

4.2.1. Kernseg and approximate Kernseg

The implemented algorithm Kernseg (corresponding to Algorithm 3) and its fast (but approximate)

version based on binary segmentation, denoted by ApproxKernseg , remain applicable with any kernel

(Gaussian, exponential, polynomial,. . . ). In our simulation experiments we consider two kernels. The

first one is the so-called linear kernel defined by k(x, y) = 〈x, y〉, where x, yinR. It is used as a

benchmark since Kernseg with this kernel reduces to the procedure of [17]. The second one is the

Gaussian kernel defined for every x, y ∈ R by

kδ(x, y) = exp

[
− |x− y|2

δ

]
, ∀δ > 0.

Since it belongs to the class of characteristic kernels, it is a natural choice to detect any abrupt changes350

arising in the full distribution [8].

As mentioned earlier, one main asset of kernels is that they allow to easily perform data fusion,

which consists here in combining several data profiles to increase the power of detecting small changes
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arising at the same location in several of them. Here the joint segmentation of the two-dimensional

signal (TCN+BAF) is carried out by defining a new kernel as a mixture of two coordinate-wise Gaussian

kernels, that is

k(x1, x2) = kδ(c1, c2) + kδ′(b1, b2) (15)

with x1 = (c1, b1) and x2 = (c2, b2) where the first coordinate refers to TCN and the second one to

BAF.

The Gaussian kernel is used with δ = 1 with TCN profiles and δ′ = 0.02 with BAF ones. Note

that several values of δ and δ′ have been explored. These ones have been selected as they provide the355

most representative results.

4.2.2. Recursive Binary Segmentation (RBS)

In the quite recent paper by [12], it has been shown that the Recursive Binary Segmentation (RBS)

[35] is the overall state-of-the-art change-point procedure in the present biological context of TCN and

BAF profiles.360

4.3. Performance assessment

The quality of the resulting segmentations is quantified in two ways. First we infer the ability of

the procedure to provide a reliable estimate by computing the quadratic risk of the estimator based

on the TCN profile (Section 4.3.1). Second, we also assess the quality of the estimated segmentations

by measuring the discrepancy between the true and estimated change-points by use of the Frobenius365

distance (Section 4.3.2).

4.3.1. Risk of a segmentation

From a practical point of view, there is no hope to recover true change-points in regions where

the signal-to-noise ratio is too low without including false positives, which we would like to avoid. In

such non-asymptotic settings, the quality of the estimated segmentation τ can be measured by the

risk R(f̂τ ) which measures the gap between the regression function f = (f1, . . . , fn) ∈ Rn and its

piecewise-constant estimator based on τ , that is f̂τ =
(
f̂τ1 , . . . , f̂

τ
n

)
∈ Rn. This risk is defined by

R(f̂τ ) =
1

n

n∑
i=1

E

[(
fi − f̂τi

)2 ]
.

In the following simulation results, the risks of all segmentations are always computed with respect to

the regression function of the corresponding TCN profile.
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4.3.2. Frobenius distance370

We also quantify the gap between a segmentation τ and the true segmentation τ∗ by using the

Frobenius distance as follows. First, for any segmentation τ = (τ1, τ2, . . . , τD, τD+1), let us introduce

a matrix M = {Mi,j}1≤i,j≤n such that

Mi,j =

D+1∑
k=1

1(τk−1≤i,j<τk)

τk − τk−1
,

where 1(τk−1≤i,j<τk) = 1, if i, j ∈ [τk−1, τk[∩N, and 0 otherwise. Let us now consider the matrix

M∗ defined from the true segmentation τ∗ in the same way. Then, the Frobenius distance between

segmentations τ and τ∗ is given, through the distance between matrices M and M∗, by

d2F (τ, τ?) = ‖M −M?‖2F =

n∑
i,j=1

(
Mi,j −M∗i,j

)2
.

4.4. Results

In our experiments, we successively considered three types of signals: (i) total copy number profiles

(TCN), (ii) allele B fraction profiles (BAF), and (iii) the joint signal in R2 made of (TCN,BAF). In

the following, results are reported only for the first and the last one since TCN and BAF provide

similar results to each other in the present simulation setting.375

We first compare our procedure called Kernseg to the state-of-the-art segmentation techniques

which are usually applied on TCN profiles only. Second, the best competitor is kept and compared to

Kernseg on the joint signal (TCN, BAF). Lastly, results of ApproxKernseg are compared to the ones

of Kernseg .

4.4.1. Comparison with state-of-the-art procedures on the total copy number (TCN) profiles380

In this first set of simulation experiments, two procedures using Kernseg (one with the linear kernel

denoted by KSegLin, and the other with the Gaussian kernel denoted by KSegGauss) and the RBS

approach are run. Figure 5 illustrates the performance of segmentation procedures both in terms of

change-points location and in terms of risk. In both cases, the first three boxplots correspond to eval-

uations performed at the true number of change-points, while the last one illustrates the performance385

of Kernseg (with the Gaussian kernel), including the choice of the number of change-points which has

been made following the procedure described by [8].

Using kernels improves the performance of change-point detection. Running Kernseg both with Gaus-

sian and linear kernels illustrates the interest of considering non-linear kernels. When used with the

linear kernel, our procedure exactly reduces to what Lebarbier (2005) is doing, which is known to work390

well for detecting changes arising in the mean of a signal. When applying these procedures on TCN

only, we observe that linear and Gaussian kernels exhibit a similar good behavior when changes arise
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Figure 5: Performances of segmentations on 200 simulated TCN profiles in a difficult setting (tumor purity around 50%)

in the mean and the purity is high (results not shown). This is no longer the case as the purity is

low (50%), as displayed in Figure 5. Whatever the chosen performance measure (risk or Frobenius

distance), the linear kernel clearly fails in this difficult situation whereas the Gaussian one still provides395

accurate change-points estimates. Also, this does not result from the choice of the number of segments

since the performance of the Gaussian kernel at the selected number of segments remains better than

that of the linear kernel at the true one. These results emphasize the advantage provided by non-linear

kernels. Using the Gaussian kernel allows to detect changes also arising in higher moments of the signal

than the mean. This is noticeable from the risk of the resulting estimator which is lower than that of400

the linear kernel while the latter precisely focuses on minimizing this risk.

Another important aspect is that the Gaussian kernel performs well both in terms of change-point

locations (see Squared Frobenius distance) and in terms of risk. As both criteria lead to similar

conclusions in our simulation settings, only figures showing the performance in terms of Squared

Frobenius Distance will be displayed in the following. From now on, Kernseg will be run with the405

Gaussian kernel.

KernSeg with Gaussian kernel provides better results than RBS. As mentioned earlier in Section 4.2.2,

the Recursive Binary Segmentation (RBS) is the overall state-of-the-art change-point procedure in the

present context. When considering the true number of change-points, Kernseg with Gaussian kernel

provides a lower risk than RBS (see Figure 5) and more accurate change-point locations.410

Figure 5 also illustrates that the procedure selecting by itself the number of change-points after

the use of Kernseg with the Gaussian kernel provides similar results to those of RBS at the true
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dimension. This highlights that the sequence of candidate change-points provided by Kernseg based

on the Gaussian kernel is of higher quality than that of RBS (at least in the considered settings).

4.4.2. Comparison of Kernseg with RBS on the joint (TCN, BAF) signal415

An important question is to know whether performing a joint segmentation with this type of

biological data would improve the performance.

Figure 6 illustrates the gain resulting from the joint segmentation. It corresponds to the difficult

situation where tumor purity is around 50%. To ease the comparison, the first three boxplots are the

same as those of Figure 5, when applying RBS and Kernseg with Gaussian on TCN only. Along-420

side these boxplots, results for the joint signal are plotted for the same three procedures: RBS and

Kernseg at the true number of change-points, and Kernseg at the estimated number of change-points.
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Figure 6: Joint (TCN+ BAF) segmentation performances (right) compared to TCN segmentation performances (left)

on 200 simulations in a difficult setting (tumor purity around 50%)

Joint (TCN, BAF) segmentation is better than one-dimensional segmentation. For all procedures, we

observe that the risk of the TCN segmentation is higher than the one of the joint signal corresponding

segmentation. This supports the idea that TCN and BAF both carry a somewhat complementary425

piece of information.

Using kernels offers simplicity. An important byproduct of the kernel machinery is that it is easy to

make data fusion, which consists here in doing the joint segmentation of the signal, for instance by

simply mixing coordinate-wise kernels in the same way as in Eq. (15).
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Figure 7: Performance of segmentations using the squared Frobenius Distance. Simulations of 200 TCN profiles. Simple

setting with 100% purity (left) and difficult setting with 50% purity (right).

KernSeg with Gaussian kernel outperforms RBS. When considering the true number of change-points430

in TCN profiles, it was already shown that Kernseg with Gaussian kernels was outperforming RBS.

When looking at the joint segmentation, the results are even more striking. Indeed, even when the

number of segments is estimated, Kernseg outperforms RBS at the true number of change-points.

4.4.3. Heuristic Kernseg with Gaussian kernel

The approximate algorithm ApproxKernseg is motivated by the need for a change-point detection435

procedure with linear-time complexity. It is derived from Kernseg that is a theoretically grounded

procedure. However as a heuristic it is not fully theoretically justified. It is out of the scope of

the present work to justify it. As a consequence, we do not provide any data-driven choice of the

number of segments for ApproxKernseg . The purpose of the present section is to empirically illustrate

how accurate ApproxKernseg can be in terms of statistical accuracy (measured in terms of Frobenius440

distance) while reducing the computation time.

Figure 7 shows the results obtained either in a simple setting (high tumor purity) or a difficult

setting (low tumor purity) on TCN profiles. Scales are different between these two settings. In

particular, differences are clearly greater in the second setting compared to the first one. In the simple

setting, all procedures perform equally well and present median values for squared Frobenius Distances445

between 0.05 and 0.07. In the difficult setting, the heuristic performs as well as Kernseg at the true

number of change-points and still better than RBS.
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5. Conclusion

Existing nonparametric change-point detection procedures such as that of [8] exhibit promising

statistical performances. Yet their high computational costs (time and memory) are strong limitations450

that often make it difficult for practitioners to use them. Therefore an important task is to develop

computationally efficient (exact or approximate) algorithms allowing to reduce the time and memory

costs of these statistically effective procedures.

In this paper we focus on kernel change-point detection framework. We have detailed a generic

(i.e. applying to any kernel) exact algorithm which is quadratic in time and linear in space. We455

also provided a generic approximate algorithm which is linear both in time and space and allows to

deal with huge signals (n ≥ 106) on a standard laptop. The computational efficiency of these two

new algorithms has been illustrated on empirical simulation experiments, where it arises that the

new algorithms outperforms other ongoing nonparametric procedures. The statistical accuracy of our

procedures has been empirically assessed in the particular setting of DNA copy numbers and allele B460

fraction profiles. In particular, results illustrate that characteristic kernels (enabling the detection of

changes in any moment of the distribution) can lead to better performances than procedures dedicated

to detecting changes arising only in the mean.
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