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We analyze the performance of cross-validation (CV) in the den-
sity estimation framework with two purposes: (i) risk estimation and
(ii) model selection. The main focus is given to the so-called leave-
p-out CV procedure (Lpo), where p denotes the cardinality of the
test set. Closed-form expressions are settled for the Lpo estimator of
the risk of projection estimators. These expressions provide a great
improvement upon V-fold cross-validation in terms of variability and
computational complexity.

From a theoretical point of view, closed-form expressions also en-
able to study the Lpo performance in terms of risk estimation. The
optimality of leave-one-out (Loo), that is Lpo with p = 1, is proved
among CV procedures used for risk estimation. Two model selection
frameworks are also considered: estimation, as opposed to identifica-
tion. For estimation with finite sample size n, optimality is achieved
for p large enough (with p/n = o(1)) to balance the overfitting re-
sulting from the structure of the model collection. For identification,
model selection consistency is settled for Lpo as long as p/n is conve-
niently related to the rate of convergence of the best estimator in the
collection: (i) p/n → 1 as n → +∞ with a parametric rate, and (ii)
p/n = o(1) with some nonparametric estimators. These theoretical
results are validated by simulation experiments.

1. Introduction. For estimating a target quantity denoted by s, let {Sm}m∈M denote
a collection of sets of candidate parameters indexed by M. From each Sm called a model, an
estimator ŝm of s is computed. The goal of model selection is to design a criterion crit : M → R

+

such that minimizing crit(·) over M provides a final estimator ŝ m̂ that is “optimal”. Among
various strategies of model selection, model selection via penalization has been introduced in
the seminal papers by Akaike (1973); Mallows (1973); Schwarz (1978) on respectively AIC, Cp,
and BIC criteria. However since AIC and BIC are derived from asymptotic arguments, their
performances crucially depend on model collection and sample size (see Baraud et al., 2009).

More recently Birgé and Massart (1997, 2001, 2006) have developed a non-asymptotic ap-
proach inspired from the pioneering work of Barron and Cover (1991). It relies on concentration
inequalities (Ledoux, 2001; Talagrand, 1996) and aims at deriving oracle inequalities such as

ℓ (s, ŝ m̂) ≤ C inf
m∈M

{ℓ (s, ŝm)}+ rn(1)
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2 A. CELISSE

with probability larger than 1 − c/n2, where c > 0 is a constant, ℓ(s, t) is a measure of the
gap between parameters s and t, rn is a remainder term with respect to infm ℓ (s, ŝm), and
C ≥ 1 denotes a constant independent of s. The closer C to 1 and the smaller rn, the better
the model selection procedure. If C = Cn → 1 as n → +∞, the model selection procedure is
said asymptotically optimal (or efficient) (see Arlot and Celisse, 2010, for instance). Note that
other asymptotic optimality properties have been studied in the literature. For instance, a model
selection procedure satisfying

P [ m̂ = m0 ] −−−−−→
n→+∞

1,

where m0 denotes a fixed given model is said model selection consistent (see Shao, 1997, for a
study of various model selection procedures in terms of model selection consistency).

In the density estimation framework, model selection with deterministic penalties has been
addressed: (i) for Kullback-Leibler divergence by Barron et al. (1999); Castellan (1999, 2003);
Yang and Barron (1998) and further studied in Birgé and Rozenholc (2006), and (ii) for quadratic
risk and projection estimators by Birgé and Massart (1997) and Barron et al. (1999).

The aforementioned approaches rely on some deterministic penalties such as AIC or BIC.
These penalties are derived in some specific settings (for instance a Gaussian noise is assumed
by Birgé and Massart, 2006) and remain unjustified and even sometimes misleading in more
general settings.

Conversely, cross-validation (CV) is a resampling procedure based on a universal heuristics
which makes it applicable in a wide range of settings. CV procedures have been first studied in a
regression context by Stone (1974, 1977) for the leave-one-out (Loo) and Geisser (1974, 1975) for
the V -fold cross-validation (VFCV), and in the density estimation framework by Rudemo (1982);
Stone (1984). Since these procedures can be computationally demanding or even intractable,
Bowman (1984); Rudemo (1982) derived closed-form formulas for the Loo estimator of the risk
of histograms or kernel estimators. These results have been recently extended to the leave-p-out
cross-validation (Lpo) by Celisse and Robin (2008).

Although CV procedures are extensively used in practice, only few theoretical results exist
on their performances, most of them being of asymptotic nature. For instance in the regression
framework, Burman (1989, 1990) proves Loo is asymptotically the best CV procedure in terms
of risk estimation. Several papers are dedicated to show the equivalence between some CV
procedures and penalized criteria in terms of asymptotic optimality properties: (i) efficiency
in Li (1987); Zhang (1993), and (ii) model selection consistency in Shao (1997); Yang (2006,
2007). Let us notice that in the parametric setting, Yang (2007) proved that efficiency and model
selection consistency are contradictory objectives that cannot be achieved simultaneously. We
refer interested readers to Shao (1997) for an extensive review about asymptotic optimality
properties in terms of efficiency and model selection consistency of some penalized criteria as
well as CV procedures.

As for non-asymptotic results in the density framework, Birgé and Massart (1997) have settled
an oracle inequality that relies on a conjecture and may be applied to Loo. However to the best
of our knowledge, no such result has already been proved for Lpo in the density estimation
framework. Recently in the regression setting, Arlot (2007) established oracle inequalities for
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V -fold penalties, while Arlot and Celisse (2011) have carried out an extensive simulation study
in the change-point detection problem with heteroscedastic observations.

In the present paper, we derive closed-form expressions for the Lpo risk estimator of the
broad class of projection estimators (Section 2). Such closed-form expressions considerably im-
prove upon V -FCV in terms of (i) variability (Celisse and Robin, 2008), and (ii) computational
complexity (Section 2.3). A second improvement allowed by these formulas is the deep new
understanding of the theoretical performance of CV in two respects: first for risk estimation
(Section 2.4), and second for model selection (Section 3). For instance, it is proved that Loo is
the best CV procedure for risk estimation (Theorem 2.1), while the story can be different for
model selection (Corollary 3.1 and Theorems 3.3 and 3.4).

In Section 3, two aspects of model selection via CV have been explored. The estimation point
of view is described in Section 3.1. It is shown that Lpo is optimal as long as p/n = o(1) and
p is large enough to balance the influence of the model collection structure. This phenomenon
is supported by simulation experiments detailed in Section 3.1.4. Finally Section 3.2 deals with
the identification point of view. CV is proved to be model selection consistent in various settings
where the choice of p is related to the convergence rate (parametric and nonparametric) of
the best estimator one tries to recover. Simulation results illustrate these different behaviors in
Section 3.2.2. Finally, a discussion is provided in Section 4 to give some guidelines towards a
better understanding of CV procedures. The main proofs have been postponed to the appendix.
For reasons owing to space constraints, more technical ones are provided in the supplementary
material (from Section S.1 and following ones).

2. Cross-validation and risk estimation.

2.1. Statistical framework.

2.1.1. Notation. Throughout the paper, X1, . . . ,Xn ∈ [0, 1] are independent and identically
distributed (i.i.d.) random variables drawn from a probability distribution P of density s ∈
L2([0, 1]) with respect to Lebesgue’s measure on [0, 1], and X1,n = (X1, . . . ,Xn).

Let S∗ denote the set of measurable functions on [0, 1]. The distance between s and any u ∈ S∗

is measured by the quadratic loss denoted by

ℓ : (s, u) 7→ ℓ (s, u ) := ‖s− u‖2 =
∫

[0,1]
[ s(t)− u(t) ]2 dt.

It is related to the contrast function

γ : (u, x) 7→ γ(u;x) := ‖u‖2 − 2u(x), with ℓ (s, u ) = Pγ(u)− Pγ(s)(2)

where Pγ(u) = P (γ(u; ·)) and Pf := E [ f (X1) ] for every f ∈ S∗. The performance of an
estimator ŝ = ŝ (X1, . . . ,Xn) of s is assessed by the quadratic risk

Rn( ŝ ) := E [ ℓ (s, ŝ ) ] = E

[
‖s− ŝ ‖2

]
.
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Estimating Pγ(u) is made through the empirical contrast defined by

Pnγ(u) :=
1

n

n∑

i=1

γ (u;Xi) , where Pn = 1/n

n∑

i=1

δXi
(3)

denotes the empirical measure and Pnf := 1/n
∑n

i=1 f(Xi) for every f ∈ S∗.
For a collection of models {Sm}m∈Mn

indexed by a countable set Mn, the empirical contrast
minimizer is defined by

ŝm := Argminu∈Sm
Pnγ(u).(4)

It results a collection {ŝm}m∈Mn
of estimators of s depending on the choice of models Sms.

Instances of such models and estimators are described in Section 2.1.2.

2.1.2. Projection estimators. Let Λn be a set of countable indices and {ϕλ}λ∈Λn
a family of

vectors in L2([0, 1]) such that for every m ∈ Mn, {ϕλ}λ∈Λ(m) denotes an orthonormal family

of L2([0, 1]) with Λ(m) ⊂ Λn. For every m ∈ Mn, Sm denotes the linear space spanned by
{ϕλ}λ∈Λ(m), Dm = dim (Sm), and sm is the orthogonal projection of s onto Sm

sm := Argminu∈Sm
Pγ(u) =

∑

λ∈Λ(m)

Pϕλ ϕλ, with Pϕλ = E [ϕλ(X) ] .

Definition 2.1. An estimator ŝ ∈ L2([0, 1]) is a projection estimator if there exists a family
{ϕλ}λ∈Λ of orthonormal vectors of L2([0, 1]) such that

ŝ =
∑

λ∈Λ
θλ ϕλ, with θλ =

1

n

n∑

i=1

Hλ(Xi),

where {Hλ(·)}λ∈Λ depends on the family {ϕλ}λ∈Λ.

It is straightforward to check that the empirical contrast minimizer over Sm = Span (ϕλ, λ ∈ Λ(m)),
defined by Eq. (4), is a projection estimator since

ŝm =
∑

λ∈Λ(m)

Pnϕλ ϕλ, with Pnϕλ =
1

n

n∑

i=1

ϕλ(Xi).(5)

Here are a few examples of projection estimators (see DeVore and Lorentz, 1993):

• Histograms: For every m ∈ Mn, let {Iλ}λ∈Λ(m) be a partition of [0, 1] inDm = Card(Λ(m))

intervals. Set ϕλ = 1Iλ/
√

|Iλ| for every λ ∈ Λ(m), with |Iλ| the Lebesgue measure of Iλ,
and 1Iλ(x) = 1 if x ∈ Iλ and 0 otherwise. Then,

ŝm =
∑

λ∈Λ(m)

Pn1Iλ

1Iλ

|Iλ|
·(6)
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• Trigonometric polynomials: For every λ ∈ Z, let ϕλ : t 7→ ϕλ(t) = e2πiλt. Then for any
finite Λ(m) ⊂ Z,

ŝm(t) =
∑

λ∈Λ(m)

Pnϕλ e2πiλt, ∀t ∈ [0, 1](7)

is a trigonometric polynomial.
• Wavelet basis: Let {ϕλ}λ∈Λn

be an orthonormal basis of L2([0, 1]) made of compact sup-
ported wavelets, where Λn =

{
(j, k) | j ∈ N

∗ and 1 ≤ k ≤ 2j
}
. Then for every subset Λ(m)

of Λn,

ŝm =
∑

λ∈Λ(m)

Pnϕλ ϕλ.(8)

Some of these estimators can take negative values. A possible solution is truncating and nor-
malizing the preliminary projection estimator

s̃m = ŝm1ŝm≥0

(∫

[0,1]
1ŝm≥0(t)ŝm(t) dt

)−1

.

However the closed-form expressions provided in Section 2.3 are not available for these truncated
and normalized estimators.

2.2. Leave-p-out cross-validation. In the literature, several cross-validation (CV) procedures
have been successively introduced to overcome the defects of already existing ones. Let us de-
scribe the main CV procedures with some emphasis to computational aspects.

2.2.1. Cross-validation. For 1 ≤ p ≤ n− 1, let us define Ep = {e ⊂ {1, . . . , n} , Card(e) = p}
and for e ∈ Ep, set Xe = {Xi, i ∈ e} (test set) and X(e) = {Xi, i ∈ {1, . . . , n} \ e} (training

set). Let also P e
n := 1/p

∑
i∈e δXi

and P
(e)
n := 1/(n−p)

∑
i∈(e) δXi

denote the empirical measures

respectively defined from the test set Xe and the training set X(e).

Hold-out. Simple validation also called Hold-out has been introduced at the early 30s (Larson,
1931). For every 1 ≤ p ≤ n− 1, it consists in randomly splitting observations into a training set
X(e) of cardinality n− p and a test set Xe of cardinality p. Random data splitting is only made
once and introduces additional variability. For every e ∈ Ep (randomly chosen), the hold-out
estimator of Rn( ŝ ) is

R̂Ho,p( ŝ ) := P e
n γ
(
ŝ (X(e))

)
=

1

p

∑

i∈e
γ
(
ŝ (X(e));Xi

)
.(9)

Hold-out has been studied for instance by Bartlett et al. (2002); Blanchard and Massart (2006)
in classification and by Lugosi and Nobel (1999); Wegkamp (2003) in regression.
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Leave-p-out. Unlike Eq. (9) where a single split e of the data is randomly chosen, which intro-
duces additional unwanted variability, leave-p-out (Lpo) considers all the

(
n
p

)
= Card (Ep) splits.

The Lpo estimator of Rn( ŝ ) is defined by

R̂p( ŝ ) =

(
n

p

)−1 ∑

e∈Ep
P e
n γ
(
ŝ (X(e))

)
.(10)

For instance, it has been studied by Shao (1993), Zhang (1993), and Arlot and Celisse (2011)
in the regression framework. With p = 1, Lpo reduces to the celebrated leave-one-out (Loo)
cross-validation introduced by Mosteller and Tukey (1968) and further studied by Stone (1974).
Note that computing the Lpo estimator requires a computational complexity of order

(n
p

)
times

that of computing ŝ , which becomes intractable as n grows.

V -fold cross-validation. To overcome the high computational burden of Lpo (Eq. (10)), Geisser
(1974, 1975) introduced the V-fold cross-validation (V-FCV). Instead of considering all the(n
p

)
possible splits, one (randomly or not) chooses a partition of X1, . . . ,Xn into V subsets

Xe1 , . . . ,XeV of approximately equal size p = n/V = Card(ei), i = 1, . . . , V . Every Xei , i =
1, . . . , V is successively used as a test set leading to the V-fold risk estimator of Rn( ŝ )

R̂V−FCV( ŝ ) =
1

V

V∑

v=1

P ev
n γ

(
ŝ (X(ev))

)
.(11)

V-FCV has been studied in the regression framework by Burman (1989, 1990) who suggests a
correction to remove its bias.

2.2.2. Lpo versus V-FCV. As explained in Section 2.2.1, the Lpo computational complexity is
roughly

(n
p

)
times that of computing ŝ , which can be highly time-consuming. Several surrogates

of Lpo have been proposed such as V-FCV and the repeated learning-testing cross-validation
(Breiman et al., 1984; Burman, 1989; Zhang, 1993). Unlike Lpo (and even Loo when p = 1),
V-FCV involves only V such computations, which is less demanding as long as V ≪ n. Note
that usual values for V are 3, 5, and 10 (except V = n where V-FCV and Loo coincide).

However V-FCV relies on a preliminary (possibly random) partitioning of X1, . . . ,Xn into
V subsets. This preliminary partitioning induces some additional variability which could be
misleading. For instance, Celisse and Robin (2008) have theoretically quantified the amount of
additional variability induced by V-FCV with respect to Lpo.

2.3. Closed-form expressions for the Lpo risk estimator. Closed-form formulas for the Lpo
estimator are proved in the present section, which makes Lpo fully effective in practice and better
than V-FCV. Such formulas also enable a more accurate theoretical analysis of CV procedures
both in terms of risk estimation (Section 2.4) and model selection (Section 3).

With the notation introduced at the beginning of Section 2.2.1, let us consider projection
estimators ŝm defined by Eq. (5). Closed-form formulas for the Lpo risk estimator are derived
exploiting the “linearity” of projection estimators. Sums over Ep (which cannot be computed in
general) then reduce to binomial coefficients. In the present section, proofs have been deferred to
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Section S.1 (Supplementary material). Recalling the expression of the contrast γ(· ; ·) (Eq. (2)),
one has to compute both quadratic and linear terms.

Lemma 2.1. For every m ∈ Mn, let ŝm = ŝm(X1,n) denote a projection estimator defined
by Eq. (5) and set Xe = {Xi, i ∈ e} for every e ∈ Ep. Then for every p ∈ {1, . . . , n− 1},

∑

e∈Ep

∥∥∥ŝm(X(e))
∥∥∥
2
=

1

(n− p)2

∑

λ∈Λ(m)



(
n− 1

p

) n∑

k=1

ϕ2
λ(Xk) +

(
n− 2

p

)∑

k 6=ℓ

ϕλ(Xk)ϕλ(Xℓ)


 ,

∑

e∈Ep

∑

i∈e
ŝ (X(e))(Xi) =

1

n− p

∑

λ∈Λ(m)

(
n− 2

p− 1

)∑

i 6=j

ϕλ(Xi)ϕλ(Xj).

Lemma 2.1 enables to derive closed-form formulas for the Lpo risk estimator, which makes
Lpo procedure fully efficient in practice.

Proposition 2.1. For every m ∈ Mn, let ŝm = ŝm(X1,n) denote a projection estimator
defined by Eq. (5). Then for every p ∈ {1, . . . , n− 1},

R̂p(m) = R̂p(ŝm) =
1

n(n− p)

∑

λ∈Λ(m)




n∑

j=1

ϕ2
λ(Xj)−

n− p+ 1

n− 1

∑

j 6=k

ϕλ(Xj)ϕλ(Xk)


 .(12)

Proposition 2.1 enjoys a great interest. First it applies to the broad family of projection estima-
tors. Second, it allows to reduce the computation time from an exponential to a linear complexity
since computing (12) is of order O (n). Note that in the more specific setting of histograms and
kernel estimators, such closed-form formulas have been derived by Celisse and Robin (2008).

Let us now specify the Lpo estimator expressions for the three examples of projection esti-
mators given in Section 2.1.2.

Corollary 2.1 (Histograms). For ŝm given by Eq. (6) and for p ∈ {1, . . . , n− 1},

R̂p(m) =
1

(n − 1)(n− p)

Dm∑

λ=1

1

|Iλ|

[
(2n − p)

nλ

n
− n(n− p+ 1)

(nλ

n

)2 ]
,

where nλ = Card ({i |Xi ∈ Iλ}).

Corollary 2.2 (Trigonometric polynomials). For every k ∈ N, let ϕλ denote either t 7→
cos(2πkt), if λ = 2k or t 7→ sin(2πkt), if λ = 2k+1. Let us further assume Λ(m) = {0, . . . , 2K}
for K ∈ N

∗. Then for every p ∈ {1, . . . , n− 1},

R̂p(m) = α(n, p)− β(n, p)

K∑

k=0







n∑

j=1

cos(2πkXj)





2

+





n∑

j=1

sin(2πkXj)





2 
 ,

where α(n, p) = (p−2)(K+1) [ (n− 1)(n − p) ]−1 and β(n, p) = (n− p+ 1) [n(n− 1)(n − p) ]−1.
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Corollary 2.3 (Haar basis). Let us define ϕ(·) = 1[0,1](·) and ϕj,k(·) = 2j/2ϕ(2j · −k),
where j ∈ N and 0 ≤ k ≤ 2j − 1, and assume Λ(m) ⊂

{
(j, k) | j ∈ N, 0 ≤ k ≤ 2j − 1

}
for every

m ∈ Mn. Then,

R̂p(m) =
1

(n− 1)(n − p)

∑

(j,k)∈Λ(m)

2j
[
(2n − p)

nj,k

n
− n(n− p+ 1)

(nj,k

n

)2 ]
,

where nj,k = Card
({

i | Xi ∈ [k/2j , (k + 1)/2j ]
})

.

2.4. Risk estimation: Leave-one-out optimality. From the general formula (12), one derives
closed-form expressions for the expectation and variance of the Lpo risk. These expressions allow
to analyze the theoretical behavior of CV in terms of risk estimation and model selection (see
Section 3). In the present section we prove the optimality of Loo for estimating the risk of any
projection estimator (Theorem 2.1).

Proposition 2.2. For every m ∈ Mn, let ŝm = ŝm(X1,n) denote a projection estimator
defined by Eq. (5). Then for every 1 ≤ p ≤ n− 1,

E

[
R̂p(m)

]
=

1

n− p

∑

λ∈Λ(m)

[
Eϕ2

λ(X) − (Eϕλ(X))2
]
−

∑

λ∈Λ(m)

(Eϕλ(X))2 ,

and

Var
[
R̂p(m)

]
=

1

(n− 1)2

[
an +

bn
(n− p)

+
cn

(n− p)2

]
,(13)

where an = Var
[∑

λ∈Λ(m)

(
n(Pnϕλ)

2 − Pnϕ
2
λ

) ]
, cn = Var

[
n
∑

λ∈Λ(m)

(
Pnϕ

2
λ − (Pnϕλ)

2
) ]

, and

bn = −2 Cov
[∑

λ∈Λ(m)

(
n(Pnϕλ)

2 − Pnϕ
2
λ

)
,
∑

λ∈Λ(m) n
(
Pnϕ

2
λ − (Pnϕλ)

2
) ]

.

The proof is a straightforward application of Proposition 2.1 and has been omitted. Note that
the above quantities do exist as long as P |ϕλ|3 < +∞ for any λ ∈ Λ(m), which holds true if s is
bounded for instance and

∫
|ϕλ|3 < +∞ (ϕλ continuous and compact supported for instance).

In (13), an, bn, and cn do not depend on p. Then knowing the behavior of the variance with
respect to p only depends on the magnitude of an, bn, and cn, which is clarified by Corollary 2.5.

Let us first focus on the bias B

[
R̂p(m)

]
:= ER̂p(m) − E

[
‖ŝm‖2 − 2

∫
[0,1] s ŝm

]
of the Lpo

estimator.

Corollary 2.4 (Bias). For every m ∈ Mn, let ŝm = ŝm(X1,n) denote a projection estimator
defined by Eq. (5). Then for every m ∈ Mn and 1 ≤ p ≤ n− 1,

B

[
R̂p(m)

]
=

p

n(n− p)

∑

λ∈Λ(m)

Var [ϕλ(X1) ] ≥ 0.
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The bias is nonnegative and increases with p, which means Loo (p = 1) has the smallest bias

among CV procedures. If p = pn satisfies pn/n −−−−−→
n→+∞

q ∈ [0, 1), then B

[
R̂p(m)

]
−−−−−→
n→+∞

0,

and Loo is asymptotically unbiased.
Let us now describe the behavior of the variance with respect to p.

Corollary 2.5 (Variance). With the same notation as Proposition 2.2, for every m ∈ Mn

and 1 ≤ p ≤ n− 1,

Var
[
R̂p(m)

]
=

n

(n− 1)2

[
A+

B

n− p
+

C

(n− p)2
+O

(
1

n

)]
,

where the big O(·) does not depend on p, but depends on Sm and P , and

A = 4Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]
≥ 0,

B = 8Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]
− 4Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X3)

]
,

C = 4Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]
− 4Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X3)

]

+Var

[
∑

λ

ϕ2
λ(X1)

]
≥ 0.

In the more specific case of histogram and kernel density estimators, Celisse and Robin (2008)
derived a similar (non asymptotic) result for the variance.

The monotonicity of the variance with respect to p depends on the sign of B since x 7→ f(x) =
Ax2+Bx+C has for derivative x 7→ f ′(x) = 2Ax+B and A ≥ 0. However in full generality, the

sign of B is unknown. The following proposition relates the monotonicity of p 7→ Var
[
R̂p(m)

]

to this sign.

Proposition 2.3. Let us define p0,n = Argmin1≤p≤n−1Var
[
R̂p(m)

]
in Eq. (13). Then,

p0,n = n+

(
1− Cov

[∑
λ ϕ

2
λ(X1),

∑
λ ϕλ(X1)ϕλ(X3)

]

2Cov [
∑

λ ϕλ(X1)ϕλ(X2),
∑

λ ϕλ(X1)ϕλ(X3) ]

)
(1 + o(1)) ,

where the little o(·) only depends on Sm and P . Furthermore, if

2Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]
≥ Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X3)

]
,(14)

p ∈ {1, . . . , n − 1} 7→ Var
[
R̂p(m)

]
is increasing. Otherwise, p 7→ Var

[
R̂p(m)

]
is decreasing on

[1, p0,n] and increasing on [p0,n, n− 1].
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Eq. (14) is related to the sign of B (Corollary 2.5) and to the minimum location value p0,n.
If it holds true, then p0,n 6∈ {2, . . . , n− 1}, which means Loo has the smallest variance among
CV procedures. In particular let us notice (14) holds true with any density estimated by regular
histograms since

∑
λ ϕ

2
λ(X1) is then a constant and the covariance in the left-hand side is a

variance by independence of X1,X2, and X3. On the contrary, (14) is not fulfilled when using
histograms based on a partition such that P [X ∈ Iλ ] = C < 1/2 for every λ, where C denotes
a constant.

We are now in position to provide the main result of this section, which describes the behavior
of R̂p as a risk estimator in terms of mean-square error (MSE).

Theorem 2.1. For every m ∈ Mn, let us define the MSE of ŝm by MSE(m; p) =(
B

[
R̂p(m)

])2
+Var

[
R̂p(m)

]
, for every p ∈ {1, . . . , n− 1}.

1. If (14) holds true, then for every m ∈ Mn, p 7→ MSE(m; p) is minimum for p = 1.
2. Otherwise, for every p = pn ∈ {1, . . . , n − 1} such that lim supn→+∞ pn/n < 1, then

MSE(m; p) =
A

n
+O

(
1

n2

)
, as n → +∞,

where A is given in Corollary 2.5 and the big O(·) depends on Sm and P .

If (14) holds true, Loo is the best CV procedure in terms of MSE when estimating the risk of
an estimator. Otherwise as long as lim supn→+∞ pn/n < 1, choosing a value of p 6= 1 is useless
since any value in {1, . . . , n − 1} asymptotically leads to the same performance in terms of MSE.
Therefore since Loo has the smallest bias (Corollary 2.4), Loo is optimal among CV procedures
for estimating the risk of an estimator. This result confirms what has been previously stated by
Burman (1989) in the regression framework.

3. Optimal cross-validation for model selection. From Section 2.4, Loo is proved to
be the best CV procedures in the context of risk estimation. However the best procedure for
risk estimation is not necessarily the best one for model selection. Although the empirical risk
Pnγ(ŝm) (4) is a reliable estimator of E [Pnγ(ŝm) ], using empirical risk minimization to choose
one m̂ ∈ Mn (without penalizing) would systematically lead to overfitting. The purpose of
the present section is to study the performance of CV for model selection with respect to the
cardinality p of the test set.

3.1. Optimal cross-validation for Estimation. The performance of CV with respect to p is
first characterized through a sharp oracle inequality (Theorem 3.1). A leading constant converg-
ing to 1 as n → +∞ is achieved for some values of p, highlighting the asymptotic optimality
of corresponding CV procedures. From a theoretical point of view, Corollary 3.1 explores the
link between (a proxy to) the optimal p and influential quantities related to the difficulty of
the estimation problem for finite sample size. These results are further validated by simulation
experiments (Section 3.1.4).
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3.1.1. Estimation point of view. With the notation of Section 2.1, let us consider a family of
projection estimators {ŝm}m∈Mn

, where Mn denotes an (at most countable) index set allowed
to depend on n. The best possible model, called the oracle model, is denoted by Sm∗ , where

m∗ := Argminm∈Mn
Pγ(ŝm)− Pγ(s) = Argminm∈Mn

‖s− ŝm‖2

= Argminm∈Mn
Pγ(ŝm).

Since Pγ(ŝm) has to be estimated, one uses CV (Lpo) to choose a candidate model for every
1 ≤ p ≤ n− 1,

m̂(p) := Argminm∈Mn
R̂p(m),(15)

and the final candidate model is denoted by Sm̂(p). The purpose is now to infer the properties
of ŝ m̂(p) with respect to p ∈ {1, . . . , n− 1} in terms of an oracle inequality such as (1).

3.1.2. Main oracle inequality. Let us introduce some notation and detail the main assump-
tions used along the following sections.

Square-integrable density:.

s ∈ L2([0, 1]).(SqI)

Unlike Castellan (2003) for instance, it is not assumed that s ≥ ρ for a constant ρ > 0.

Polynomial collection:. There exists aM ≥ 0 such that

(Pol) Card(Mn) ≤ naM .

In particular, this holds true if there exists α ≥ 0 such that Card ({m ∈ Mn, Dm = D}) ≤ Dα,
for every 1 ≤ D ≤ n.

Model regularity:.

∃Φ > 0, sup
m∈Mn

‖φm‖∞
Dm

≤ Φ, with φm =
∑

λ∈Λ(m)

ϕ2
λ.(RegD)

It relates the regularity of the orthonormal basis (measured in terms of sup-norm) to the dimen-
sion of the model. For instance using (6), (RegD) requires |Iλ| ≥ (ΦDm)−1 for every λ ∈ Λ(m).
The length of intervals Iλ cannot be too different from one another to some extent.

Maximal dimension:.

(Dmax) ∃Γ > 0, sup
m∈Mn

Dm ≤ Γ
n

(log n)2
·

In the sequel, Γ = 1 is always considered to simplify expressions. Note that proofs and conclusions
remain unchanged with this particular choice.



12 A. CELISSE

Estimation error and dimension:.

(LoEx) ∃ξ > 0, inf
m∈Mn

√
nE (‖sm − ŝm‖)√

Dm
≥
√

ξ.

This assumption makes the estimation error E
(
‖sm − ŝm‖2

)
and Dm comparable. For instance,

Lemma S.6 (supplementary material) proves (LoEx) is fulfilled with Hölder densities estimated
by regular histograms defined by (6) such that |{x ∈ [0, 1] | s(x) ≥ η}| ≥ ℓ for some η ∈ (0, 1),
where 0 < ℓ < 1 satisfies

ℓ >

(
inf

m∈Mn

Dm

)−1

.

Note the latter inequality amounts to exclude too small models for which the support of s is
included in one single interval Iλ.

Richness of the collection:. There exist m0 ∈ Mn and crich ≥ 1 such that,

√
n ≤ Dm0

≤ crich
√
n.(Rich)

This requirement is rather mild since one can add such a model in our collection.

Approximation property:. There exist cℓ, cu > 0 and ℓ > u > 0 such that, for every m ∈ Mn,

cℓD
−ℓ
m ≤ ‖s− sm‖2 ≤ cuD

−u
m .(Bias)

This assumption quantifies the bias (approximation error) incurred by model Sm in estimat-
ing s. It therefore relies on a smoothness assumption on s. Such an upper bound is classical
for α-Hölderian functions with α ∈ (0, 1] and regular histograms (6) for instance. Note that
Stone (1985) uses the same assumption (lower bound), which is the finite sample counterpart
of the classical assumption ‖s− sm‖ > 0 for every m ∈ Mn usually made to prove asymptotic
optimality for a model selection procedure (see Birgé and Massart, 2006).

Rate of convergence for the oracle model:.

(OrSp) nR∗
n(log n)

−2 −−−→
n→∞

+∞, with R∗
n = inf

m∈Mn

Rn(ŝm),

The risk of the oracle model R∗
n does not decrease to 0 faster than (log n)2/n. In particular, this

holds true for densities in H(L,α) with L > 0 and α ∈ (0, 1] estimated by regular histograms
(see Section S.5).

The performance of the Lpo estimator with respect to p is described by the following oracle
inequality from which the CV optimality is deduced for some values of p. The proof is given in
Appendix A.1.

Theorem 3.1 (Optimal CV). Let s denote a density on [0, 1] such that (SqI) holds true,
set {Sm}m∈Mn

a collection of models defined in Section 2.1.2, and assume (Pol), (RegD),
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(Dmax), (Rich), (LoEx), (Bias), and (OrSp). Let m̂ = m̂(p) denote the model minimizing
R̂p(m) over Mn for every p ∈ {1, . . . , n− 1}. Then, there exist a sequence (δn)N such that

δn → 0, and nδn → +∞ as n → +∞, and an event Ω̃ with P(Ω̃) ≥ 1− 6/n2 on which, for large
enough values of n,

∥∥s− ŝ m̂(p)

∥∥2 ≤ Cn(p) inf
m∈Mn

{
‖s− ŝm‖2

}
with Cn(p) =

T+
B ∨ T+

V

T−
B ∧ T−

V

≥ 1,

where

T−
B = 1− δnK(n, p), T−

V =
1

1− p/n
(1− δn) [ 1− 4δn ]− 2δnK(n, p) [ 3− 4δn ] ,

T+
B = 1 + δnK(n, p), T+

V =
1

1− p/n
(1 + δn) [ 1 + 4δn ] + 2δnK(n, p) [ 3 + 4δn ] ,

and K(n, p) = 1 + 2
n−1 + p

n−p
1

n−1 ·

If p/n → 0 then Cn(p) → 1 as n → +∞, which leads to efficient (asymptotically optimal)
model selection procedures. In particular this holds true for p = 1 that is, Loo is asymptotically
optimal since

∥∥s− ŝ m̂(1)

∥∥2

infm∈Mn

{
‖s− ŝm‖2

} a.s.−−−−−→
n→+∞

1.

From the proof, it also arises the slowly decreasing sequence δn is related to the model collection
structure. An increase of Mn makes the model selection problem more difficult and δn larger.

While asymptotic optimality is deduced from Theorem 3.1 for any CV procedure as long as
p = o(n), it is also desirable to analyze the performance of CV as p depends on the finite sample
size. From a theoretical point of view, this will provide the rate at which p/n has to decrease to
0 to reach efficiency. Based on Figure 1 (Panel (c)) where Cn(p) appears as a reliable proxy to
the optimal Cor,n(p) (given by Eq. (19)), we suggest to optimize Cn(p) with respect to p to get
a surrogate optimal p depending on influential parameters such as n and δn. This strategy has
been validated by simulation experiments of Section 3.1.4. The following Corollary 3.1 proves
the best (surrogate) p/n slowly decreases to 0.

Corollary 3.1 (Optimizing upper bound). With the notation and assumptions of Theo-
rem 3.1, the constant Cn(p) is minimized over p ∈ {1, . . . , n− 1} for

0 <
p∗n
n

= 1−
1− 5δn + 4δ2n − 2

n−1(3δn − 4δ2n) +
δn
n−1

1 + 2(1 + 1
n−1)(3δn − 4δ2n)− δn(1 +

1
n−1)

< 1·

Furthermore, the optimal ratio p∗/n is slowly decreasing to 0 as n tends to +∞

p∗n ∼+∞ 10nδn −−−−−→
n→+∞

+∞.(16)
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The proof has ben deferred to Appendix A.1. Corollary 3.1 describes the rate (up to constant)
at which p = p∗n has to grow with n to achieve finite-sample optimality. In particular p∗n/n in (16)
is related to δn that is strongly connected to the structure of the model collection as explained
in the following of Theorem 3.1. A more complex collection leads to a larger δn and then to
a larger optimal p∗n. In other words, p must be chosen large enough to balance the overfitting
induced by the structure of the model collection. This phenomenon is observed in practice in
the simulation experiments of Section 3.1.4 (Figure 2).

3.1.3. Adaptivity in the minimax sense. Adaptivity in the minimax sense is a desirable prop-
erty for model selection procedures. It means the considered procedure automatically adapts to
the unknown smoothness of the target function s to estimate (see Barron et al., 1999, for an
extensive presentation).

Several adaptivity in the minimax sense results are provided in the present section. Deriving
such results from oracle inequalities (1) is somewhat classical. Here the novelty is first that CV
enjoys such a desirable property as a model selection procedure, second that the leading constant
Cn(p) in Theorem 3.1 when converging to 1 as n tends to +∞ provides accurate results.

Let us start providing a general theorem from which any adaptivity result will be immediate
corollary. The proof is given in Appendix A.1.

Theorem 3.2. Let s denote a density on [0, 1] such that (SqI) holds true, set {Sm}m∈Mn

a collection of models defined in Section 2.1.2, and assume (Pol), (RegD), (Dmax), (Rich),
(LoEx), (Bias), and (OrSp). Let m̂ = m̂(p) denote the model minimizing R̂p(m) over Mn for
every p ∈ {1, . . . , n− 1}. Then for every 1 ≤ p ≤ n− 1,

E

[ ∥∥s− ŝ m̂(p)

∥∥2
]
≤ Cn(p)E

[
inf

m∈Mn

‖s− ŝm‖2
]
+ (Φ + ‖s‖2) 12

n(log n)2
+

6cu
n2

,(17)

where Cn(p) =
T+

B
∨T+

V

T−

B
∧T−

V

, with

T−
B = 1− δnK(n, p), T−

V =
1

1− p/n
(1− δn) [ 1− 4δn ]− 2δnK(n, p) [ 3− 4δn ] ,

T+
B = 1 + δnK(n, p), T+

V =
1

1− p/n
(1 + δn) [ 1 + 4δn ] + 2δnK(n, p) [ 3 + 4δn ] ,

and K(n, p) = 1 + 2
n−1 + p

n−p
1

n−1 ·

The last two terms in the right-hand side of (17) are remainder terms by Assumptions
(RegD), (Dmax), and (Bias).

Applying Theorem 3.2 to the collection of regular histograms defined by (6), the following
corollary settles an adaptivity property with respect to Hölder balls (see DeVore and Lorentz,
1993).
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Corollary 3.2. Let us consider the model collection of Section 2.1.2 made of piecewise
constant functions and the associated histograms defined by (6) such that, for every m ∈ Mn

and λ ∈ Λ(m), |Iλ| = D−1
m (regular histograms). Let us also assume (Dmax) and (LoEx) hold

true.
If the target density s belongs to the Hölder ball H(L,α) for some L > 0 and α ∈ (0, 1], then
there exist constants 0 < K−

α ≤ K+
α such that for every p = o(n),

K−
α L

2

2α+1n− 2α
2α+1 ≤ sup

s∈H(L,α)
E

[ ∥∥s− ŝ m̂(p)

∥∥2
]
≤ (1 + o(1))K+

α L
2

2α+1n− 2α
2α+1 +O

(
1

n(log n)2

)
,

K−
α and K+

α only depend on α (not on n or s).
Furthermore since this property holds for every L > 0 and α ∈ (0, 1], then

{
ŝ m̂(p)

}
n∈N∗

is
adaptive in the minimax sense with respect to {H(L,α)}L>0,α∈(0,1] for every p = o(n).

The proof has been deferred to Section S.5. The upper bound is tight since the rate n− 2α
2α+1

and the dependence on the radius L
2

2α+1 are the same as in the lower bound, which has been
stated by Ibragimov and Khas’minskij (1981). The main contribution of this result is to prove
p = o(n) leads to adaptivity. Note that similar results can also be proved for Besov balls Bα

∞,2(L),
with α,L > 0 for instance (see DeVore and Lorentz, 1993), by using an appropriate collection
of models such as trigonometric polynomials defined by (7).

3.1.4. Simulation experiments. Results of simulation experiments are provided to check the
conclusions drawn (from theory) in Section 3.1.2. A mixture of Beta distributions

∀x ∈ [0, 1], s(x) =
β(3, 7;x) + β(10, 5;x)

2
(18)

has been used to generate samples of size n = 100, 500, 1000, 2000, 3000, 4000, 5000, 10 000, 20 000.
Note that (18) defines a Hölder density on [0, 1]. For each n, every p ∈ {1, . . . , n− 1} have been
considered and (Dmax) is fulfilled with Γ = 1 (Figure 1) and Γ = 2 (Figure 2).

The model collection we used is made of piecewise constant functions described in Section 2.1.2
leading to regular histogram estimators defined by (6). Only regular histograms with dimension
Dm ≥ 2 are used so that (LoEx) holds true (Lemma S.6). For every 1 ≤ p ≤ n − 1, m̂(p) is
defined by (15).

Let us also introduce

Cor,n(p) := E




∥∥s− ŝ m̂(p)

∥∥2

infm∈Mn

{
‖s− ŝm‖2

}


 and p0 := Argmin1≤p≤n−1Cor,n(p),(19)

which measures the average performance of ŝ m̂(p) with respect to that of ŝm∗ (oracle estimator).
The closer Cor,n(p) to 1, the better ŝ m̂(p). Minimizing Cor,n(p) as a function of p for various
values of n enables to check whether the conclusions drawn from minimizing Cn(p) with respect
to p (Theorem 3.1 and Corollary 3.1) hold true or not, that is whether Cn(p) is an accurate
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approximation to Cor,n(p). For each curve p 7→ Cor,n(p), a confidence band has been displayed.
It is delimited by p 7→ C−

or,n(p) and p 7→ C+
or,n(p) respectively defined by

C−
or,n(p) = Cor,n(p)−

σ̂√
N

, and C+
or,n(p) = Cor,n(p) +

σ̂√
N

,(20)

where σ̂ denotes the empirical standard deviation.
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Fig 1. Panels (a) and (b): p/n 7→ Cor,n(p) (plain red line) is plotted for Γ = 1 (see (Dmax)) and different
values of n: (a) n = 100, and (b) n = 1000. p/n 7→ C+

oracle,n(p) (blue dashed line) and p/n 7→ C−

oracle,n(p) (black
dot-dashed line) have been plotted on the same graph as well (see (20)). Panel (c): n 7→ Cor,n(p0) (plain blue line)
and n 7→ Cn(p

∗) (black dot-dashed line) are displayed. N = 1000 samples have been drawn from the mixture of
Beta distributions (18).

First from Panels (a) and (b) of Figure 1, Cor,n(p) (plain red lines) decreases pointwise as n
grows. This is confirmed by Panel (c) of Figure 1 at the particular value p = p0 as n grows.
This is in accordance with Theorem 3.1 and Cn(p) → 0 as n increases. Second the optimization
strategy at the basis of Corollary 3.1 is empirically validated by Panel (c) of Figure 1 where
Cor,n(p0) and its proxy Cn(p0) remain very close to each other. Furthermore the optimal rate
derived in Corollary 3.1 is supported up to constant by simulation results displayed in Panel (c)
of Figure 2 where p0/n is almost equal to the predicted δn ≈ C/(log n) (C > 0) from the proof
of Theorem 3.1.

The conclusion of Corollary 3.1 about the dependence of the optimal p0 on the complexity of
the model collection (through δn) is also illustrated by Panels (a) and (b) in Figure 2 where Γ
(Dmax) respectively equals 1 and 2. As Γ grows the model collection becomes more complex,
leading to a worse performance and a larger p0 in Panel (b). The need for a larger p0 is all
the more strong as the curve in Panel (b) is less flat than in Panel (a), indicating the problem
becomes more difficult as Γ increases and any misspecification of p0 leads to a stronger loss in
accuracy. One concludes the more complex the model collection, the larger the optimal p.

Note that this conclusion does not apply to Loo (p = 1) (see (16)), suggesting Loo may be
suboptimal for finite sample size. This is supported by Figure 1 (panels (a) and (b)) and Figure 2
(panels (a) and (b)) where the minimum of each curve is not reached at p = 1.

3.2. Optimal cross-validation for Identification. With the notation of Section 2.1, {ŝm}m∈Mn

denotes a collection of projection estimators (Section 2.1.2) which is allowed to depend on n.
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Fig 2. For (a) and (b), p/n 7→ Cor,n(p) (plain red line) is plotted for n = 2000 and different values of Γ(see
(Dmax)): (a) Γ = 1 , (b) Γ = 2. p/n 7→ C+

oracle,n(p) (blue dashed line) and p/n 7→ C−

oracle,n(p) (black dot-dashed
line) have been plotted on the same graph as well (see (20)). N = 1000 samples have been drawn from the mixture
of Beta distributions (18). For (c), n 7→ p0/n (blue plain line) and n 7→ C/(log n) (black dot-dashed line) are
displayed, where p0 denotes the minimizer of Cor,n(p) as a function of p and C is a constant.

The purpose is now to recover the best model denoted by Sm̄ and defined by

m̄ := Argminm∈Mn
E

[
‖s− ŝm‖2

]
,(21)

where m̄ is a deterministic quantity unlike m∗ from Section 3.1. Since this goal cannot be reached
if other models can perform as well as Sm̄ (even asymptotically), one also requires there exist
µ > 0 and n0 ∈ N

∗ such that for every integer n > n0,

(1 + µ)E
[
‖s− ŝ m̄‖2

]
≤ inf

m∈Mn\{m̄}
E

[
‖s− ŝm‖2

]
.(BeMo)

A similar assumption (in probability rather than in expectation) has been made by Yang (2007).
Let us further assume the collection {Sm}m∈Mn

can be split into

• parametric models indexed by Mn,P for which there exist constants π, τ > 0 (independent
of n) such that

sup
m∈Mn,P

{
nE
[
‖sm − ŝm‖2

]}
≤ π , and inf

m∈Mn,P ,s 6∈Sm

{
‖s− sm‖2

}
≥ τ.(22)

• nonparametric models indexed by Mn,NP such that

n (log n)−2 inf
m∈Mn,NP

E

[
‖sm − ŝm‖2

]
−−−−−→
n→+∞

+∞.(23)

Then,

{Sm}m∈Mn
= {Sm}m∈Mn,P

∪ {Sm}m∈Mn,NP
.(P-NP)

Parametric models are models with convergence rate of order 1/n. Since E

[
‖s− ŝm‖2

]
≈

‖s− sm‖2 +C ·Dm/n, allowing Dm to depend on n makes the rate of the corresponding model
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slower than 1/n (nonparametric model). Consistently with this remark, (22) requires the largest
dimension over parametric models is bounded by a constant independent of n, and that the bias
of parametric models such that s 6∈ Sm cannot decrease with n toward 0. Otherwise, such a
model would be nonparametric. Conversely (23) only requires the dimension of nonparametric
models must be larger than (log n)2. In particular, this does not prevent nonparametric models
from containing s or having their bias decreasing to 0 as n grows.

3.2.1. Main results. Depending on whether s belongs or not to ∪m∈MnSm, the two following
results prove model selection consistency for CV. Their main contribution is to relate the car-
dinality p of the test set to the rate of convergence of ŝ m̄ and the model collection complexity.
Note that in addition, the model consistency property is settled with a collection of models
allowed to grow with n, which contrasts with earlier results (see for instance Yang, 2007).

Let us start with the setting where s belongs to ∪m∈MnSm, which implies the best estimator
ŝ m̄ achieves the parametric rate 1/n.

Theorem 3.3 (Model consistency with s ∈ ∪mSm). Let ∪m∈MnSm denote a collection of
models satisfying (Pol) and (P-NP), m̄ ∈ Mn given by (21) be such that (BeMo) holds true,
and assume (SqI), (RegD), (Dmax), and (LoEx). For every 1 ≤ p ≤ n− 1, let us also define
m̂ = m̂(p) = Argminm∈Mn

R̂p(m). If the target s ∈ ∪m∈MnSm, then every 1 ≤ p = pn ≤ n − 1
such that

log(n)
(
1− p

n

)
−−−−−→
n→+∞

0, and n
(
1− p

n

)
−−−−−→
n→+∞

+∞,(24)

leads to

P [ m̂ = m̄ ] −−−−−→
n→+∞

1.

The proof has been deferred to Appendix B.1. When s belongs to ∪m∈MnSm, the best esti-
mator ŝ m̄ in a polynomial collection can be recovered by CV provided p/n converges to 1 as n
tends to +∞. The proof establishes this rate (i) cannot exceed 1/n to allow distinguishing be-
tween parametric estimators (with convergence rate of order 1/n), and (ii) has to be faster than
(log n)−1 to allow dealing with the polynomial complexity of the model collection. For instance a
finite collection would lead to replace the (log n)−1 rate by a slower one determined by the con-
trol level of P [ m̂ = m̄ ]. In the regression setting (Yang, 2007) already proved requiring p/n → 1
enables to recover the best parametric estimator among parametric ones (see Corollary 1), while
this requirement is no longer necessary when comparing parametric and nonparametric estima-
tors. Our result is consistent with Yang’s one, although our setting is somewhat different since
we compare the best parametric estimator with both parametric and nonparametric ones in the
same time.

Conversely when s does not belong to ∪mSm, every parametric model is biased according to
(22) and ŝ m̄ reaches a nonparametric rate, that is nRn(m̄) → +∞ as n tends to +∞.

Theorem 3.4 (Model consistency with s 6∈ ∪mSm). Let ∪m∈MnSm denote a collection of
models satisfying (Pol) and (P-NP), m̄ ∈ Mn given by (21) be such that (BeMo) holds true,
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and assume (SqI), (RegD), (Dmax), and (LoEx). For every 1 ≤ p ≤ n− 1, let us also define
m̂ = m̂(p) = Argminm∈Mn

R̂p(m). Let us assume the target s 6∈ ∪m∈MnSm and Rn(m̄) → 0 as
n tends to +∞.

1. If for large enough values of n Dm̄ ≤ (log n)4, then every 1 ≤ p = pn ≤ n− 1 such that

log(n)
(
1− p

n

)
−−−−−→
n→+∞

0 and nE
[
‖sm̄ − ŝ m̄‖2

]
= o (n− p)(25)

leads to

P [ m̂ = m̄ ] −−−−−→
n→+∞

1.

2. If for large enough values of n Dm̄ > (log n)4, then every 1 ≤ p = pn ≤ n− 1 such that

(log n)5

nE
[
‖sm̄ − ŝ m̄‖2

] = o

(
p/n

1− p/n

)
and

p/n

1− p/n
= o


1 ∨ ‖s− sm̄‖2

E

[
‖sm̄ − ŝ m̄‖2

]




(26)

leads to

P [ m̂ = m̄ ] −−−−−→
n→+∞

1.

The proof is similar to that of Theorem 3.3 and has been postponed to Section S.6 (sup-
plementary material). The constraints on p strongly depend on the rate of convergence of ŝ m̄

(nonparametric here). When Sm̄ is a small nonparametric model (Dm̄ ≤ (log n)4), (25) is very

similar to (24) in the parametric setting. In particular nE
[
‖sm̄ − ŝ m̄‖2

]
→ +∞ as n tends to

+∞ implies n(1−p/n) → +∞ as well. For large nonparametric models (Dm̄ > (log n)4), the con-

straints on p are related to the ratio ‖s− sm̄‖2 /E
[
‖sm̄ − ŝ m̄‖2

]
. For instance when estimating

s ∈ H(L,α) by regular histograms, this ratio remains bounded while nE
[
‖sm̄ − ŝ m̄‖2

]
grows

polynomially in n. Then p/n has to converge to 0 as n increases, but not too fast. In particular
Loo (p = 1) is suboptimal in that setting (see Figure 4 panel (b)). Note that Theorem 3.4 has
the same flavor as Corollary 1 in (Yang, 2007), except the density estimation setting allows to
relate p to the features of the best estimator more closely.

3.2.2. Simulation experiments. Simulation experiments have been performed in the settings
of Theorems 3.3 and 3.4, respectively when s belongs to (resp. does not belong to) the model
collection. We used a polynomial model collection made of regular piecewise constant functions
described in Section 2.1.2 for which Assumptions (P-NP) and (BeMo) are fulfilled with µ =
5.10−1. In each setting N = 1000 samples have been drawn. Results are given in Figures 3 and 4
where P [ m̂ = m̄ ] is displayed with respect to the ratio p/n. Let us also mention that Lemma S.6
clearly shows (LoEx) holds true for all densities defined in the following as long as Dm ≥ 2 for
every model in the collection.

When s belongs to the model collection (Figure 3), the following densities have been used.
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1. s1(t) =
6
81[0,1/2](t) +

10
8 1[1/2,1](t), t ∈ [0, 1] (panel (a)),

2. s2(t) =
135
1121[0,1/3](t) +

135
56 1[1/3,1/2](t) +

1
41[1/2,5/7](t) +

1
21[5/7,1](t), t ∈ [0, 1] (panel (b)).

As predicted by Theorem 3.3, CV reaches model selection consistency for recovering the best
parametric estimator ŝ m̄ on condition p/n increases to 1 as n grows to +∞. Comparing (a)
and (b), the convergence rate is slower in (b). Unlike (a) where m̄ remains almost unchanged as
n increases, the best parametric estimator in (b) changes with n as allowed by (21). Therefore
the slower convergence rate in (b) results from the higher dimension of the space of piecewise
constant functions s2 belongs to.
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Fig 3. p/n 7→ P [ m̂ = m̄ ] for density s1 (panel (a)) and s2 (panel (b)). N = 1000 samples have been drawn.

When s does not belong to the model collection (Figure 4), densities with different smoothness
assumptions have been considered.

1. s3(x) = β(10, 7;x), for every t ∈ [0, 1] (panel (a)),
2. s4(x) =

6
5x

1/5, for every t ∈ [0, 1] (panel (b)).

The converse situation arises since CV reaches model selection consistency as long as p/n de-
creases to 0 as n tends to +∞. Consistently with Theorem 3.4 this rate strongly depends on
the risk of the best estimator, that is of the smoothness of the target. While model selection
consistency is illustrated by both panels (a) and (b), it is faster for the smoothest density s3 than
for s4. In Figure 4 panel (b), the highest probability is achieved for p/n ≈ 0.18 with n = 6000.

4. Discussion. From the present analysis of CV procedures in the density estimation frame-
work, we were able to prove the optimality of leave-one-out cross-validation for risk estimation,
which is consistent with earlier results in the regression setting Burman (1989).

However when CV is used as model selection procedure, the optimal p strongly depends on
the structure of the model collection and on our goal (estimation or identification).

Estimation. When the best model has dimension growing with n (faster than (log n)a for some
a > 0) and the model collection has a polynomial complexity (Pol), Theorem 3.1 proves any
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Fig 4. p/n 7→ P [ m̂ = m̄ ] for density s3 (panel (a)) and s4 (panel (b)). N = 1000 samples have been drawn.

p such that p/n → 0 leads to an asymptotically optimal model selection procedure. This is
consistent with the asymptotic equivalence between Lpo (as long as p/n → 0) and Mallows’Cp

previously settled in the regression setting (Shao, 1997).
From a non asymptotic point of view, Corollary 3.1 suggests choosing p > 1 (for finite sample)

could balance the overfitting phenomenon arising from selecting a model from a large collection.
This overfitting phenomenon is already well known with penalized criteria such as Mallow’s
ones, inducing the need for heavier constants in front of the penalty Arlot and Massart (2009).
Therefore increasing p amounts to penalize more strongly complex models (with large dimen-
sion).

Identification. As settled by Yang (2007) for regression, Section 3.2 highlights the optimal p
depends on the rate of convergence of the estimator one tries to recover (and on the structure
of the model collection).

When the target estimator has a parametric rate with a polynomial collection, Theorem 3.3
proves p/n → 1 leads to model selection consistency. This fact has been already noticed by
Shao (1993) in the regression setting who proved leave-one-out is not model selection consistent.
Remembering the asymptotic equivalence between Lpo and BIC-like criteria (Shao, 1997) es-
tablished with the linear regression model, this confirms the somewhat paradoxical requirement
(Yang, 2006) to devote most of available data (p > n/2) to the test set when trying to recover
a parametric estimator.

Drawing such a simple conclusion is harder when the best estimator has a nonparametric rate
as detailed by Theorem 3.4. If the best estimator has a rate close to parametric, then p/n → 1
provides model selection consistency. Conversely if the rate is slower (for instance polynomial
of order n−a, for some a > 0), then requiring p/n → 0 enables to recover the target estimator.
Relating that way the optimal p to the rate of convergence of the best estimator has been already
done in the regression context by (Yang, 2007, see Corollary 1).

Note that when the best estimator is nonparametric (for instance with polynomial rate),
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Theorem 3.1 and Theorem 3.4 imply p/n → 0 leads to both efficiency and respectively model
selection consistency. However there is no contradiction with the earlier paper by Yang (2005)
where it was proved no model selection criterion can share both efficiency and model selec-
tion consistency in a parametric setting. For instance Li (1987) has established model selection
consistency for leave-one-out with nonparametric estimators in regression.

SUPPLEMENTARY MATERIAL

Supplement to “Optimal cross-validation in density estimation with the L2−loss”:
Technical proofs and details
(doi: COMPLETED BY THE TYPESETTER; .pdf). Owing to space constraints, we have moved
technical proofs to a supplementary document corresponding to Section S.1 and following ones.
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APPENDIX A: ESTIMATION POINT OF VIEW

A.1. Proofs of main results.

Proof of Theorem 3.1.

First let us use Proposition S.2 applied with m,m′ ∈ Mn such that R̂p(m
′) ≤ R̂p(m). Then, it

comes

n

n− p
E
[
Z2
m′

]
+ ‖s− sm′‖2 −K(n, p)

[
Z2
m′ − E

[
Z2
m′

] ]

≤ n

n− p
E
[
Z2
m

]
+ ‖s− sm‖2 −K(n, p)

[
Z2
m − E

[
Z2
m

] ]

− 2K(n, p) νn (sm′ − sm) +
1

n

(
K(n, p) +

n

n− p

)
νn (φm′ − φm) ,

where K(n, p) = 1 + 2
n−1 +

p
n−p

1
n−1 ·

Then, combining Propositions A.1 and A.2 to control the remainder terms, there exist a
sequence (δn)N with δn → 0 and nδn → +∞ as n → +∞ and an event Ω = Ωrem,1 ∩ Ωrem,2 of
probability 1− 4/n2 on which

n

n− p
E
[
Z2
m′

]
+ ‖s− sm′‖2 −K(n, p)

[
Z2
m′ − E

[
Z2
m′

] ]

≤ n

n− p
E
[
Z2
m

]
+ ‖s− sm‖2 −K(n, p)

[
Z2
m − E

[
Z2
m

] ]

+ δnK(n, p)
(
‖s− sm′‖2 + E

[
Z2
m′

]
+ ‖s− sm‖2 + E

[
Z2
m

])

+ δn

(
K(n, p) +

n

n− p

) [
E
[
Z2
m′

]
+ E

[
Z2
m

] ]
.

In the following, δn always denotes such a sequence even if the precise expression of δn can differ
from line to line.

Let us now use concentration results stated in Corollaries S.1 and S.2 on the events Ωleft and
Ωright. The important point in this proof is given by Lemmas S.4 and S.5, where it is proved
that on the event Ω = Ωleft ∩ Ωright ∩ Ωrem,1 ∩ Ωrem,1, min

{
Dm∗ ,Dm̂(p)

}
≥ (log n)4 for large

enough values of n. Therefore, one can apply Lemma S.9 and Corollaries S.1 and S.2 with
Lm = 0 = rn(m) to get

Z2
m′

[(
n

n− p
(1− δn)− 2δnK(n, p)

)
(1− 4δn)− 4K(n, p)δn

]
+ [ 1− δnK(n, p) ] ‖s− sm′‖2

≤ Z2
m

[(
n

n− p
(1 + δn) + 2δnK(n, p)

)
(1 + 4δn) + 4K(n, p)δn

]
+ [ 1 + δnK(n, p) ] ‖s− sm‖2 .

Choosing m′ = m̂, it comes

T−
V Z2

m̂ + T−
B ‖s− sm̂‖2 ≤ T+

V Z2
m + T+

B ‖s− sm‖2 ,
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where

T−
B = 1− δnK(n, p), T−

V =
n

n− p
(1− δn) [ 1− 4δn ]− 2K(n, p)

[
3δn − 4δ2n

]
,

T+
B = 1 + δnK(n, p), T+

V =
n

n− p
(1 + δn) [ 1 + 4δn ] + 2K(n, p)

[
3δn + 4δ2n

]
.

Finally on the event Ω, the following oracle inequality holds true for every p ∈ {1, n− 1}
∥∥s− ŝ m̂(p)

∥∥2 ≤ Cn(p) inf
m∈Mn

{
‖s− ŝm‖2

}
, with Cn(p) =

T+
B ∨ T+

V

T−
B ∧ T−

V

.

Moreover, on the event Ω, Lemmas S.4 and S.5 show min
{
Dm∗ ,Dm̂(p)

}
≥ (log n)4. Then, it

is enough to apply Propositions S.4 and S.3 to models satisfying this constraint, which leads
to the new event Ω̃ (where models with dimension smaller than (log n)4 have been omitted) of
probability at least 1− 6/n2.

Proof of Corollary 3.1. Let us recall the expression of the leading constant

Cn(p) =
T+
B ∨ T+

V

T−
B ∧ T−

V

,

with

T−
B = 1− δnK(n, p), T−

V =
1

1− p/n
(1− δn) [ 1− 4δn ]− 2δnK(n, p) [ 3− 4δn ] ,

T+
B = 1 + δnK(n, p), T+

V =
1

1− p/n
(1 + δn) [ 1 + 4δn ] + 2δnK(n, p) [ 3 + 4δn ] ,

and K(n, p) = 1 + 2
n−1 +

p
n−p

1
n−1 .

First as long as n is large enough, simple calculations when p = 1 show T−
V (1) ≤ T−

B (1).
Noticing moreover that T+

V (p) ≥ T+
B (p) for every p, it comes for p close to 1

Cn(p) =
T+
V

T−
V

=
(1 + δn) [ 1 + 4δn ] + 2(1 − p/n)δnK(n, p) [ 3 + 4δn ]

(1− δn) [ 1− 4δn ]− 2(1 − p/n)δnK(n, p) [ 3− 4δn ]
·

It is then easy to show that p 7→ Cn(p) is decreasing on {1, . . . , p∗}, where p∗ denotes the value
of p such that T−

V (p) = T−
B (p). Hence,

p∗n
n

= 1−
1− 5δn + 4δ2n − 2

n−1(3δn − 4δ2n) +
δn
n−1

1 + 2(1 + 1
n−1)(3δn − 4δ2n)− δn(1 +

1
n−1)

·

It results that for every p ≥ p∗

Cn(p) =
T+
V

T−
B

,
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which is increasing with respect to p.
In the same way, it is easy to check that p∗n/(10nδn) −−−−−→n→+∞

1, which enables to conclude.

Proof of Theorem 3.2. Introducing the event Ω̃ of Theorem 3.1, it comes

E

[ ∥∥s− ŝ m̂(p)

∥∥2
]
= E

[ ∥∥s− ŝ m̂(p)

∥∥2 1
Ω̃

]
+ E

[ ∥∥s− ŝ m̂(p)

∥∥2 1
Ω̃c

]
.

Then Theorem 3.1 applied to the first expectation in the right-hand side leads to

E

[ ∥∥s− ŝ m̂(p)

∥∥2
]
≤ Cn(p)E

[
inf

m∈Mn

‖s− ŝm‖2
]
+ E

[ ∥∥s− ŝ m̂(p)

∥∥2 1
Ω̃c

]
.

Applying (Bias), one gets

E

[ ∥∥s− sm̂(p)

∥∥2 1Ω̃c

]
≤ E

[
cu

Du
m̂(p)

1Ω̃c

]
≤ cuP

(
Ω̃c
)
≤ 6cu

n2
,

while (RegD) and (Dmax) provide

E

[ ∥∥sm̂(p) − ŝ m̂(p)

∥∥2 1
Ω̃c

]
= E


 ∑

λ∈Λ(m̂(p))

(Pnϕλ − Pϕλ)
2
1
Ω̃c




≤ 2E




∑

λ∈Λ(m̂(p))

(Pnϕλ)
2
1Ω̃c


+ 2E




∑

λ∈Λ(m̂(p))

(Pϕλ)
2
1Ω̃c




≤ 2E


 ∑

λ∈Λ(m̂(p))

1

n2

n∑

i,j=1

ϕλ(Xi)ϕλ(Xj)1Ω̃c


+ 2 ‖s‖2 E

[
Dm̂(p)1Ω̃c

]

≤ 2(Φ + ‖s‖2) n

(log n)2
P

(
Ω̃c
)
≤ (Φ + ‖s‖2) 12

n(log n)2
·

A.2. Bounding remainder terms.

Proposition A.1 (Bound on νn (φm − φm′)).
Let us assume (RegD) and apply (42) with t = φm and x = xm = c1nE(Z

2
m) (c1 > 0). Then,

an event Ωrem,1 exists with P [ Ωrem,1 ] ≥ 1− 2
∑

m∈M e−xm, on which for every m,m′ ∈ Mn

|νn (φm − φm′)| ≤ nE(Z2
m) + nE(Z2

m′)

log n
,

where Zm = supt∈Sm
νn(t) for every m.
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Proof of Proposition A.1. A straightforward use of (42) leads to the desired conclusion.

Proposition A.2 (Bound on νn (sm − sm′)). Let us assume (Pol),(SqI), (RegD), (LoEx),
and (OrSp) hold true. Then, there exists a sequence (δn)N such that for every m,m′ ∈ M,

P

[
2 |νn(sm − sm′)| > δn

(
E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

) ]
≤ 2n−(2aM+2),

with δn → 0 and nδn → +∞ as n → +∞, and 0 ≤ δn ≤ 1 for n large enough.
Furthermore, an event Ωrem,2 exists with P [ Ωrem,2 ] ≥ 1−2/n2, on which for every m,m′ ∈ M

2 |νn(sm − sm′)| ≤ δn

(
E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

)
.

Proof of Proposition A.2. For every η > 0,

2νn(sm − sm′) = 2 ‖sm − sm′‖ νn(tm,m′)

≤ η ‖sm − sm′‖2 + η−1
[
νn(tm,m′)

]2
,

where tm,m′ = (sm − sm′) / ‖sm − sm′‖.
Thanks to (42) where t = tm,m′ , it comes

∣∣νn(tm,m′)
∣∣ >

√

2
Var

(
tm,m′(X1)

)

n
x+

∥∥tm,m′

∥∥
∞

3n
x,

with probability not larger than 2 exp (−x), x > 0. Hence with (SqI), one has

2νn(sm − sm′) ≤ η ‖sm − sm′‖2 + 4η−1Var
(
tm,m′(X1)

)

n
x+ 2η−1

(∥∥tm,m′

∥∥
∞

3n
x

)2

(27)

≤ 2η
(
‖s− sm‖2 + ‖s− sm′‖2

)
+ 4η−1

‖s‖
∥∥tm,m′

∥∥
∞

n
x+ 2η−1

(∥∥tm,m′

∥∥
∞

3n
x

)2

.

Moreover assuming (RegD), it comes

∥∥tm,m′

∥∥
∞ ≤

√
Φ (Dm +Dm′).

Then,

Var
(
tm,m′(X1)

)

n
x ≤ ‖s‖

√
Φ
√

(Dm +Dm′)

n
x,

(∥∥tm,m′

∥∥
∞

3n
x

)2

≤ Φ (Dm +Dm′)
x2

9n2
·
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Let us take x = (2aM + 2) log n. Then,

Var
(
tm,m′(X1)

)

n
x ≤ ‖s‖

√
Φ
√

(Dm +Dm′)

n
(2aM + 2) log n,

(∥∥tm,m′

∥∥
∞

3n
x

)2

≤ Φ (Dm +Dm′)
((2aM + 2) log n)2

9n2
·

Then,

2
νn(sm − sm′)

E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

≤ 2η + 4η−1 ‖s‖
√
Φ
√
(Dm +Dm′)

n
(
E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

)(2aM + 2) log n

+ 2η−1Φ
Dm +Dm′

n
(
E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

) ((2aM + 2) log n)2

9n

≤ 2η + 4η−1
‖s‖

√
Φ
ξ√

n
(
E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

)(2aM + 2) log n

+ 2η−1Φ

ξ

((2aM + 2) log n)2

9n
,

thanks to (LoEx). Moreover using that

n
(
E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

)
≥ 2n inf

m
E ‖s− ŝm‖2 =: 2nR∗

n,

it comes

2
νn(sm − sm′)

E ‖s− ŝm‖2 + E ‖s− ŝm′‖2
≤ 2η + 4η−1 ‖s‖

√
Φ

2ξ
(2aM + 2)

1√
nR∗

n(log n)
−2

+ 2η−1Φ

ξ
(2aM + 2)2

(log n)2

9n
.

Then, (OrSp) entails there exists a sequence δn → 0, nδn → +∞ as n → +∞ (0 < δn < 1
for n large enough) such that

2νn(sm − sm′) ≤ δn

(
E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

)
.

Finally, let us notice that
∑

m,m′∈M 2n−(2aM+2) ≤ 2n2aMn−(2aM+2) = 2/n2.
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APPENDIX B: IDENTIFICATION POINT OF VIEW

B.1. Main proof.

Proof of Theorem 3.3. The general purpose is to prove there exist an event Ωn with
P (Ωn) → 1 as n tends to +∞ and a positive integer N such that on Ωn, for every n ≥ N , every
m 6= m̄ satisfies

R̂p(m̄)− R̂p(m) ≤ −un(m)(1 + o(1)),(28)

where un(m) > 0 denotes a real number for every n and m, and o(1) does not depend on m. In
particular this implies

P (m̂ = m̄) = P

(
∀m 6= m̄, R̂p(m̄)− R̂p(m) < 0

)
−−−−−→
n→+∞

1,(29)

which would conclude the proof.
Let us consider the event Ωleft∩Ωright in Proposition S.7 with β1 = β2 = 1/n2, and the events

Ωrem,1 (Proposition A.1) and Ωrem,3 (Proposition S.6). Then with Ωn = Ωleft ∩ Ωright ∩ Ωrem,1 ∩
Ωrem,3 and P [ Ωc

n ] ≤ 8/n2, showing (29) amounts to prove

P

(
Ωn ∩

{
∀m 6= m̄, R̂p(m̄)− R̂p(m) < 0

})
−−−−−→
n→+∞

1.

Let us now focus on the event Ωn. The two main steps correspond to distinguishing between
parametric and nonparametric models Sm (see (P-NP)). For every m, let us define B(m) =

‖s− sm‖2 and V (m) = E

[
‖sm − ŝm‖2

]
, where sm = Argmint∈Sm

‖s− t‖2. From line to line,

the value of δn may change, but it always denotes a sequence decreasing to 0 and such that
nδn → +∞ as n grows.
If ŝm has a parametric rate.

• If s ∈ Sm:
Let us first notice sm = s = sm̄, which implies Rn(m) = V (m) and Rn(m̄) = V (m̄). Then,
Proposition S.2, and Propositions A.1 and S.7 lead to

∣∣∣∣
[
R̂p(m̄)− R̂p(m)

]
− n

n− p
[Rn(m̄)−Rn(m) ]

∣∣∣∣ ≤
(
36L2

n + 3δn + δn
n

n− p

)
[Rn(m) +Rn(m̄) ]

= o

(
n

n− p

)
[Rn(m) +Rn(m̄) ] ,

by requiring L2
n = o

(
(1− p/n)−1

)
, which provides (28) by use of (BeMo). Note that in

the previous inequality, rn(m̄) and rn(m) (from Proposition S.7) have been omitted since
they are negligible with respect to the other terms.

• If s 6∈ Sm:
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Similarly, Proposition S.2, Proposition A.1, and Propositions S.6 and S.7 lead to
∣∣∣∣
[
R̂p(m̄)− R̂p(m)

]
− [B(m̄)−B(m) ]− n

n− p
[V (m̄)− V (m) ]

∣∣∣∣

≤6δn [B(m̄) +B(m) ] +

(
36L2

n + 3δn
Φ

ξ
+ δn

(
3 +

n

n− p

))
[V (m) + V (m̄) ]

+ 3δn ‖s‖
√

Φ

ξ

√
V (m̄) + V (m) + rn(m̄).

With s ∈ ∪m′Sm′ and s 6∈ Sm, it comes B(m̄) = 0 and B(m) ≥ τ > 0 by (P-NP). Since
both ŝm and ŝ m̄ have parametric rates, requiring n(1 − p/n) → +∞ as n grows implies
(28), that is

[
R̂p(m̄)− R̂p(m)

]
≤ −B(m) (1 + o(1)) .

If ŝm has a nonparametric rate.

• If s ∈ Sm

Proposition S.2, sm = s = sm̄, and Propositions S.6 and S.7 combined with L2
n =

o (n/(n− p)) provide
∣∣∣∣
[
R̂p(m̄)− R̂p(m)

]
− n

n− p
[V (m̄)− V (m) ]

∣∣∣∣ ≤ o

(
n

n− p

)
V (m) + o

(
n

n− p

)
V (m̄),

where o (n/(n− p)) does not depend on m. Since Sm is nonparametric, (P-NP) gives

V (m̄)

V (m)
≤ π

(log n)2

(
n/(log n)2 inf

m
V (m)

)−1
−−−−−→
n→+∞

0,

which implies (28) with

(n− p)
[
R̂p(m̄)− R̂p(m)

]
≤ −nV (m) (1 + o(1)) .

• If s 6∈ Sm

Both L2
n = o (n/(n− p)) and the same argument as above lead to

∣∣∣∣
[
R̂p(m̄)− R̂p(m)

]
+B(m) +

n

n− p
V (m) [ 1 + o(1) ]

∣∣∣∣ ≤ V (m) o

(
n

n− p

)
+B(m) o (1) .

Then, (28) holds true with

[
R̂p(m̄)− R̂p(m)

]
≤ −B(m)(1 + o(1)) − n

n− p
V (m)(1 + o(1)).

Then there exists an integer N such that for n ≥ N , on the event Ωn, (28) holds true for every
m ∈ Mn, which concludes the proof.
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SUPPLEMENTARY MATERIAL TO “OPTIMAL CROSS-VALIDATION IN DENSITY
ESTIMATION WITH THE L2−LOSS”

S.1. Closed-form expressions and proofs.

Proof of Lemma 2.1. For every e ∈ Ep, and t ∈ [0, 1],

ŝm(X(e))(t) =
∑

λ

(P (e)
n ϕλ)ϕλ(t) =

1

n− p

n∑

j=1

∑

λ

ϕλ(Xj)ϕλ(t)1(j∈(e)),

which implies

∑

i∈e
ŝm(X(e))(Xi) =

1

n− p

∑

i 6=j

∑

λ

ϕλ(Xj)ϕλ(Xi)1(j∈(e))1(i∈e).

It remains to sum over e ∈ Ep, which is made thanks to Lemma S.1.

Proof of Proposition 2.1. From definitions of the contrast (Eq. (2)) and the Lpo estima-
tor Eq. (10), it comes

R̂p(m) =

(
n

p

)−1 ∑

e∈Ep

∥∥∥ŝm(X
(e)
1,n)
∥∥∥
2
− 2

p

(
n

p

)−1 ∑

e∈Ep

∑

i∈e
ŝm(X

(e)
1,n)(Xi).

Then, Lemma 2.1 provides the expected conclusion.

Proof of Corollary 2.5. Combining Proposition 2.2, Lemmas S.2 and S.3, and Proposi-
tion S.1, it comes

an = 4nβ +O(1),

bn = 8nβ − 4nγ +O(1),

cn = 4nβ − 4nγ + nδ +O(1),

where β = Cov [
∑

λ ϕλ(X1)ϕλ(X2),
∑

λ ϕλ(X1)ϕλ(X3) ], γ =
Cov

[∑
λ ϕ

2
λ(X1),

∑
λ ϕλ(X1)ϕλ(X3)

]
, and δ = Var

[∑
λ ϕ

2
λ(X1)

]
. This provides the con-

clusion with A = 4β, B = 8β − 4γ, and C = 4β − 4γ + δ.
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Lemma S.1. With the notation of Section 2.2.1, for any i 6= j 6= k ∈ {1, . . . , n},
∑

e∈Ep
1(j∈(e)) =

(
n− 1

p

)
and

∑

e∈Ep
1(j∈(e))1(k∈(e)) =

(
n− 2

p− 1

)
,

∑

e∈Ep
1(i∈e)1(j∈(e))1(k∈(e)) =

(
n− 3

p− 1

)
and

∑

e∈Ep
1(i∈e)1(j∈(e)) =

(
n− 2

p− 1

)
.

Lemma S.2. With the same notation as Proposition 2.2, it comes

an = n2Var


 ∑

λ∈Λ(m)

(Pnϕλ)
2


+Var

[
∑

λ

Pnϕ
2
λ

]
− 2nCov


∑

λ

Pnϕ
2
λ,

∑

λ∈Λ(m)

(Pnϕλ)
2


 ,

bn = 2n2


Var



∑

λ∈Λ(m)

(Pnϕλ)
2


− Cov



∑

λ

Pnϕ
2
λ,

∑

λ∈Λ(m)

(Pnϕλ)
2



(
1 +

1

n

)
+

1

n
Var

[
∑

λ

Pnϕ
2
λ

]
 ,

cn = n2Var

[
∑

λ

Pnϕ
2
λ

]
+ n2Var


 ∑

λ∈Λ(m)

(Pnϕλ)
2


− 2n2Cov


∑

λ

Pnϕ
2
λ,

∑

λ∈Λ(m)

(Pnϕλ)
2


 .

Lemma S.3. With the notation of Section 2.3, simple algebra leads to

Var

[
∑

λ

Pnϕ
2
λ

]
=

1

n
Var

[
∑

λ

ϕ2
λ(X1)

]
,

Cov

[
∑

λ

Pnϕ
2
λ,
∑

λ

(Pnϕλ)
2

]
=

1

n2
Var

[
∑

λ

ϕ2
λ(X1)

]
+ 2

n− 1

n2
Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X2)

]

Var

[
∑

λ

(Pnϕλ)
2

]
=

Var
[∑

λ ϕ
2
λ(X1)

]

n3
+ 4

n− 1

n3
Var

[
∑

λ

ϕλ(X1)ϕλ(X2)

]

+ 4
(n − 1)(n − 2)

n3
Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]

+ 4
n− 1

n3
Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X3)

]
.
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Proposition S.1. With the notation of Lemma S.2,

an = 4
n− 1

n
α+ 4

(n − 1)(n − 2)

n
β

bn = 8
n− 1

n
α+ 8

(n − 1)(n − 2)

n
β − 4(n− 1)

(
1− 1

n

)
γ

cn = 4
n− 1

n
α+ 4

(n − 1)(n − 2)

n
β − 4 (n− 1)

(
1− 1

n

)
γ +

(
n− 2 +

1

n

)
δ.

where α = Var [
∑

λ ϕλ(X1)ϕλ(X2) ], β = Cov [
∑

λ ϕλ(X1)ϕλ(X2),
∑

λ ϕλ(X1)ϕλ(X3) ], γ =
Cov

[∑
λ ϕ

2
λ(X1),

∑
λ ϕλ(X1)ϕλ(X3)

]
, and δ = Var

[∑
λ ϕ

2
λ(X1)

]
.

Proof of Proposition S.1. Using Lemmas S.2 and S.3, it comes

an = n2

[
Var

[∑
λ ϕ

2
λ(X1)

]

n3
+ 4

n− 1

n3
Var

[
∑

λ

ϕλ(X1)ϕλ(X2)

]

+4
(n− 1)(n − 2)

n3
Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]

+4
n− 1

n3
Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X3)

]]
+

1

n
Var

[
∑

λ

ϕ2
λ(X1)

]

− 2n

[
1

n2
Var

[
∑

λ

ϕ2
λ(X1)

]
+ 2

n− 1

n2
Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X2)

] ]

= 4
n− 1

n
Var

[
∑

λ

ϕλ(X1)ϕλ(X2)

]

+ 4
(n− 1)(n − 2)

n
Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]
.

In the same way,

bn = 2n2


Var


 ∑

λ∈Λ(m)

(Pnϕλ)
2


− Cov


∑

λ

Pnϕ
2
λ,

∑

λ∈Λ(m)

(Pnϕλ)
2



(
1 +

1

n

)
+

1

n
Var

[
∑

λ

Pnϕ
2
λ

]


= 8
n− 1

n
Var

[
∑

λ

ϕλ(X1)ϕλ(X2)

]

+ 8
(n − 1)(n− 2)

n
Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]

− 4(n − 1)

(
1− 1

n

)
Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X3)

]
.
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Finally,

cn = n2Var

[
∑

λ

Pnϕ
2
λ

]
+ n2Var


 ∑

λ∈Λ(m)

(Pnϕλ)
2


− 2n2Cov


∑

λ

Pnϕ
2
λ,

∑

λ∈Λ(m)

(Pnϕλ)
2




=

(
n− 2 +

1

n

)
Var

[
∑

λ

ϕ2
λ(X1)

]
+ 4

n− 1

n
Var

[
∑

λ

ϕλ(X1)ϕλ(X2)

]

+ 4
(n − 1)(n− 2)

n
Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]

− 4 (n− 1)

(
1− 1

n

)
Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X3)

]
.

Proposition S.2. For every m,m′ ∈ M and p ∈ {1, . . . , n− 1}, it comes

R̂p(m
′)− R̂p(m)

=

(
n

n− p

)(
E

[
‖sm′ − ŝm′‖2

]
− E

[
‖sm − ŝm‖2

])
+
[
‖s− sm′‖2 − ‖s− sm‖2

]

−K(n, p)
[
‖sm′ − ŝm′‖2 − E

[
‖sm′ − ŝm′‖2

] ]
+K(n, p)

[
‖sm − ŝm‖2 − E

[
‖sm − ŝm‖2

] ]

− 2K(n, p) νn (sm′ − sm) +
1

n

(
K(n, p) +

n

n− p

)
νn (φm′ − φm) ,

where

K(n, p) = 1 +
1

n− 1
+

n

n− p

1

n− 1
·

S.2. Deviations of
√

nZm.

S.2.1. Right deviation.

Proposition S.3 (Right deviation of
√
nZm). Let us assume (Pol), (SqI), (RegD), and

(LoEx) hold true, and set Zm = supt∈Sm
νn(t), σ

2
m = supt∈Sm

Var [ t(X1) ] and bm = supt∈Sm
‖t‖∞.

Then, there exists a sequence (δn)n≥1 with δn → 0 and nδn → +∞ as n → +∞ such that for
every m ∈ M,

√
nZm ≤ √

nE(Zm)


 1 + δn +

√√√√4

√
Φ

ξ
C ‖s‖1(√Dm<(log n)2)




on an event Ωright with P [ Ωright ] ≥ 1−1/n2−β1, for any β1 ∈ (0, 1) and C ≥
(√

ξ
)−1

log
(
5naMβ−1

1

)
.
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Proof of Proposition S.3.

Let us use Eq. (43) and upper bound the deviation terms. Assuming (SqI) and (RegD),
Lemma S.7 leads to

σ2
m ≤ ‖s‖

√
Φ
√

Dm, bm ≤
√
Φ
√

Dm.

Furthermore, (LoEx) entails

σ2
m ≤ ‖s‖

√
Φ

ξ

√
nE(Zm), bm ≤

√
Φ

ξ

√
nE(Zm).

Let us first upperbound
√
2 (σ2

m + 2bmE(Zm)) xm:

1. If
√
Dm ≥ (log n)2:

Then choosing xm = (aM+2) log n, there exists a sequence δn decreasing to 0, nδn → +∞
as n → +∞ such that

√
2 (σ2

m + 2bmE(Zm)) xm ≤ √
nE(Zm)δn.

2. Otherwise
√
Dm < (log n)2:

Then,
√

2 (σ2
m + 2bmE(Zm)) xm is no longer negligible with respect to

√
nE(Zm). So, choos-

ing xm = C
√
nE(Zm) (C > 0) leads to

√
2 (σ2

m + 2bmE(Zm)) xm ≤ √
nE(Zm)

√√√√2

√
Φ

ξ
C (‖s‖+ 2E(Zm)) ≤ √

nE(Zm)

√√√√4

√
Φ

ξ
C ‖s‖,

as long as n is large enough.

Let us now upperbound bmxm

3
√
n
:

bmxm
3
√
n

≤ √
nE(Zm)

√
Φ

ξ

(aM+2) log n ∨ C(log n)2

3
√
n

·

Finally, let us remark that

∑

Dm≥(logn)4

n−(aM+2) ≤ 1

n2
,

and that (Pol) and (LoEx) provide

∑

Dm<(logn)4

e−C
√
nE(Zm) ≤

(logn)4∑

d=1

|{m ∈ Mn | Dm = d}| e−C
√
ξ
√
d ≤ naM

(logn)4∑

d=1

e−C
√
ξ
√
d,

which, by Lemma S.12, leads to

∑

Dm<(logn)4

e−C
√
nE(Zm) ≤ naM

5

1 ∧ C2ξ
e−C

√
ξ.
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Then,
∑

m∈M
e−xm ≤ 1

n2
+ naM

5

1 ∧ C2ξ
e−C

√
ξ.

Corollary S.1. For Zm = supt∈Sm
νn(t), set Lm =

√
4
√

Φ
ξ C ‖s‖1(√Dm<(logn)2). Then on

the event Ωright defined in Proposition S.3,

Z2
m ≤ E(Z2

m) (1 + δn + Lm)2 .

S.2.2. Left deviation.

Proposition S.4 (Left deviation of
√
nZm). Let us assume (Pol), (SqI), (RegD), and

(LoEx) hold true, and set Zm = supt∈Sm
νn(t), σ

2
m = supt∈Sm

Var [ t(X1) ] and bm = supt∈Sm
‖t‖∞.

Then, there exists a sequence (δn)n≥1 with δn → 0 and nδn → +∞ as n → +∞ such that for
every m ∈ M,

√
nZm ≥ √

nE(Zm)


 1− δn −

√√√√4

√
Φ

ξ
C ‖s‖1(√Dm<(logn)2)


 ,

on an event Ωleft with P [ Ωleft ] ≥ 1−1/n2−β2 for any β2 ∈ (0, 1) and C ≥
(√

ξ
)−1

log
(
5naMβ−1

2

)

Proof of Proposition S.4. Similar to that of Proposition S.3 with the use of Eq. (44)
and the additional Proposition S.5 which provides an upper bound of E(Zm)2 depending on
E(Z2

m).

Proposition S.5 (Upper bound on Var(Z)). Let X1, . . . ,Xn be i.i.d.random variables de-
fined on a mesurable space (X ,T ). Let S denote a set of real valued functions such that supt∈S ‖t‖∞ ≤
b, supt∈S Var (t(X1)) = σ2, and set Z = supt∈S νn(t). Then,

Var(Z) ≤ 2σ2 + 32bE(Z)

n
.(30)

Let us assume (SqI), (RegD), and (LoEx). If S denotes a linear space of dimension D, then
there exists a positive sequence (δn)n≥1 with δn → 0 and nδn → +∞ as n → +∞ (0 < δn < 1
for n large enough), and every constant θ > 0 such that

E(Z2) ≤ (E(Z))2

(
1 + δn + θ

√
Φ

ξ
1(

√
Dm<(logn)2)

)
+ rn,

where rn = θ−1
√

Φ
ξ
2‖s‖2
n 1(

√
D<(logn)2).
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Proof of Proposition S.5. Assumptions (SqI), (RegD), and (LoEx) provide

E(Z2)− (E(Z))2 ≤ 2

√
Φ

ξ
(E(Z))2

( ‖s‖√
nE(Z)

+
16√
n

)
.

1. If
√
nE(Z) ≥ √

ξD ≥ √
ξ(log n)2:

E(Z2)− (E(Z))2 ≤ 2

√
Φ

ξ
(E(Z))2

( ‖s‖√
ξ(log n)2

+
16√
n

)

≤ δ1,n (E(Z))2 ,

with δ1,n = 2
√

Φ
ξ

(
‖s‖√

ξ(logn)2
+ 16√

n

)
.

2. Otherwise
√
nE(Z) ≤

√
ΦD <

√
Φ(log n)2:

E(Z2)− (E(Z))2 ≤ 2

√
Φ

ξ
E(Z)

(‖s‖√
n
+

16E(Z)√
n

)
≤ θ

√
Φ

ξ
(E(Z))2 + θ−1

√
Φ

ξ

1

n
(‖s‖+ 16E(Z))2

≤ θ

√
Φ

ξ
(E(Z))2 + θ−1

√
Φ

ξ

1

n

(
2 ‖s‖2 + 32 (E(Z))2

)

≤
(
δ2,n + θ

√
Φ

ξ

)
(E(Z))2 + rn

for every θ > 0, with δ2,n = θ−1
√

Φ
ξ
32
n and rn = θ−1

√
Φ
ξ
2‖s‖2
n .

Then, there exists a positive sequence (δn)n≥1 with δn = max {δ1,n, δ2,n} decreasing to 0 with
nδn → +∞ as n → +∞, such that

E(Z2)− rn

1 + δn + θ
√

Φ
ξ 1(

√
D<(logn)2)

≤ (E(Z))2 .

Corollary S.2. For Zm = supt∈Sm
νn(t), set Lm =

√
4
√

Φ
ξ C ‖s‖1(√Dm<(logn)2) and

rn(m) = θ−1
√

Φ
ξ
2‖s‖2
n 1(

√
Dm<(log n)2). Then on the event Ωleft defined in Proposition S.4,

• if δn + Lm ≤ 1,

E(Z2
m) ≤ Z2

m (1− δn − Lm)−3 + rn(m),

• otherwise,

Z2
m − E

(
Z2
m

)
≥ −E

(
Z2
m

)
.
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Proof of Corollary S.2.

• If δn + Lm ≤ 1, Propositions S.4 and S.5 provide

E(Z2
m) ≤ Z2

m

1 + δn + θ
√

Φ
ξ 1(

√
Dm<(logn)2)

(1− δn − Lm)2
+ rn(m),

and Lemma S.10 enables to conclude.
• Otherwise from Proposition S.4, one easily derives that Zm ≥ 0 on the event Ωleft.

S.3. Dimension behavior with respect to n.

Lemma S.4 (Oracle dimension). Let us assume (Bias), (Rich), and (RegD) hold true.
Then, on the event Ω′ = Ωleft ∩ Ωright, where Ωleft and Ωright are respectively defined in Corol-
lary S.1 and Corollary S.2, it comes

Dm∗ ≥ (log n)4,(31)

for large enough values of n.

Proof of Lemma S.4. Since m∗ = Argminm ‖s− ŝm‖2, it comes

‖s− ŝm∗‖2 ≤ ‖s− sm0
‖2 + ‖sm0

− ŝm0
‖2 ,

with m0 defined by (Rich).
First on the event Ω′, using E

(
Z2
m0

)
≤ ΦDm0

/n by (RegD) and Corollaries S.1 and S.2,
there exists δn such that

∣∣Z2
m0

− E
(
Z2
m0

)∣∣ ≤ δnE
(
Z2
m0

)
≤ δnΦ

Dm0

n
·

Then by use of (Bias) and (Rich) on Ω′,

cℓD
−ℓ
m∗ ≤ ‖s− sm∗‖2 ≤ ‖s− ŝm∗‖2 ≤ cun

−u/2 + crich(1 + δn)Φn
−1/2,

which is contradictory with assuming Dm∗ < (log n)4 as long as n is large enough.

Lemma S.5 (Chosen model dimension). Let us assume (Bias), (Rich), (LoEx), and (RegD)
hold true. Then with the notation of Lemma S.4, on the event Ω = Ω′ ∩ (Ωrem,1 ∩ Ωrem,2), where
Ωrem,1 and Ωrem,2 are respectively defined in Proposition A.1 and Proposition A.2, it comes

Dm̂ ≥ (log n)4,(32)

for large enough values of n.
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Proof of Lemma S.4. For any model m such that R̂p(m) ≤ R̂p(m0), Proposition A.1,
Proposition A.2, and Proposition S.2 lead to

[ 1−K(n, p)δn ] ‖s− sm‖2 +
[

n

n− p
−K(n, p)δn −

(
K(n, p) +

n

n− p

)
δn

]
E
(
Z2
m

)

−K(n, p)
[
Z2
m − E

(
Z2
m

) ]

≤ [ 1 +K(n, p)δn ] ‖s− sm0
‖2 +

[
n

n− p
+K(n, p)δn +

(
K(n, p) +

n

n− p

)
δn

]
E
(
Z2
m0

)

−K(n, p)
[
Z2
m0

− E
(
Z2
m0

) ]
.

First, assuming Dm̂ < (log n)4 on Ω and combining (LoEx) and (RegD) entail for m = m̂
that there exists a constant C > 0 such that
∣∣∣∣
[

n

n− p
−K(n, p)δn −

(
K(n, p) +

n

n− p

)
δn

]
E
(
Z2
m

)
−K(n, p)

[
Z2
m − E

(
Z2
m

) ]∣∣∣∣ ≤ C
(log n)4

n
·

Second, using (Bias) provides

[ 1−K(n, p)δn ] ‖s− sm‖2 ≥ [ 1−K(n, p)δn ] cℓ(log n)
−4ℓ,

which is larger than C (log n)4

n for large enough values of n.
Using the same arguments as in Lemma S.4 for upper bounding the terms depending on m0,

it results that Dm̂ ≥ (log n)4 on Ω.

S.4. Estimation: Technical results.

Lemma S.6. Let s denote a density in L2([0, 1]) and 0 < η, ℓ < 1 be constants such that

|{x ∈ [0, 1] | s(x) ≥ η}| ≥ ℓ.

Then using regular histograms such that ℓ > 1/Dm, (LoEx) is fulfilled with ξ = 1
32η(1− η)ℓ.

Proof of Lemma S.6. First for 0 < η < 1, let us define

Lη = {x ∈ [0, 1] | s(x) ≥ η}
such that |Lη| ≥ ℓ. Then ℓ > 1/Dm implies Pϕλ = pλ/

√
Dm 6= 1/

√
Dm for every λ and then

∑

λ

Var [ϕλ(X) ] = Dm

∑

λ

pλ(1− pλ) ≥ Dm

∑

Iλ∩Lη 6=∅
η |Iλ ∩ Lη| (1− η |Iλ ∩ Lη|).

Therefore, it results

∑

λ

Var [ϕλ(X) ] ≥ Dm


 ∑

Iλ∩Lη 6=∅
η |Iλ ∩ Lη| −

∑

Iλ∩Lη 6=∅
η2 |Iλ ∩ Lη|2




≥ Dmη(1 − η)
∑

Iλ∩Lη 6=∅
|Iλ ∩ Lη| = Dmη(1− η) |Lη|

≥ Dmη(1 − η)ℓ.
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Second, the Bonami-Becker inequality applied to homogeneous Rademacher chaos of order one
(see Boucheron et al., 2013, p.140) combined with Lemma 1.2.6 in de la Peña and Giné (1999)
applied to symmetrized statistics lead to

E [ ‖sm − ŝm‖ ] ≥ 1

4
√
2

√
E

[
‖sm − ŝm‖2

]
=

1

4
√
2

√
1

n

∑

λ

Var [ϕλ(X) ].

The final result comes from gathering the two lower bounds.

Lemma S.7. Let X1, . . . ,Xn be i.i.d.random variables defined on a mesurable space (X ,T ).
Let S denote a set of real valued functions such that supt∈S ‖t‖∞ ≤ b and supt∈S Var (t(X1)) =
σ2. Let us assume (SqI). Then

σ2 ≤ ‖s‖ b.(33)

Furthermore, (RegD) leads to

σ2 ≤ ‖s‖
√
ΦD,(34)

where D denotes the dimension of the vector space S.

Lemma S.8. (Dmax) implies

‖φm‖∞ ≤
√

Φ
n

(log n)2
,

Var (φm(X1)) ≤
(
nE(Z2) + ‖s‖2

)√
Φ

n

(log n)2
.

Proof.

Var (φm(X1)) ≤ E
[
φ2
m(X1)

]
≤ ‖φm‖∞ E [φm(X1) ]

= ‖φm‖∞
(
nE(Z2) + ‖sm‖2

)
≤ ‖φm‖∞

(
nE(Z2) + ‖s‖2

)

≤
(
nE(Z2) + ‖s‖2

)√
Φ

n

(log n)2
.
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Lemma S.9. Let us assume that 0 ≤ δn + Lm < 1/4 for every m ∈ M. Then on the event
Ωleft ∩ Ωright (with Ωleft and Ωright defined in Proposition S.4 and Proposition S.3 respectively),
for every m,m′ ∈ M,

Z2
m′ (1− 4(δn + Lm′)) ≤ E(Z2

m′), Z2
m′ − E(Z2

m′) ≤ 4Z2
m′(δn + Lm′).(35)

and

E(Z2
m) ≤ Z2

m (1 + 4(δn + Lm)) + rn, E(Z2
m)− Z2

m ≤ 4Z2
m(δn + Lm) + rn,(36)

where rn(m) is defined in Proposition S.5

Proof of Lemma S.9.

Proof of (35) From Corollary S.1, on the event Ωright, it comes

Z2
m ≤ (E(Zm))2 (1 + δn + Lm)2 .

Then assuming moreover 0 ≤ δn + Lm < 1, Jensen’s inequality and (1 − x)−2 < (1 + x2) for
x ∈ [0, 1[ lead to

Z2
m ≤ E(Z2

m) (1 + δn + Lm)2 ≤ E(Z2
m)

1

(1− δn − Lm)2
·

Finally if 0 ≤ δn + Lm < 1/4, then

E(Z2
m) ≥ Z2

m (1− δn − Lm)2 ≥ Z2
m [ 1− 2(δn + Lm) ] ≥ Z2

m [ 1− 4(δn + Lm) ] .

Proof of (36) Assuming δn + Lm < 1/4, Corollary S.2 and Lemma S.11 provide

E(Z2
m) ≤ Z2

m (1 + 4(δn + Lm)) + rn(m).

Lemma S.10. For every a, b ∈ (0, 1) such that a < b(1− b)−1,

1 + a

(1− b)2
≤ 1

(1− b)3
.(37)

Moreover if 0 < a = b < 1, then a < a(1 − a)−1 and Eq. (37) holds true.
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Lemma S.11. For every interval I ⊂ [0, 1[ such that 0 ∈ I, there exists a constant ∆ > 3
such that

∀x ∈ I, (1− x)−3 ≤ 1 +∆x.

In particular for I = [0, 1/4], this property holds true with ∆ = 4. Furthermore for every
x ∈]1,+∞[,

(1− x)−3 ≤ 1.

Lemma S.12. For every A > 0 and K ∈ N
∗,

K∑

d=1

e−A
√
d ≤ 5

1 ∧A2
e−A,

where a ∧ b = min(a, b).

Proof of Lemma S.12.

K∑

d=1

e−A
√
d ≤ e−A + 2

K∑

d=2

∫ √
d

√
d−1

te−Atdt

= e−A + 2

[
e−A −

√
Ke−A

√
K

A
+

e−A − e−A
√
K

A2

]

≤ e−A + 2

[
e−A

A
+

e−A

A2

]
≤ 5

1 ∧A2
e−A.

S.5. Adaptivity in the minimax sense.

S.5.1. Proof of Corollary 3.2. The proof simply consists in combining Theorems 3.1 and 3.2
by checking their assumptions. First, s ∈ H(L,α) implies (SqI). Combined with Lemma S.13,
it shows (Bias) is fulfilled. Besides, (OrSp) holds true since

inf
m∈Mn

E

[
‖s− ŝm‖2

]
≈ n− 2α

2α+1 ⇒ n

(log n)2
inf

m∈Mn

E

[
‖s− ŝm‖2

]
≈ n

1

2α+1 (log n)−2,

where a ≈ b means there exist constants 0 < c1 ≤ c2 such that c1b ≤ a ≤ c2b.
Second, since the model collection is built from regular partitions of [0, 1], (RegD) is clearly

satisfied, and (Dmax) entails (Rich) is fulfilled.
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S.5.2. Technical Lemmas.

Lemma S.13. Let s be a density such that s ∈ H(L,α) for some α ∈ (0, 1] and L > 0.
For every D ∈ N

∗, let sD denote the orthogonal projection of s defined in Section 2.1.2 onto
piecewise constant functions built from a given regular partition of [0, 1] in D intervals. Then,

cℓ
Dℓ

≤ ‖s− sD‖2 ≤
cu
Du

,(38)

where u = 2α, cu = L2, ℓ = 1 + 1/α and cℓ = ǫ2+1/α2−(5+2/α)L−1/α, for some ǫ > 0.

Proof of Lemma S.13. First, let us notice (38) excludes s = 1[0,1]. Then, there exist x <
y ∈ [0, 1] such that |x− y| ≤ η and |s(x)− s(y)| ≥ ǫ for some η, ǫ > 0. Besides for a regular
partition of [0, 1] in intervals I1, . . . , ID of Lebesgue measure |Ik| = 1/D, it comes

‖s− sD‖2 =
D∑

k=1

∫

Ik

[ s(t)− sD(t) ]
2 dt =

D∑

k=1

∫

Ik

[ s(t)− sIk ]
2 dt,

where sIk denotes the mean of s on interval Ik.
Second, let K(η) = {1 ≤ k ≤ D, Ik ∩ [x, y] 6= ∅} and N(η) denote the cardinality of K(η).

Then, N(η) ≤ 2 + ηD. Combined with Lemma S.14, it leads to

‖s− sD‖2 ≥
∑

k∈K(η)

∫

Ik

[ s(t)− sIk ]
2 dt ≥ 1

24+2/αL1/α

∑

k∈K(η)

∆
2+1/α
k ,

where ∆k := supIk s− infIk s, for every 1 ≤ k ≤ D. Applying Hölder’s inequality, it comes

∑

k∈K(η)

∆
2+1/α
k ≥ N(η)−(1+1/α)



∑

k∈K(η)

∆k




2+1/α

≥ N(η)−(1+1/α)ǫ2+1/α,

since
∑

k∈K(η)∆k ≥ ǫ. Hence,

‖s− sD‖2 ≥
∑

k∈K(η)

∫

Ik

[ s(t)− sIk ]
2 dt ≥ 1

24+2/αL1/α

∑

k∈K(η)

∆
2+1/α
k

≥ 1

24+2/αL1/α
N(η)−(1+1/α)ǫ2+1/α

≥ 1

24+2/αL1/α
(1 + η)−(1+1/α)D−(1+1/α)ǫ2+1/α

≥ ǫ2+1/α

25+2/αL1/α
D−(1+1/α)·
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Lemma S.14. Let s denote a density defined on [0, 1] such that s ∈ H(L,α), for some L > 0
and α ∈ (0, 1]. Let us define an interval I ⊂ [0, 1] and sI = |I|−1 ∫

I s(t) dt denotes the mean of
s on I. Then,

∫

I
(s(t)− sI)

2 dt ≥ ∆2+1/α

24+2/αL1/α
,

where ∆ = supI s− infI s.

Proof of Lemma S.14. First, let us notice s− = infI s ≤ sI ≤ supI s = s+, which implies

max
(
s+ − sI , sI − s−

)
≥ ∆/2.

Without loss of generality, let us assume max (s+ − sI , sI − s−) = s+−sI . Then s+−sI ≥ ∆/2.
Second, let us introduce x+ ∈ I such that s+ = s(x+). By continuity of s, there exists an

interval J ⊂ I such that x+ ∈ J and

∀x ∈ J, 0 ≤ s(x+)− s(x) ≤ ∆/4.

Then,

∀x ∈ J, s(x)− sI ≥ ∆/2−∆/4 = ∆/4.

Moreover since f ∈ H(L,α),

∆

4
= sup

x∈J

∣∣s(x+)− s(x)
∣∣ ≤ L sup

x∈J

∣∣x+ − x
∣∣α ≤ L |J |α ,

which implies

|J | ≥
(

∆

4L

)1/α

·

Finally,

∫

I
(s(x)− sI)

2 dx ≥
∫

J
(s(x)− sI)

2 dx ≥ (∆/4)2 |J | ≥ (∆/4)2
(

∆

4L

)1/α

·

S.6. Identification: main result.

Proof of Theorem 3.4. The strategy is the same as in the proof of Theorem 3.3. With
the same notation, let us consider the event Ωn = Ωleft ∩Ωright ∩Ωrem,1 ∩Ωrem,2 where Ωrem,2 is
given in Proposition A.2, and P [ Ωc

n ] ≤ 8/n2.
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If Rn(m̄) ≥ κ > 0. The successive use of Proposition S.2, Propositions A.1 and A.2 (where
(OrSp) is replaced by (P-NP)), and Proposition S.7 lead to

∣∣∣∣
[
R̂p(m̄)− R̂p(m)

]
− [B(m̄)−B(m) ]− n

n− p
[V (m̄)− V (m) ]

∣∣∣∣

≤3δn [Rn(m̄) +Rn(m) ] +

(
δn

(
3 +

n

n− p

))
[V (m) + V (m̄) ]

+
(
36L2

n + 9δn
)
V (m̄) +

(
36L2

n + 9δn
)
V (m) + 3rn(m̄) + 3rn(m).

Combining that Rn(m̄) ≥ κ, (BeMo), and that p/(n − p)V (m̄) = o(1), it results for every
m 6= m̄

R̂p(m̄)− R̂p(m) ≤ −κµ+ o(1)− p

n− p
V (m)(1 + o(1)),

where o(1) does not depend on m by use of (Dmax).

Let us now assume Rn(m̄) = o(1), which implies B(m̄) = o(1).

1. If D(m̄) ≤ (log n)4:

If ŝm has a parametric rate.
The successive use of Proposition S.2, Propositions A.1 and A.2 (where (OrSp) is replaced
by (P-NP)), and Proposition S.7 lead to

∣∣∣∣
[
R̂p(m̄)− R̂p(m)

]
− [B(m̄)−B(m) ]− n

n− p
[V (m̄)− V (m) ]

∣∣∣∣

≤3δn [Rn(m̄) +Rn(m) ] +

(
δn

(
3 +

n

n− p

))
[V (m) + V (m̄) ]

+ 36L2
nV (m̄) + 36L2

nV (m) + 3rn(m̄) + 3rn(m).(39)

Since s 6∈ Sm and B(m) ≥ τ > 0 by (P-NP), it comes

R̂p(m̄)− R̂p(m) ≤ [B(m̄)−B(m) ] +
n

n− p
[V (m̄)− V (m) ] + 3δn [Rn(m̄) +Rn(m) ]

+

(
δn

(
3 +

n

n− p

))
[V (m) + V (m̄) ]

+ 36L2
nV (m̄) + 36L2

nV (m) + 3rn(m̄) + 3rn(m)

≤ −τ

[
1 + o(1)− B(m̄)

τ
(1 + o(1)) − n

n− p

[
V (m̄)(1 + o(1)) − (1− o(1))V (m)

τ

] ]

+ 36L2
nV (m̄) + 36L2

nV (m) + 3rn(m̄) + 3rn(m)

≤ −τ

[
1 + o(1)− B(m̄)

τ
(1 + o(1)) − n

n− p

[
V (m̄)(1 + o(1))

τ

] ]

+ 36L2
nV (m̄) + 36L2

nV (m) + 3rn(m̄) + 3rn(m).

Finally since (Dmax) implies L2
nV (m) → 0 as n tends to +∞, it is enough to require

nV (m̄)/(n − p) → 0 as n tends to +∞. Then

R̂p(m̄)− R̂p(m) ≤ −τ [ 1 + o(1) ] ,
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where o(1) is independent of m.

If ŝm has a nonparametric rate. From the following inequality
∣∣∣∣
[
R̂p(m̄)− R̂p(m)

]
− [B(m̄)−B(m) ]− n

n− p
[V (m̄)− V (m) ]

∣∣∣∣

≤3δn [Rn(m̄) +Rn(m) ] +

(
δn

(
3 +

n

n− p

))
[V (m) + V (m̄) ]

+ 36L2
nV (m̄) + (36L2

n + 9δn)V (m) + 3rn(m̄) + 3rn(m),

let us require L2
n = o(n/(n − p)) to control the L2

nV (m̄) term. Then, (BeMo) implies

R̂p(m̄)− R̂p(m) ≤ −µRn(m̄) [ 1 + o(1) ] ,

where o(1) is independent of m.
2. If D(m̄) > (log n)4:

If ŝm has a parametric rate. From s 6∈ Sm combined with B(m) ≥ τ > 0, it comes

R̂p(m̄)− R̂p(m) ≤ −τ

[
1 + o(1) − B(m̄)

τ
(1 + o(1)) − n

n− p

[
V (m̄)(1 + o(1))

τ

] ]

+ 9δnV (m̄) + 36L2
nV (m) + 3rn(m̄) + 3rn(m).

Then, nV (m̄)/(n − p) → 0 as n tends to +∞ implies

R̂p(m̄)− R̂p(m) ≤ −τ [ 1 + o(1) ] ,

where o(1) is independent of m.

If ŝm has a nonparametric rate.

R̂p(m̄)− R̂p(m) ≤ −µ (1 + o(1))Rn(m̄)

+
p

n− p
[ (1 + o(1)) V (m̄)− (1− o(1)) V (m) ]

+ (36L2
n1(Dm≤(logn)4) + 9δn1(Dm>(logn)4)V (m)

≤ −µ (1 + o(1))Rn(m̄)

+
p

n− p
[ (1 + o(1)) V (m̄)− (1− o(1)) V (m) ]

+ 36L2
n1(Dm≤(log n)4)V (m).

Since requiring (log n)5/ [nV (m̄) ] = o (p/(n − p)) implies

R̂p(m̄)− R̂p(m) ≤ −µ (1 + o(1))Rn(m̄) +
p

n− p
(1 + o(1))V (m̄),

one concludes by choosing p such that

p

n− p
= o

(
1 ∨ B(m̄)

V (m̄)

)
.
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Note the two constraints

(log n)5/ [nV (m̄) ] = o

(
p/n

1− p/n

)
, and

p

n− p
= o

(
1 ∨ B(m̄)

V (m̄)

)

imply nV (m̄)/(n − p) → 0 as n tends to +∞ is fulfilled.

Then there exists an integer N such that for n ≥ N , on the event Ωn, (28) holds true for every
m ∈ Mn, which concludes the proof.

S.7. Identification: Technical results.

Proposition S.6 (Bound on νn (sm − sm̄)). Let us assume (Pol),(SqI), (RegD), and
(LoEx) hold true. Then, there exists a sequence (δn)N and an event Ωrem,3 with P [ Ωrem,3 ] ≥
1− 2/n2, on which for every m ∈ M,

2 |νn(sm − sm̄)| ≤ δn ‖sm − sm̄‖2 + δn ‖s‖
√

Φ

ξ

√
nE (Z2

m) + nE
(
Z2
m̄

)

n
+ δn

Φ

ξ

nE
(
Z2
m

)
+ nE

(
Z2
m̄

)

n
,

with δn → 0 and nδn → +∞ as n → +∞, and 0 ≤ δn ≤ 1 for n large enough.

Proof of Proposition S.6. Combining Eq. (27), (SqI), and (RegD) it comes for every
η > 0,

2νn(sm − sm̄) ≤ η ‖sm − sm̄‖2 + 4η−1 ‖s‖
√
Φ
√

(Dm +Dm̄)

n
x+ 2η−1Φ (Dm +Dm̄)

x2

9n2
.

with probability not larger than 2 exp (−x), for any x > 0.
Let us further assume that (Pol) holds true. Then with x = xm = (aM + 2) log n, it comes

2νn(sm − sm̄)

≤ η ‖sm − sm̄‖2 + 4η−1 ‖s‖
√
Φ
√

(Dm +Dm̄)√
n

(aM + 2)
log n√

n
+ 2η−1Φ

Dm +Dm̄

n

((aM + 2) log n)2

9n
·

Let us choose η = 1/ log n, then there exists a sequence (δn)N with δn → 0 and nδn → +∞ as
n → +∞ such that.

2νn(sm − sm̄) ≤ δn ‖sm − sm̄‖2 + δn ‖s‖
√
Φ

√
Dm +Dm̄

n
+ δnΦ

Dm +Dm̄

n
·

Finally, let us notice that
∑

m∈M 2e−xm =
∑

m∈M 2n−(aM+2) ≤ 2naMn−(aM+2) = 2/n2.
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Proposition S.7. On the event Ωleft∩Ωright (with Ωleft and Ωright defined in Proposition S.4
and Proposition S.3 respectively), for large enough values of n,

• if Sm is either parametric or nonparametric with Dm ≤ (log n)4(see (P-NP)),

∣∣Z2
m − E

(
Z2
m

)∣∣ ≤ 12L2
nE
(
Z2
m

)
+ rn(m),(40)

• otherwise,

∣∣Z2
m − E

(
Z2
m

)∣∣ ≤ 3δnE
(
Z2
m

)
,(41)

where a ∨ b = max(a, b), rn(m) is defined in Proposition S.5 and Ln =
√

4
√

Φ/ξC ‖s‖ ≥√
4
√

Φ/ξC ‖s‖ with C ≥
(√

ξ
)−1

log
(
5naMβ−1

1

)
(see Proposition S.3).

Lemma S.15. On the event Ωleft∩Ωright (with Ωleft and Ωright defined in Proposition S.4 and
Proposition S.3 respectively), for every m ∈ M,

∣∣Z2
m − E

(
Z2
m

)∣∣ ≤ 3
[
(δn + Lm)2 ∨ (δn + Lm)

]
E
(
Z2
m

)
+ rn(m),

where a ∨ b = max(a, b) and rn(m) is defined in Proposition S.5.

Proof of Lemma S.15. From Corollary S.1, one derives

Z2
m − E

(
Z2
m

)
≤
[
(1 + δn + Lm)2 − 1

]
E (Zm)2 ≤ 3

[
(δn + Lm)2 ∨ (δn + Lm)

]
E
(
Z2
m

)
.

1. If δn + Lm ≥ 1,

Z2
m − E

(
Z2
m

)
≤ 3 (δn + Lm)2 E

(
Z2
m

)
,

and Proposition S.4 leads to

−3 (δn + Lm)2 E
(
Z2
m

)
≤ −E

(
Z2
m

)
≤ Z2

m − E
(
Z2
m

)
.

2. If δn + Lm < 1,

Z2
m − E

(
Z2
m

)
≤ 3 (δn + Lm)E

(
Z2
m

)
,

and Propositions S.4 and S.5 provide

Z2
m − E

(
Z2
m

)
≥
(
(1− δn − Lm)2

1 + δn + Lm
− 1

)
E
(
Z2
m

)
− rn(m)

(1− δn − Lm)2

1 + δn + Lm

= (δn + Lm)
−3 + (δn − Lm)

1 + δn + Lm
E
(
Z2
m

)
− rn(m)

(1 − δn − Lm)2

1 + δn + Lm

≥ −3(δn + Lm)E
(
Z2
m

)
− rn(m).
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S.8. Key concentration inequalities.

Theorem S.1 (Bernstein’s inequality). Let X1, . . . ,Xn be i.i.d.random variables defined on
a mesurable space (X ,T ), and let t denote a mesurable bounded real valued function. Then for
every x > 0,

P

[
νn(t) >

√
2Var (t(X1)) x

n
+

‖t‖∞ x

3n

]
≤ e−x.(42)

Theorem S.2 (Bousquet’s version of Talagrand’s inequality (Bousquet, 2002)).
Let X1, . . . ,Xn be i.i.d.random variables defined on a mesurable space (X ,T ). Let S denote a
set of real valued functions such that supt∈S ‖t‖∞ ≤ b and supt∈S Var (t(X1)) = σ2. Denoting
Z = supt∈S νn(t), then for every x > 0

P

[√
nZ ≤ √

nE(Z) +
√

2 (σ2 + 2bE(Z))x+
bx

3
√
n

]
≤ e−x.(43)

Theorem S.3 (Rio’s version of Talagrand’s inequality (Klein and Rio, 2005)).
Let X1, . . . ,Xn be i.i.d.random variables defined on amesurable space (X ,T ). Let S denote a
set of real valued functions such that supt∈S ‖t‖∞ ≤ b and supt∈S Var (t(X1)) = σ2. Denoting
Z = supt∈S νn(t), then for every x > 0

P

[√
nZ ≤ √

nE(Z)−
√

2 (σ2 + 2bE(Z))x− 8bx

3
√
n

]
≤ e−x.(44)
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