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Introduction

These notes correspond to (half of) a course taught jointly with Mihai Maris in 2013 on
non linear dispersive equations and non linear elliptic equations. The material presented
here, from Chapter 1 to Chapter 4, deals with the dispersive equations part and collects
what was thaught in class for 16.5 hours. It contains essentially an introduction to the
Cauchy problem for the non linear Schrödinger equation (NLS), more precisely the L2

subcritical and L2 critical ones. To put things in a wider perspective, the first chapter
also presents the non linear wave equation and the Ḣ1 subcritical NLS, in an informal
fashion (not to say naive here and there).

The main goal of these lectures is to describe the functional analytic tools required to
state rigorously and solve the Cauchy problem for NLS. The presentation is completely
self contained (assuming only some standard background on functional analysis and dis-
tribution theory) hoping that the student wishing to understand the proofs from A to Z
will find all the material in the present source. We would reach our goal if this could give
the minimal autonomy to the student interested in learning more on dispersive PDE. In
this spirit, we have decided to include an appendix on the Littlewood-Paley theory; this
was not discussed in class but, as is well known, it is a very useful tool for dispersive PDE.
We illustrate one application with the proof of homogeneous Sobolev embbedings (with
fractional derivatives). We hope to complete the present notes with a section on Strichartz
estimates for the wave equation (whose proof uses the full strength of the Littlewood-Paley
theory) to provide some additional material to the reader interested in the wave equation.
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Chapter 1

A brief overview

In this chapter, we present the Schrödinger and wave equations at a formal level, to record
some basic features of these equations and give some flavour of the related analytical
problems or tools involved in their resolutions. This will motivate the notions introduced
in the next chapters.

We start with some generalities about the linear equations. The Schrödinger equation
on Rn reads

i∂tu−∆u = f, (1.1)

where ∆ = (∂/∂x1)2 + · · · + (∂/∂xn)2 is the Laplacian, f is a given function1 depending
on time, i.e. for some interval I,

f : I × Rn → C,

and u : I×Rn → C is the unknown function (or distribution). When f ≡ 0, one says (1.1)
is the homogeneous Schrödinger equation. To solve (1.1), one imposes an initial condition
u0, say at t = 0 (assuming implicitly that 0 ∈ I),

u(0, x) = u0(x). (1.2)

Typically in these lectures, u0 will belong to some Sobolev space (of nonnegative order).
Formally, the equation (1.1) can be seen as an ODE in infinite dimension since, as a func-
tion of t, u takes its values in an infinite dimensional space of functions (or distributions)
of x. But the important difference with usual ODE of the form

Ẋ + LX = V, (1.3)

with L : B → B a linear and continuous endomorphism on a Banach space B, is that the
linear operator ∆ is not a continuous endomorphism on any standard Banach space such
as L2 or H2, so that the standard Cauchy-Lipschitz Theorem does not apply. One says ∆

1or even a temperate distribution
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6 CHAPTER 1. A BRIEF OVERVIEW

is unbounded (see Exercise 1.1 below). However, under suitable assumptions on u0 and
f which will be detailed further on, one can turn the Cauchy problem (1.1)-(1.2) into an
integral equation by using the following so called Duhamel formula

u(t) = e−it∆u0 +
1

i

∫ t

0
e−i(t−s)∆f(s)ds, (1.4)

much as the usual method of variation of parameters would give for inhomogeneous ODE
(or, even more formally, as if ∆ was a matrix).

Exercise 1.1. Let B = Lq(Rn) with q ∈ [1,∞). Show that the Laplacian

∆ : C∞0 (Rn)→ C∞0 (Rn)

does not extend to a continuous endomorphism on B. (Hint: Introduce ϕ ∈ C∞0 (Rn) such
that ||ϕ||Lq = 1 and consider the family ϕε(x) = ε−n/qϕ(x/ε) indexed by 0 < ε < 1).

The unboundedness of ∆ makes the construction of e−it∆ (which solves formally the
homogeneous equation) non obvious since it cannot be defined by the usual exponential
series. In general, one solves this problem by using the theory of semigroups. However,
in this special case where the operator has constant coefficients, the Fourier analysis will
allow to define it in a simple way by

(e−it∆ϕ)(x) =
1

(2π)n

∫
eix·ξeit|ξ|

2
ϕ̂(ξ)dξ, (1.5)

where |ξ|2 = ξ2
1 + · · · + ξ2

n and ϕ̂ is the Fourier transform of ϕ. In other words, e−it∆ is
the multiplication by eit|ξ|

2
on the Fourier side: this is an important example of Fourier

multiplier (see Chapter 2).

Similarly, one can consider the wave equation

∂2
t u−∆u = f, (1.6)

which, as a second order equation in time, is subject to two initial conditions

u(0, x) = u0(x), ∂tu(0, x) = u1(x), (1.7)

where u0, u1 and f are given functions (usually, one assumes that u0, u1, f and u are
real valued). To rewrite the solution to (1.6)-(1.7) similarly to (1.4), we rewrite first the
homogenous equation (f ≡ 0) as first order system

∂tU −AU = 0,

with

A =

(
0 1
∆ 0

)
, U =

(
u
∂tu

)
.
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Then

etA =

(
cos t
√
−∆ sin t

√
−∆√
−∆

−
√
−∆ sin t

√
−∆ cos t

√
−∆

)
, (1.8)

where cos(t
√
−∆) (resp. sin(t

√
−∆)/

√
−∆) is the Fourier multiplier defined similarly

to (1.5) via the multiplication by cos(t|ξ|) (resp. sin(t|ξ|)/|ξ|). Then, according to the
method of variation of parameters, the solution to

∂tU −AU = F

is given by

U(t) = etAU(0) +

∫ t

0
e(t−s)AF (s)ds.

This expression can be considered as formal (e.g. by pretending A is a finite dimensional
matrix) by the non specialist reader, but we point out that this is completely rigorous
provided we introduce the semigroup associated to (the relevant closure of) A. Anyway,
as said above for the Schrödinger equation, this can be seen as a formal fashion to write
down the solution which can be justified afterwards by mean of Fourier multipliers. Using

F =
(

0
f

)
and considering only the first component of U , we find

u(t) = cos(t
√
−∆)u0 +

sin t
√
−∆√
−∆

u1 +

∫ t

0

sin(t− s)
√
−∆√

−∆
f(s)ds, (1.9)

for the solution to the Cauchy problem (1.6)-(1.7). Notice that we use here that −∆
is nonnegative for it corresponds to the multiplication by |ξ|2 on the Fourier side. In
the literature, the notation

√
−∆ is often replaced by |∇| or |D| (in the context of wave

equations, D refers sometimes to (Dt, Dx) and one prefers the notation ∇ = ∇x for spatial
derivatives).

Exercise 1.2. Work out the details!

The integral formulations of the Schrödinger and wave equations given by (1.4) and
(1.9) respectively will be important to solve the related nonlinear equations which we
introduce now. We will consider special types of nonlinearities, namely pure power non
linearities, that is {

i∂tu−∆u = −µ|u|ν−1u

u(0) = u0

(NLS)

and 
∂2
t u−∆u = −µ|u|ν−1u

u(0) = u0

∂tu(0) = u1

(NLW)
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where ν > 1 and µ are real numbers (more conditions will be specified later on). In the
sequel, we will refer to µ|u|ν−1u as the nonlinearity.

There are basically two different situations: µ > 0, the defocusing case, and µ < 0, the
focusing case. In practice, we consider the cases µ = ±1 but, to streamline the discussion,
we will keep an abstract real parameter µ.

There are many questions one can ask about such equations. Two basic ones, which
are similar to the Cauchy problem for ODE, are

• local well-posedness: for which type of initial data and nonlinearities can one solve
the equations locally in time, i.e. on some open time interval I containing 0 ?

• global well-posedness2: for which type of initial data and nonlinearities can one solve
the equations globally in time, i.e. for t ∈ R ?

In the left part of this introduction, we present three basic ideas or notions used to
study these questions.

1. Use the Duhamel formula. By this we mean that rather than solving directly (NLS)
or (NLW), we will rather recast these equations into integral ones, using the Duhamel
formulas (1.4) and (1.9), namely

u(t) = e−it∆u0 −
µ

i

∫ t

0
e−i(t−s)∆|u(s)|ν−1u(s)ds, (1.10)

for (NLS), and

u(t) = cos(t
√
−∆)u0 +

sin t
√
−∆√
−∆

u1 − µ
∫ t

0

sin(t− s)
√
−∆√

−∆
|u(s)|ν−1u(s)ds, (1.11)

for (NLW). Of course, checking the equivalence of these integral formulations and their
PDE counterparts is not completely obvious and requires some analysis. One interest
of these formulations is that there are no longer derivatives in (1.10) and (1.11) which
suggests one may solve these equations without assuming much smoothness on u.

2. The long time behavior of solutions should depend on the sign of µ. To
justify this intuition, we consider first a naive finite dimensional analogue in the following
exercise.

Exercise 1.3. Consider the Hamiltonians (i.e. functions) H± defined on R2 by

H±(x, ξ) = ξ2 ± x4.

2the exact definitions of local and global well posedness require more than local or global existence in
time. One also asks for some nice dependence on the initial data, but we forget about this aspect in the
introduction.
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We are interested in the solutions to{
ẋ = (∂ξH±)(x, ξ)

ξ̇ = −(∂xH±)(x, ξ)

{
x(0) = x0

ξ(0) = ξ0

(Ham±)

where ˙ means ‘time derivative’.

1. Assume that the solution to (Ham±) is defined on an interval I. Show that the
function t 7→ H±(x(t), ξ(t)) is constant on I.

2. Show that for any (x0, ξ0) the solution to (Ham+) is global in time.

3. Show that there are initial data (x0, ξ0) for which the solution to (Ham−) blows up in
finite time. (Hint: check that (x(t), ξ(t)) =

(
α(a− bt)−1, αb2 (a− bt)−2

)
is a solution

provided that b2 = 4α2.)

The analogy between this exercise and our nonlinear PDE is as follows. One can
associate energy functionals to (NLS) and (NLW), which take respectively the form

ESch(u(t)) =

∫
Rn

|∇u(t, x)|2

2
+ µ
|u(t, x)|ν+1

ν + 1
dx (1.12)

for (NLS), and

EWav(u(t)) =

∫
Rn

(∂tu(t, x))2

2
+
|∇u(t, x)|2

2
+ µ
|u(t, x)|ν+1

ν + 1
dx, (1.13)

for (NLW). The first analogy with Exercise 1.3 is that these energy functionals (or Hamil-
tonians) are conserved by the flow of the equations in the sense that,

u solves (NLS) =⇒ d

dt
ESch(u(t)) = 0, (1.14)

and

u solves (NLW) =⇒ d

dt
EWav(u(t)) = 0. (1.15)

To justify (1.14) and (1.15), we introduce the L2 inner product

(v, w)L2 =

∫
Rn
vwdx, (1.16)

and consider first the wave equation. By using

∂

∂t
|u(t)|ν+1 =

∂

∂t
(|u(t)|2)

ν+1
2 =

ν + 1

2

(
∂tuu+ u∂tu

)
|u|ν−1,

and differentiating formally under the integral sign, we find

d

dt
EWav(u(t)) =

1

2

∫
∇∂tu · ∇u+∇u · ∇∂tu+

(
∂tuu+ u∂tu

)
|u|ν−1dx.
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By integration by part, we also have∫
∇v · ∇wdx =

n∑
j=1

∫
∂jv∂jwdx =

n∑
j=1

−
∫
v∂2

jwdx = (v,−∆w)L2

and it is then easy to see that

d

dt
EWav(u(t)) = Re

(
∂tu, ∂

2
t u−∆u+ µu|u|ν−1

)
L2 ,

which vanishes if u solves (NLW). Using the same calculation, we find

d

dt
ESch(u(t)) = Re

(
∂tu,−∆u+ µu|u|ν−1

)
L2

= Im
(
−i∂tu,−∆u+ µu|u|ν−1

)
L2

= Im || −∆u+ µu|u|ν−1||2L2 = 0.

Interpretation. When µ > 0, these energy functionals are sums of positive terms which
are thus controlled individually over the evolution, much as x+(t) and ξ+(t) in the second
question of Exercise 1.3. For this reason, one expects global well posedness for the defo-
cusing equations (under suitable assumptions on ν and the initial data). In the focusing
case where µ < 0, we are in a situation similar to the third question of Exercise 1.3, and
we may thus expect possible blow up. This quite rough intuition is correct in the sense
that certain focusing (NLS) and (NLW) have indeed solutions blowing up in finite time.
We shall see in the next paragraph that this is also related to the power ν.

In these short lectures, we won’t have much room (or time!) to study such very
interesting issues. However, it is worth mentionning this aspect of the problem since it
motivates the study of solutions with low regularity: the control on the energy will give
at best a control on the H1 norms of solutions so if one wants to study (NLS) or (NLW)
by using such conservation laws, it is important to use arguments involving only Sobolev
norms of order at most 1.

We conclude this part by mentionning that the analogy between the Exercise 1.3 and
nonlinear PDE could be pushed much further since (NLS) and (NLW) can be seen as
Hamiltonian systems in infinite dimension, but such a point of view is far beyond the
scope of these lectures.

3. Scaling properties and critical exponents.

Consider real numbers α, β, γ ∈ R and λ > 0, and set

uλ(t, x) = λγu(λαt, λβx).

• Computation 1. It is not hard to check that,

i∂tuλ −∆uλ + µ|uλ|ν−1uλ =
(
λα+γi∂tu− λ2β+γ∆u+ λνγµ|u|ν−1u

)
λ
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and

∂2
t uλ −∆uλ + µ|uλ|ν−1uλ =

(
λ2α+γ∂2

t u− λ2β+γ∆u+ λνγµ|u|ν−1u
)
λ
.

Choosing for the Schrödinger equation,

α = 2, β = 1, γ =
2

ν − 1
,

we have λα+γ = λ2β+γ = λνγ and therefore, if T ∈ (0,+∞],

u solves (NLS) on (−T, T ) ⇐⇒ uλ solves (NLS) on (−λ−2T, λ−2T ). (1.17)

For the wave equation, we choose

α = 1, β = 1, γ =
2

ν − 1
,

and observe similarly that

u solves (NLW) on (−T, T ) ⇐⇒ uλ solves (NLW) on (−λ−1T, λ−1T ).

• Computation 2. If we keep β = 1 and γ = 2
ν−1 , it is not hard to check by a simple

change of variable that

||uλ(0)||L2 = λ
2

ν−1
−n

2 ||u(0)||L2 , (1.18)

and similarly, if we set ||∇v||L2 = (
∑

j ||∂jv||2L2)1/2, that

||∇(uλ(0))||L2 = λ
2

ν−1
−n−2

2 ||∇u(0)||L2 . (1.19)

Using a parameter s ∈ {0, 1} to cover both cases of Computation 2, we set

||v||Ḣ0 := ||v||L2 , ||v||Ḣ1 := ||∇v||L2 .

We also observe that

2

ν − 1
− n− 2s

2
≥ 0 ⇐⇒ 1 +

4

n− 2s
≥ ν. (1.20)

This is related to the following definition.

Definition 1.4. If n > 2s, define

νc = 1 +
4

n− 2s
.

The power ν > 1 is said to be Ḣs subcritical (resp. Ḣs critical, resp. Ḣs supercritical) if
ν < νc (resp. ν = νc, resp. ν > νc).
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Here we have given a definition of critical exponent for a given regularity s (as in the
lectures by J. Ginibre [2] for instance). One can adopt the symmetric point of view and
define the critical regularity sc := n

2 −
2

ν−1 associated to a given ν (see for instance Tao’s
book [6]).

To motivate the introduction of Definition 1.4, we now record several remarks illus-
trating the interest of criticality, in the particular case of (NLS) with s = 0 which is the
only one we will have time to study.

The first simple remark is that if ν is L2 subcritical and if we know that (NLS) has
global in time solutions for all initial data with small enough L2 norms, then we can
automatically conclude that (NLS) has global in time solutions for all data u0 ∈ L2,
regardless their sizes. Let us prove this claim. If u0 is any L2 initial datum, consider

u0,λ(x) = λ
2

ν−1u0(λx).

Then by using the subcriticality condition (i.e. the strict inequality in (1.20)) and (1.18),
we see that

||u0,λ||L2 → 0, λ→ 0.

Therefore, if λ is small enough, our assumption on small initial data ensures that (NLS)
with initial datum u0,λ has a solution defined for t ∈ R. Then, by rescalling, i.e. by using
(1.17) with λ−2T = +∞, we see that (NLS) with initial datum u0 has also a global in
time solution, which proves the claim.

This situation has to be compared to the the one of the critical exponent ν = 1 + 4/n.
We will see that, in this case, (NLS) has global in time solutions for small initial data in
L2 but on the other hand, in the focusing case, that there are solutions (with non small
initial data) which can blow up in finite time (see Section 4.2). This is an indication that
a new non trivial effect shows up for critical exponents. Note that there is of course no
contradiction with the previous remark: if ν is L2 critical, the argument used in the first
remark cannot be used to decrease the size of initial data by rescaling since, by criticality,
the exponent vanishes in (1.18).

We shall actually see in Chapter 4 that the notion of subcriticality is already relevant
for the local well posedness issue (but this aspect is more technical). In particular, we will
see that for subcritical exponents, we can solve (NLS) on time intervals depending only
on ||u0||L2 . This will turn out to be very useful to prove global existence: thanks to a
computation similar to the one of energy conservation, one can see that the flow of (NLS)
preserves the L2 norm, since (formally again) if u solves (NLS),

1

2

d

dt
||u(t)||2L2 = Re(u, ∂tu)L2

= Re i
(
u,−∆u+ µ|u|ν−1u

)
L2

= Re i
(
||∇u||2L2 + µ||u||νLν

)
= 0. (1.21)

By using this conservation law and the fact that the lifespan of the solution depends on
the L2 norm of the initial condition (for L2 subcritical exponents) we will be able to prove
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the global existence. Notice that, similarly to the case of the energy, this conservation
law controls only the L2 norm; this is another reason for considering solutions of limited
smoothness.
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Chapter 2

Some tools of harmonic analysis

2.1 Lebesgue spaces and real interpolation

In this section, we record several estimates on functions in Lebesgue spaces and operators
thereon. In particular, the Marcinkiewicz interpolation Theorem 2.4 will be crucial to
prove the so called Strichartz estimates which, in turn, allow to solve the fixed point
equations (1.10) or (1.11).

We start with an elementary proposition.

Proposition 2.1. 1. Let q ∈ [1,∞] and s > 0 be such that q
s ∈ [1,∞]. Then∣∣∣∣|f |s∣∣∣∣

L
q
s

= ||f ||sLq . (2.1)

2. For all real numbers q1, q2 ∈ [1,∞] such that 1
q1

+ 1
q2

=: 1
q ≤ 1, one has

||fg||Lq ≤ ||f ||Lq1 ||g||Lq2 . (2.2)

3. Let q1 ≤ q ≤ q2 all belong to [1,∞]. Then

||f ||Lq ≤ ||f ||θLq1 ||f ||1−θLq2 , (2.3)

with θ ∈ [0, 1] such that

1

q
=

θ

q1
+

1− θ
q2

. (2.4)

Proof. The estimate (2.1) is straightforward. To prove the item 2, one observes that

||fg||qLq =

∫
|f |q|g|q ≤

∣∣∣∣|f |q∣∣∣∣
L
q1
q

∣∣∣∣|g|q∣∣∣∣
L
q2
q

=
∣∣∣∣f ∣∣∣∣q

Lq1

∣∣∣∣g∣∣∣∣q
Lq2

where the inequality follows from the standard Hölder inequality and the last equality
from (2.1). In the item 3, we may assume that q <∞, otherwise the result is trivial (take
θ = 0). Then

||f ||qLq =

∫
|f |θq|f |(1−θ)qdx,

15
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and we observe that
|f |θq ∈ L

q1
θq , |f |(1−θ)q ∈ L

q2
(1−θ)q .

The condition (2.4) means precisely that q1
θq and q2

(1−θ)q are conjugate so, by the Hölder
inequality, we get

||f ||qLq ≤ ||f
θq||

L
q1
θq
||f (1−θ)q|| q2

(1−θ)q

and we conclude thanks to (2.1). �

To handle properly the equations (1.10) or (1.11), it is convenient to see u as a function
of time with values in some Lq space. For this purpose, we introduce the mixed space-
time norms LpLq, when p, q ∈ [1,∞). We shall actually mostly consider the case when
p, q ∈ (1,∞). We consider functions F = F (t, x) defined for t ∈ I and x ∈ Rn, I being a
given compact interval. We set

||F ||LpILq :=
∣∣∣∣||F (·)||Lq(Rn)

∣∣∣∣
Lp(I)

,

that is,

||F ||LpILq =

(∫
I
||F (t)||pLq(Rn)dt

)1/p

. (2.5)

Note that this implicitly uses that t 7→ ||F (t)||Lq(Rn) is measurable (see Exercise 2.2).
We will define these norms on the space LpLqc which we define as the set of continuous
functions F ∈ C0(I × Rn) such that ||F (t)||Lq <∞ for all t ∈ I and ||F ||LpILq <∞.

Exercise 2.2. Assume that q ∈ [1,∞). Check that t 7→ ||F (t)||Lq is measurable on I.

In the applications, we shall often consider the subspace

C(I, Lq(Rn)) ∩ C0(I × Rn) ⊂ LpLqc.

We note that the introduction of such spaces avoids using (and in particular defining)
Bochner integrals, as is common in this context (see Cazenave [1] or Ginibre [2]). This
elementary approach will be sufficient for our purposes. We will sometimes consider the
norm || · ||L∞I Lq defined in the obvious way by

||F ||L∞I Lq := sup
t∈I
||F (t)||Lq ,

but only for functions F ∈ C(I, Lq). In the next proposition, we will always have p <∞.

Proposition 2.3. 1. For all real numbers p1, p2, q1, q2 ∈ [1,∞) such that

1

q1
+

1

q2
=:

1

q
≤ 1 and

1

p1
+

1

p2
=:

1

p
≤ 1

one has
||FG||LpILq ≤ ||F ||Lp1I Lq1 ||G||Lp2I Lq2 ,

for all F ∈ Lp1Lq1c and all G ∈ Lp2Lq2c .
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2. Let p, q ∈ (1,∞) and let p′, q′ be the dual exponents, i.e.

1

q
+

1

q′
= 1 and

1

p
+

1

p′
= 1.

Then, for all F ∈ C(I, Lq(Rn)) ∩ C0(I × Rn)

||F ||LpILq = sup
||G||

L
p′
I
Lq
′=1

∣∣∣∣∫ ∫
I×Rn

FGdxdt

∣∣∣∣ , (2.6)

with G ∈ Lp′Lq
′

c in the supremum.

Proof. 1. We observe that, for each t ∈ I.

||F (t)G(t)||Lq ≤ ||F (t)||Lq1 ||G(t)||Lq2 ,

using (2.2) in space. Using (2.2) in time,∣∣∣∣||F (·)||Lq1 ||G(·)||Lq2
∣∣∣∣
Lp(I)

≤
∣∣∣∣||F (·)||Lq1

∣∣∣∣
Lp1 (I)

∣∣∣∣||G(·)||Lq2
∣∣∣∣
Lp2 (I)

,

and this yields the result. For the item 2, we observe first that∣∣∣∣∫ ∫
I×Rn

FGdxdt

∣∣∣∣ ≤ ||FG||L1(I×Rn) = ||FG||L1
IL

1 ≤ ||F ||LpILq ||G||Lp′I Lq′

by the first item. This shows that the sup (2.6) is not greater than ||F ||LpILq . To see that

it is not smaller, we proceed as follows. The result is easy if F (t, x) never vanishes (which
is the generic situation). In this case, it suffices to consider

G(t, x) =
1

||F ||p−1
LpIL

q

||F (t)||p−qLq |F (t, x)|q−1 F (t, x)

|F (t, x)|
, (2.7)

for which it is easy to check that

||G||
Lp
′
I L

q′ = 1,

∫ ∫
GFdxdt = ||F ||LpILq .

Notice that the non vanishing of F and its continuity ensure that ||F (t)||Lq 6= 0 for all t.
The sup is a max in this case. The case when F may vanish is similar but slightly more
technical: one basically constructs a family Gε ∈ LpLqc such that

||Gε||Lp′I Lq
′
c
→ 1 and

∫ ∫
GεFdtdx→ ||F ||LpLqc , ε→ 0,

by regularizing the expression (2.7) (e.g. by changing |F (t, x)|−1 into (|F (t, x)|+ ε)−1). It
is left to the reader as an exercise. �

The last result of this section is a version of the Marcinkiewicz interpolation theorem.
In the sequel, all Lq spaces are over Rn.
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Theorem 2.4. Assume we are given a map T defined on L1 ∪ L2 such that

T : L2 → L2, T : L1 → L∞

are both linear and continuous, with continuity estimates

||Tf2||L2 ≤M2||f2||L2 , ||Tf1||L∞ ≤M1||f1||L1 , (2.8)

for all f1 ∈ L1, f2 ∈ L2. Then, for all 2 < q <∞, we have

||Tf ||Lq ≤ CqM
2
q

2 M
1− 2

q

1 ||f ||Lq′ , f ∈ L1 ∩ L2, (2.9)

with explicit constant Cq =
(
q2q+1

q′(q−2)

) 1
q
.

In this result the constant Cq is irrelevant (for our applications), but the explicit
dependence on M1 and M2 will be very useful. We also point out that there are alternate
theorems on interpolation, in particular the classical Riesz-Thorin theorem. Here, we
have chosen the Marcinkiewicz Theorem to give an illustration of some techniques of real
interpolation theory.

The rest of the section is devoted to the proof of this result.

For a given measurable function f , we define its distribution function as

mf (t) = meas ({|f | > t}) , t > 0,

where {|f | > t} = {x ∈ Rn | |f(x)| > t} and meas(·) is the Lebesgue measure. Notice that
it is a non increasing function taking its values in [0,∞] hence is (Lebesgue) measurable
on R+. If f ∈ Lq with 1 ≤ q <∞, we observe that for all t > 0,∫

|f |q ≥
∫
|f |>t
|f |q ≥ tq

∫
|f |>t

= tqmf (t),

which is the Chebychev-Markov inequality. Therefore, we always have the estimate

mf (t) ≤
||f ||qLq
tq

, t > 0, f ∈ Lq. (2.10)

In particular, mf takes finite values when f ∈ Lq. A straightforward consequence of (2.8)
and (2.10) is that

mTf2(t) ≤
||Tf2||2L2

t2
,

≤ M2
2

t2
||f2||2L2 , (2.11)

for all t > 0 and f2 ∈ L2. For functions g ∈ L∞ we have meas{|g| > t} = 0 for all
t ≥ ||g||L∞ . In the context of the theorem, this shows that, for all t > 0 and f1 ∈ L1,

mTf1(t) = 0 if t ≥M1||f1||L1 , (2.12)

since M1||f1||L1 ≥ ||Tf1||L∞ .
The next lemma will be crucial in the proof of Theorem 2.4. .
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Lemma 2.5. If 1 ≤ q <∞ and f ∈ Lq, then

||f ||qLq = q

∫ ∞
0

tq−1mf (t)dt.

Proof. It suffices to consider q = 1 for if we know that the result is true in this case, we
have for q > 1,

||f ||qLq = ||f q||L1 =

∫ ∞
0

mfq(t)dt =

∫ ∞
0

mf (t1/q)dt = q

∫ ∞
0

mf (s)sq−1ds,

by using the change of variable t = sq. If q = 1, we write∫ ∞
0

mf (t)dt =

∫ ∞
0

(∫
|f |>t

dx

)
dt =

∫ ∫
R+×Rn

1A(t, x)dxdt

with
A = {(t, x) ∈ R+ × Rn | |f(x)| > t},

since 1A(t, x) = 1{|f |>t}(x). Using the Fubini Theorem and observing that

1A(t, x) = 1[0,f(x))(t),

we get ∫ ∫
R+×Rn

1Adtdx =

∫
Rn

(∫ |f(x)|

0
dt

)
dx =

∫
Rn
|f(x)|dx,

which yields the result. �

In the next lemma, we record a very simple observation which will also be crucial in
the proof of the theorem.

Lemma 2.6 (Distribution function of a sum). If f, g are measurable functions then, for
all t > 0,

mf+g(2t) ≤ mf (t) +mg(t).

Proof. It suffices to observe that if |f(x) + g(x)| > 2t then either |f(x)| > t or |g(x)| > t
(otherwise |f(x) + g(x)| ≤ |f(x)|+ |g(x)| ≤ 2t). Therefore

{|f |+ |g| > 2t} ⊂ {|f | > t} ∪ {|g| > t},

and we get the result by taking the Lebesgue measure. �

Proof of Theorem 2.4. Let f ∈ L1 ∩ L2. Then Tf ∈ L2 ∩ L∞ hence Tf ∈ Lq by (2.3).
By Lemma 2.5, in which we use the change of variable t 7→ 2t, we have

||Tf ||qLq = q2q
∫ ∞

0
mTf (2t)tq−1dt. (2.13)
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The idea of the proof is then to find, for each t, a suitable decomposition

f = f1,t + f2,t, f1,t ∈ L1, f2,t ∈ L2,

with a nice enough control on mTf1,t(t) and mTf2,t(t) to exploit that, by Lemma 2.61 and
the linearity of T ,

mTf (2t) ≤ mTf1,t(t) +mTf2,t(t). (2.14)

We will consider

f2,t =

(
1|f |≤z +

z

|f |
1|f |>z

)
f

for some z = z(t) to be chosen below, and thus

f1,t =

(
1|f |>z −

z

|f |
1|f |>z

)
f.

We will choose z(t) such that

mTf1,t(t) = 0, t > 0. (2.15)

To determine such a z, we observe that, by (2.12), it is sufficient that t ≥M1||f1,t||L1 . We
thus need to estimate ||f1,t||L1 . It is not hard to check that |f1,t| = (|f | − z)1|f |>z hence

||f1,t||L1 ≤
∫
1|f |>z|f | =

∫
1|f |>z

|f |q′

|f |q′−1
≤ 1

zq′−1
||f ||q

′

Lq′
. (2.16)

Thus, it suffices to choose z(t) so that tz(t)q
′−1 ≥ M1||f ||q

′

Lq′
. A simple calculation shows

that

z = z(t) =

M1||f ||q
′

Lq′

t

 1
q′−1

=

M1||f ||q
′

Lq′

t

q−1

.

will do. With such a z, (2.15) holds true. On the other hand, for each t, (2.11) yields

mTf2,t(t) ≤M2
2

||f2,t||2L2

t2
, (2.17)

where, by using Lemma 2.5, we write

||f2,t||2L2 = 2

∫ ∞
0

mf2,t(s)sds. (2.18)

It is not hard to check that |f2,t| = min(|f |, z) and then that

mf2,t(s) =

{
mf (s) if s < z

0 otherwise
.

1this lemma implies that, for a given t, mTf1,t+Tf2,t(2s) ≤ mTf1,t(s) + mTf2,t(s) for all s > 0, which
we use in the particular case s = t
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Therefore

||f2,t||2L2 = 2

∫ z(t)

0
mf (s)sds. (2.19)

Using (2.13), (2.14), (2.15), (2.17) and (2.19), we obtain

||Tf ||qLq ≤M
2
2 q2

q+1

∫ ∞
0

(∫ z(t)

0
mf (s)sds

)
tq−3dt. (2.20)

By the Fubini Theorem and the fact that s < z(t) means t < M1||f ||q
′

Lq′
/sq

′−1, we have

∫ ∞
0

(∫ z(t)

0
mf (s)sds

)
tq−3dt =

∫ ∞
0

∫ M1||f ||q
′

Lq
′ /s

q′−1

0
tq−3dt

mf (s)sds

=
1

q − 2

∫ ∞
0

M q−2
1 ||f ||q

′(q−2)

Lq
′ s(1−q′)(q−2)+1mf (s)ds

=
M q−2

1 ||f ||q
′(q−2)

Lq′

q′(q − 2)
q′
∫ ∞

0
sq
′−1mf (s)ds

=
M q−2

1 ||f ||q
′(q−1)

Lq′

q′(q − 2)

=
M q−2

1

q′(q − 2)
||f ||q

Lq′
,

using that q > 2 and, by elementary computations, that

(1− q′)(q − 2) + 1 = q′ − 1 q′(q − 1) = q.

Taking into account the constant in front of the integral in (2.20), the result follows. �

2.2 Fourier analysis

In this section, we record useful results of Fourier analysis, assuming some familiarity of
the reader with the Schwartz space and temperate distributions.

The Schwartz space S(Rn) is defined as the space of smooth functions ϕ : Rn → C
such that, for all multi-indices α, β ∈ Nn,

sup
x∈Rn

|xα∂βxϕ(x)| <∞.

The Fourier transform is defined on the Schwartz space by

(Fϕ)(ξ) = ϕ̂(ξ) =

∫
Rn
e−iy·ξϕ(y)dy.

We record several of its properties.
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Proposition 2.7. 1. F maps S(Rn) into itself.

2. F is invertible on S(Rn) and we have the inversion formula

ϕ(x) = (2π)−n
∫
eix·ξϕ̂(ξ)dξ.

3. The Fourier transform exchanges multiplication and differentiation: for all α ∈ Nn
and all ϕ ∈ S(Rn),

F(xαϕ) = i|α|∂αξ (Fϕ), F(∂αxϕ) = i|α|ξα(Fϕ).

4. The L2 normalized Fourier transform F2 := (2π)−n/2F and its formal adjoint

F∗2ψ(x) := (F2ψ)(−x)

satisfy (
F2ϕ,ψ

)
L2 =

(
ϕ,F∗2ψ

)
L2 , ||F2ϕ||L2 = ||ϕ||L2 , (2.21)

for all ϕ,ψ ∈ S(Rn). (See (1.16) for the L2 inner product (., .)L2.)

5. F2 extends, in a unique fashion, as a unitary operator on L2(Rn) which we still
denote by F2.

Given a measurable function a on Rn, we denote by Ma the multiplication by a, i.e.

(Mav)(ξ) := a(ξ)v(ξ).

The last item of Proposition 2.7 allows to define easily Fourier multipliers on L2(Rn).

Definition 2.8. Given a = a(ξ) ∈ L∞(Rn), we define the Fourier multiplier a(D) by

a(D) = F∗2MaF2.

The function a is called the symbol of the Fourier multiplier.

Example 1. If a ≡ 1, then a(D) = I.

Proposition 2.9. 1. For all a ∈ L∞(Rn) and u ∈ L2(Rn)

||a(D)u||L2 ≤ ||a||L∞ ||u||L2 .

2. If a, b ∈ L∞(Rn), then

a(D)b(D) = (ab)(D), a(D)∗ = a(D).
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3. If a belongs to S(Rn), then

a(D)u(x) =

∫
Ka(x, y)u(y)dy,

with Ka(x, y) = (2π)−nâ(y − x).

4. If a belongs to S(Rn) and q1 ≤ q2 both belong to [1,∞] then

||a(D)u||Lq2 ≤ Ca||u||Lq1

with

Ca = (2π)−n||â||
q1
q2

L1 ||â||
1− q1

q2

Lq
′
1
.

Proof. 1. By unitarity of F2, we have

||a(D)u||L2 = ||aF2u||L2 ≤ ||a||L∞ ||F2u||L2 = ||a||L∞ ||u||L2 .

2. It is a straightforward consequence of the unitarity of F2 together with the fact that
M∗a = Mā and MaMb = Mab.
3. If u ∈ S(Rn), the Fubini Theorem allows to write

a(D)u(x) = (2π)−n
∫
eix·ξa(ξ)û(ξ)dξ = (2π)−n

∫ ∫
ei(x−y)·ξa(ξ)u(y)dydξ

from which the result follows easily, at least when u is a Schwartz function. The result
remains true if u is in L2 by a density argument, since both a(D) and the convolution by
â (which is integrable) are bounded operators on L2.
4. By the item 3 of Proposition 2.1, we have

||a(D)u||Lq2 ≤ ||a(D)u||
q1
q2
Lq1 ||a(D)u||

1− q1
q2

L∞ .

We then use on one hand

||a(D)u||Lq1 ≤ (2π)−n||â||L1 ||u||Lq1

since the convolution by a L1 function preserve Lq1 , and on the other hand

|a(D)u(x)| = (2π)−n
∣∣∣∣∫ â(y − x)u(y)dy

∣∣∣∣ ≤ (2π)−n||â||
Lq
′
1
||u||Lq1

by the Hölder inequality. �

Example 2 (Schrödinger group). For t ∈ R, we define e−it∆ as the Fourier multiplier
by eit|ξ|

2

e−it∆ = F∗2 eit|ξ|
2F2.

For notational simplicity, we will set

U(t) = e−it∆.
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Proposition 2.10. 1. The map R 3 t 7→ U(t) is a unitary group on L2(Rn), ie

U(t)U(s) = U(t+ s), U(t)∗ = U(−t), U(0) = I.

2. This map is strongly continuous: for all ϕ ∈ L2(Rn), t 7→ U(t)ϕ ∈ L2(Rn) is
continuous.

3. Let I ⊂ R be an interval containing 0. If f : I → L2(Rn) is a continous L2(Rn)
valued function, then

I 3 t 7→
∫ t

0
U(t− s)f(s)ds ∈ L2(Rn)

is continuous. Here the integral is taken in the Riemann sense2.

4. If t 6= 0 and ϕ ∈ S(Rn), we have

U(t)ϕ(x) =

∫
Rn
Kt(x, y)ϕ(y)dy

with

Kt(x, y) =
e±i

nπ
4

|4πt|
n
2

e−
i|x−y|2

4t , ± := sign of t.

Proof. The item 1 follows from the items 1 and 2 of Proposition 2.9 and Example 1. The
items 2 and 3 are left to the reader as an exercise. We simply record that, for both items,
it suffices to understand why s 7→ U(±s)f(s) is continuous when f is. Let us prove the
item 4. We set ϕx(y) = ϕ(x+ y) so that

U(t)ϕ(x) = (2π)−n/2
∫
e−it|ξ|2(F2ϕx)(ξ)dξ

where we want to use the Parseval formula (2.21). The function ξ 7→ e−it|ξ|
2

fails to be
Schwartz but we can pass to the limit ε→ 0+ in the integral by considering

ψzε(ξ) := e−zε|ξ|
2
, zε = ε+ it,

and the result follows then from the explicit knowledge of the Fourier transform of Gaussian
functions, namely the fact that, if z is complex number with positive imaginary part and
√

the principal determination of the square root,

(F∗2ψz)(y) =
1√
2z
n e
− |y|

2

4z . (2.22)

2that is the Riemann integral on a compact interval of a continuous function with values in the Banach
space L2(Rn)



2.2. FOURIER ANALYSIS 25

Note that
√
ε+ it =

(√
ε2+t2+ε

2

)1/2
+ isign(t)

(√
ε2+t2−ε

2

)1/2
. We refer to Exercise 2.12 for

the proof of (2.22). �

We record as a Corollary the following straightforward important consequence of the
item 4 of Proposition 2.10.

Corollary 2.11. For all t 6= 0, U(t) is a continuous linear map from L1 to L∞. Further-
more, there exists C > 0 such that

||U(t)||L1→L∞ ≤ C|t|−n/2, t 6= 0.

Exercise 2.12 (Fourier transform of Gaussian functions). The goal of this exercise is to
prove (2.22).

1. Check that it suffices to consider n = 1 (hint: Fubini).

2. Prove that (2.22) is true when z ∈ (0,+∞) by checking that

(a) both sides of the equality solve the same ODE of order 1 in y,

(b) both sides coincide at y = 0 (hint: use that
∫
R e
−at2dt = (π/a)1/2 if a > 0).

3. Check that, for a given y ∈ R, z 7→ (F∗2ψz)(y) is holomorphic on the right half plane
{Re(z) > 0}.

4. Conclude (hint: analytic continuation).

The next exercise gives a first rigorous interpretation of the fact that the Duhamel
formula (1.4) solves the Cauchy problem (1.1)-(1.2).

Exercise 2.13. Let I be an interval containing 0 and f : I → L2(Rn) be continuous. Let
u0 ∈ L2(Rn). Check that

u(t) := U(t)u0 +
1

i

∫ t

0
U(t− s)f(s)ds

solves the Schrödinger equation
(i∂t −∆)u = f,

in the distributions sense on I × Rn.

Solution. Assume first that f ≡ 0. We want to show that, for any ψ ∈ C∞0 (I × Rn),

〈(i∂t −∆)u, ψ〉 = 〈u,−i∂tψ −∆ψ〉 (2.23)

vanishes, that is

−
∫ ∫

u(t, x)(i∂t + ∆)ψ(t, x)dxdt = 0.
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By rewriting (i∂t + ∆)ψ = (−i∂t + ∆)ψ̄ and using the Fubini Theorem, we can interpret
the above integral as∫

I

(
(i∂t −∆)ψ̄(t), U(t)u0

)
L2 dt =

∫
R

(
U(−t)(i∂t −∆)ψ̄(t), u0

)
L2 dt

=

(∫
I
U(−t)(i∂t −∆)ψ̄(t)dt, u0

)
L2

. (2.24)

Denoting by ̂̄ψ the Fourier transform with respect to x, we have

U(−t)(i∂t −∆)ψ̄(t, x) = (2π)−n
∫
eix·ξe−it|ξ|

2
(i∂t + |ξ|2)̂̄ψ(t, ξ)dξ

= i(2π)−n
d

dt

(∫
eix·ξe−it|ξ|

2 ̂̄ψ(t, ξ)dξ

)
. (2.25)

Here we have used that |ξ|2 ̂̄ψ is the Fourier transform (in x) of −∆ψ̄, which follows from

the third item of Proposition 2.7. Note also that
∫
eix·ξe−it|ξ|

2 ̂̄ψ(t, ξ)dξ is a Schwartz
function of t and x, which is compactly supported in t. Then∫

I
U(−t)(i∂t −∆)ψ̄(t, x)dt = 0

as the integral of the derivative of a C∞0 function. This implies that (2.24) and thus (2.23)
vanish. As a by-product of this computation, more precisely of (2.24), we discover that
computing (i∂t −∆)U(t)u0 in the distribution sense rests on the calculation the action of
the adjoint of U(t) on (i∂t −∆)ψ̄.

We consider next the case when u0 ≡ 0 and f ∈ C(I, L2). The previous step suggests
we have to determine the formal adjoint3 of the operator f 7→

∫ t
0 U(t − s)f(s)ds. To do

so, we pick f ∈ C(I, L2), ϕ ∈ C∞0 (I × Rn) and compute∫ ∫
ϕ(t, x)

(∫ t

0
U(t− s)f(s)ds

)
(t, x)dtdx =

∫
I

∫ t

0
(ϕ(t), U(t− s)f(s)ds)L2 dsdt

=

∫
I

∫ t

0
(U(s− t)ϕ(t), f(s)ds)L2 dsdt.

Using that
∫ t

0 ds =
∫

[0,t] ds if t ≥ 0 and
∫ t

0 ds = −
∫

[t,0] ds, and letting I = [a, b] with
a < 0 < b, it is not hard to check that∫

I

(∫ t

0
· · · ds

)
dt =

∫ b

0

(∫ b

s
· · · dt

)
ds−

∫ 0

a

(∫ s

a
· · · dt

)
ds,

by the Fubini Theorem, from which we get∫
I

∫ t

0
(U(s− t)ϕ(t), f(s)ds)L2 dsdt =

∫ b

0

(∫ b

s
U(s− t)ϕ(t)dt, f(s)

)
L2

ds

−
∫ 0

a

(∫ s

a
U(s− t)ϕ(t)dt, f(s)

)
L2

ds.

3i.e. tested against C∞0 (I × Rn) functions
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Therefore, (2.23) with u(t) = −i
∫ t

0 U(t− s)f(s)ds and ϕ := (i∂t −∆)ψ̄ yields

〈(i∂t−∆)u, ψ〉 = −i
∫ b

0

(∫ b

s
U(s− t)ϕ(t)dt, f(s)

)
L2

ds+i

∫ 0

a

(∫ s

a
U(s− t)ϕ(t)dt, f(s)

)
L2

where, in the right hand side, (2.25) shows that

U(s− t)ϕ(t) = i
∂

∂t
U(s− t)ψ̄(t).

After integration with respect to t, we get

〈(i∂t −∆)u, ψ〉 = −i
∫ b

0

(
− iψ̄(s), f(s)

)
L2ds+ i

∫ 0

a

(
iψ̄(s), f(s)

)
L2ds

=

∫ b

a
(ψ̄(s), f(s))L2ds

=

∫ ∫
f(s, x)ψ(s, x)dsdx,

which is the expected result. �

The definition of Fourier multipliers is not restricted to bounded symbols. As suggested
by the item 3 of Proposition 2.7, one can for instance consider the Fourier multiplier by
aα(ξ) := ξα which satisfies

aα(D) = (−i)|α|∂αx ,

at least on the Schwartz space. We also recall that the expression of the wave group
(1.8) should involve the Fourier multiplier by |ξ| sin(t|ξ|) which is not bounded. To handle
unbounded Fourier multipliers, which will not be continuous endomorphisms of L2, we
need to use Sobolev spaces.

We first recall the notion of temperate distributions and of their Fourier transform. A
temperate distribution T is a linear map T : S(Rn) → C which is continuous, in the
sense that for some C > 0 and N > 0, we have

|〈T, ϕ〉| ≤ C
∑

|α|+|β|≤N

sup
x∈Rn

|xα∂βxϕ(x)|,

where 〈T, ϕ〉 is the usual notation for T (ϕ). The Fourier transform on S ′(Rn) is defined
by duality by

〈FT, ϕ〉 := 〈T,Fϕ〉, ϕ ∈ S(Rn).

We recall without proof the following result which we consider as part of the background
of the reader.

Proposition 2.14. 1. For all q ∈ [1,∞], Lq(Rn) is embedded into S ′(Rn), via u 7→ Tu
with

〈Tu, ϕ〉 =

∫
Rn
u(x)ϕ(x)dx.
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2. The definition of F on S ′(Rn) is compatible with the ones on S(Rn) and on L2(Rn).

Definition 2.15. For s ∈ R, one defines the space Hs(Rn) as the space of temperate
distributions T such that FT belongs to L2

loc(Rn) and

||T ||2Hs := (2π)−n
∫
Rn

(1 + |ξ|2)s|FT (ξ)|2dξ <∞.

We record the following proposition for reference.

Proposition 2.16 (Properties of Sobolev spaces). 1. If s1 ≤ s2, then Hs2 ⊂ Hs1.

2. If s ≥ 0, Hs is contained in L2. Actually, if s ≥ 0

u ∈ Hs ⇐⇒ u ∈ L2 and (1 + |ξ|2)s/2(Fu) ∈ L2

3. If s ∈ N, Hs coincides with the subspace of functions u ∈ L2 such that ∂αu ∈ L2 for
all |α| ≤ s, the derivatives being taken in the distributions sense.

4. For all real number s, S(Rn) is dense in Hs.

5. Let k ∈ N and s > k+ n
2 . Then Hs ⊂ Ck. In particular, H∞ := ∩s≥0H

s is contained
in C∞.

We give a short proof for completeness.

Proof. 1 and 2 are trivial (the point of 2 is to emphasize that Hs ⊂ L2 when s ≥ 0).
The item 3 is left as an exerice (one has basically to see that

∑
|α|≤s |ξα| is bounded from

above and below by (constants times) (1+ |ξ|2)s/2). In 4, it suffices to approximate the L2

function (1+|ξ|2)s/2FT (ξ) by functions ϕj in S(Rnξ ) and observe that F−1((1+|ξ|2)−s/2ϕj)
goes to T in Hs as j →∞. In 5, when k = 0 and u ∈ Hs, we observe that, Fu(ξ) belongs
to L1 by the Hölder inequality since

Fu(ξ) = (1 + |ξ|2)−s/2
(

(1 + |ξ|2)s/2Fu(ξ)
)

is a product of two L2 functions. Therefore, the inverse Fourier transform of Fu(ξ) is
continuous on Rn (and goes to zero at infinity by the Riemann-Lebesgue Lemma). The
case of k ≥ 1 is similar. �

Proposition 2.17 (Fourier multipliers on Sobolev spaces). Let s be a real number.

1. If a ∈ L∞(Rn), then Hs is stable by the Fourier multiplier a(D) and

||a(D)u||Hs ≤ ||a||L∞ ||u||Hs .
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2. If p is a measurable function such that, for some m ∈ R,

|p(ξ)| ≤ C(1 + |ξ|)m,

then the Fourier multiplier

p(D) := F∗2MpF2

which maps S(Rn) into Hs−m extends uniquely to a continous operator from Hs to
Hs−m.

3. Two such operators a(D) and p(D) commute.

Proof. Left as an exercise to the reader. �

Proposition 2.18 (Mollifiers). Let χ ∈ S(Rn) such that χ(0) = 1. Let (εk)k∈N be a
sequence of positive numbers going to zero and define

χk(ξ) = χ(εkξ).

Then

1. χ(εkD) maps L2 into H∞.

2. For all q ∈ [1,∞], (χk(D))k∈N is bounded in L(Lq(Rn)), i.e. there exists C > 0 such
that

||χk(D)u||Lq ≤ C||u||Lq , k ≥ 0, u ∈ Lq(Rn).

3. For all q ∈ [1,∞), χk(D) converges strongly to the identity on Lq(Rn), i.e. for all
u ∈ Lq(Rn),

||χk(D)u− u||Lq → 0.

Proof. The item 1 is obvious for if u belongs to L2 then χ(εkD)u has a compactly sup-
ported Fourier transform. The item 2 is a consequence of the item 4 of Proposition 2.9
by observing that the Fourier transform of χ(εkξ) is ε−nk χ̂(x/εk) which has a L1 norm
independent of εk. In item 3, due to the a priori uniform boundedness given by the item
2, it suffices to consider a dense subset of Lq such as the Schwartz space. Then, it is easy
to check (or even standard to know) that if u ∈ S(Rn) then χ(εkξ)û(ξ) converges to û(ξ)
in S(Rn) hence so do their inverse Fourier transforms, which in turn implies the expected
convergence in Lq. �

We will need the following exercise in Chapter 4.

Exercise 2.19. 1. Let u ∈ H2(Rn). Show that t 7→ e−it∆u is C1 on R with derivative
−ie−it∆∆u (note that ∆u ∈ L2 since u ∈ H2).
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2. Let χ ∈ C∞0 (R) and f ∈ C1(I, L2), I being an interval. Prove that t 7→ e−it∆χ(D)f(t)
is C1 with derivative

e−it∆χ(D)f ′(t)− ieit∆∆χ(D)f(t).

(Note here that −∆χ(D) is a bounded operator on L2 since it is the Fourier multiplier
by |ξ|2χ(ξ).)

Solution. 1. We show first the differentiability namely that, for all t, we have∣∣∣∣∣
∣∣∣∣∣e−i(t+h)∆u− e−it∆u

h
+ ie−it∆∆u

∣∣∣∣∣
∣∣∣∣∣
2

L2

→ 0, h→ 0

By the Parseval formula, and up to a multiplicative constant, the above norm reads

∫ ∣∣∣∣∣
(
ei(t+h)|ξ|2 − eit|ξ|2

h
− ieit|ξ|2 |ξ|2

)
û(ξ)

∣∣∣∣∣
2

dξ.

The bracket goes to zero as h→ 0 for all ξ and is uniformly bounded by C|ξ|2 so, using that
|ξ|2û(ξ) belongs to L2, this integral goes to zero as h→ 0 by the dominated convergence
theorem. This proves the derivability. The continuity of the derivative in t can be proved
as the third item of Proposition 2.10.

2. As in 1, we prove the derivability only. Using the notation U(t) = e−it∆, we write

U(t+ h)χ(D)f(t+ h)− U(t)χ(D)f(t) =
(
U(t+ h)− U(t)

)
χ(D)f(t)

+U(t)χ(D)
(
f(t+ h)− f(t)

)
+
(
U(t+ h)− U(t)

)
χ(D)

(
f(t+ h)− f(t)

)
= I + II + III.

Since χ(D)f(t) belongs to H2 (its Fourier transform is L2 and compactly supported), I/h
has a limit as h → 0 by the previous question. That II/h has a limit as h → 0 follows
from the differentiabilty of f in t and the continuity of U(t)χ(D) on L2. Finally III/h
goes to zero as h→ 0 since (f(t+ h)− f(t))/h is bounded as h→ 0 and

∣∣∣∣(U(t+ h)− U(t)
)
χ(D)

∣∣∣∣
L2→L2 ≤ sup

ξ∈Rn

∣∣∣∣∫ h

0
ei(t+s)|ξ|

2 |ξ|2χ(ξ)ds

∣∣∣∣
is bounded by C|h|. �

We conclude this section by recording a few facts and definitions on homogeneous
Sobolev spaces and homogeneous Sobolev estimates. We start with the following result.
A proof is given in appendix.
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Proposition 2.20 (Homogeneous Sobolev inequalities). If s ∈ [0, n/2), there exists C > 0
such that

||u||
L

2n
n−2s

≤ C
∣∣∣∣|D|su∣∣∣∣

L2 , (2.26)

for all u ∈ S(Rn). In particular, Hs is contained in L
2n
n−2s .

Informally, we can rephrase the fact that Hs is contained in L
2n
n−2s by saying that a

L2 function u also belongs to L
2n
n−2s provided that u has ’s derivatives’ in L2.

Definition 2.21. For 0 ≤ s < n/2, one defines the homogeneous Sobolev space Ḣs

on Rn as the closure of S(Rn) for the norm

||ϕ||Ḣs :=
∣∣∣∣|ξ|sF2(ϕ)

∣∣∣∣
L2(Rnξ )

.

It follows from Proposition 2.20 that Ḣs is a subspace of L
2n
n−2s . In particular, it is a

subset of distributions on Rn.

Be careful that Ḣs is not contained in L2 (unless s = 0) due to the low frequencies,
namely to the possible non L2 integrable singularities which are allowed on F2ϕ at ξ = 0
(they are only square integrable with respect to |ξ|2sdξ). However Ḣs contains Hs.

One interest of the homogeneous Sobolev spaces is to scale precisely as the associated
Lebesgue spaces. This means that if u belongs to Ḣs and if we set uλ(x) = u(λx) with
λ > 0 then

||uλ||Ḣs = λs−
n
2 ||u||Ḣs , ||uλ||

L
2n
n−2s

= λs−
n
2 ||u||

L
2n
n−2s

.

This follows from a simple calculation, say for u ∈ S(Rn), which is left to the reader. One
could prove several results on such spaces, for instance introduce those of negative order
and check that there is a natural duality between Ḣs and Ḣ−s. However, we won’t need
such additional results so we only record the minimal tools for our purposes.

A consequence of Proposition 2.20 is the following result which is a special case of the
so called Hardy-Littlewood-Sobolev inequality. It will be important in Chapter 3.

Proposition 2.22. Let p > 2 be a real number and let δ = 2
p . There exists C > 0 such

that ∫
R

∫
R

|f(s)g(t)|
|t− s|δ

dsdt ≤ C||f ||Lp′ ||g||Lp′ , (2.27)

for all f, g ∈ Lp′(R). Here p′ is the conjugate exponent to p, i.e. 1
p′ = 1− 1

p .

In other words, this proposition says that f ∗ | · |−δ belongs to Lp(R) if f ∈ Lp′(R).
Note that | · |−δ is locally integrable on R since 0 < δ < 1 but it does not belong to any
Lebesgue space on R since

∫
R |t|

−qδdt will diverge either at 0 or at infinity. A proof of
Proposition 2.22, splitted into several steps, is suggested in Exercise 2.24 below. It uses
the result of the following exercise.
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Exercise 2.23. Let d ≥ 1 be an integer. The purpose of this exercise is to show that, for
all 0 < s < d,

F
(
|x|−s

)
= (2π)

d
2 2

d
2
−sΓ

(
d−s

2

)
Γ
(
s
2

) |ξ|s−d,
where x 7→ |x|−s and ξ 7→ |ξ|d−s are defined on Rd (as temperate distributions).

1. Show that, for any ϕ ∈ S(Rd), the map

s 7→ 〈| · |−s,Fϕ〉 :=

∫
|x|−sϕ̂(x)dx,

is holomorphic in the strip {0 < Re(s) < d}.

2. Show that, for Re(s) ∈ (d/2, d), F(|x|−s) is locally integrable on Rd. Hint: introduce
χ ∈ C∞0 (Rd) such that χ ≡ 1 near 0 and observe that

|x|−sχ(x) ∈ L1, (1− χ)(x)|x|−s ∈ L2.

In the sequel, we denote by Fs(ξ) the locally integrable function F(|x|−s).

3. For Re(s) ∈ (d/2, d), show that

(a) Fs is continuous on Rd \ 0, (hint: |ξ|2dF
(
(1− χ)| · |−s

)
is continuous on Rd)

(b) for all λ > 0 and all ξ 6= 0, Fs(λξ) = λs−dFs(ξ),

(c) Fs is radial, i.e. Fs(Rξ) = Fs(ξ) for any orthogonal matrix R ∈ O(d).

(d) Fs(ξ) = c(s)|ξ|s−d for some c(s) ∈ C.

4. Show that the result is true for s ∈ (d/2, d). (Hint: use the identity
∫
|x|−sϕ̂(x)dx =

c(s)
∫
|ξ|s−dϕ(ξ)dξ with ϕ(ξ) = e−|ξ|

2/2 and introduce polar coordinates.)

5. Conclude for all s ∈ (0, d). (Hint: analytic continuation.)

Comment. In dimension d = 3, we recover that (2π)−3F(|ξ|−2) = (4π)−1|x|−1, using
that Γ(1/2) = π1/2 and Γ(1) = 1. This yields the fundamental solution to the Laplacian.

Exercise 2.24. The purpose of this exercise is to prove Proposition 2.22.

1. Check that it suffices to show that, for all ϕ,ψ ∈ S(R),∣∣∣∣∣
∫
R

∫
R

ϕ(s)ψ(t)

|t− s|δ
dsdt

∣∣∣∣∣ ≤ C||ϕ||Lp′ ||ψ||Lp′ .
Hint: approximate |f |, |g| ∈ Lp′ by sequences in S and use Fatou’s Lemma.
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2. Check that there exists a positive constant c such that, for all ϕ,ψ ∈ S(R),∫
R

∫
R

ϕ(s)ψ(t)

|t− s|δ
dsdt = c

∫
R
ϕ̂(τ)ψ̂(τ)|τ |δ−1dτ.

Hint: use the result of Exercise 2.23 and that F turns convolutions into products.

3. Check that there exists C > 0 such that, for all ψ ∈ S(R),∣∣∣∣|τ | δ−1
2 ψ̂

∣∣∣∣
L2 ≤ C||ψ||Lp′ .

Hint: use (2.26) and the fact that |(ψ, |D|
δ−1
2 φ)L2 | ≤ ||ψ||Lp′ |||D|

δ−1
2 φ||Lp for all

φ ∈ S(R) with Fourier transform vanishing in a neighborhood of 0.

4. Conclude.

Exercise 2.25 (Wave group). For t ∈ R, we define W (t) : H1 × L2 → H1 × L2 by

W (t) =

(
cos t|D| sin t|D|

|D|
−|D| sin t|D| cos t|D|

)
,

where sin tλ/λ is implicitly defined as t for λ = 0.

1. Check that each operator in the matrix W (t) maps S(Rn) into S(Rn).

2. Check that W (t) has a unique continuous extension (starting from S(Rn)× S(Rn))
into an operator Ḣ1 × L2 → Ḣ1 × L2.

3. Check that (W (t))t∈R is a group on H1 × L2 and on Ḣ1 × L2.

4. Check that W (t) preserves the norm (||v||2
Ḣ1 + ||w||2L2)1/2 on Ḣ1 × L2.

5. Let I be an open interval containing 0. Prove that if (u0, u1) ∈ Ḣ1 × L2 and f ∈
C(I, L2) then

u(t) = cos(t|D|)u0 +
sin t|D|
|D|

u1 +

∫ t

0

sin(t− s)|D|
|D|

f(s)ds

solves the wave equation (1.6) in the distributions sense on I × Rn.
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Chapter 3

Strichartz and nonlinear estimates

In this chapter, we introduce suitable functions spaces and prove some related estimates
which will be useful to define rigorously and solve the equation (1.10) by mean of the
Picard fixed point Theorem. The main result is Theorem 3.9 on Strichartz estimates for
the Schrödinger equation.

3.1 Functions spaces

Definition 3.1. If I is a compact interval and X a Banach space, C(I,X) is the space
of functions f : I → X which are continuous on I. We equip it with the norm

||f ||L∞I X := sup
t∈I
||f(t)||X .

We recall that C(I,X) is a Banach space.

Definition 3.2. Let I be a compact interval and p > 2, q > 2 two real numbers. We
define Mp,q

I as the subspace of functions f ∈ C(I, L2) such that

1. for almost every t ∈ I, u(t) belongs to Lq,

2. the function t 7→ ||u(t)||Lq is measurable,

3. the following norm is finite

||u||LpILq =

(∫
I
||u(t)||pLqdt

)1/p

<∞.

We equip this space with the norm

||u||Mp,q
I

:= ||u||L∞I L2 + ||u||LpILq .

35
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Definition 3.3. Let p > 2 and q > 2 be real numbers, p′ and q′ be their conjugate and let
I be a compact interval. We let

Lp
′

I L
q′ := completion of C(I, Lq

′
) for the norm || · ||

Lp
′
I L

q′ .

(See (2.5) for the definition of the norm). We still denote by || · ||
Lp
′
I L

q′ the norm of this

completion.

Proposition 3.4. Mp,q
I is a Banach space.

Proof. Let (uk)k be a Cauchy sequence in Mp,q
I . It suffices to see that some subsequence

will be convergent in Mp,q
I . Since (uk)k is a Cauchy sequence in C(I, L2), we know that

||uk−u||L∞I L2 → 0 for some u ∈ C(I, L2). On the other hand, using that (uk)k is a Cauchy
sequence for the norm || · ||LpILq we can construct a subsequence (ukj )j such that

||ukj − ukj+1
||LpILq ≤ 2−j .

For all t ∈ I, we consider

fN (t) :=

N∑
j=1

||ukj (t)− ukj+1
(t)||Lq ∈ [0,∞], f(t) :=

∞∑
j=1

||ukj (t)− ukj+1
(t)||Lq ∈ [0,∞].

Then we have ||fN ||Lp(I) ≤ 1 and, by the Fatou Lemma1 applied to fpN we also have
||f ||Lp(I) ≤ 1. In particular, the sequence fN converges for almost every t which implies
that, for those t, ukj (t) is a Cauchy sequence in Lq. Since we already know that, as j goes
to infinity, ukj (t)→ u(t) in L2, we find that

lim
j→∞

ukj (t) = u(t) ∈ Lq for almost every t ∈ I.

In particular, u(t) belongs to Lq for almost every t. By the Fatou lemma again, we have∫
I
||ukl(t)− u(t)||pLqdt ≤ lim inf

j→∞

∫
I
||ukl(t)− ukj (t)||

p
Lqdt,

which shows that u belongs to LpIL
q and that ||u−ukl ||LpILq → 0 as l goes to infinity since

the right hand side is smaller than (
∑

κ≥l 2
−κ)p. This completes the proof. �

To be able to manipulate LpLq functions which are unambiguously defined pointwise
in time, it will be convenient to use several approximation procedures. This is the purpose
of the next two propositions.

Proposition 3.5. Assume that Rk is a family of continuous linear operators on a Banach
space X such that

Rk → I in the strong sense as k →∞.
Then, for all f ∈ C(I,X), if we set fk(t) := Rk(f(t)), we have fk ∈ C(I,X) and

||fk − f ||L∞I X → 0, k →∞.
1
∫

lim inf ≤ lim inf
∫
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Proof. It relies on the fact that f is uniformly continuous on I. Fix first ε > 0 and let
C > 1 such that

C ≥ sup
k
||Rk||X→X .

Such a C exists by the uniform boundedness principle. By uniform continuity of f we can
find δ > 0 such that ||f(t) − f(s)||X < ε/3C if |t − s| < δ. By compactness of I we can
write I as a finite union of intervals Ij = [tj , tj+1] with |tj+1 − tj | < δ/2. Now for any
t ∈ I, we can choose j such that t ∈ Ij and

||fk(t)− f(t)||X ≤ ||fk(t)− fk(tj)||X + ||fk(tj)− f(tj)||X + ||f(tj)− f(t)||X
≤ C||f(t)− f(tj)||+ ||(Rk − I)f(tj)||X + ||f(tj)− f(t)||X

≤ 2ε

3
+ ||(Rk − I)f(tj)||X ,

uniformly with respect to k. Now, since there is a finite number of tj we can choose k0

large enough such that ||(Rk − I)f(tj)||X < ε/3 for all j and all k ≥ k0. Taking the sup
over t ∈ I, we get the result. �

Proposition 3.6. 1. C(I, L2 ∩ Lq) is dense in Mp,q
I .

2. C(I, L2 ∩ Lq′) is dense in Lp
′

I L
q′.

Proof. 1. Consider a sequence of mollifiers Rk as in Proposition 2.18. Let u ∈ Mp,q
I and

define uk pointwise in time by
uk(t) = Rk(u(t)).

We know that uk belongs to C(I, L2) and converges to u in this space by Proposition 3.5.
By Proposition 2.18 and the item 4 of Proposition 2.9, it is not hard to check that uk also
belongs to C(I, Lq). Furthermore

||uk − u||pLpILq =

∫
I
||Rku(t)− u(t)||pLqdt→ 0, k →∞, (3.1)

by standard dominated convergence since, by Proposition 2.18, ||Rku(t)−u(t)||Lq → 0 for
a.e. t and is dominated by C||u(t)||pLq independently of k.

2. It suffices to see that C(I, L2 ∩ Lq′) is dense in C(I, Lq
′
) for the Lp

′

I L
q′ norm. Indeed,

if f ∈ C(I, Lq
′
), then Rkf belongs to C(I, L2 ∩ Lq′) by the item 4 of Proposition 2.9 and

the convergence to f in Lp
′

I L
q′ is obtained as in (3.1). �

Although we shall mainly use functions in spaces like C(I, Lq) in this chapter, we will
sometimes need to use functions in LpLqc (see prior to Proposition 2.3) and it will be useful
to approximate them by functions in C(I, Lq).

Exercise 3.7. Let I be a compact interval and G ∈ LpIL
q
c with p, q ∈ [1,∞). Let χ ∈

C∞0 (Rn) be equal to 1 near 0 and define Gk(t, x) := χ(x/k)G(t, x).

1. Check that Gk ∈ C(I, Lq1) for all q1 ∈ [1,∞].

2. Check that ||G−Gk||LpILq → 0 as k →∞.
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3.2 Strichartz estimates

The Strichartz estimates are linear inequalities which are crucial to solve dispersive PDE
at low regularity. We consider here the case of the Schrödinger equation which is simpler
than the one of the wave equation (we hope, in a near future, to include a section on the
wave equation in appendix).

Definition 3.8. A pair of real numbers (p, q) is Schrödinger admissible on Rn if

p > 2, q > 2,
2

p
+
n

q
=
n

2
. (3.2)

Here n can be any integer ≥ 1.

We comment that the case p = 2 is also allowed (we then require that q 6=∞ i.e. that
n 6= 2) and corresponds to the so called endpoint pair, but we won’t need to consider this
limit case here (furthermore, the proof of the related Strichartz estimates is more difficult
in this case, see Keel-Tao [3]). To see the relevance of the notion of Schrödinger admissible
pair, we refer to Exercise 3.11 below.

The Strichartz estimates give information on the linear flow, that is on the unitary
group U(t) (see Proposition 2.10) and the following related operators. Given a compact
interval I and real numbers t0, t1 ∈ I, we will consider

U(·)u0 := [t 7→ U(t)u0] ,

Dt0f :=

[
t 7→

∫ t

t0

U(t− s)f(s)ds

]
,

Et1t0 :=

∫ t1

t0

U(−s)f(s)ds.

We call Dt0 the Duhamel operator at initial time t0. These operators are a priori well
defined between the following spaces

U(·) : L2 → C(I, L2),

Dt0 : C(I, L2)→ C(I, L2),

Et1t0 : C(I, L2)→ L2.

We recall that the norm || · ||Mp,q
I

used in the next theorem is given in Definition 3.2.

Theorem 3.9 (Strichartz estimates for the Schrödinger equation). Let n ≥ 1 and (p, q)
be Schrödinger admissible. Then there exists C > 0 such that, for all compact interval I
and all t0, t1 ∈ I, we have:

1. for all u0 ∈ L2, U(·)u0 belongs to Mp,q
I and

||U(·)u0||Mp,q
I
≤ C||u0||L2 . (3.3)
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2. For all f ∈ C(I, L2 ∩ Lq′), Dt0f belongs to Mp,q
I and

||Dt0f ||Mp,q
I
≤ C||f ||

Lp
′
I L

q′ . (3.4)

3. For all f ∈ C(I, L2 ∩ Lq′), Et1t0 f belongs to L2 and

||Et1t0 f ||L2 ≤ C||f ||
Lp
′
I L

q′ . (3.5)

The great interest of Strichartz estimates is the following, say for the homogeneous
estimate (3.3): it says that whenever u0 is in L2, then U(t)u0 belongs to Lq on an averaged
sense (in particular for almost every t), which is quantitative since we have a Lp estimate
in time of ||U(t)u0||Lq . This is a remarkable fact since we have no derivative in L2 for
u0 (nor for U(t)u0). This is in strong contrast with Sobolev embeddings (see Proposition
2.20) which show that a function belongs some Lq space with q > 2 provided that some
(fractional) derivative of the function also belongs to L2.

The estimates (3.4) and (3.5) mean basically that assuming f ∈ Lp
′

I L
q′ is sufficient;

we only assume that f belongs to C(I, L2) to guarantee that Dt0f and Et1t0 f are clearly
defined. Actually, (3.4), (3.5) and the item 2 of Proposition 3.6 lead in a straightforward
fashion to the following corollary.

Corollary 3.10. For all compact interval I ⊂ R and all t0, t1 ∈ I, the operators Dt0 and
Et1t0 extend uniquely from C(I, L2 ∩ Lq′) to continuous operators

Dt0 : Lp
′

I L
q′ →Mp,q

I , E
t1
t0 : Lp

′

I L
q′ → L2,

such that, for some constant C independent of I and t0, t1,∣∣∣∣Dt0f
∣∣∣∣
Mp,q

I
≤ C||f ||

Lp
′
I L

q′ , (3.6)∣∣∣∣Et1t0f ∣∣∣∣L2 ≤ C||f ||
Lp
′
I L

q′ . (3.7)

Before proving Theorem 3.9, we justify the interest of the notion of Strichartz admis-
sible pairs. We record first a simple exercise.

Exercise 3.11. Define

Sλψ(x) = ψ(λx), Tλu(t, x) = u(λ2t, λx).

1. Check that SλU(t) = U(λ−2t)Sλ.

2. Let p, q ∈ [1,∞) and I be an interval. Check that if ψ is a Schwartz function

λ
−
(

2
p

+n
q

)
||U(·)ψ||LpILq = ||TλU(·)ψ||Lp

λ−2I
Lq = ||U(·)Sλψ||Lp

λ−2I
Lq .
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This exercise shows that (3.2) is precisely the condition which makes the Strichartz
estimates scale invariant. Indeed, the second question of Exercise 3.11 shows that if
Strichartz estimates as in (3.3) hold true for some pair (p, q) ∈ (2,∞)2 then

λ
−
(

2
p

+n
q

)
||U(·)ψ||LpILq = ||U(·)Sλψ||Lp

λ−2I
Lq ≤ C||Sλψ||L2 = Cλ−

n
2 ||ψ||L2 ,

and this can hold with a constant independent of the interval I only if (p, q) is admissible.

Theorem 3.9 will be mostly a consequence of the following lemma (where we assume
implicitly that (p, q) is Schrödinger admissible).

Lemma 3.12. There exists C > 0 such that for all compact interval I, all t0 ∈ I and all
f ∈ C(I, Lq

′ ∩ L2), Dt0f belongs to Mp,q
I and

||Dt0f ||LpILq ≤ C||f ||Lp′I Lq′
. (3.8)

Proof of Lemma 3.12. That Dt0f ∈ C(I, L2) whenever f ∈ C(I, L2) follows from the item
3 of Proposition 2.10 (where 0 can be replaced by any t0). We prove next that, for all
F ∈ C(I, L1 ∩ L2), Dt0F belongs to Mp,q

I and

||Dt0F ||LpILq ≤ C||F ||Lp′I Lq′
. (3.9)

Let Fk := RkF with Rk as sequence of mollifiers as in Proposition 2.18. Then Fk belongs
C(I, L1 ∩ L2), by the item 4 of Proposition 2.9, hence also to C(I, Lq

′
) by (2.3). We also

point out that

Dt0Fk(t) = Rk

∫ t

t0

U(t− s)F (s)ds

belongs to C(I, Lq) ∩ C0(I × Rn) (on one hand by the item 4 of Proposition 2.9 for Lq

and on the other from the items 5 of Proposition 2.16 and 1 of Proposition 2.18 for the
space-time continuity). This last property allows to use (2.6) which shows that it suffices
to prove that ∣∣∣∣∫ ∫

I×Rn
GDt0Fkdxdt

∣∣∣∣ ≤ Cq||G||Lp′I Lq′ ||Fk||Lp′I Lq′ . (3.10)

for all G ∈ Lp
′

I L
q′
c . By Exercise 3.7, we can even assume that G ∈ C(I, Lq

′
). Let us prove

(3.10) in this case. We know that GDt0Fk ∈ L1(I × Rn) by the item 1 of Proposition 2.3
so the Fubini Theorem allows to write∣∣∣∣∫ ∫

I×Rn
GDt0Fkdxdt

∣∣∣∣ =

∣∣∣∣∫
I

(∫
Rn
G(t)(Dt0Fk)(t)dx

)
dt

∣∣∣∣
=

∣∣∣∣∫
I

∫ t

t0

(∫
Rn
G(t)U(t− s)Fk(s)dx

)
dsdt

∣∣∣∣
≤

∫
I

∫
I
||G(t)||Lq′ ||U(t− s)Fk(s)||Lqdsdt.
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Note that we can swap
∫ t
t0
ds and

∫
Rn dx easily since G ∈ C(I, Lq

′
). We then observe that

the Marcinkiewicz Theorem 2.4 combined with the unitarity of U(t − s) and Corollary
2.11 yield

||U(t− s)Fk(s)||Lq ≤ Cq|t− s|
−
(
n
2
−n
q

)
||Fk(s)||Lq′ .

Note that here we use that Fk(s) belongs to L1 ∩ L2. The admissibility condition (3.2)
shows that n

2 −
n
q = 2

p , hence by using the Hardy-Littlewood-Sobolev inequality (2.27) we
get (3.10) which in turn yields (3.9) when F = Fk. Then, the estimate (3.9) applied to
Fk − Fj shows that Dt0Fk is a Cauchy sequence for the LpIL

q norm since Fk converges to

F in C(I, Lq
′
) (by Propositions 2.18 and 3.5) hence also for the Lp

′

I L
q′ norm. Since Dt0Fk

also converges to Dt0F in C(I, L2), the completeness ofMp,q
I shows that Dt0F belongs to

Mp,q
I and that (3.8) holds. If f belongs to C(L2 ∩ Lq′) we consider F̃k := χ(x/k)f , with

χ ∈ C∞0 (Rn) equal to 1 near 0. Then F̃k belongs to C(I, L1 ∩ L2) and converges to f in
C(I, L2 ∩Lq′) by Proposition 3.5. In particular, Dt0F̃k → Dt0f in C(I, L2). By (3.8) and
the completeness of Mp,q

I , Dt0F̃k → Dt0f in Mp,q
I and (3.8) holds. �

Proof of Theorem 3.9. We prove first that there exists C > 0 such that, for all compact
interval I and all f ∈ C(I, L2 ∩ Lq′),∣∣∣∣∣∣∣∣∫

I
U(−t)f(t)dt

∣∣∣∣∣∣∣∣
L2

≤ C||f ||
Lp
′
I L

q′ . (3.11)

Denote I = [a, b]. Once squared, the norm reads(∫
I
U(−t)f(t)dt,

∫
I
U(−s)f(s)ds

)
L2

=

∫
I

(
f(t),

∫
I
U(t− s)f(s)ds

)
L2

dt

=

∫
I

(f(t), Daf(t)−Dbf(t))L2 dt

by writing
∫
I ds =

∫ t
a ds−

∫ t
b ds. Using the Hölder inequality we have

|(f(t), Daf(t)−Dbf(t))L2 | ≤ ||f(t)||Lq′
(
||Daf(t)||Lq + ||Dbf(t)||Lq

)
and then, by using (3.8), we get (3.11). Then, for each t, t0 ∈ I, we consider I ′ := [t0, t]
(or [t, t0]) and observe that

||Dt0f(t)||L2 =

∣∣∣∣∣∣∣∣U(t)

∫
I′
U(−s)f(s)ds

∣∣∣∣∣∣∣∣
L2

≤ C||f ||
Lp
′
I′L

q′

≤ C||f ||
Lp
′
I L

q′ ,

by using (3.11). Together with (3.8), this yields (3.4). The estimate (3.5) is a direct
consequence of (3.11). We next consider (3.3). Let u0 belong to L2 and Rk be a sequence
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of mollifiers as in Proposition 2.18. Then RkU(·)u0 belongs to C(I, L2 ∩ Lq) and for all
G ∈ C(I, L2 ∩ Lq′) we have∣∣∣∣∫ ∫ G(t, x)RkU(t)u0dxdt

∣∣∣∣ =

∣∣∣∣∫
I

(G(t), U(t)Rku0)L2 dt

∣∣∣∣
=

∣∣∣∣(∫
I
U(−t)G(t)dt,Rku0

)
L2

∣∣∣∣
≤ C||G||

Lp
′
I L

q′ ||Rku0||L2 .

By Exercise 3.7 the inequality remains valid if G ∈ Lp′Lq
′
c and, by (2.6), it shows that

||RkU(·)u0||LpILq ≤ C||Rku0||L2 .

We have similar estimates on (Rk − Rj)U(·)u0 which show that RkU(·)u0 is a Cauchy
sequence in Mp,q

I which converges to U(·)u0 ∈ C(I, L2). This shows that U(·)u0 belongs
to Mp,q

I and that (3.3) holds. �

3.3 Nonlinear estimates

In this short section, we record fairly elementary estimates to deal with the nonlinearities
of (1.10) (or (1.11)) using the same spaces as those involved in Strichartz inequalities.

Proposition 3.13 (Nonlinear estimates). Let I be a compact interval, ν > 1 be a real
number and q := ν + 1.

1. The mapping

Pν : C(I, L2 ∩ Lq) 3 u 7→ |u|ν−1u ∈ C(I, Lq
′
)

is well defined.

2. Let p > 2 be a real number such that

1

p′
− ν

p
≥ 0. (3.1)

Then Pν has a unique continuous extension

P ν :Mp,q
I → Lp

′

I L
q′ ,

and

||P ν(u)− P ν(v)||
Lp
′
I L

q′ ≤ ν2ν−1|I|
1
p′−

ν
p

(
||u||ν−1

LpIL
q + ||v||ν−1

LpIL
q

)
||u− v||LpILq , (3.2)

for all u, v ∈Mp,q
I .
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We point out that if (p, q) is a Schrödinger admissible pair, the strict inequality (resp.
equality) in (3.1) means precisely that ν is L2 subcritical (resp. L2 critical). We also
emphasize that this proposition is designed to handle the L2 (sub)critical NLS and that
the analysis of the Ḣ1 subcritical equation (where ν can be larger) would require other
estimates.

The proof will rely on the following two simple exercises.

Exercise 3.14. Let ν > 1 be a real number.

1. Let z, ζ ∈ C be independent over R. Show that

f(s) := |z + sζ|ν−1(z + sζ)

is C1 on R and that

f ′(s) = |z + sζ|ν−1

(
ζ + (ν − 1)

z + sζ

|z + sζ|
Re

(
ζ(z̄ + sζ̄)

|z + sζ|

))
.

2. Show that for all real numbers a, b ≥ 0 and µ > 0,

(a+ b)µ ≤ 2µ(aµ + bµ).

3. Conclude that for all z, z′ ∈ C and ν > 1,∣∣|z|ν−1z − |z′|ν−1z′
∣∣ ≤ ν2ν−1

(
|z|ν−1 + |z′|ν−1

)
|z − z′|.

Exercise 3.15. Let I be a compact interval, p2 ≥ p1 ≥ 1 be two real numbers and
f ∈ Lp2(I). Check that

||f ||Lp1 ≤ |I|
1
p1
− 1
p2 ||f ||Lp2 .

Proof of Proposition 3.13. 1. Note first that by |u|ν−1u we mean the Lq
′

valued function
t 7→ |u(t)|ν−1u(t). This function is indeed Lq

′
valued since |u(t)|ν ∈ Lq/ν = Lq/(q−1) = Lq

′
.

Furthermore, it is continuous on I since, by the item 3 of Exercise 3.14 and the generalized
Hölder inequality (2.2),∣∣∣∣|u(t)|ν−1u(t)− |u(s)|ν−1u(s)

∣∣∣∣
Lq′

≤ ν2ν−1
(
||u(t)||ν−1

Lq + ||u(s)||ν−1
Lq

)
||u(t)− u(s)||Lq

≤ Cu||u(t)− u(s)||Lq .

The mapping Pν is thus well defined.
2. It suffices to prove (3.2) on C(I, L2 ∩ Lq). If we do it, then for any u ∈Mp,q

I , by using
Proposition 3.6, we can define P ν(u) as the limit of Pν(uj) for any uj ∈ C(I, L2 ∩ Lq)
converging to u in Mp,q

I and (3.2) will show on one hand that the limit does not depend
on the choice of uj and on the other hand that P ν is continuous. So let us prove (3.2).
Once again, the item 3 of Exercise 3.14 and the generalized Hölder inequality (2.2) yield∣∣∣∣|u(t)|ν−1u(t)− |v(t)|ν−1v(t)

∣∣∣∣
Lq′
≤ ν2ν−1

(
||u(t)||ν−1

Lq + ||v(t)||ν−1
Lq

)
||u(t)− v(t)||Lq .

By taking the Lp
′

norm in time of both sides and by observing that the right hand side
belongs to L

p
ν (I) (using the generalized Hölder inequality (2.2) in time), the result follows

from the Exercise 3.15. �
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3.4 Global in time estimates

The estimates of Theorem 3.9 and Corollary 3.10 involve constants independent of the
interval I. This suggests we could take I = R in these results. In this section, we describe
how to justify this fact. This will turn out to be important to prove the global well
posedness of the L2 critical NLS with small data.

Definition 3.16. If X is a Banach space, we denote by Cu(R, X) the space of bounded
and uniformly continuous functions f : R→ X. We equip it with the norm

||f ||L∞R X := sup
t∈R
||f(t)||X .

Exercise 3.17. 1. Check that Cu(R, X) is a Banach space.

2. Define

Cscat(R, L2) :=

{
f ∈ C(R, L2) | lim

t→+∞
U(−t)f(t) and lim

t→−∞
U(−t)f(t) exist in L2

}
and check that it is a closed subspace of Cu(R, L2).

It follows from this exercise that the space Cscat(R, L2) is a Banach space. The index
scat refers to scattering. We will say that a continuous fonction f : R → L2 scatters as
t→ ±∞ if there are (time independent) f± ∈ L2 such that

||f(t)− U(t)f±||L2 → 0, t→ ±∞. (3.3)

By construction of Cscat(R, L2) and the unitarity of U(t), it is clear that all functions of
Cscat(R, L2) scatter, since if we set f± = limt→±∞ U(−t)f(t) then, by unitarity of U(t),

||f(t)− U(t)f±||L2 = ||U(−t)f(t)− f±||L2 → 0, t→ ±∞.

In these introductory lectures, will not enter in a detailed description of what scattering
theory is but we simply record that (3.3) means that, as time goes to infinity, a func-
tion f which scatters behaves like a solution to the ’free’ (i.e. linear and homogeneous)
Schrödinger equation. We shall see that the space Cscat(R, L2) is a good one to solve the
L2 critical NLS with small data.

We next introduce the analogue of Definition 3.2 when I = R.

Definition 3.18. If p > 2 and q > 2 are real numbers, we define Mp,q
R as the set of

functions u ∈ Cscat(R, L2) such that

1. for almost every t ∈ R, u(t) belongs to Lq,

2. the function t 7→ ||u(t)||Lq is measurable,
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3. the following norm is finite

||u||LpRLq =

(∫
R
||u(t)||pLqdt

)1/p

<∞.

We equip this space with the norm

||u||Mp,q
R

:= ||u||L∞R L2 + ||u||LpRLq .

Exercise 3.19. Check that Mp,q
R is complete (hint: mimick the proof of Proposition 3.4.)

Before stating our result on global in time Strichartz estimates, we record another
result as an exercise.

Exercise 3.20. Let F : R → L2. Check that F (t) has a limit as t → ±∞ if and only if
for all ε > 0 there exists T > 0 such that ||F (t)− F (s)||L2 < ε for all t, s > ±T .

Theorem 3.21 (Global in time Strichartz estimates). Assume that (p, q) is a Schrödinger
admissible pair. There exists C > 0 such that,

1. for all u0 ∈ L2, U(·)u0 belongs to Mp,q
R and

||U(·)u0||Mp,q
R
≤ C||u0||L2 ,

2. for all f ∈ C(R, L2 ∩ Lq′) such that ||f ||
Lp
′

R L
q′ <∞, D0f belongs to Mp,q

R and

||D0f ||Mp,q
R
≤ C||f ||

Lp
′

R L
q′ .

Proof. 1. The estimate of ||U(·)u0||LpRLq follows from the fact that the constant in (3.3) is

independent of I. That U(·)u0 belongs to Cscat(R, L2) is trivial.
2. By (3.4) where the constant is independent of I, it is clear that D0f belongs to C(R, L2)
and that ||D0f ||Mp,q

R
≤ C||f ||

Lp
′

R L
q′ . We show that U(−t)(D0f)(t) has limits as t→ ±∞.

We consider the case of +∞ (the one of −∞ is similar). For all t > s, we have

||U(−t)(D0f)(t)− U(−s)(D0f)(s)||L2 =

∣∣∣∣∣∣∣∣∫ t

s
U(−r)f(r)dr

∣∣∣∣∣∣∣∣
L2

≤ C||f ||
Lp
′

[s,t]
Lq′

by using (3.5) with [s, t] = I = [t0, t1]. The conclusion then follows from Exercise 3.20
since ||f ||

Lp
′

[s,t]
Lq′

is arbitrarily small for s, t large enough. �

To extend the Strichartz estimates of Theorem 3.21 to a complete space, we introduce
the following definition which is of course the analogue of Definition 3.3.
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Definition 3.22. Let p > 2 and q > 2 be real numbers, p′ and q′ be their conjugate. We
let

Lp
′

RL
q′ := completion of C(R, Lq

′
) for the norm || · ||

Lp
′

R L
q′ ,

or, more precisely, the completion of the subset of C(R, Lq′) on which the Lp
′

RL
q′ norm is

finite. We still denote by || · ||
Lp
′

R L
q′ the norm of this completion.

Corollary 3.23. If (p, q) is a Schrödinger admissible pair, the Duhamel operator D0

initially defined C(R, L2 ∩ Lq′) ∩ Lp
′

RL
q′ extends in a unique continuous fashion to an

operator

D0 : Lp
′

RL
q′ →Mp,q

R ,

which satisfies ||D0f ||Mp,q
R
≤ C||f ||

Lp
′

R L
q′ .

Proof. It suffices to see that C(R, L2 ∩ Lq′) ∩ Lp
′

RL
q′ is dense in C(R, Lq′) ∩ Lp

′

RL
q′ for the

Lp
′

RL
q′ norm. This can be done exactly as for the item 2 of Proposition 3.6 hence we do

not repeat the argument. �

We conclude this section with a global in time analogue of Proposition 3.13.

Proposition 3.24 (Nonlinear estimates). Let ν > 1 be a real number, q := ν + 1 and
p > 2 be a real number such that

1

p′
− ν

p
= 0. (3.4)

The mapping

Pν :Mp,q
R ∩ C(R, Lq) 3 u 7→ |u|ν−1u ∈ C(R, Lq

′
)

is well defined and has a unique continuous extension

P ν :Mp,q
R → Lp

′

RL
q′ ,

with

||P ν(u)− P ν(v)||
Lp
′

R L
q′ ≤ ν2ν−1

(
||u||ν−1

LpRL
q + ||v||ν−1

LpRL
q

)
||u− v||LpRLq , (3.5)

for all u, v ∈Mp,q
R .

Proof. That Pν mapsMp,q
R ∩C(R, Lq) to C(R, Lq′) is a direct consequence of the item 1 of

Proposition 3.13. The estimate (3.5) is also valid onMp,q
R ∩C(R, Lq) by (3.2). Therefore,

the proposition would follow from the density of Mp,q
R ∩ C(R, Lq) in Mp,q

R . This is the
main point of this proof. Let Rk = χ(εkD) be a sequence of mollifiers as in Proposition
2.18 and u ∈ Mp,q

R . We show that Rku→ u in Mp,q
R as k →∞. We check first that Rku
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belongs to Cscat(R, L2). If u± := limt→±∞ U(−t)u(t) then, using that Rk commutes with
U(−t) and the item 2 of Proposition 2.18), we have

||U(−t)Rku(t)−Rku±||L2 = ||Rk(U(−t)u(t)− u±)||L2 ≤ C||U(−t)u(t)− u±||L2 → 0,

as t→ ±∞. This shows that Rku belongs to Cscat(R, L2). We next prove that

sup
t∈R
||Rku(t)− u(t)||L2 → 0, k →∞. (3.6)

We start by observing that we can write

||Rku(t)− u(t)|| = ||U(−t)Rku(t)− U(−t)u(t)||L2

≤ ||Rk(U(−t)u(t)− u±)||L2 + ||Rku± − u±||L2 + ||u± − U(−t)u(t)||L2

where, given ε > 0, we can choose T > 0 such that the first and third term are smaller
than ε/3 if ±t > T , uniformly with respect to k. Then, using that Rk → I strongly on
L2, the term in the middle is smaller than ε/3 if k is large enough. We have thus shown
that for each ε > 0 we can choose T > 0 and k0 ∈ N such that, for all k ≥ k0

sup
|t|>T

||Rku(t)− u(t)|| ≤ ε.

On the other hand, we already know that sup|t|≤T ||Rku(t) − u(t)||L2 → 0 as k goes to
infinity, by Proposition 3.5. Therefore, we have proved (3.6). The convergence of Rku to
u for the LpRL

q norm is simpler and proved by dominated convergence as in Proposition
3.6. This completes the proof since Rku belongs to Mp,q

R ∩ C(R, Lq). �



48 CHAPTER 3. STRICHARTZ AND NONLINEAR ESTIMATES



Chapter 4

The Cauchy problem for NLS

In this chapter, we solve the L2 subcritical non linear Schrödinger equation, for all initial
data in L2, and the L2 critical one for small initial data in L2. In both cases, the point is
to give a precise meaning to the fixed point equation (1.10) and to solve it.

4.1 The L2 subcritical NLS

We work in dimension n ≥ 1 and assume that ν is a L2 subcritical exponent, namely

1 < ν < 1 +
4

n
. (4.1)

For a given ν as above, we define the real numbers p and q by

q := ν + 1, p :=
4(ν + 1)

n(ν − 1)
.

Exercise 4.1. 1. Check that (p, q) is Schrödinger admissible (in the sense of (3.2)).

2. Check that
1

p′
− ν

p
=
n

4

(
1 +

4

n
− ν
)
> 0.

3. Check that p > q.

In the previous chapters, we have set up all the tools required to solve rigorously the
L2 subscritical nonlinear Schrödinger equation. We fix µ ∈ R. Given u0 ∈ L2, we rewrite
the equation (1.10) as

u = U(·)u0 −
µ

i
D0P ν(u), (4.2)

where we recall that U(·)u0 is the map t 7→ U(t)u0 and that D0 and P ν are defined
respectively in Corollary 3.10 and Proposition 3.13. Note in particular that the right

49
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hand side of the above equation is perfectly defined since the subcriticality condition (4.1)
implies that 1

p′ −
ν
p > 0 by Exercise 4.1.

We will seek solutions u ∈ ∩IMp,q
I , the intersection being taken over all compact

intervals containing 0 (see Definition 3.2 for the space Mp,q
I ). More precisely, this means

we shall look for u ∈ C(R, L2) such that, for any compact interval I containing 0, its
restriction to I belongs to Mp,q

I and solves (4.2).
This section is entirely devoted to the proof of the following theorem.

Theorem 4.2. 1. For all u0 ∈ L2, the equation

u = U(·)u0 −
µ

i
D0P ν(u), (4.3)

has a unique solution u ∈ ∩IMp,q
I (R) (the intersection is taken over all compact

intervals containing 0).

2. If we define Φt(u0) := u(t), we define a (flow) map

Φt : L2 → L2

which satisfies, for all u0 ∈ L2 and all s, t ∈ R,

||Φt(u0)||L2 = ||u0||L2 , Φt ◦ Φs = Φt+s, Φ0 = I.

In addition, for all positive numbers R, T , there exists a constant C > 0 such that

||Φt(u0)− Φt(v0)||L2 ≤ C||u0 − v0||L2 , (4.4)

for all |t| ≤ T and all u0, v0 such that ||u0||L2 ≤ R, ||v0||L2 ≤ R.

3. The solution to (4.3) belongs to C(R, L2)∩Lνloc(R× Rn). It satisfies u(0) = u0 and,
in the distributions sense,

i∂tu−∆u = −µ|u|ν−1u. (4.5)

We will split the proof of this theorem into several propositions or lemmas. For given
real numbers t0, t1 ∈ R, it will be convenient to denote

Kt0 := −µ
i
Dt0 ◦ P ν :Mp,q

I →M
p,q
I , Lt1t0 := E

t1
t0 ◦ P ν :Mp,q

I → L2, (4.6)

which are both continuous onMp,q
I for any compact interval I containing t0 and t1 (recall

that E
t1
t0 is defined in Corollary 3.10). The continuity of these maps follows from Corollary

3.10 and Proposition 3.13.

Proposition 4.3 (Local existence). There exists a constant C > 1 such that, for all
t0 ∈ R and all u0 ∈ L2, the map

u 7→ U(· − t0)u0 +Kt0(u)
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is a contraction on the closed ball

Bτ :=
{
u ∈Mp,q

[t0−τ,t0+τ ] | ||u− U(·)u0||Mp,q
[t0−τ,t0+τ ]

≤ 2||U(·)u0||Mp,q
[t0−τ,t0+τ ]

}
where τ is given by

τ = C−1||u0||
1

n
4−

1
ν−1

L2 . (4.7)

Note that 1
n
4
− 1
ν−1

< 0 so the existence time grows as ||u0||L2 decreases.

Proof. We note first that, for all τ > 0, Bτ is a complete metric space, as a closed ball of
the Banach space Mp,q

[t0−τ,t0+τ ]. We then look for conditions on τ such that F , defined by

F (u) := U(· − t0)u0 +Kt0(u),

preserves Bτ and is a contraction thereon. By Corollary 3.10 and Proposition 3.13 (with
v = 0), we know that there exists C1 > 0 such that for all u0, t0, τ and all u ∈Mp,q

[t0−τ,t0+τ ]

||Kt0(u)||Mp,q
[t0−τ,t0+τ ]

≤ C1|τ |
1
p′−

ν
p ||u||νMp,q

[t0−τ,t0+τ ]
.

In particular, setting R := 2||U(·)u0||Mp,q
[t0−τ,t0+τ ]

for simplicity, we see that if u belongs to

Bτ , we have

||F (u)− U(·)u0||Mp,q
[t0−τ,t0+τ ]

≤ C1τ
1
p′−

ν
pRν . (4.8)

Similarly, for all u, v ∈ Bτ , Corollary 3.10 and Proposition 3.13 also yield

||F (u)− F (v)||Mp,q
[t0−τ,t0+τ ]

≤ C2τ
1
p′−

ν
pRν−1||u− v||Mp,q

[t0−τ,t0+τ ]
, (4.9)

with a constant C2 independent of t0, u0, τ, u, v. Therefore, if we choose τ such that

C1T
1
p′−

ν
pRν ≤ R, C2τ

1
p′−

ν
pRν−1 ≤ 1/2, (4.10)

then Bτ is stable by F and F is 1/2 Lipschitz on Bτ . This is satisfied if τ
1
p
− ν
pRν−1 is small

enough and, using that

τ
1
p
− ν
pRν−1 =

(
τ

1
ν−1
− ν+1
ν−1

1
pR
)ν−1

,
1

p
=
n

4
− n

2(ν + 1)
=
n

4

ν − 1

ν + 1
,

it is not hard to check that this holds if τ is of the form (4.7) with C large enough. �

The next proposition will be useful to prove the uniqueness of solutions and also to
prove the uniform continuity of the flow on balls.
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Proposition 4.4 (Uniquess and stability estimates). Let R, T > 0. There exists C > 0
such that

1. for all t0 ∈ R and all I := [t0 − T, t0 + T ],

2. for all φ, ψ ∈Mp,q
I

3. for all u, v ∈Mp,q
I such that ||u||Mp,q

I
+ ||v||Mp,q

I
≤ R and which solve

u = φ+Kt0(u), v = ψ +Kt0(v), (4.11)

we have

||u− v||Mp,q
I
≤ C||φ− ψ||Mp,q

I
.

To prove this proposition, and for future purposes, we will need the next lemma.

Lemma 4.5. 1. Let I be a compact interval and t0, t1 ∈ I. If u ∈Mp,q
I , we have

Kt0(u) = U(·)Lt1t0(u) +Kt1(u). (4.12)

2. If t0 < t1 < t2, if I = [t0, t2] and if u ∈Mp,q
I solves

u = U(· − t0)u(t0) +Kt0(u), on [t0, t1], (4.13)

u = U(· − t1)u(t1) +Kt1(u), on [t1, t2] (4.14)

then it solves both equations on [t0, t2].

3. If u ∈Mp,q
I , t1 ∈ R, t0 ∈ I and if we define u ∈Mp,q

I−t1 by ũ(t) = u(t+ t1) then

Kt0(u)(t+ t1) = Kt0−t1(ũ)(t), t ∈ I − t1.

The first item gives a rigorous sense to the formula∫ t

t0

U(t− s)(|u|ν−1u)(s)ds = U(t)

∫ t1

t0

U(−s)(|u|ν−1u)(s)ds+

∫ t

t1

U(t− s)(|u|ν−1u)(s)ds.(4.15)

Let us recall that the above expression is formal (at least with the tools we are using)
since the map s 7→ (|u|ν−1u)(s) is not a continuous L2 valued function in general.

Proof. 1. If u ∈ C(I, L2 ∩ L∞) then (4.15) makes sense, and coincides with (4.12), since
|u|ν−1u is continuous from I to L2. If u only belongs to Mp,q

I , we let uk = Rku with
Rk = χ(εkD) as in Proposition 2.18. Using that uk → u in Mp,q

I and the continuity of
Kt0 ,Kt1 and Lt1t0 on Mp,q

I , we get (4.12) by letting k →∞ in (4.15) applied to uk.
2. By using (4.12) on [t1, t2], we have

U(· − t0)u(t0) +Kt0(u) = U(·)
(
U(−t0)u(t0) + Lt1t0u

)
+Kt1(u). (4.16)
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On the other hand, by using (4.13) at t = t1, we also have

u(t1) = U(t1 − t0)u(t0) +Kt0(u)(t1) = U(t1)
(
U(−t0)u(t0) + Lt1t0(u)

)
and by plugging this identity in (4.16) we get precisely

U(· − t0)u(t0) +Kt0(u) = U(· − t1)u(t1) +Kt1(u)

on [t1, t2]. Since the right hand side is equal to u on this interval by (4.14) we see that
u = U(· − t0)u(t0) + Kt0(u) on [t1, t2] hence on [t0, t2]. That (4.14) holds on [t0, t2] is
proved similarly (using additionally that Lt1t0(u) = −Lt0t1(u)).
3. If u ∈ C(I, L2 ∩ Lq), this item follows directly from∫ t+t1

t0

U(t+ t1 − s)|u(s)|ν−1u(s)ds =

∫ t

t0−t1
U(t− σ)|u(σ + t1)|ν−1u(σ + t1)dσ.

If u ∈Mp,q
I , we approximate it as above by a sequence uk as in the first item and pass to

the limit, using that the map u 7→ u(·+ t1) is continuous from Mp,q
I to Mp,q

I−t1 . �

Proof of Proposition 4.4. We let A be a constant such that, for all t0, t1 ∈ R, all
interval J containing t0, t1 and all w1, w2 ∈Mp,q

J ,

||Kt1(w1)−Kt1(w2)||Mp,q
J
≤ A|J |

1
p′−

ν
p

(
||w1||ν−1

LpJL
q + ||w2||ν−1

LpJL
q

)
||w1 − w2||LpJLq , (4.17)

||Lt1t0(w1)− Lt1t0(w2)||L2 ≤ A|J |
1
p′−

ν
p

(
||w1||ν−1

LpJL
q + ||w2||ν−1

LpJL
q

)
||w1 − w2||LpJLq . (4.18)

Such estimates are direct consequences of the Strichartz estimates of Corollary 3.10 and
of the nonlinear estimates (3.2). We choose N ≥ 1 large enough such that

2Rν−1A(T/N)
1
p′−

ν
p ≤ 1

2
. (4.19)

We let Ik = [t0, t0 +kT/N ] for k ≤ N and show by (finite) induction on k that there exists
Ck > 0 such that for all φ, ψ ∈Mp,q

I and all u, v ∈Mp,q
I solving (4.11), we have

||u− v||Mp,q
Ik

≤ Ck||φ− ψ||Mp,q
Ik

. (4.20)

The result is trivial if k = 0. Assume it holds for k and let us show it holds for k+ 1. Let
us set

Jk = [t0 + kT/N, t0 + (k + 1)T/N ].

We start with the inequality

||u− v||Mp,q
Ik+1

≤ ||u− v||Mp,q
Ik

+ ||u− v||Mp,q
Jk

(4.21)

and get, using Lemma 4.5 with t1 = t0 + kT/N ,

||u− v||Mp,q
Jk

≤ ||φ− ψ||Mp,q
Jk

+ ||U(·)
(
Lt1t0(u)− Lt1t0(v)

)
||Mp,q

Jk

+ ||Kt1(u)−Kt1(v)||Mp,q
Jk

.
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Obviously, we can estimate the first term by

||φ− ψ||Mp,q
Jk

≤ ||φ− ψ||Mp,q
Ik+1

,

For the second one, we use (4.18) and the induction assumption to obtain

||U(·)
(
Lt1t0(u)− Lt1t0(v)

)
||Mp,q

Jk

≤ C||Lt1t0(u)− Lt1t0(v)||L2

≤ 2CRν−1A|Ik|
1
p′−

ν
p ||u− v||LpIkLq

≤ 2CRν−1A|Ik|
1
p′−

ν
pCk||φ− ψ||Mp,q

Ik

.

By (4.17) and (4.19), the last term can be estimated by

||Kt1(u)−Kt1(v)||Mp,q
Jk

≤ 2Rν−1A|Jk|
1
p′−

ν
p ||u− v||Mp

Jk
Lq

≤ 1

2
||u− v||Mp

Ik+1
Lq .

Summing up and using (4.21), we obtain(
1− 1

2

)
||u− v||Mp,q

Ik+1

≤
(
Ck + 1 + 2CRν−1A|Ik|

1
p′−

ν
pCk

)
||φ− ψ||Mp,q

Ik+1

which shows that (4.20) holds at step k + 1 and completes the proof. �

Proposition 4.6 (Conservation of the L2 norm). Let I be a compact interval, t0 ∈ I and
u ∈Mp,q

I solve
u = U(· − t0)u(t0) +Kt0(u).

Then, for all t ∈ I,
||u(t)||L2 = ||u(t0)||L2 .

As we will see below, it is worth noticing that the proof of this proposition does not
use the subcriticality assumption (4.1). In particular, it would also hold for the L2 critical
case.

Proof. Using the mollifiers of Proposition 2.18, we let ũk = χ(εkD)u = Rku and define

vk(t) := RkU(t− t0)u(t0)− µ

i
Rk

∫ t

t0

U(t− s)|ũk(s)|ν−1ũk(s)ds

= U(t)RkU(−t0)u(t0)− U(t)Rk
µ

i

∫ t

t0

U(−s)|ũk(s)|ν−1ũk(s)ds.

We will use that t 7→ U(t)Rkf(t) is a L2 valued C1(I) function when f ∈ C1(I, L2), with
derivative

d

dt
U(t)Rkf(t) = −i∆U(t)Rkf(t) + U(t)Rkf

′(t).
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This follows from Exercise 2.19 and shows on one hand that

d

dt
vk(t) = −i∆vk(t)−

µ

i
Rk
(
|ũk(t)|ν−1ũk(t)

)
, (4.22)

and on the other hand that

d

dt
||vk(t)||2L2 = 2Re

(
vk(t),

d

dt
vk(t)

)
L2

.

Therefore,

||vk(t)||2L2 − ||vk(t0)||2L2 = −2

∫ t

t0

Re
(
vk(s), i∆vk(s) +

µ

i
Rk
(
|ũk(s)|ν−1ũk(s)

))
L2
ds

= −2µ

∫ t

t0

Im
(
vk(s), Rk

(
|ũk(s)|ν−1ũk(s)

))
L2 ds

= −2µ

∫ t

t0

Im

(∫
Rn

(R∗kvk)(s, x)|ũk(s, x)|ν−1ũk(s, x)dx

)
ds,

since −(vk(s),∆vk(s))L2 = ||∇vk(s)||2L2 is real. Writing (R∗kvk) = ũk + (R∗kvk) − ũk and
using the mixed Hölder inequality (see Proposition 2.1), we obtain∣∣||vk(t)||2L2 − ||vk(t0)||2L2

∣∣ ≤ 2
∣∣∣∣R∗kvk − ũk∣∣∣∣LpILq ∣∣∣∣Pν(ũk)

∣∣∣∣
Lp
′
I L

q′ . (4.23)

Since ũk → u in Mp,q
I (see Proposition 3.6), Pν(ũk) is bounded in Lp

′

I L
q′ by Proposition

3.13. On the other hand, using that Kt0(ũk)→ Kt0(u) by Proposition 3.13 and (3.6), we
see that vk → u in Mp,q

I and∣∣∣∣R∗kvk − ũk∣∣∣∣LpILq ≤ C∣∣∣∣vk − u∣∣∣∣LpILq +
∣∣∣∣R∗ku− ũk∣∣∣∣LpILq → 0.

This allows to let k go to infinity in (4.23) whose right hand side goes to zero and the left
hand side goes to |||u(t)||2L2 − ||u(t0)||2L2 |. This completes the proof. �

We note that this proof is rigorous justification of the formal computation (1.21).

With the previous results at hand, we are ready to prove Theorem 4.2.

Proof of Theorem 4.2. 1. Uniqueness. If both u and v solve (4.3) then, for all T > 0
we have u(t) = v(t) for all t ∈ [−T, T ] by applying Proposition 4.4 with

φ = ψ = U(·)u0, I = [−T, T ], R = ||u||Mp,q
I

+ ||v||Mp,q
I
.

Existence. Fix u0 ∈ L2 and let τ be as in Proposition 4.3. Then, we can solve (4.3) on
[0, τ ]; we call u(1) the corresponding solution. By Proposition 4.6 ||u(1)(τ)||L2 = ||u0||L2 ,
so by Proposition 4.3 with initial time t0 = τ , we can find ũ(1) which solve

ũ(1) = U(· − τ)u(1)(τ) +Kτ

(
ũ(1)

)
, (4.24)
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on [τ, 2τ ]. Then,

u(2)(t) :=

{
u(1)(t) t ∈ [0, τ ]

ũ(1)(t) t ∈ (τ, 2τ ]
,

is automatically continuous on [0, 2τ ] with values in L2. Furthermore, ||u||Lp
[0,2τ ]

Lq is also

finite, so u(2) belongs to Mp,q
[0,2τ ]. By construction, u(2) solves (4.3) on [0, τ ] but it also

solves (4.24). By the item 2 of Lemma 4.5, it solves (4.3) on [0, 2τ ]. We can then repeat
this procedure and find a solution u(3) on [0, 3τ ] by gluing to u(2) the solution to

ũ = U(· − 2τ)u(2)(2τ) +K2τ (ũ) on [2τ, 3τ ],

which is well defined by Proposition 4.3 and the fact that ||u(2)(2τ)||L2 = ||u0||L2 by
Proposition 4.6. By induction, we can construct a solution defined on [0,+∞) (i.e. on
[0, kτ ] for all k ∈ N), and then similarly on (−∞, 0].
2. The flow Φt is well defined by the item 1. That it preserves the L2 norm follows from
Proposition 4.6. Let us prove the group relation Φt+s = Φt ◦ Φs. For a given u0 ∈ L2, we
let

v(t) = Φt(Φs(u0)), u(t+ s) = ũ(t) = Φt+s(u0),

so that
v(t) = U(t)(Φs(u0)) +K0(v)(t).

and, by the item 3 of Lemma 4.5,

ũ(t) = U(t+ s)u0 +K0(u)(t+ s) = U(t+ s)u0 +K−s(ũ)(t).

By the item 1 of Lemma 4.5, we have K−s(ũ)(t) = U(t)L0
−s(ũ) +K0(ũ), so we get

ũ(t) = U(t)
(
U(s)u0 + L0

−s(ũ)
)

+K0(ũ)(t) = U(t) (U(s)u0 + U(s)Ls0(u)) +K0(ũ)(t)

where the right hand side is precisely U(t)Φs(u0) + K0(ũ)(t). Therefore, v and ũ solve
the same equation hence they coincide at t. This shows that Φt+s(u0) = Φt ◦ Φs(u0). We
next prove the estimate (4.4). It suffices to show that, for any T > 0, the Mp,q

[−T,T ] norm

of Φ·(u0) := t 7→ Φt(u0) is bounded by a constant depending only on ||u0||L2 and T . Then
the result will follow from Proposition 4.4 with φ = U(·)u0 and ψ = U(·)v0 combined with
the homogeneous Strichartz inequality (3.3). For a given R, we can fix

τ = C−1R
1

n
4−

1
ν−1 ,

so that, for any u0 such that ||u0||L2 ≤ R, Proposition 4.3 implies that

||Φ·(u0)||Mp,q
[−τ,τ ]

≤ 3||U(·)u0||Mp,q
[−τ,τ ]

≤ CS ||u0||L2

with CS a constant given by Strichartz inequalities. Since Φτ (u0) has the same L2 norm
as u0, we get from the group property

||Φ·(u0)||Mp,q
[0,2τ ]

= ||Φ·(Φτ (u0))||Mp,q
[−τ,τ ]

≤ CS ||Φτ (u0)||L2 .
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Therefore, we obtain

||Φ·(u0)||Mp,q
[−τ,2τ ]

≤ ||Φ·(u0)||Mp,q
[−τ,τ ]

+ ||Φ·(u0)||Mp,q
[0,2τ ]

≤ 2CS ||u0||L2 ,

and then, by an induction on k,

||Φ·(u0)||Mp,q
[−kτ,kτ ]

≤ Ck||u0||L2 ,

which yields the result.
3. We start by observing that, for all compact interval I, the space Mp,q

I is continuously
embedded in Lν+1(I × Rn) since p ≥ q and since, by the Hölder inequality,

||u||Lq(I×Rn) ≤ |I|
1
q
− 1
p ||u||LpILq .

Therefore,Mp,q
I is contained in Lνloc(I×Rn) and any global solution belongs to Lνloc(R×Rn).

Then, using the same approximation procedure as in Proposition 4.6, we find that

vk → u in L2
loc(R× Rn), Rk(|ũk|ν−1)ũk → |u|ν−1u in L1

loc(R× Rn)

hence in the distributions sense, and the equation (4.5) follows by letting k go to infinity
in (4.22). �

4.2 The L2 critical case

In this section, we still assume that n ≥ 1 but now consider the L2 critical exponent

ν = 1 +
4

n
.

As in the subcritical case, we define the numbers p and q by

q := ν + 1 =
2n+ 4

n
, p :=

4(ν + 1)

n(ν − 1)
=

2n+ 4

n
,

which are Schrödinger admissible in the sense of Definition 3.8.
In the next theorem we show that, regardless the sign of µ, the L2 critical NLS is

globally well posed, but only for small initial data.

Theorem 4.7. Let µ = ±1. There exists a real number ε > 0 such that, if we set
B(ε) = {u0 ∈ L2 | ||u0||L2 ≤ ε},

1. for all u0 ∈ B(ε), the equation

u = U(·)u0 −
µ

i
D0P ν(u)

has a unique solution in Mp,q
R . In particular, this solution scatters as t→ ±∞, i.e.

there are u± ∈ L2 such that∣∣∣∣u(t)− e−it∆u±
∣∣∣∣
L2 → 0, t→ ±∞.
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2. This solution u belongs to C(R, L2) ∩ L1+ 4
n (R× Rn−1) and solves

u(0) = u0, i∂tu−∆u = −µ|u|
4
nu

the second equation being taken in the distributions sense.

Proof. 1. The proof is basically the same as the one of Proposition 4.3, up the fact that the
contraction will follow from the smallness of the initial data rather than from smallness of
the time τ . We give the main lines of the proof for completeness. Let

F (u) := U(·)u0 +K0(u),

with u0 ∈ B(ε) (see (4.6) for K0). By Corollary 3.23 and Proposition 3.24, we have

||K0(u)||Mp,q
R
≤ C||u||νMp,q

R
,

and
||F (u)− F (v)||Mp,q

R
≤ C

(
||u||ν−1

Mp,q
R

+ ||v||ν−1
Mp,q

R

)
||u− v||Mp,q

R
,

for all u, v ∈ Mp,q
R . Let Rε := 2C1ε with C1 such that ||U(·)u0||Mp,q

R
≤ C1||u0||L2 for all

u0 ∈ L2. Such a C1 exists according to the item 1 of Corollary 3.21. Consider the closed
ball Bε of Mp,q

R of radius Rε centered at 0. Then, if ε is small enough, we have

||F (u)||Mp,q
R
≤ C1||u0||L2 + Cεν ≤ 2C1ε

and
||F (u)− F (v)||Mp,q

R
≤ Cεν−1||u− v||Mp,q

R
≤ ||u− v||Mp,q

R
/2,

for all u, v ∈ Bε. Therefore, if ε is small enough, F is a contraction on the ball Bε and
thus has a unique fixed point.
2. This item can be shown as in the subcritical case. We simply note that p = q here and
that the embedding of Mp,q

R into Lν+1(R× Rn) is obvious. �

We end up this section with a few words on finite time blow up for the focusing L2

critical Schrödinger equation (see for instance [5] where the following calculations can be
found). We start with an exercise.

Exercise 4.8. Let ψ ∈ C2(Rn) and define

u(t, x) :=
1

|t|
n
2

e−i
|x|2
4t

+ i
tψ
(x
t

)
. (4.25)

Show that

i∂tu =
1

|t|
n
2

e−i
|x|2
4t

+ i
t

[(
1

t2
− in

2t
− |x|

2

4t2

)
ψ
(x
t

)
− i x

t2
·
(
∇ψ
) (x

t

)]
and that

∆u =
1

|t|
n
2

e−i
|x|2
4t

+ i
t

[(
− in

2t
− |x|

2

4t2

)
ψ
(x
t

)
− i x

t2
·
(
∇ψ
) (x

t

)
+

1

t2
(
∆ψ
) (x

t

)]
.
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It follows from this exercise that if we can find a non zero ψ solving the nonlinear
elliptic equation

−∆ψ + ψ = |ψ|
4
nψ, (4.26)

then u given by (4.25) solves the focusing NLS (in the classical sense)

i∂tu−∆u = |u|
4
nu, u(−1, x) = e−i

|x|2
4

+iψ(x), (4.27)

for t ∈ (−∞, 0) and x ∈ Rn. Note that the initial time is taken at −1 (by a translation in
time we could take it to be 0). If we know additionally that ψ belongs to L2(Rn), then

|u(t, x)|2 =
1

|t|n
∣∣∣ψ (x

t

)∣∣∣2 → ||ψ||2L2δ0(x), t→ 0−. (4.28)

If ||ψ||L2 is not zero, this means that the solution to the Cauchy problem (4.27) blows up
at t = 0. Indeed, if the solution was global and continuous in time with values in L2 then
|u(t, .)|2 should converge to |u(0, .)|2 as t → 0− in L1, which is obviously not the case in
(4.28). The blow up can also be observed on the Strichartz norm: indeed, the solution to
(4.27) satisfies

||u(t)||Lq = |t|−
n
2

+n
q ||ψ||Lq = |t|−

2
p ||ψ||L2 ,

so that, for all t < 0,

||u||Lp
(−∞,t]L

q = |t|−
1
p ||ψ||Lq → +∞, t→ 0−.

It turns out that one can indeed find a non trivial solution to (4.26); more precisely, one
can find a nonnegative C2 solution

−∆Q+Q = Q1+ 4
n

which decays exponentially at infinity, hence is L2. We refer to the lectures by Mihai
Maris for more on this topic. Notice that, in the defocusing case, one cannot find non
trivial H1 and exponentially decreasing solutions to

−∆ψ̃ + ψ̃ = −|ψ̃|
4
n ψ̃,

since this would lead to

||∇ψ̃||2L2 + ||ψ̃||L2 =
(
−∆ψ̃ + ψ̃, ψ̃

)
L2 = −

∫
Rn
|ψ|2+ 4

ndx ≤ 0

hence to ||ψ̃||H1 = 0, i.e. ψ̃ = 0.
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Appendix A

Littlewood-Paley decomposition

In this appendix, we provide a self contained proof of the Littlewood-Paley decomposition,
which is a very powerful tool to prove various estimates used in dispersive equations (see
for instance Tao’s book [6] for such applications of this theory). By lack of time, we only
give an application to the proof of the homogeneous Sobolev inequalities (2.26), but we
hope to complete this appendix by a section on Strichartz estimates for the wave equation.

A.1 The Littlewood-Paley decomposition Theorem

Let us fix a smooth cutoff function φ0 ∈ C∞0 (Rn) such that

φ0(ξ) ≡ 1 for |ξ| ≤ 1 φ0 ≡ 0 for |ξ| ≥ 2, (A.1)

and set

φ(ξ) = φ0(ξ)− φ0(2ξ).

For u ∈ Lq(Rn), with q ∈ (1,∞), we define the square function Su by

Su(x) =

(∑
k∈Z
|φ(2−kD)u(x)|2

)1/2

,

= lim
N→∞

SN (x), (A.2)

where SN (x) = (
∑N

k=−N |φ(2−kD)u(x)|2)2. This definition makes sense since φ(2−kD)u
belongs to Lq for any k (see the item 4 of Proposition 2.9), hence is a measurable function,
so that Su is the pointwise limit of a non decreasing sequence of non negative measurable
functions. Therefore Su is a measurable function with values in [0,∞].

Theorem A.1 (Littlewood-Paley decomposition). For all q ∈ (1,∞), there exists a con-
stant Cq such that

C−1
q ||u||Lq ≤ ||Su||Lq ≤ Cq||u||Lq ,
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for all u ∈ Lq(Rn). Furthermore, S is continuous on Lq since

||Su− Sv||Lq ≤ Cq||u− v||Lq .

Note that the operator S is not linear: it only satisfies 0 ≤ S(u + v) ≤ Su + Sv (the
inequalities hold pointwise in x). One says S is sublinear or subadditive. The proof of
Theorem A.1 will be given in Section A.3. It will use the following facts which we record
as an exercise.

Exercise A.2. 1. Check that the support of φ satisfies

supp(φ) ⊂
{

1

2
≤ |ξ| ≤ 2

}
. (A.3)

2. Prove that if u ∈ L2 then∣∣∣∣∣
∣∣∣∣∣u−

N∑
k=−N

φ(2−kD)u

∣∣∣∣∣
∣∣∣∣∣
L2

→ 0, N → +∞. (A.4)

Hint: Check first that

N∑
k=1

φ(2−kξ) = φ0(2−Nξ)− φ0(ξ) −→ 1− φ0(ξ), N →∞,

and that

0∑
k=−N

φ(2−kξ) = φ0(ξ)− φ0(2N+1ξ) −→ φ0(ξ)1Rn\0(ξ), N →∞.

The interest of Theorem A.1 is to allow to localize estimates in frequency as follows.

Corollary A.3. 1. If q ∈ [2,∞), then for all u ∈ Lq

||u||Lq ≤ Cq

(∑
k∈Z
||φ(2−kD)u||2Lq

)1/2

.

2. If q ∈ (1, 2], then for all u ∈ Lq(∑
k∈Z
||φ(2−kD)u||2Lq

)1/2

≤ Cq||u||Lq

3. If q = 2, then for all u ∈ L2

C−1
2 ||u||L2 ≤

(∑
k∈Z
||φ(2−kD)u||2Lq

)1/2

≤ C2||u||L2
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Proof. 1. Assume that q ≥ 2. For u ∈ Lq, we write

||Su||qLq =

∫ (∑
k∈Z
|φ(2−kD)u(x)|2

)q/2
dx

≤

[∑
k∈Z

(∫ ∣∣|φ(2−kD)u(x)|2
∣∣q/2dx)2/q

]q/2

by interpreting the right hand side of the first line as the Lq/2 norm, raised to the power q/2,
of the sum

∑
k |φ(2−kD)u(x)|2, and then by using the triangle (or Minkowski) inequality in

the second line. Note that this argument uses that q ≥ 2 to guarantee that (
∫
|f |q/2dx)2/q

defines a norm. This show precisely that

||Su||Lq ≤

(∑
k∈Z
||φ(2−kD)u||2Lq

)1/2

,

hence yields the result by using the upper bound in Theorem A.1.
2. Assume now that 1 < q ≤ 2 and that u ∈ Lq. Then

∑
k∈Z
||φ(2−kD)u||2Lq =

∑
k∈Z

(∫
|φ(2−kD)u(x)|qdx

)2/q

≤

∫ (∑
k∈Z
|φ(2−kD)u(x)|2

)q/2
dx

2/q

by interpreting the right hand side of the first line as the l2/q norm, raised to the power 2/q,
of the sequence

∫
|φ(2−kD)u(x)|qdx, and then by using ||

∫
fk(x)dx||

l
2/q
k

≤
∫
||fk(x)||

l
q/2
k

dx

in the second line. This means exactly that(∑
k∈Z
||φ(2−kD)u||2Lq

)1/2

≤ ||Su||Lq ,

and the conclusion follows from the lower bound in Theorem A.1. The item 3 is a direct
consequence of 1 and 2. �

Corollary A.3 rests on the fact that, if q ≥ 2 and 1 < q′ ≤ 2,

|| · ||Lql2 ≤ || · ||l2Lq , || · ||l2Lq′ ≤ || · ||Lq′ l2 .

By repeating this argument, we can also consider the mixed space times norms LpIL
q (given

by ||u||LpILq = (
∫
I ||u(t)||pLqdt)1/p) provided that both p and q are non smaller than 2 or

non greater than 2.
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Corollary A.4. Let p, q ∈ [2,∞) and p′, q′ ∈ (1, 2]. Then

||u||LpILq ≤ Cq

(∑
k∈Z
||φ(2−kD)u||2LpILq

)1/2

, (A.5)

(∑
k∈Z
||φ(2−kD)f ||2

Lp
′
I L

q′

)1/2

≤ Cq||f ||Lp′I Lq′
(A.6)

for all compact interval I, all u ∈ C(I, Lq) and all f ∈ C(I, Lq
′
).

The proof is left to the reader as an exercise. This corollary is very useful to prove
Strichartz estimates for the wave equation.

A.2 Homogeneous Sobolev estimates

In this section, we prove Proposition 2.20, namely that for all real number s ∈ [0, n/2)

||u||
L

2n
n−2s

≤ C
∣∣∣∣|D|su∣∣∣∣

L2

for all u in the Schwartz space. Since 2n/(n−2s) belongs to [2,∞), the item 1 of Corollary
A.3 shows that

||u||
L

2n
2n−s

≤ C

(∑
k∈Z
||φ(2−kD)u||2

L
2n
n−2s

)1/2

. (A.7)

Choose next ψ ∈ C∞0 (Rn) such that ψ ≡ 1 near the support of φ and ψ ≡ 0 near 0. Define

ψs(ξ) = |ξ|−sψ(ξ),

extended by 0 at ξ = 0. This defines a function in C∞0 (Rn). Using that ψφ = φ and the
composition properties of Fourier multipliers (see Propositions 2.9 and 2.17), we get

φ(2−kD)u = ψs(2
−kD)φ(2−kD)|2−kD|su

= 2−ksψs(2
−kD)φ(2−kD)|D|su.

Therefore

||φ(2−kD)u||
L

2n
n−2s

≤ 2−ks
∣∣∣∣∣∣ψs(2−kD)

∣∣∣∣∣∣
L2→L

2n
n−2s

∣∣∣∣φ(2−kD)|D|su
∣∣∣∣
L2 .

Using the item 4 of Proposition 2.9 with a(ξ) = ψs(2
−kξ), we find that∣∣∣∣∣∣ψs(2−kD)

∣∣∣∣∣∣
L2→L

2n
n−2s

≤ (2π)−n
(∣∣∣∣ψ̂s∣∣∣∣L1

)n−2s
n
(

2kn/2||ψ̂s||L2

) 2s
n

≤ C2ks,

and thus obtain
||φ(2−kD)u||

L
2n
n−2s

≤ C
∣∣∣∣φ(2−kD)|D|su

∣∣∣∣
L2 .

Using (A.7) and the item 3 of Corollary A.3, we get the result. �
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A.3 Proof of the Littlewood-Paley decomposition

A.3.1 The Calderón-Zygmund Lemma

In the following proposition, m denotes the Lebesgue measure on Rn.

Proposition A.5. For all f ∈ L1(Rn) and all real number λ > 0 one can find

1. an at most countable family1 of cubes (Qj)j∈J such that, for all j ∈ J ,

λ ≤ 1

m(Qj)

∫
Qj

|f(x)|dx < 2nλ, (A.8)

and ∑
j∈J

m(Qj) ≤ λ−1||f ||L1 , (A.9)

2. a function g ∈ L1(Rn) such that

|g(x)| ≤ 2nλ, almost everywhere, (A.10)

3. a family (bj)j∈J in L1(Rn) such that

bj ≡ 0 outside Qj ,

∫
bjdx = 0, (A.11)

such that

f = g +
∑
j∈J

bj , (A.12)

and

||g||L1 +
∑
j∈J
||bj ||L1 ≤ 4||f ||L1 . (A.13)

Proof. Step 1: construction of the cubes. We start by choosing k0 ∈ N such that

2nλ > 2−k0n||u||L1 . (A.14)

We then define the cube
C0

0 := [0, 2k0)n

and let P0 := (C0
N )N∈N be the countable collection of all translates of C0

0 by vectors in
(2k0Z)n. The collection P0 is obviously a partition of Rn. We then define, for each k ∈ N,
the collection Pk := (CkN )N∈N by

CkN := 2−kC0
N . (A.15)

1possibly empty!
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In other words, the partition Pk+1 is obtained from Pk by dividing each cube into 2n cubes
of half side. In particular, each cube of Pk+1 has a unique parent cube in Pk, i.e. for any
cube Ck+1

N of Pk+1 there is a unique N ′ ∈ N such that Ck+1
N ⊂ CkN ′ .

The construction of the cubes (Qj)j∈N is as follows. We drop all cubes of P0 over which
the mean value of |f | is ≥ λ into a set which we call bad cubes. In other words, the bad
cubes of P0 are those which satisfy

λ ≤ 1

m(C0
N )

∫
C0
N

|f(x)|dx < 2nλ,

the lower bound following from the definition of bad cubes and the upper bound following
from

1

m(C0
N )

∫
C0
N

|f(x)|dx = 2−k0n
∫
C0
N

|f(x)|dx ≤ 2−k0n||f ||L1 < 2nλ,

by (A.14). For non bad cubes of P0, we apply the following procedure. We divide each one
of them into 2n cubes of half side (which then all belong to P1) and among all these new
cubes, we drop those over which the mean value of |f | is ≥ λ into the set of bad cubes.
Notice that these new bad cubes are disjoints from the previous bad ones and that they
satisfy

λ ≤ 1

m(C1
N )

∫
C1
N

|f(x)|dx < 2nλ

where the lower bound follows again from the very definition of bad cubes and the upper
bound from

1

m(C1
N )

∫
C1
N

|f(x)|dx =
2n

m(C0
N ′)

∫
C1
N

|f(x)|dx ≤ 2n

m(C0
N ′)

∫
C0
N′

|f(x)|dx < 2nλ,

since the parent cube C0
N ′ of C1

N is not a bad cube. By iterating this process, we construct
an at most countable family of bad cubes which we denote by (Qj)j∈J after relabeling.
They are disjoints and such that

λ ≤ 1

m(Qj)

∫
Qj

|f(x)|dx < 2nλ. (A.16)

Note that the iterative process either stops at some level k, if the non bad cubes from the
previous step (i.e. those belonging to Pk−1) all give rise to bad cubes after division, or
there are arbitrarily small cubes in the complement of ∪jQj . If one wants to reformulate
this procedure rigorously, one defines iteratively the sets, as long as they are non empty,

I0 = {N ∈ N | C0
N is a bad cube},

and, for k ≥ 1,

Ik = {N ∈ N | CkN is a bad cube, disjoint from the Cκν , 0 ≤ κ < k, ν ∈ Iκ}.
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We let K be the at most countable set of integers k for which Ik is non empty and define
(Qj)j∈J := (CkN )k∈K,N∈Ik . If we now define

G = Rn \ ∪j∈JQj , (A.17)

then, for any x in G, there exists a decreasing sequence (CkN(k,x))k∈N of cubes of Pk which
all contain x and satisfy

1

m(CkN(k,x))

∫
Ck
N(k,x)

|f(x)|dx < λ. (A.18)

Indeed, since each Pk is a partition, there exists a unique N = N(k, x) such that x ∈ CkN
and this cube cannot be contained in any bad cube of previous orders 0, . . . , k−1 nor be a
bad cube of order k (i.e. N ∈ Ik), since otherwise x would not belong to G. This implies
that (A.18) holds.

Step 2: Construction of the functions. We set

bj(x) = 0 if x /∈ Qj , bj(x) = f(x)− 1

m(Qj)

∫
Qj

f if x ∈ Qj , (A.19)

and

g = 1Gf +
∑
j∈J

(
1

m(Qj)

∫
Qj

f

)
1Qj (A.20)

= 1Gf +
∑
j∈J

1Qjf − bj , (A.21)

where in the second line one may recall that bj = 1Qjbj . We now check that the cubes
Qj and the functions g and bj satisfy the expected properties. By (A.16), we know that
(A.8) holds. This then implies that

m(Qj) ≤ λ−1

∫
Qj

|f(x)|dx,

and by summation over j, we get (A.9). We next consider (A.10). It follows from (A.16)
and (A.20) that

|g(x)| < 2nλ, for all x /∈ G,

so it remains to consider 1Gg = 1Gf , that is to show that |f(x)| ≤ 2nλ for almost every
x ∈ G. By Lemma A.6 below, we know that Akf → f in L1 as k → ∞. In particular,
there is a subsequence Aklf such that

lim
l→∞

Aklf(x) = f(x), for almost every x ∈ Rn.
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On the other hand, if x belongs to G and k is a given integer, we know that the only cube
CkN = CkN(k,x) of Pk containing x is not a bad cube, hence that

|Akf(x)| = 1

m(CkN )

∣∣∣∣∣
∫
CkN

f

∣∣∣∣∣ < λ

by (A.18). Using this last estimate along the subsequence kl, we see that |f(x)| ≤ λ almost
everywhere on G, which completes the proof of (A.10). The properties in (A.11) follow
directly from (A.19). By (A.17) and the fact that the cubes Qj are disjoint, (A.12) is a
straightforward consequence of (A.21). Using (A.20), we get

||g||L1 ≤ ||f ||L1 +
∑
j∈J
||bj ||L1 .

On the other hand, it follows easily from the definition of bj , that is (A.19), that

||bj ||L1 ≤ 2

∫
Qj

|f(x)|dx.

The last two inequalities yield clearly (A.13). This completes the proof. �

Lemma A.6. Let CkN be the cubes defined in (A.15). For all k ∈ N and u ∈ L1(Rn),
define

Aku =
∑
N∈N

(
1

m(CkN )

∫
CkN

u(x)dx

)
1CkN

.

Then ||Aku− u||L1 → 0 as k →∞.

Proof. Using the easily verified fact that

||Aku||L1 ≤ ||u||L1 ,

we may assume that u belongs to C∞0 (Rn) since it is dense in L1. Fix a large cube Q in
Rn which contains the support of u. Then

Aku =
∑

CkN∩Q6=∅

(
1

m(CkN )

∫
CkN

u(x)dx

)
1CkN

.

Since all CkN have a bounded side (by 2k0−k ≤ 2k0), there exists Q̃ independent of k such
that

supp(Aku) ⊂ Q̃. (A.22)

Fix then ε > 0. By the uniform continuity of u, we can find δ > 0 such that

|x− y| < δ =⇒ |u(x)− u(y)| < ε

m(Q̃)
.
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Then, for all x ∈ Q̃, if we let CkN (x) be the unique cube of the partition Pk containing x,
we have

Aku(x)− u(x) =
1

m(CkN (x))

∫
CkN (x)

(u(y)− u(x))dy

so that, if k is large enough to guarantee that diam(CkN ) < δ (this diameter is of order
2k0−k and is independent of N , see (A.15)), we obtain

||Aku− u||L∞(Q̃)
≤ ε

m(Q̃)
.

Using (A.22) and the fact that supp(u) ⊂ Q ⊂ Q̃, we obtain

||Aku− u||L1 ≤ ε, for all k large enough,

more precisely for all k such that 2k0−k � δ. This completes the proof. �

A.3.2 Proof of Theorem A.1

Although the operator S is not linear, one can reduce its study to the one of family of
linear operators by a nice randomization technique (we follow here the presentation of
Muscalu-Schlag’s book [4]). Let us introduce a sequence of random variables

(rk)k∈Z = sequence of independent Bernoulli variables with values in {−1, 1}, (A.23)

i.e. P(rk = ±1) = 1/2. We denote by (Ω, T ,P) the probability space on which this
sequence is defined. The interest of this randomization technique is the following classical
result.

Proposition A.7 (Khinchin’s inequality). For all q ∈ [1,∞), there exists Cq > 0 such
that, for all N and all family (zk)|k|≤N ∈ C2N+1,

C−1
q

( ∑
|k|≤N

|zk|2
)q/2 ≤ ∫

Ω

∣∣ ∑
|k|≤N

rk(ω)zk
∣∣qdP ≤ Cq( ∑

|k|≤N

|zk|2
)q/2

.

The proof of this proposition rests on the following lemma.

Lemma A.8. There exists C > 0 such that, for all N , all family (zk)|k|≤N ∈ C2N+1 and
all λ > 0,

P

| ∑
|k|≤N

rkzk
∣∣ > λ

( ∑
|k|≤N

|zk|2
)1/2

 ≤ Ce−λ2/2.
Proof. Letting zk = xk + iyk be the decomposition into real and imaginary parts, we have

|
∑
|k|≤N

rkzk
∣∣2 = |

∑
|k|≤N

rkxk
∣∣2 + |

∑
|k|≤N

rkyk
∣∣2
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and thus the set we are considering, i.e.
{
|
∑

k rkzk
∣∣ > λ

(∑
k |zk|2

)1/2}
, is contained in{

|
∑
k

rkxk
∣∣ > λ

(∑
k

x2
k

)1/2} ∪{|∑
k

rkyk
∣∣ > λ(

∑
k

y2
k)

1/2

}
.

This reduces the problem to the case of a real valued family, say (xk). If all xk vanish
the result is trivial (we compute the probability of an empty set, by the strict inequality).
Otherwise, by homogeneity of the condition, we may assume that

∑
x2
k = 1. Then

E

exp(λ
∑
k≤N

rkxk)

 = E

 ∏
|k|≤N

exp(λrkxk)

 =
∏
|k|≤N

E (exp(λrkxk)) =
∏
|k|≤N

cosh(λxk),

using (A.23). Using that2

coshx ≤ ex2/2, x ∈ R,

we get

E

exp(λ
∑
k≤N

rkxk)

 ≤ eλ2/2. (A.24)

Therefore, we obtain

P

({∑
k

rkxk > λ

})
= P

({
exp(λ

∑
k

rkxk) > eλ
2

})
≤ e−λ2eλ2/2 = e−λ

2/2,

using the Tchebychev inequality and (A.24). In a similar fashion, we also have

P

({∑
k

rkxk < −λ

})
= P

({
exp(−λ

∑
k

rkxk) > eλ
2

})
≤ e−λ2/2,

by changing xk into −xk in (A.24). Using finally that

P

({
|
∑
k

rkxk| > λ

})
≤ P

({∑
k

rkxk > λ

})
+ P

({∑
k

rkxk < −λ

})
,

the result follows. �

Proof of Proposition A.7. By homogeneity, we may assume that
∑

k |zk|2 = 1 (if the
sum vanishes, the result is trivial). Let ZN (ω) =

∑
|k|≤N rk(ω)zk. We have

E(|ZN |q) =

∫
Ω
|ZN (ω)|qdP = q

∫ ∞
0

λq−1P{|ZN | > λ}dλ ≤ Cq
∫ ∞

0
λq−1e−λ

2/2dλ,

2check it! (hint: study the function x2

2
− ln cosh(x) by differentiating it twice)
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using Lemma 2.5 for the second equality and Lemma A.8 for the inequality. This proves
the upper bound. We now prove the lower bound. We start by observing that, by inde-
pendence, the sequence (rk) is orthornormal3 , so that

E(|ZN |2) =
∑
|k|≤N

|zk|2 = 1. (A.25)

On the other hand, by Hölder’s inequality on a probability space, we have

E(|ZN |) ≤ E(|ZN |q),

so it sufficient to consider the case q = 1, i.e. to bound E(|ZN |) from below. We use that

E(|ZN |2) = E(|ZN |4/3|ZN |2/3)

≤ E(|ZN |4)1/3E(|ZN |)2/3

≤ CE(|ZN |)2/3

where we used the Hölder inequality in the second line and then the already proved upper
bound, with q = 4, in the third one. Using (A.25), we conclude that E(|ZN |) ≥ C−3/2

which provides the lower bound. �

The proof of Theorem A.1 will mainly follow from a careful study of the family of
linear operators

LωN :=
∑
|k|≤N

rk(ω)φ(2−kD),

namely by getting suitable bounds uniform with respect to N ∈ N and ω ∈ Ω. Here is the
main technical result of this section.

Proposition A.9. For all q ∈ (1,∞), there exists Cq > 0 such that

||LωNu||Lq ≤ Cq||u||Lq ,

for all N ∈ N, all ω ∈ Ω and all u ∈ Lq.

Let us notice that, for fixed N and ω, the Lq → Lq boundedness of LωN is a direct
consequence of the item 4 of Proposition 2.9. The point of Proposition A.9 is to provide
a bound which is uniform with respect to ω and N . Before proving this proposition, we
explain how to obtain Theorem A.1.

Proof of Theorem A.1 We prove first the upper bound, i.e. that for all q ∈ (1,∞),
there exists Cq such that

||Su||Lq ≤ Cq||u||Lq , for all u ∈ Lq. (A.26)

3if j 6= k, E(rjrk) = P(rj = rk = 1) + P(rj = rk = −1)− P(rj = −rk = 1)− P(rj = −rk = −1) which,
by independence, reads

∑
0≤ν,µ≤1(−1)µ+νP(rj = (−1)ν)P(rk = (−1)µ) = 1/4 + 1/4− 1/4− 1/4 = 0
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By monotone convergence, we can write ||Su||Lq = limN→∞ ||SNu||Lq (see (A.2) for SN ).
By Proposition A.7 and the Fubini Theorem, we have

||SNu||qLq ≤ C
∫

Ω

∫
Rn

∣∣∣∣∣∣
∑
|k|≤N

rk(ω)φ(2kD)u(x)

∣∣∣∣∣∣
q

dx

 dP(ω)

By Proposition A.9, the integral in x is bounded by C||u||qLq , uniformly with respect to ω
and N . Since P(Ω) <∞, we get (A.26). We note that, although S is not linear, we have
|Su− Sv| ≤ |S(u− v)| almost everywhere (by the second triangle inequality) if u, v ∈ Lq.
Thus, (A.26) implies that ||Su − Sv||Lq ≤ Cq||u − v||Lq . The interest of this remark is
that if we replace v by a sequence (uj) which goes to u in Lq, we see that Suj → Su in
Lq. This is useful to prove the lower bound,

||Su||Lq ≤ ||u||Lq/C, u ∈ Lq, (A.27)

since we may assume that u belongs to S(Rn). Let us prove (A.27). If u, v belong to the
Schwartz space, hence to L2, we can write

(u, v)L2 = lim
N→∞

 ∑
|k|≤N

φ(2−kD)u,
∑
|j|≤N

φ(2−jD)v


L2

since
∑
|k|≤N φ(2−kD)u→ u in L2 (and the same for v) as N goes to infinity (see Exercise

A.2). Then∑
|k|≤N

∑
|j|≤N

(
φ(2−kD)u, φ(2−jD)v

)
L2 =

∑
|k|,|j|≤N
|j−k|≤2

(
φ(2−kD)u, φ(2−jD)v

)
L2

since
φ(2−kD)∗φ(2−jD) = φ(2−kD)φ(2−jD) = 0 if |j − k| > 2,

for (A.3) implies that if |j − k| > 2, 2−jξ and 2−kξ cannot belong simultaneously to the
support of φ. Therefore,

|(u, v)L2 | ≤
2∑

m=−2

∫ ∑
|k|≤N

∣∣φ(2−kD)u(x)φ(2m−k)v(x)|dx

≤ 5

∫
|Su(x)||Sv(x)|dx, (A.28)

by estimating the sum over |k| ≤ N by the sum over k ∈ Z and by the using the Cauchy
Schwartz inequality pointwise in x (almost everywhere). Using the Hölder inequality and
the upper bound (A.26) for the conjugate exponent q′, we obtain∣∣∣∣∫ u(x)v(x)dx

∣∣∣∣ ≤ C||Su||Lq ||v||Lq′ ,
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from which (A.27) follows. �

We now turn to the proof of Proposition A.9 to which the rest of the section is devoted.

Proposition A.10. Proposition A.9 is true for q = 2.

We will see in the proof that one can take C2 = 4||φ||L∞ .

Proof. We have

||LωNu||2L2 =
∑
|k|≤N

∑
j≤N

(
rk(ω)φ(2−kD)u, rj(ω)φ(2−jD)u

)
L2

=
(
u,Bω

Nu
)
L2 , (A.29)

where
Bω
N =

∑
|j|,|k|≤N

rk(ω)rj(ω)φ(2−kD)∗φ(2−jD).

It follows from the item 2 of Proposition 2.9 that Bω
N = bωN (D) with

bωN (ξ) =
∑

|j|,|k|≤N

rk(ω)rj(ω)φ(2−kξ)φ(2−jξ).

We will show that, for all ξ ∈ Rn,

|bωN (ξ)| ≤ 16||φ||2L∞ . (A.30)

Indeed, if ξ = 0 then bωN (ξ) = 0 since φ(0) = 0. On the other hand, if ξ 6= 0 and if we let

µ = integer part of ln(|ξ|)/ ln 2, (A.31)

we have 2µ ≤ |ξ| < 2µ+1. Using (A.3), the only terms which may not vanish in the sum
defining bωN are those for which

1/2 ≤ |2−kξ| ≤ 2 and 1/2 ≤ |2−jξ| ≤ 2.

Therefore, j and k must be such that

2−2 < 2µ−k ≤ 22 and 2−2 < 2µ−j ≤ 22,

i.e. −1 ≤ µ − k ≤ 2 and −1 ≤ µ − j ≤ 2. Therefore, the sum bN (ω) contains at most
16 non vanishing terms, each one being bounded by ||φ||2L∞ . This proves (A.30). By the
item 1 of Proposition 2.9 and (A.29), we get

||LωNu||2L2 ≤ ||u||L2 ||Bω
Nu||L2 ≤ 16||φ||2L∞ ||u||2L2 ,

so the result follows. �
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We next consider the Schwartz kernel of LωN which we denote by Kω
N . According to

the item 3 of Proposition 2.9, it is given by

Kω
N (x, y) = (2π)−n

∑
|k|≤N

rk(ω)2knφ̂(2k(y − x)).

It satisfies the following important bounds.

Lemma A.11. There exists BCZ > 0 such that,

|Kω
N (x, y)| ≤ BCZ|x− y|−n, (A.32)

|∇yKω
N (x, y)| ≤ BCZ|x− y|−n−1, (A.33)

for all N ∈ N, all ω ∈ Ω and all x 6= y.

These estimates are singular at x = y. Of course, Kω
N is a Schwartz function of x− y

hence is bounded near x− y = 0, as well as its derivatives, but the bounds depend badly
on N . The interest of Lemma A.11 is the uniformity of the bounds with respect to the
parameters N and ω.

The index CZ in the constantBCZ refers to Calderón-Zygmund since operators whose
kernel satisfy bounds as (A.32) and (A.33) are called Calderón-Zygmund operators.

Proof. Using that φ̂ is a Schwartz function, there exists a constant C > 0 such that

|φ̂(η)|+ |∇φ̂(η)| ≤ C(1 + |η|)−n−2, k ∈ Z, η ∈ Rn, (A.34)

Assume now that x− y 6= 0. As in (A.31), we may introduce the unique µ ∈ Z such that

2µ ≤ |x− y| < 2µ+1. (A.35)

Splitting the sum according to k + µ ≤ 0 and k + µ > 0, and then using (A.34), we get

|Kω
N (x, y)| ≤

∑
k+µ≤0

2kn|φ̂(2k(y − x))|+
∑

k+µ>0

2kn|φ̂(2k(y − x))|

≤ C
∑

k+µ≤0

2kn + C
∑

k+µ>0

2kn(1 + 2k|y − x|)−n−1

≤ C2−nµ
∑
k′≤0

2nk
′
+ C2−nµ

∑
k′>0

2−k
′

≤ C2−nµ.

Using (A.35) again, 2−nµ is bounded by |x − y|−n so we get (A.32). The proof of (A.33)
is similar (the change of n into n + 1 is of course due to the additional factor 2k obtain
after differentiation of φ̂(2k·)). �
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Lemma A.12. Let || · || be a norm on Rn. There exists a constant B independent of N
and ω such that, for all t > 0,

sup
||y||<t

∫
||x||>2t

|Kω
N (x, y)−Kω

N (x, 0)|dx ≤ B. (A.36)

We note that the constant depends on the dimension, the norm || · || and linearly on
the constant BCZ in Proposition A.11.

�
Proof. By the Taylor formula and (A.33), the left hand side of (A.36) is bounded by

C

∫
||x||>2t

t
∣∣||x|| − t∣∣−n−1

dx = C

∫
||z||>2

∣∣||z|| − 1
∣∣−n−1

dz

where we used the change of variable z = x/t. The result follows by using the equivalence
of ||z|| and the euclidean norm |z| for z large. �

In what follows, we will consider cubes on Rn. If Q is a cube, we will denote by Q∗

the cube with same center and twice the side.

Lemma A.13. There exists a constant C independent of N and ω such that, for all cube
Q in Rn and all function w ∈ L1 supported in Q and such that

∫
Qw(x)dx = 0, we have∣∣∣∣LωNw∣∣∣∣L1(Rn\Q∗) ≤ C||w||L1 .

Here the constant C can be chosen equal to B in (A.36) for the norm ||x|| := max(|xj |).

Proof. Let y0 be the center of Q. Furthermore,

LωNw(x) =

∫
Q
Kω
N (x, y)w(y)dy =

∫
Q

(
Kω
N (x, y)−Kω

N (x, y0)
)
w(y)dy,

since w has mean zero. Observe next that, up to a zero measure set, Q is an open ball for
the norm ||x|| = maxj(|xj |). Denote its radius by t > 0. Then∫

Q

(
Kω
N (x, y)−Kω

N (x, y0)
)
w(y)dy =

∫
||ỹ||<t

(
Kω
N (x, ỹ + y0)−Kω

N (x, y0)
)
w(ỹ + y0)dỹ

and therefore, by taking the modulus, integrating in x (which we write as y0 + x̃ with
||x̃|| > 2t) and using the Fubini Theorem, we get

∣∣∣∣LωNw∣∣∣∣L1(Rn\Q∗) ≤

(
sup
||ỹ||<t

∫
||x̃||>2t

∣∣Kω
N (y0 + x̃, ỹ + y0)−Kω

N (y0 + x̃, y0)
∣∣dx̃) ||w||L1 .

Using
Kω
N (y0 + x̃, ỹ + y0)−Kω

N (y0 + x̃, y0) = Kω
N (x̃, ỹ)−Kω

N (x̃, 0)

and Lemma A.12, the result follows. �
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Proposition A.14. The family of operators LωN is uniformly of weak type (1, 1), i.e. there
exists C > 0 such that

m
(
{|LωNu| > t}

)
≤ Ct−1||u||L1 ,

for all t > 0, all u ∈ L1, all N ∈ N and all ω ∈ Ω.

We recall that m stands for the Lebesgue measure on Rn. We note again that one
can see in the proof that the constant C depends linearly on the constants BCZ, B (see
(A.36)) and C2 = 4||φ||L∞ .

Proof. Let t > 0. Using Proposition A.5 with λ = t, we write first u = g+
∑

j∈J bj = g+b.
Then

m
(
{|LωNu| > t}

)
≤ m

(
{|LωNg| > t/2}

)
+m

(
{|LωNb| > t/2}

)
.

Then, by using (A.10), we have ||g||2L2 ≤ 2nt||g||L1 and therefore

m
(
{|LωNg| > t/2}

)
≤ 4t−2||LωNg||2L2 ≤ Ct−2||g||2L2 ≤ Ct−1||u||L1

using Proposition A.10. On the other hand, using that

{|LωNb| > t/2} ⊂ ∪j∈JQ∗j ∪ {1Rn\∪jQ∗j |L
ω
Nb| > t/2},

it follows that

m
(
{|LωNb| > t/2}

)
≤

∑
j∈J

m(Q∗j ) + 2t−1
∑
j∈J

∫
Rn\∪lQ∗l

|LωNbj(x)|dx

≤ 2n
∑
j∈J

m(Qj) + 2t−1
∑
j∈J

∫
Rn\Q∗j

|LωNbj(x)|dx

≤ 2nt−1||u||L1 + Ct−1
∑
j∈J
||bj ||L1 ,

using (A.9) and Lemma A.13. Using (A.13), we get the result. �

We next give another version of the Marcinkiewicz interpolation Theorem (this one is
taken from [7]). Compared to Theorem 2.4, its purpose is to obtain a Lq → Lq bound
rather than a Lq

′ → Lq one.

Proposition A.15 (Marcinkiewicz interpolation Theorem). Let T be a map defined on
L1 ∪ L2, such that T is linear on L1 and L2 and such that

meas
{
|Tf1| > t

}
≤ M1||f1||L1/t, (A.37)∣∣∣∣Tf2

∣∣∣∣
L2 ≤ M2||f2||L2 (A.38)

for all f1 ∈ L1, all t > 0 and all f2 ∈ L2. Then, for all 1 < q < 2, there exists Cq > 0
such that

||Tf ||Lq ≤ C||f ||Lq ,

for all f ∈ L1 ∩ L2.
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The meaning of this proposition is that if T is both continuous on L2 (this is (A.38))
and of weak type (1, 1) (this is (A.37)) then it is continuous on all intermediate Lq spaces,
1 < q < 2.

Proof of Proposition A.15. We use the same notation as in the proof of Theorem 2.4. As
in (2.13),

||Tf ||qLq = q2q
∫ ∞

0
mTf (2t)tq−1dt.

For each t > 0, we write f = f1,t + f2,t with

f1,t = 1{|f |>t}|f |, f2,t = 1{|f |≤t}|f |.

Since f ∈ Lq, it is not hard to check that f1,t ∈ L1 and f2,t ∈ L2. Then, using Lemma 2.6,
(A.37) and (A.38) (which implies (2.11)), we have

mTf (2t) ≤ mTf1,t(t) +mTf2,t(t)

≤ M1
||f1,t||L1

t
+M2

2

||f2,t||2L2

t2

≤ M1

t

∫
{|f |>t}

|f(x)|dx+
M2

2

t2

∫
{|f |≤t}

|f(x)|2dx.

Using that∫ +∞

0
tq−2

(∫
{|f |>t}

|f(x)|dx

)
dt =

∫
Rn

(∫ |f(x)|

0
tq−2dt

)
|f(x)|dx

=
1

q − 1

∫
Rn
|f(x)|q−1|f(x)|dx

and similarly∫ +∞

0
tq−3

(∫
{|f |≤t}

|f(x)|2dx

)
dt =

∫
Rn

(∫ +∞

|f(x)|
tq−3dt

)
|f(x)|2dx

=
1

2− q

∫
Rn
|f(x)|q−2|f(x)|2dx

we obtain

||Tf ||qLq ≤ q2
q

(
M1

q − 1
+

M2
2

2− q

)
||f ||qLq

which yields the result. �

Proof of Proposition A.9 By Propositions A.10 and A.14 combined with Proposition
A.15, we obtain that for any q ∈ (1, 2] there exists Cq such that

||LωNu||Lq ≤ Cq||u||Lq ,
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for all ω ∈ Ω and N ≥ 0. This is true for all u ∈ Lq since it holds on the dense subset
L1 ∩ L2, by Proposition A.15, and since we already know that LωN is continuous on Lq

(see the comment after the statement of Proposition A.9). This proves the result when
q ∈ (1, 2]. When q > 2, we proceed in a standard fashion by duality: for u ∈ S(Rn), we
have

||LωNu||Lq = sup
v∈S(Rn)
v 6=0

∣∣(LωNu, v)L2

∣∣
||v||Lq′

Since adjoint of LωN has a form similar to LωN (we have to replace φ by φ̄ - see the item 2
of Proposition 2.9), we have∣∣(LωNu, v)L2

∣∣ =
∣∣(u, Lω∗N v

)
L2

∣∣ ≤ ||u||Lq ∣∣∣∣Lω∗N v
∣∣∣∣
Lq′
≤ Cq′ ||u||Lq ||v||Lq′ ,

since q′ ∈ (1, 2]. This implies that

||LωNu||Lq ≤ Cq′ ||u||Lq ,

for all u in the Schwartz space, hence for all u ∈ Lq by density. This completes the proof.
�
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