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Introduction

The spirit of these notes is to use the famous Weyl law (on the asymptotic distribution of
eigenvalues of the Laplace operator on a compact manifold) as a case study to introduce
and illustrate one of the many applications of the pseudo-differential calculus. The material
presented here corresponds to a 24 hours course taught in Toulouse in 2012 and 2013.
We introduce all tools required to give a complete proof of the Weyl law, mainly the
semiclassical pseudo-differential calculus, and then of course prove it! The price to pay is
that we avoid presenting many classical concepts or results which are not necessary for our
purpose (such as Borel summations, principal symbols, invariance by diffeomorphism or
the Garding inequality). More importantly, we neither discuss important subjects such as
dynamical aspects (relationship with the geodesic flow, the Egorov Theorem) nor quantum
mechanical interpretations. We hope to treat them in a future course.

The prerequisite is some familiarity with basic functional analysis, distributions theory
and Fourier transform on the Schwartz space, but we don’t assume any knowledge on
differentiable manifolds to which the first (short) chapter is devoted. These notes are self
contained but we include a bibliography with classical textbooks on microlocal analysis
for the interested reader.
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Chapter 1

Background on analysis on
manifolds

In this section we briefly introduce basic notions and notation about manifolds, integration
and differential operators thereon for readers with no background on these topics.

Definition 1.1. 4 smooth manifold of dimension n is a Hausdorff* topological space
M which is o-compact® such that, for any m € M,

1. there exists an homeomorphism «k : M D U — V C R", between an open neighbor-
hood U of m and an open subset V' of R™.

2. If k1 : Uy = V1 and ko : Uy — Va are as in item 1, then the map
K9 © /Ql_l : Iﬂ(Ul N Ug) — IQQ(Ul N UQ)

18 smooth.

Note that item 1 is of topological nature hence has a clear sense on M. In item 2,
k1(Uy NUs) and ko (Uy N Us) are open subsets of R™ so the notion of smoothness is clear.
Note also that, in item 2, ko o lil_l is automatically a diffeomorphism, since its inverse
K10 K;l is smooth as well by definition (swap the roles of k1 and k3).

An open subset U as in item 1 is called a coordinate patch (at m) and the triple
(U,V,k) a coordinate chart or a local coordinates system (strictly speaking, the
coordinates are the n components of the map k). A collection of charts (U;, Vi, k;) such
that U;U; = M is called an atlas.

Exercise 1.2 (The 2-sphere. Part 1). Consider the 2-sphere S?,

§%:={m=(z,y,2) €R® | 2” + ¢ + 27 = 1}.

Lin french: ”séparé”
2ie a countable union of compact sets
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1. Show that k3 :m € S*N{z > 0} = (x,y) is a local chart onto an open subset of R?
to be determined. Compute ligl
2. Same question with ko :m € SN {y > 0} = (=, 2).
3. Check directly that k3 o %2_1 is a diffeomorphism between open subset of RZ.

4. Let V = (0,27) x (0,7). Determine the range U C S? of
V>(0,9)— (sin¢cos0,sin¢sin9,cos¢) e s?.

Show that m € U — (0, ¢) € V define local coordinates.

The notion of continuity is well defined on a topological space. In particular, we can
consider the space CO(M) of (complex valued) continuous functions on M. If M is not
compact, it is also useful to introduce the space C§(M) of continuous functions vanishing
outside a compact set.

The manifold structure allows to define the notion of smoothness.

Definition 1.3. A function ¢ : M — R (or C) is smooth if, for all coordinate chart
(U,V,k), the map ¢ o k=1 : V — R is smooth.

Exercise 1.4. Check that we obtain an equivalent definition if we consider the coordinate
charts of an atlas rather than all coordinate charts.

It is straightforward to check that smooth functions on M form a vector space, which we
denote by C°°(M). One also defines the subspace C§°(M) of smooth functions vanishing
outside a compact set. Note that, if M is compact, C*°(M) = C§°(M).

In the sequel, we shall use the following standard operatorial notation

m*gpzapon_l, K* ) =1 ok, (1.1)

for functions ¢ defined on U and functions v defined on V. k*¢ is called the pullback of
¥ (which is a function on U) and k.¢ the pushforward of ¢. Obviously,

K'he =1, kek® =1,
as operators on functions on U and functions on V' respectively.

Proposition 1.5 (Partition of unity). Assume that M is a smooth compact manifold and
that we are given a finite open cover of M,

N
M = U Wi, W; open subset of M.
=1



Then there exist 0; € C§°(W;), i =1,..., N, such that
N

1= ZQZ- on M.
i=1

Furthermore, each 6; can be taken of the form 6; = 9022 for some @; € C3°(W;).

A useful application of this result is that, when W1, ..., Wy are coordinate patches,
each smooth function f on M can be written ), 0;f, ie as a (finite) sum of functions
supported in coordinate patches.

Proof. Since each W; is open, for any m € W; we can choose open subsets U! and ﬁfn
contained in a coordinate patch at m such that

meU: €U cW. (1.2)

Then, by compactness, we obtain a finite open cover of M

N
M=J (U U0l ). (1.3)
1=1

By pulling back cutoffs on R™, we can select

¢Zm}'€ e Cy° (U;’z};) such that ¢§TLZ =1 on U;”Z and gbfnz >0 on M. (1.4)

We then introduce
N

d; = <Z¢fnz> , =)0,
k=1

i=1

Clearly ®; belongs to C§°(W;) by (1.2) and (1.4). By (1.4), we also have ®; > 1 on each

Ufni hence on their union (over k). Therefore (1.3) implies that ® > 1 on M so that we
k

can define
1 o~
pi=—=> ¢ € C(Wy),
Ve =

which obviously satisfies SV | ©? = 1. O

For convenience, we assume in the sequel that ’M is compact.

Exercise 1.6. Show that C>®(M) is dense in CY(M) equipped with the norm ||p||ec =
supyy |-
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Definition 1.7. A smooth volume density on M is a non negative Borel measure du
such that, for any chart (U, V, k), there exists a smooth positive function v, such that

/ oy — /K 0 k(@) v (@)da, (1.5)

for all p € C§(U). Here dx stands for the Lebesque measure on k(U) C R™.

In the sequel, we shall denote
Kxdp = v (z)dz, (1.6)

as a short hand for (1.5). Unlike (1.1), this is only a notation since we have not defined
the notion of pullback and pushforward for volume densities (and don’t wish to do so for
the moment).

Example (the 2-sphere. Part 2). According to the notation of Exercise 1.2, 4th question,
one defines a volume density on U C S? by considering

K+dp = sin ¢pdodo, 6 € (0,27), ¢ € (0,7), (1.7)

with s(w) = (0, ¢). This is the so called induced measure? on S?. We point out that this
measure is natural to the extent that it allows to justify

o0
/ f(z,y, z)dzdydz = / ( f(rw)d,u(w)) r2dr. (1.8)
R3 0 s2
Indeed, using the diffeomorphism
(r,0,¢) — (rsingcos,rsin¢sin b, r cos ¢) ,

which maps (0, 00) x (0,27) x (0,7) onto the complement of a Lebesgue negligible set in
R3 and whose Jacobian is —r?sin ¢, one has

00 2 T
/ f(x,y, z)dxdydz = / / f(rsin ¢ cos @, rsin ¢sin @, cos ¢) sin pdpdfrdr,
R3 r=0 J0=0 J ¢=0

which gives an explicit meaning to (1.8).
Exercise 1.8 (Change of coordinates). Show that if (U1, V1,k1) and (Us, Va, ko) are two
charts (on a general manifold M ) with non empty Uy N Us, then

Uy = ‘det d(m o mz_l)‘ Uk, © (m o /12_1),

on k(U NU).

3induced by the Lebesgue measure on R?
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Remark. By continuity and positivity of v, in (1.5), we have the following useful property:
for all K @ U, there exists C' > 0 such that

C’1/|mcp|d:c§/|<p\du§€/‘/i*go‘dac, (1.9)

for all continuous ¢ with supp(¢) C K.

Exercise 1.9. Show that if o € C°(M) and [, |¢|du = 0 then ¢ = 0.

)l/p

This exercise implies that, for p € [1,00), the map ¢ — (fM |o|P is a norm on

C°(M). This allows to state the following definition.

Definition 1.10. Fiz a smooth volume density du. The Lebesgue spaces LP(M) :=
LP(M,du) are

1/p
LP(M) = closure of C°°(M) for the norm (/ |<p|pd,u> ,

for1 <p< 0.

In particular, this will allow us to use the Hilbert space L?(M) whose inner product
will be denoted by (.,.)r2(as) and satisfies

(s D) r2(an) = /M podp,

at least for ¢, ¢ € C°(M). Note the following consequence of (1.9): for all compact subset
K of a given coordinate patch U, there exists C' > 0 such that

Cil”l‘f*SOHL?(Rn) <|lellrzary < Cllrwpllp2@nys (1.10)

for all continuous ¢ such that supp(yp) C K.

Exercise 1.11. Let u € L?*(M). Let K € U be a compact subset of a coordinate patch U.
Show that there exists a unique u, € L*(k(K),dz) such that

(w,0) 20t = / (@) (hn0) (@)o()dz, € CE(K).

Definition 1.12. A differential operator on M is a linear map P : C*°(M) — C*°(M)
such that

supp(Py) C supp(¢p), p e C*(M).
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This is an abstract definition. The following proposition gives the explicit structure of
such operators and shows that we recover the usual notion of differential operator on an
open subset of R™. This result is known as the Peetre Theorem.

Proposition 1.13. Let P be a differential operator on M and (U,V,k) be a coordinate
chart. Then, for all K € U there exist m € N and smooth functions a, € C*(k(K)),
la] < m, such that

(Pp)or () = ) aa(2)dg(por")(2), (1.11)
la|<m
for all ¢ € C§°(K).
Note that (1.11) can be written more compactly in operator form as
kePE* = Y ag(2)0s,  on C5°(k(K)). (1.12)
la|<m

For completeness, we prove Proposition 1.13 in Appendix A, though this proof will
play no role in the sequel and might be skipped in the first reading.



Chapter 2

The Weyl law: statement of the
problem

In this section, we state the Weyl law for the Laplace Beltrami operator on a compact
manifold and also record some related useful results. The detailed proofs will be given
later and this part can be seen as a motivation for the semiclassical pseudo-differential
calculus which will be investigated in the next sections.

To fully define the Laplace Beltrami operator (or Laplacian) on a manifold, one needs
to introduce the definition of a Riemannian metric which in turn requires to define objects
such as the tangent bundle and tensors. Although they are fundamental in differential
geometry, the precise knowledge of these objects is not necessary to state and prove the
Weyl law so we will only record the properties and formulas relative to the Laplacian and
the Riemannian volume density which we shall need. We refer for instance to [3] for an
introduction to Riemannian geometry.

In the sequel, we shall call a Riemannian manifold a smooth manifold M of dimen-
sion m on which there are a volume density dvol, and a differential operator A, with the
following properties:

1. A, is formally selfadjoint on C§°(M) with respect to dvoly, ie
/ Agp ¢ dvoly = / ® Ago dvolg, v, € CG°(M). (2.1)
M M
2. A, is non positive, ie

/ Agp ¢ dvoly <0, w e Cg°(M). (2.2)
M

Note that, by item 1, the left hand side of (2.2) is real valued.

3. In local coordinates: for every coordinate chart (U,V, k), there exists a n x n
symmetric matrix (¢?%(z)) with smooth and real valued coefficients on V such that

(gjk(:):))Kj w<n 18 positive definite at every point x € V, (2.3)

13
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and, if we set '
l9(@)] := det(g’*(2))"1/2,
then

kydvoly = |g(x)|dx, (2.4)

and

S 0 N
g = 3 el 5 (9l (2) )

I 0? .0 . 9
_ j;lgyk(x)axjaxkﬂg(xﬂ g (l9(2)lo7 (2)) e (29)

Exercise 2.1. Check directly that the operator defined by the right hand side of (2.5) is
symmetric with respect to |g(x)|dz on C§°(V).

Example (the 2-sphere. Part 3). On the same coordinate patch as in Exercise 1.2 and
the example after Definition 1.7, the matrix (¢7%(z)) is defined by

(0 (o)

ksdvoly = sin¢dpdo,

0? 1 0% cos¢ 0
AE T T am T oA
ol sin® ¢ 06 sin ¢ ¢

hence

AR
Note in particular that k.dvoly is nothing but (1.7).

Theorem 2.2 (Diagonalization of Ay). Let M be a compact Riemannian manifold. There
exists an orthonormal basis (ej)jen of L*(M) = L*(M,dvoly) of C™ functions such that
—Agej = Ajej,

with

0< XAl lim A\; = +o0.

J—00

Note that once the existence of smooth eigenfunctions is established, it is clear that
the eigenvalues must be nonnegative since, by (2.2),

Aj = (=Agej,ei) 2y > 0.

Proof of Theorem 2.2. See Section 7.2.
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The functions e; are called the eigenfunctions of A, and the real numbers A; the
eigenvalues of —A,. One can then define the couting function of eigenvalues by

N(A) :=#{j e N|X; <A},

whose asymptotic behaviour is the purpose of the Weyl law. Note that N(\) is finite for
each A € R since \; goes to infinity as j — oo.

Theorem 2.3 (Weyl law). If M is a compact Riemannian manifold of dimension n, then
N(A) ~ (27) wpvoly(M)AY2, X = +oo0,
where wy, is the volume of the unit ball in R™ and volg(M) = [,, dvol,.

In the rest of this section, we introduce the functional calculus associated to A, and
explain its role in the proof of Theorem 2.3. This will in particular motivate the analysis
of functions of semiclassical operators which will be studied later.

Let us denote by B(R) the algebra of bounded Borel functions on R (actually, piecewise
continuous will be sufficient here). For any u € L?(M), which can be uniquely written as

u = E Ujé€j, uj:(ej,u)Lz(M),
jEN

with convergence in L?(M), and any f € B(R), we set

F(=Aghu:=Y" f(N)uje;. (2.6)

JEN
Obviously this defines an element in L?(M) since it is a sum of orthogonal terms such that

2
Do 1F OGP < sup 12D fugl? = (sup |f1)[JullF2gap) < oo (2.7)
X R X
J J
It is also easy to check that the map u + f(—Ay)u is linear on L?(M) and continuous
since, by (2.7),

I (=Agz2(my—r20n) < Sup | f]. (2.8)

In the following proposition, £(L?(M)) denotes the algebra of bounded operators on
L3(M).

Proposition 2.4. The map
B(R) > f = f(=Ay) € L(L*(M)) (2.9)
18 a continuous morphism of algebras. In particular

fi(=8g) fa(=Ly) = (f12)(=Ay),
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for all f1, fo € B(R). Furthermore,
F(=Ag)" = f(=4y),
for all f € B(R). In particular, if f is real valued then f(—Ag) is selfadjoint. Finally
F20 = f(-A) >0 (2.10)
Proof. Left to the reader as an exercise. [l

The morphism (2.9) is usually called the functional calculus of the Laplacian. Of
course, it has nothing to do with the particular structure of the operator A, and only uses
that it can be diagonalized in a orthonormal basis with real eigenvalues.

The interest of the functional calculus in proof of the Weyl law is the following. Let
Ljo,1) be the characteristic function of [0, 1]. Then, for all A > 0, 1jg1j(=Ay/A) is a finite
rank (selfadjoint) operator. According to 2.6, it is given by

Loy (—Ag/Nu= > (ej,u)2(an)€;-

A E[0,A]

The key observation is that

NA) = tr(Lp1y(—Ag/N), (2.11)

which follows from

(Lo (—Ag/N) =D LpgA/A) = > 1 (2.12)

jEN A€[0,M]

Here tr denotes the trace of the operator which, in the present situation where the operator
has finite rank and is selfadjoint, is the well defined sum of its (non zero) eigenvalues. We
shall recall the notion of trace for operators in infinite dimension in Section 4.2 and see
that the present formula coincides with the general definition (see Definition 4.11).

By (2.11), the proof of the Weyl law will be reduced to the computation of trace
asymptotics of functions of Ay. Analyzing the orthogonal projection 1 1)(—A4/A) is a
difficult question but, as we shall see, studying smooth functions of A, will be sufficient.
We shall prove the following result.

Theorem 2.5. Let f € C°(R). Then

lim /\*"/Qtr(f(—Ag/A)) = (2m) "voly( / f(Inl*)d

A—+o00

Proof. See Section 7.3.

Using this theorem, it is now easy to prove Theorem 2.3 by a classical monotonicity
argument.



17

Proof of Theorem 2.3. Fix f_, f1 € C3°(R) such that

f- <1y < [+ (2.13)

By (2.10) and (2.11), we have

tr(f-(=Ag/N) < NV < tr(f1(~Ag/N). (2.14)

This can also be checked directly by remarking that the eigenvalues of the operators
(f+ = Lpa)(=Ag/A) and (L1 — f-)(—Agy/A) are non negative. Multiplying (2.14) by
A~"/2 and then taking the liminf in the first inequality and the limsup in the second one,
Theorem 2.5 implies that

Cu / F-(Inf*)dn < lim inf A™"2N () < limsup AN () < Cy / F(Inl*)dn, (2.15)
—00

A—00
where Cyy = (2m)"voly(M). By a standard approximation procedure whose details are
left to the reader, we can select sequences f_, f1 ; € C3°(R) vanishing outside a fixed
compact neighborhood of [0,1] (e.g. [—1,2]), uniformly bounded, satisfying (2.13) and
such that
lim f =1 li =191
Jim fok =101, Jim frr=1py

Since the sphere {|n| = 1} has zero Lebesgue measure, we note that both limits of f_ (|n|?)
and f1 x(|n|?) coincide with the characteristic function of the unit ball almost everywhere.
By using (2.15) for f_ , f+ , and then by letting k go to infinity, we obtain

lim inf A™2N()) = limsup A\"Y2N(\) = Cyy dn,

A—00 A—r00 Inl<1

which completes the proof. O
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Chapter 3

Pseudodifferential calculus

3.1 The Fourier transform

In this short section, we briefly review basic facts about the Fourier transform. We fix in

particular some notation and conventions (e.g. on the definition of the Fourier transform)

but also introduce the notion of seminorms which will be of constant use in this chapter.
In the sequel, we will extensively use the japanese bracket (x) defined by

(@) = (1+ ||},
for x € R™.

Definition 3.1. The Schwartz space S = S(R") is the set of smooth functions R™ — C
such that, for all « € N™ and all N > 0,

0%u(x)| < Con ()Y, r € R™.
Exercise 3.2. Prove that u € S if and only if, for all o, f € N",
2703 u(z)| < Cag.

It is convenient to introduce the following so called seminorms

N§ (u) == max sup(z)™|0%u(z)),
o] <N Rn

for N > 0 and v € §. They are actually norms on &, however the natural topology of &
is not given by a single norm but by the whole family of (semi)norms (J\f ]‘\S[) - 1t will not
be necessary to describe in detail this topology (so called Fréchet space topology) but we
will need many estimates involving such seminorms which is the reason why we introduce
them.

Seminorms allow to define convergent sequences in § as follows: given u € S and

(uj) a sequence in S,

uj —u inS & for all N >0, N (uj —u) — 0.

19
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Definition 3.3. For u € S, the Fourier transform of u is

i = [ ey, ger

In the following proposition, we give a first illustration of the use of seminorms in
continuity issues on the Schwartz space.

Proposition 3.4. The map u — 4 is linear from S to S and continuous in the following
sense: for all N > 0 there exists C' > 0 and M > 0 such that

NG (1) < CNgp(u), u€S.

Proof. The smoothness of u follows by standard differentiation under the integral sign.
Furthermore

e ofu(e) = o= Rdag(e—iy-ﬁ)yﬂu(y)dy

= (—i)lel+I8l e—iy-ﬁa;(yﬁu(y))dy
R4

the second line being obtained by integrations by part. Using that, for some M and C
depending on « and S,
()05 (v uly))| < CNG(w),

we obtain

€|ofae)] < ONGy(w),  ues.
By remarking that, for each integer N > 0,

OV <on Y €Y, geRrd

lo|<N

the result follows. O

Exercise 3.5. Using Proposition 3.4, check that if u; — u in S then 4; — 4 in S.

We recall without proof the following Fourier inversion formula

u(w) = 20)" [ e Cae)ag, (31)
for all u € § and = € R™. Using this formula, we obtain the following identities which will

motivate the definition of pseudo-differential operators in the next section. By differenti-
ation under the integral sign, we have

dju(x) = (2m)~" / e ig (€ de, (3.2)
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meaning that, up the factor ¢, differentiation with respect to x; corresponds to multipli-
cation by &; on the Fourier side. To deal more easily with the i factor, one introduces

1

so that a more general form of (3.2) is
D%u(z) = (2m)™™ / eTEENG(€)dE. (3.4)

3.2 Definition of pseudo-differential operators

To motivate the definition of pseudo-differential operators, we consider first a differential
operator

P= > au(x)D", (3.5)

la|<m

which we write in term of D® (recall (3.3)) rather than 0%. If we set

p,€) = Y aa(@)€”, (3.6)
la|<m
which is a polynomial in £ with = dependent coefficients, then (3.4) implies that

Pu) = 3 aa(e)@n)" / L (E) e,

laj<m

= Y en 7 [eta e

laf<m

that is
Pu(z) = (2m)~" / e (i, €)it(€)de. (3.7)

The function p is called the symbol of the operator P. Pseudo-differential operators are a
generalization of differential operators in that they are defined by symbols which are non
necessarily polynomials with respect to £. Let us introduce the symbols we shall consider.

Definition 3.6. For m,u € R, the space S*™ = SHF™(R™ x R™) is the set of smooth
functions a : R*™ — C such that, for all o, § € N,

0808a(z,6)| < Capla) (€)™, .6 cR™.
When = 0, we use the standard notation

gm .= gom,
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Exercise 3.7. 1. Show that, in (3.6), p € S™ iff the functions a, are bounded and all
their derivatives are bounded.

2. Let f be a smooth function non vanishing on R%. Show that, for v # 0,

ONf---0%f

1
oY <> = linear combination of I ,

f
with 1 <j < |y, v+ +v =7 and y1,...,7 #0.

3. Show that if a € S™ (with m € R) satisfies |a(x,&)| > c(§)™ for some ¢ > 0 (one
says that a is elliptic) then 1/a € S™™.

We can now define pseudo-differential operators.

Definition 3.8. Given u € § and a € S*™, we set
o, Dyula) = (2) [ e*ala©)a(e)de.
R4

The operator a(x, D) is called the pseudo-differential operator of symbol a and will
also be denoted by

Op(a) == a(z, D).

Examples. 1) By (3.7), differential operators are pseudo-differential ones with symbols
which are polynomial with respect to £.
2) The Fourier inversion formula reads

Op(1) = 1. (3.8)

3)If z € C\ [0,+00) and if we set a(&) , then a, € S72 (see Exercise 3.7) and,

by (3.7),

T

(=A —2)Op(az) = 1,

which means (at least formally) that the inverse of —A—z is a pseudo-differential operator.

The third example is an important motivation for the introduction of pseudo-differential
operators for it shows that they are convenient tools to analyze (and construct) the inverse
of an elliptic operator (ie an operator with an elliptic symbol, in the sense of item 3 of
Exercise 3.7). However, this example is of very special nature since it deals with constant
coefficients operators (ie x independent). In this case, finding an inverse is an easy task.
We shall see in Chapter 6 how pseudo-differential operators allow to analyze the inverse
of general (x dependent) elliptic operators, including operators on manifolds.

To give a first flavour of what happens for operators with variable coefficients, we
suggest the reader to work out the following exercise.
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Exercise 3.9. Let V : R" — R be smooth and such that 0%V is bounded for all . Set
p(z,8) = [P+ V(@) +i,  a(z,€) = (| + V(z) +1)
1. Show that p € S%, a € S~2.

-1

2. Check that p(x,D) = —A 4+ V(x) + 1.
3. Show that there exists r € S~ such that, for allu € S,
p(z, D)a(z, D)u = u+ r(x, D)u.

The last question shows that, in general, Op(p)Op(1/p) is not the identity, which only
happens for constant coefficients operators. There is a corrective term Op(r). We shall
see in the sequel how the pseudo-differential calculus allows to deal with such remainders
and is a more robust tool for PDEs than the pure Fourier analysis.

Before entering the core of the subject in the next section, it remains to define semi-
classical pseudo-differential operators.

Definition 3.10 (Semiclassical operators). For a € S*™ and h € (0,1], we set

Opp(a) = a(x,hD) := Op(ayp,)
with ap(z,€) := a(x, hE).

The interest of this definition, compared to Definition 3.8, will be clearer below when
we shall control important estimates with respect to h. However, we can already motivate
its introduction as follows. Consider a general differential operator P as in (3.5) and split
its symbol (3.6) into homogeneous pieces

b= me,j, pm,j(l',g) = Z aa(l‘)fa.
=0

laj=m—j

Obviously, we have py,—j(z, h&) = K™ I p,,_i(z,£) hence

J=0

which implies that

WP =" 1 Opy(pm-—;)- (3.9)

J=0

Now recall that one of our main goals is to prove Theorem 2.5 which involves the operator
Ag/X where X is large. By setting h? = 1/, we see from (3.9) (and the expression (2.5)
of A, in local coordinates) that

Ag/X = h2A,,

is, in local coordinates, a sum of semiclassical operators.
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3.3 Symbolic calculus

In this section, we will see that pseudo-differential operators form a class which is stable
under composition and adjunction. We work in the semiclassical setting for two reasons:
it will be important for the final application to the Weyl law and it covers the ‘standard’
calculus corresponding to A = 1.

As we did for the Schwartz space in Section 3.1, it is important to introduce suitable
seminorms on S*™. We will use

N @) = max sup(a)46) 020 a(o, )

When there is no confusion, we shall drop the dependence on S""* from the notation and
write Ny for ./\/}gm’”.

Exercise 3.11. Let my, ma, p1, o be real numbers such that mi; < mo and puy < po.
1. Show that SFv™ C SH2™M2,

2. Show that this embedding is continuous ie that, for all Ny € N, there exist C' and Ny
such that

N2 (a) < CNF™ (a),
for all a € SH™1,
Exercise 3.12. Let my, ma, u1, b2 be real numbers.
1. Show that if a € SF"™ and b € SH2™2 then ab € SH1TH2MITM2

2. Show that the map (a,b) — ab is continuous ie that, for all N € N, there exist C
and N1, Ny such that

N]€H1+M2,m1+m2 (ab) < CN]gfli"Ll (a)NﬁgQ’MQ (b),
for all a € SM>™ and b € SH2™2,

8. Show similarly that, for fized o, 8 € N, the map a — 6?6?@ 18 continuous from
SH1LML ¢ QH1MA—|B]

The following proposition mainly states that pseudo-differential operators are (contin-
uous) linear maps on S.

Proposition 3.13. For all h € (0,1], all a € S*™, Opp(a) maps S into itself. Actually,
for fixed h, the bilinear map

(a,u) — Opp(a)u

s continuous from S x S to S.
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Proof. See Proposition 3.22.

This proposition is useful for it shows for instance that one can compose two pseudo-
differential operators, as endomorphisms on the Schwartz space. The continuity property
will be used to define the action of pseudo-differential operators on temperate distributions
by duality (see Definition 3.18). However, we already point out that the most important
mapping properties of pseudo-differential operators for the applications concern L? or
Sobolev spaces rather than the Schwartz space. This will be investigated in Section 5.1.

We now state the main results of this chapter, which will be refered to as symbolic
calculus, and which describe the composition and the adjoint of pseudo-differential op-
erators.

Theorem 3.14 (composition). If a € SF™ and b € SH2™2 then

Opn(a)Opy(b) = Opp((a#d)(R))
where, if we set

1
(a#tb); = > —0¢aD2b,

|lal=j

we have for all J,
(agtb)(h) = > hY(a#b); + k' (a,b, h),
i<J
for some
r#(a, b,h) € Sptrzmitma=J

More precisely, the map (a,b) — r#(a, b, h) is bilinear and equicontinuous in the following

sense: for all seminorm Ny in St Tr2mitm2=t tpere exist C > 0 and seminorms Nj\gffl’ml

and N]‘\q]:Q’mQ such that
Ny (rf (a,b,h)) < CNR™ (@NR, ™™ (1),
for all a € SF™  all b € S#2™2 gnd h € (0, 1].

Proof. Consequence of Proposition 3.30.

The equicontinuity is the fact that the constant C' and the seminorms are independent
of h. We also note that it is straightforward to check the continuity of the bilinear map

(a,b) — (a#b)j c GH1tuzmitme—j
on SHLML x §H2,M2 [y ysing Exercise 3.12. In particular, the map
(a,b) + (a#tb)(h)

is equicontinuous.
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Exercise 3.15. 1. Check that if a and b are polynomial in &, this theorem follows
directly from the Leibniz rule.

2. Show that if a and b do not depend on x, then Opp(a)Opp(b) = Opp(ab).

We next consider the adjoint. To this end, we denote
(u,v) :—/ u(z)v(z)de, u,v €S, (3.10)

which is the inner product of L?(R™), but restricted to Schwartz functions.

Theorem 3.16 (adjoint). For all a € S*™ and u,v € S, we can write

(u, Opn(a)v) = (Opp(a*(h))u, v)
where, if we set
* 1 Q o—
aj = Z aaé Dia,
=4
we have for all J,
a*(h) = Z hjaj» + h7r¥(a, h)
i<J
for some
5 (a, h) € SHm=J

More precisely, the map a — 1%5(a,h) is antilinear and equicontinuous in the sense that,
for all seminorm Ny in SP™=7 | there exist C > 0 and a seminorm ./\/'j\q,fm such that

Nw(ry(a,h)) < CNR ™ (a), (3.11)
for all a € SM™ and h € (0,1].

Proof. Consequence of Proposition 3.25.

Similarly to Theorem 3.14, here again the symbols of the expansion depend continu-
ously on a: for all j, the map A
araj €S

is antilinear and continuous on S*™. This follows from Exercise 3.12.

In a formal way, Theorem 3.16 means that

Opn(a)* = Opp(a”(h)). (3.12)

This is formal since the adjoint on the left hand side has not been properly defined.
Nevertheless, we will use freely this notation in the sequel (to be completely rigorous one
may consider (3.12) as a definition of Opp(a)* and then Theorem 3.16 states that this
definition is compatible with the usual definition of an adjoint).
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Exercise 3.17. 1. If a is polynomial in &, check that Theorem 3.16 is a direct conse-
quence of the Leibniz formula.

2. If a does not depend on x, show that

(u, Oph(a)v) = (Oph(ﬁ)u,v), u,v € S.

Remark. Both Theorem 3.14 and 3.16 have been stated in the semi-classical framework,
but they hold in particular for h = 1.

One useful application of Proposition 3.13 and Theorem 3.16 is to allow to define the
action of a pseudo-differential operator on a temperate distribution.

Let us denote by (.,.)s/.s the bilinear pairing between S’ and S. For a temperate
distribution u € &’ and a Schwartz function S, we then set

(%80) = <ua¢>5’78' (3.13)

This extends the definition of (3.10) to the case when w is a distribution (recall that if u
is a function, then (u,v)s s = [uv).

Definition 3.18. If u € S’ and a € S*™, one defines Opp(a)u to be the temperate
distribution given by

(Opn(a)u, @) == (u, Opu(a*(h))g), @ €S.

We note that this definition makes sense, ie indeed defines a temperate distribution,
since

CuNR, (Opn(a’(h))¢)
C;,hN]\gr;yh ()

|(Opn(@)u, @) | = |(u, Opn(a*(h)))]

IN N

where the first inequality follows from the fact that u € S’ and the second one from
Proposition 3.13.

Exercise 3.19. Check that if u € S then Definition 3.18 coincides with the previous
definition of a pseudo-differential operator acting on S.

3.4 Proofs

We shall derive the results of Section 3.3 from a more general framework described in
this section whose main results are Propositions 3.25 and 3.30. The interest of these
propositions is to give sufficiently explicit formulas for the remainders in the symbolic
calculus theorems. They allow not only to prove easily Theorems 3.14 and 3.16, but also
to extend those theorems to other classes of symbols.
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Definition 3.20. Let v € R. The space AY = A”(R*") is the space of smooth functions
R?" — C such that
10907 a(x,€)] < Cap(L + |2| + [€])",

or equivalently such that the following (semi)norms are finite for all N

N (a) = 1+ |z| + €))7 0P a(x, €)).
& (a) \04|T|2\X§N?Rg£)( 2| + [€1) 77105 O alz, €|

As before, the seminorms allow to define the notion of convergent sequence by

def
<~

aj —a in A” for all N > 0, /\fjéu(aj—a)—)o.

The classes A” contain the classes S*™ in the following sense.
Proposition 3.21. Fiz m,u € R. Then
SHm = Alultlm]
continuously in the following sense: for all N > 0, there exist C > 0 and M > 0 such that
NJJ\;{WH—ImI (a) < CNASZLM (a)7
for all a € SH™.
Proof. It simply follows from the fact that
(@)™ < C(1+ [a] + [¢])lHm

and thus
1+ [z + €)= a(z, €)] < Cla) (€)™ alz, )],

which implies the estimate with N = M = (0. Higher order seminorms are treated similarly
using that (&)™~18l < (&)™, O

Conformally to Definition 3.8, we still denote

Op(a)u = a(, Dyu(x) = (2m) / ¢ a(z, €)a€)de.

n

for u € S and a € A”.

Proposition 3.22. The map (a,u) — Op(a)u is bilinear from A” xS to S and continuous
in the sense that, for all N > 0, there exist C > 0 and M, M’ > 0 such that

N (a(z, Dyu) < CNF} (a)Nip(u),

for allu € S and all a € A".
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Proof. The smoothness of a(x, D)u follows by differentiation under the integral sign. By
integration by part and the Leibniz rule, we have

2°0fa(z, Dyu = Y CRilt=lel [ 9g (i) (0] a)(w, )& a(€)dé

Y<B R
S gt ST Cl [ e o0 ta) e, 98 (€ale)) de.
v<B N e

Now, using the rough estimate
(1+ | +[€))" < Cla)g),
we observe that for some M and C' depending on «, 5, we have
|07 70ga(x,€)| < Ca)HEMNGE (a), (3.14)

for all @ € A” and all v < 8, § < a. On the other hand, by Proposition 3.4, there exist C
and M’ such that

(€ a©))] < Cle ™ VNG (), (3.15)
for all w € S and all ¥ < 3, § < a. Using (3.14) and (3.15), we obtain
|20 a(w, Dyu| < (@) NGY ()N (u),

which, as in end of the proof of Proposition 3.4, implies that, for each integer N and each
multiindex 3, there are C, M, M’ such that

<$)N_‘”|‘afa(a:, D)u| < CNit (N (u).

Since this is true for all N, the same estimate holds with (z)V instead of (z)N~1*! in the
left hand side, after the possible replacement of C, M and M’ by larger values. This
completes the proof. O

Exercise 3.23. Check, using Proposition 3.22, that if a; — a in A” and u; — u in S,
then Op(aj)u; — Op(a)u in S.

We now state a very useful lemma saying that any symbol in A” can be approached by
a sequence in C§°(R?™) which is bounded in A” and converges to a in A" for all v/ > v.

Lemma 3.24. Let x € C°(R?™) such that x = 1 near 0. For a € A", define

aj(z,§) == a(z,&)x(x/5,€/7),  j=1
Then,
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1. for all seminorm Ny of A", there exists C' such that

Nn(a;) < CNy(a), j>1, ae A"

2. Forallv' > v, aj = a in A as j — .

Proof. By the Leibniz rule, ag‘afaj(:r, €) is equal to

X(@/5,6/9) 080l a(e, &)+ > 5 ICICh(0700x) (x/4,6/5)05 00 alw, ).
<o, 6<8
Y+6#0

In particular, using the boundedness of x and its derivatives, we get for each fixed NV and
|OZ + /8| S N7
020¢ aj(,&)] < C(1L+ [«| + €)' NK (a),

from which the first item follows. To prove the second one, we observe that the previous
computation yields

Ni(a—a;) < max sup|l - x(2/5,6/H)|(1+ |z] + [£)) ™ |020¢ a(x,&)| + CiNK" (a)
|a+BI<N R2d
S 3T
using that 1 — x(z/7,£/7) is supported in |z| + |¢| 2 j and the fact that

(L+ Jz| + €)™

020 a(x, €)| < (1+ [z] + )" NE (a).

The proof is complete. O

Proposition 3.25. Fiz v € R. For alla € AY and all u,v € S, one has

('U, QJ(G)U)LQ = (Op(a*)v, u) L27
where, for all K > 0,

* 1 —
at= > —DR0ga+ i, (3.16)
la|<K

and the antilinear map a — T is continuous from AY to AY. The structure of i is as
follows: for all integers My, Ms such that

2M; > n + v, 2Msy > n + |y, (3.17)
there exists a family of functions (ba,, .) indexed by

lof = K +1, 71| < 2My, 72| < 2Mo, (3.18)
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such that
’bOC,’Yl,'Yz (tv Za C)’ é C<Z>_2M1 <C>_2M27 t € (0’ 1)a S an C € Rna (319)
and such that for all a € A

1
ri(x, &)= Z /0 //R% e_iz'c(6?+71ag+72ﬁ) (z+t2,§ 4+ Q)bay 4 (t, 2, ()dzd(dt.(3.20)

@,Y1,72

We split the proof of this proposition into several lemmas.

Lemma 3.26 (Peetre’s inequality). Fiz a dimension d > 1. For all v € R, there exists
C > 0 such that
(X+YyW<oXxXym, X v eR:

In particular, if d = n,
(L+le+z +1E+ ¢ < CA+ o[+ [E) (N, 2,62¢eR" (3.21)
Proof. We may replace (X) by 1+ |X| everywhere. Then
I+ X +Y]) <A+ [X[+[Y]) <1+ [X)(A+ Y],

and by raising this equality to the power v we get the result when v > 0. If v < 0, the
result for —v yields

A+ XN <A+ X +Y) 71+ =Y

and we obtain the result for v by multiplying this inequality by (1 + |X|)¥(1+ |X +Y|)".
To prove (3.21), we simply observe that

(1t [+ 2] + 1€+ (D) < OO+l + ()7 (1 + 2] + ¢
and that (1 + |z| + | < (1 + |2])I(1 + [¢|)¥]. The proof is complete. O

Lemma 3.27. Fix K > 0. For allv € R, the map a — r§ is continuous from A" to A”.

Proof. Fix Mj, My satisfying (3.17) and multi-indices 7, 5. Then there exist C,N > 0
such that, for all «, 1,72 satisfying (3.18), we have

0707 (oe 1o a) (w + tz, €+ Q)] < NF (@)1 + |+ t2] + 1€ +¢))",
ONF (@) (1 + || + €)Y ()M,

using (3.21) in the second line and the fact that |¢t| < 1. Using (3.19), it follows that rg
is a smooth function that can be differentiated under the integral sign and satisfies

020rk(@,0)] < N @+ lal+1e)” [ [ )Rz

IN

where the integral is finite by (3.17). This means exactly that a — rg is continuous on

A”. g
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Lemma 3.28. If (3.16) holds for all a € S(R*™) then it holds for all v and all a € A”.

Proof. Fix v € R and My, M, satisfying (3.17). Fix a € A”. We can then choose v/ > v
sufficiently close to v so that

2My > n+ V], 2Ms > n + |V'].

Define a; as in Lemma 3.24 and denote by r%( the symbol obtained by replacing a by a;
in (3.20). Since we assume that (3.16) holds for symbols in the Schwartz space, we have

(U, @(a])u) 2 — Z 5 (@(Dgag aj)”? u) 2 + (Op(r%()vv u) 2° (322)

lo| <K
for all u,v € S and j > 1. As j — oo, we have a; — a in A" by Lemma 3.24 and thus

, ' ,
D7 0¢a; — Dy oga, e = TK in AV,

using Lemma 3.27 for .. Now if u € S(R"), Proposition 3.22 shows that we have the
following convergences in S(R™)

Op(aj)u — Op(a)u,  Op(D50¢a;)v — Op(Dyoga)v,  Op(ri)v — Op(ri)v.

This allows to let 7 — oo in (3.22) which yields the result. O

Lemma 3.29. For all a € S(R*"), define
a*(z,&) = (2m)™" // e %Gz + 2, € + ¢)d¢dz. (3.23)
R2n

Then a* € S(R?") and
(v,0p(a)u) ;, = (Op(a*)v,u) s, u,v €S. (3.24)

Proof. To show that a* belongs to S(R?") it suffices to check that, for all a, 3,7, 4 there
exists C' such that

|27¢%0000a" (2, €)| <C,  zER", EER™ (3.25)

Since a(z + z,£ + () and its derivatives decay fast with respect to z,(, locally uniformly
with respect to z,&, a* is well defined and, by differentiation under the integral sign, is
smooth and

Oﬁﬁga*(x,é’) =(2m)™" //R% e ¢ (6?8?6) (x + 2, + ()dzdC.

By writing
R (x 4+ z— 2)7 — Z Cg,l (:B + Z)W—%(_Z)%
"<y
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and similarly £ = (¢ + ¢ — ¢)°, we obtain that x”{‘s@g@? a*(z,€) is a linear combination
of integrals of the form

[ 0 g 2,6 + Qe (3.26)
R2n
where g 4,4, € S(R?) is given by
Gopnms (U:1) = 477109207 A) (v, ).
By integration by part with respect to ¢, (3.26) reads

_Z')lﬁl //RM 6712'4821 (Cmaa,ﬁ,’yl,’yz (r+ 2,6+ C))dZdC7

which, by integration by part in z to handle the powers of { remaining after the expansion
of the derivative according to the Leibnitz rule, is a linear combination of integrals of the
form

//R2 e—iz-4832821aa,5,71772 (x+ 2, + ()dzdC,
with 7] <41 and 74 < 2. Since 8?835(1&’5’71772 belongs to S(R2M) the integral above is

bounded in C as z, £ vary in R™ so we get (3.25). Let us now prove (3.24). For all u,v € S,
we have

(v,a(z, D)u),, = /v(x)a(:c,D)u(ac)dx

= @0 [ [eramate g deds
= o [ [ [ i@ae. utdydss
~ (20)" / / / DG D ol@)uly) dydéda.

From this calculation, we see that
e0pan), = [ [ @A guldyds

://Bazy (x)dzdy

Afw.g) = 2" [ e a(a, ) (3.27)

is the kernel of Op(a) and

where

B(z,y) = (2m)™" / @0 Eg(y €)de.
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To prove (3.24) it suffices to see that B(x,y) is the kernel of Op(a*) namely
B(z,y) = (2m)™ / TV E* (2, €)dE. (3.28)

Denoting by * the Fourier transform with respect to &, this means that a(y,y —z) =
a*(x,y — x), ie
a(z + z,2) = a*(x, 2), z,z € R"

or equivalently, by taking the inverse Fourier transform with respect to z, that
a*(z,6) = (2m)™" / e a(z + 2, 2)dz

= (277)n//Giz'(gn)a(l’—i—z,n)dndz.

The change of variable n—& = ( in the last integral shows that the last equality is precisely
(3.23). Hence (3.28) holds true and this completes the proof. O

Proof of Proposition 3.25. By Lemma 3.28, we may assume that a € S(R?").
Step 1: the expansion. The starting point is to write a* given by (3.23) as an iterate
integral

a*(z,8) = (2m)™ / ( /R N e " (x + 2, € + c)dg> dz. (3.29)

Expanding a(z + z,£ + ¢) by the Taylor formula in z, we get

At )= Y LWL Y T Ricale 5 6+ Q2 (330)
la|<K la|=K+1 :
where
1
Ricale.zm) = [ (1= 0% @0Fa)(a + bz, )i (3.31)
0

Inserting each term of the expansion ), < -+ of (3.30) into the integral in ¢ of (3.29),
which makes sense for the integrand decays fast with respect to {, we obtain

/ Z%e 70 (9%a) (2, &+ Q)d¢ = / (i0c) e~ (09a) (x, & + ¢)d,
— (i) / =< (0000T) (2. € + Q)

= (—)lloaoga(z, z)eit. (3.32)
g

Integrating now (3.32) with respect to z according to (3.29) and using the Fourier inversion
formula, we get

(2m)™™ / ( / 2% (0%a) (x, € + g)dg) dz = Dgoga(x, €).



3.4. PROOFS 35

This shows that (3.16) holds with

ri(x, &) = (271')"/ Z Koj!_ 1 /zaeiz'cRK,a(x,z,f—l—C)dC dz. (3.33)

|a|=K+1
Note that we are not allowed at the moment to swap the sum over a and the integral with

respect to z for this is ony a semi-convergent integral (ie iterate ones). We now proceed
to the analysis of such terms.

Step 2: the remainder. By the same integrations by part as those leading to (3.32),
we have

/ 2% Rico(w, 2, + ()d¢ = / e D¢ Ric.o(, 2,€ + ¢)dC. (3.34)

Note that these integrals make clearly sense since (3.31) decays fast with respecto to 7.
To get some decay with respect to z, we next integrate by part thanks to

<Z>72M1(1 - AC)Mlefiz-C _ efiz-Cv

so that we can write the right hand side of (3.34) as

(z)2M /e_iz'g(l — A)MDE Ry o, 2,6 + Q)dC.

Using now that, for fixed &, the amplitude of the above integral decays fast with respect
to ¢ and using Peetre’s inequality we have

(1= A)M DE R o, 2,€ + () (2) M| < Cp e (2)HI=2M1 () =n—1

which is integrable with respect to z and ¢ if (3.17) holds. We can then use the Fubini
Theorem in the right hand side of (3.33) to get

() = Y A / </e—i3'<(1 — AgMiDg n7a(x,z,§+g)<z>_2M1dz> dc.

a!
la|l=K+1
We finally integrate by part in the above integral with respect to z thanks to
<C>_2M2(1 . AZ)Mge—iz-C — e—z‘z-g’

with My as in (3.17). Expanding the corresponding derivatives according to the Leibniz
rule and taking (3.31) into account, we obtain a linear combination of integrals of the form
(3.20). O
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Proof of Theorem 3.16. We apply Proposition 3.25 to ap(z,§) = a(x, h). According
to (3.16) with K = J — 1, we have
* 1 a o=
Oplay) = D (0 Dyay) + Op(ry-1)

la|<J

= 3 nllop(@g Dsa) + Oplry )

la|<J

since O¢' Dyan(z,§) = hlel (8?D§‘E) (z, h€). By (3.20), we also have
Op(ry-1) = h’ Opn(r(a, h))
with r%(a, h) which is the function of (z,&) given by

1
Z phel / // o—i7C (oot 8504-1-726) (@ +tz,& + hl)ba ~, (L, 2,()dzd¢dt.  (3.35)
0 R2n

Q,7Y1,7Y2

Our remaing task is to prove (3.11). Since a belongs to S*™ and |« + 72| > J, we have

|3?+"/18§‘+'y26($ +tz,&+ hC)‘ < (x+t2)E+ th_J/\/f,r’u @
< C<x>ﬂ<€>mﬂf<z>|#|<<>\m7J\N]€:n,# (a,)

using the Peetre inequality and the fact that |¢[,|h] < 1, and where we can take
Ny =2(My + My + J),

by (3.18). If My and M3 have been chosen® so that || —2M; < —n and |m—J|—2My < —n,
we obtain from (3.19) that

/[0 N (Ca O (1 + 12, € + h)bays ot 2, O)|dtd=dC < Cla) (€)™ NE™ (a),
1] x 2n

hence that B
NG (5 (a, b)) < CNR, (a),

which is precisely (3.11) for N = 0. The general case (ie N > 0) is obtained similarly after
differentiation of 7%(a, h) under the integral sign in (3.35). O

In the next proposition, we consider the composition of pseudo-differential operators.

Proposition 3.30. Let v,k € R. For alla € A” and b € A", one has

Inote that the choice will depend on J
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with ¢ € AYT* such that, for all integer K > 0, there exists a bilinear map (a,b) — rg
from AY x A* to AYT* such that

@)= Y cal,®) +ri(r,),  calw©) = Ofalr, DL, )
la]l<K
and with the following structure: for all integers My, My > 0 such that
2My > n+ v, 2Ms > n + |k,
there exists a family of functions (daq, ) indexed by
la] = K + 1, |v1| < 2M;y, |72] < 2Mo,

such that

(o (t,C,2)] < CQO) T2 (z)7 M2, £€(0,1), z€R”, (€R",

and such that, for all a € A¥ and oll b € A",

1
)= 3 [ [ [ @ )+ OO ) o+ 2, 06,2

;71,72

The proof is very similar to the proof of Proposition 3.25 so we shall only sketch the
main steps. We hope that this more synthetic exposition will be a pedagogic alternative
to the detailed proof of Proposition 3.25.

Proof. Step 1: rx depends continuously on (a,b). By Peetre’s inequality, for each
term in the sum defining rx we have

(067 a) (,€ + O (927720) (& + t2,€)| S My, (@ Ny (B + [2] + €N (O (=)

for all z,¢,2,( € R*, t € (0,1) and (a,b) € A” x A*. The decay of dq,~, and the
conditions on Mj, My show that the integrals (with respect to (z,()) are convergent and
with modulus of order

N @NEE (O) (L[] + (€)™

Similar estimates holds for derivatives with respect to z,£ (note that we can differentiate
under the integral sign) which shows that (a,b) — rx takes values in A”™* and depends
continuously on (a,b).

Step 2: We can assume symbols belongs to S(R?"). Indeed assume that the result
holds for symbols in S(R?*") and let a € AY,b € A*. Fix v/ > v and &’ > k. We can then
pick a;j,b; € S(R?*") such that

: v : /
a;j —a in A", bj = b in A,
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as j — 00. Denote c&, r%( the expressions of c,, 7k related to a; and b;. Then, clearly,

cl

«

1 1 e
= a@g‘ajD;‘bj — gﬁg‘aDg‘b =Cq in AVt"

and, by Step 1,
e = TK in AVt

In particular, for all u € S, we have

ST op(d)u+ Op(ri)u— > Oplca)u+Op(ri)u, — in S. (3.36)

la| <K la|<K
Therefore, if Proposition 3.30 holds for all Schwartz symbols, namely if the left hand side

of (3.36) equals Op(a;)Op(bj)u, then by letting j — oo and using Proposition 3.22 (or
Exercise 3.23) we get

Op(a)Op(b)u = Op(ca)u+ Op(ri)u,

lo| <K

for all v € S.

Step 3: Computation of the kernel. By Step 2, we can consider Schwartz symbols.
This allows to consider

Az, w) = (27)" / @000 0)d0,  Blw,y) = (27)" / C0=)Ep (. €)de
which are the kernels of Op(a) and Op(b), ie
Opla)u(e) = [ Al wpuw)dw.  Oplbjutw) = [ Blw,y)uty)dy.
See also (3.27). The kernel of Op(a)Op(b) is then
Claey) = [ Alw.w)Blw,y)du

= (@2m)™ / eie=y)€ ((277)—” / / e“ﬂc—w)'(@—%(gg,e)b(w,g)dwcw) d¢

which, after the change of variables z = w — z, ( = 0 — &, is precisely the kernel of Op(c)
with

c(x, &) = (2m)™" / / e = Ca(x, &+ O)b(z + 2, &)dzdC. (3.37)
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Step 4: Taylor expansion and integration by part. We expand a(z, £+ {)b(z+ z, &)
by the Taylor formula with respect to z and then integrate with respect to (. After the
same integration by part as in the proof of Proposition 3.25 we see that

/eiz'ca(ﬂ%f + Q)b(x + 2,§)d(¢
is the sum of

> / eT(0ga) (. € + (DD, O = ¢*¢ 37 2 Bala, 2)(DD)(x, ) (3.38)

laf <K o<k

(where ~ is the Fourier transform with respect to ¢) and of

1
O / /0 e (9¢a) (2, € + O)(D2b) (@ + t2,)(1 — ) dtdC.  (3.39)

|
(6%
|a|=K+1

The integration of (3.38) with respect to z yields the expected 3, <k ¢a(,£). In (3.39),
we integrate by part thanks to

<Z>_2M2(1 _ AC>M26—’£Z~C — e—iz(’

then integrate with respect to z and then swap the integrations with respect to z and (,
for we have sufficient decay in z and (. We finally integrate by part using

()M (1 = Ay)Mrem®e = e,
and we obtain the expect form of rg. ]

Proof of Theorem 3.14. Similar to the proof of Theorem 3.16 and left to the reader as
an exercise. U
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Chapter 4

Some tools of spectral theory

In this section H and K are two separable Hilbert spaces (over C). Everywhere L(H,K)
is the (Banach) space of continuous (or bounded) linear maps from H to K. We denote
the norm of A € L(H,K) by ||Al|y—k. If H =K, we set as usual L(H) = L(H,H).

4.1 Hilbert-Schmidt operators

Lemma 4.1. Let A € L(H,K). If (¢j)jen and (fi)ken are orthonormal bases of H and

IC respectively, then
D lAeillE =D 1A ful -
F; k

Proof. For each j, we have

[Aej[F = D [(fe Aej) | = D [(A feg) |

k

Summing over j and swapping the summations with respect to j and k, we get
2
D olAeille = DD (A frees) el = DAl
J k J k
which is precisely the result. O

Definition 4.2. An operator A € L(H,K) is Hilbert-Schmidt if

J

1/2
|A|[us = (ZAej,QC) < o0,

for some orthonormal basis (e;)jen of H. We denote by So(H, K) the set of Hilbert-Schmidt
operators from H to K. If H = K, we denote it by Sa(H).

41
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Note that || A||gs is independent of the choice of the orthonormal basis by Lemma 4.1.
Proposition 4.3. 1. If A€ S (H,IC), then A* € Sy (IC,’H) and
1 Al[as = || A7 |s-
2. For all A € Sy (’H, IC), we have
1Al < [|Allus.
3. S9(H,K) is a vector space and || - ||us is a norm thereon.
4. Sy (H,IC) is complete.
5. If H1 and K1 are separable Hilbert spaces and
Ac S (H,K), Be L(Hi,H), Ce LK K)
then CAB € Sy ('Hl, /Cl) and
ICAB|lus < ||Clc—xc, || Allas | Bl |2, -7

Proof. Item 1 follows directly from Lemma 4.1. To prove item 2, we fix u € ‘H and write

u:]\}gréou]v, UN = g (ej,u)Hej.
J<N

Then, by the triangle inequality and the Cauchy-Schwartz inequality,

lAunllc < > I(ej )y, l||Aes] |,

J<N
1/2 1/2
< DD (e u)y P > | Aej| I
<N <N

< [[Alfus|lull-

Letting N go to infinity and using the continuity of A, we obtain ||Aul|x < ||A||as||u||x
which yields the result. The proof of item 3 is a routine which we omit; we only point out
that ||A||us = 0 only if A =0 by item 2. Let us now prove item 4. Let (A4;) be a Cauchy
sequence in S (7—[, IC). By item 2, it is a Cauchy sequence in £(H, K) hence converges in
operator norm to a bounded operator A. It remains to show that A is Hilbert-Schmidt
and that ||A — Aj||us — 0. Fix € > 0. Then for J > 0 large enough

|Ax — Ajllns < e, i k> J
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This implies in particular that,

Ak —AjenllE <€, N=0, k>
m<N

Thus, by letting k£ go to infinity for fixed N and j and then N to infinity, we see that A
is Hilbert-Schmidt and that ||[A — A;||us < € for j > J. Therefore |[|A — A;||us — 0. We
finally prove item 5. We first observe that

1CAejlIk, <IIC1Ko i, |1 Aesllk

hence by summing over j, we see that CA € Sa(H, K1) and that ||CA||lus < ||C|lk—k, ||A]lus-
To handle the case when B # I3, we observe that

CAB = (B*(CA)*)"
which shows that C AB is Hilbert-Schmidt and that

ICAB|lus < ||B*|ls—: [|CA[lns < ||Cllx—k, [|Allus Bl -,

using item 1 and the fact that the operator norms of an operator and its adjoint coincide.

g

Proposition 4.4. Let A € So(H,K) and (fi)ren be an orthonormal basis of K. Define
IIy = orthogonal projection on span {f | k < N}.

Then
|[TIxyA — Allus — 0, N — oo.

Proof. By item 1 of Proposition 4.3, it is equivalent to show that ||A*IIy — A*||gs — 0.
Writing this Hilbert-Schmidt norm in term of the orthonormal basis (fx), we obtain

A"y = Vlffs = Y 14" ful 3,
k>N

which clearly goes to zero as N — oo. U

Remark. Of course if we consider a projection Py onto the N first vectors of an or-
thonormal basis of H, we also have APy — A in the Hilbert-Schmidt class. This follows
directly from Proposition 4.4 by taking the adjoint.

Using that IIy is a finite rank operator and the property 2 in Proposition 4.3, we
derive automatically the following corollary.

Corollary 4.5. Hilbert-Schmidt operators are compact.
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We conclude this section with an important example of Hilbert-Schmidt operator.
To any K € L*(R?"), we can associate the sesquilinear form

Q(v,u) = //v(:z:)K(a:,y)u(y)dydm, u,v € L*(R™).

By the Cauchy-Schwarz inequality, @ is obviously continuous on L?(R™)? hence there
exists a unique bounded operator Ag : L%(R") — L?(R") such that

Q(v,u) = (U,AKU)LQ(Rn).
Definition 4.6. Ay is the operator with L? kernel K.

Proposition 4.7. The operator Ak belongs to So(L*(R™)) and
1Ak las = [ K| r2(r2n).

Proof. Let (ej)jen be an orthonormal basis of L2(R™). Then the countable family

(r@F) jyenes ek @ T (@,Y) = ex(@)e;(y)
is an orthonormal basis of L?(IR?"): that this is an orthonormal system is a simple calcu-
lation which we omit and proving that finite linear combinations are dense follows from

the density of L?(R") ® L?(R") in L?(R?") and the density of finite linear combinations
of (ej) in L*(R"). Then

Ml = S lrelliony = 303 ewrAres) e
J J
= S N Qe e’
ik
= Z‘(ek ®?j7K)L2(R2n)|2 = ||K||%Q(R2")’
(7,k)
completes the proof. O

4.2 Trace class operators
Definition 4.8. A linear operator T : H — H is trace class if there exist
1. a positive integer N,

2. separable Hilbert spaces K1, ...,Kn,

3. Hilbert Schmidt operators Ay, ..., Anx and By, ..., By with A;, Bj € So(H,Kj),
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such that
N
T =) A:B;. (4.1)
j=1

We denote by S1(H) the set of trace class operators on H and define
N
1T llew := inf ¢ > 11 Ajlms|| Billus ¢,
j=1

the infimum being taken over all N, (KC;), (A;j), (Bj) as in 1,2,3 such that (4.1) holds.

Note that this definition implies that trace class operators are bounded and more
precisely Hilbert-Schmidt.

Proposition 4.9. 1. For all T € S1(H),

T[22 < T e

2. S1(H) is a vector space and || - ||t is a norm thereon.

3. If T is trace class, then T* is trace class and

1T er < 11T er-

4. If K is another separable Hilbert space and
A, Be LK, H), T e S1(H),
then A*T'B € S1(K) and
AT Bllee < [[Allc—w T el Bllxc -

Proof. 1. For all € > 0, we can find

N°€, Toeeey Kive, Toeeey AN, Bi,...,By«
such that
T=)> (A'B (4.2)
J<Ne€
and
Ne
1Tl < Y 1Al ms|1BSllus < [T +e. (4.3)

Jj=1
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Using
Tl < || D (A B, sy
J<N¢
< D 451l 1B e
J<N¢
< > 145 sl 1B s
J<N¢

we obtain that ||T||y—n < ||T||tr + €. Since this true for all €, we obtain the desired
inequality.

Let us now prove item 2. Proving that S1(#) is a vector space (ie a subspace of L(H))
is a routine which uses that the sum of two sums as in the right hand side of (4.1) is still
of this form. Let us check that || - ||t is a norm. Observe first that ||T||s = 0 if and only
if T'= 0 by item 1 and the obvious fact that ||0[|x = 0. Let next T, T be in S (H) and

write
N N
T=> A:B;, T=> AB,
j=1
according to Definition 4.8. Then

N N

1T+ Tl <D 114 llusl|Bjllus + > 11 A;]lus|| Byl us-
= =1

Taking first the infimum over the set of N, (K;), (4;) and (B;) as in Definition 4.8, we
obtain

N

T+ Tllee < T llee + Y 114|181 Bjl s
j=1

Taking next the infimum over the set of N, (i@), (g]) and (Ej), we conclude that

1T+ Tljew < ||T]fex + 1T

Let us now fix A € C and show that ||[AT|[tx = |A|||T|]tr- Since we know that ||0]]s = 0 we
may assume that A # 0. Using (4.1), we have AT = Z;Vﬂ AA}Bj, hence

IMT e < A 1A luss 1By s,
J<N
and by taking the same infimum as in Definition 4.8,
IATHINT e < 11T for,

that is || AT||¢x < [M||T )¢z Writing T = A~'AT, we also have [|T||¢x < [A7H|AT||¢r and

the result follows.
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dWe now prove item 3. Using (4.1), we have T* = 3,y BjA; hence T™ is trace class
an

1T < > 1B;lmsl|Ajllus = Y [[Ajllms||By|[ms-
i<N J<N

Let us finally prove item 4. Using (4.1) and item 5 of Proposition 4.3 we see that

By taking the same infimum as in Definition 4.8, we conclude that ||7%||¢ < ||Ttr-

A*TB = (A;A)*(B;B)
j=1

is trace class and that

N
AT B < ||Allcn | D 1A llus|Bjllas | 1Bllc—w,
j=1

which, by taking the infimimum over N, (K;), (4;), (Bj), yields the result. O

Lemma 4.10. Let T € Si1(H) and (ej)jen be an orthonormal basis of H. Then the sum
Z (eja Tej)y
JEN

is (absolutely) convergent and does not depend on the choice of the orthonormal basis.

Proof. Tt suffices to prove the result when T'= A*B with A, B : H — K Hilbert-Schmidt
operators, for some separable Hilbert space K. Pick an orthonormal basis (f;) of K. Then,
for each j,

(ej,Tej)H = (Aej,Be] Z fk,Ae] fk,BeJ) (4.4)
k

On the other hand, using that A is Hilbert-Schmidt,

ZZ\ fis Aes) |’ ZHAeJH,C < o0,

and similarly for B. Therefore, seen as families indexed by (k, j), ( I, Aej)  and ( IE, Bej) ,C
are 12, so when we sum (4.4) over j we are allowed to swap the sums with respect to j and

k so that
Z (ej,Tej)H = ZZ fk,Aej fk,Be])

J
= ZZ eijfk‘ ejank)
— Z(B*fk,A*fk)H (4.5)

k
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which is independent of (e;);en. O

This lemma allows to state the following definition.

Definition 4.11. The trace of T' € S1(H) is the complex number

tI‘(T) = Z (ej,Tej)H,

jeN

for some (hence all) orthonormal basis (ej)jen of H. If we wish to specify the Hilbert space
on which T is defined, we shall sometimes use the notation try (T for tr(T).

Exercise 4.12. Assuming that Theorem 2.2 is proved, check that (2.12) holds with tr
defined according to Definition 4.11.

Proposition 4.13. 1. The trace is linear on S'(H) and for all T € S1(H),
()] < (17l (46)
In particular, the trace is continuous on S1(H).
2. We have the identities

try(A*B) = tre(BAY), A B € So(H,K), (4.7)
try(A*TB) = tie(TBA*), TeS(K), A, BeL(H,K).  (48)

The second property is often called cyclicity of the trace.

Proof. 1. The linearity is obvious. Let us prove (4.6). Using (4.1), we have

() < 3 (4B < Y (Z|<Ajem73jem),<jl)

<N J<N \meN
S (z uAjemququemqu)
<N \meN
< ZHAJHHSHBJ'”HSa
J<N

so the estimate follows by taking the infimum over N, (K;), (4;), (B;).

Let us now prove item 2. We observe first that (4.7) follows directly from (4.5). To
prove (4.8), we may assume by linearity that 7' = A} By with A;, By € Sa(#H,K1). Let then
IIx be the orthogonal projection onto (the span of) the N first vectors of an orthonormal
basis of H, as in Lemma 4.4. We observe that

tru(A*TB) = lim_try(IIyA*TB) (4.9)
—00
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by continuity of the trace and the fact that Iy A*TB = (HNA*A*{)BlB with (HNA*AT) —
A*A7 in the Hilbert-Schmidt class by Proposition 4.4. For fixed N, IIyA* is Hilbert-
Schmidt hence, by (4.7), we have

try, (IIy A*TB) = tric (T By A*). (4.10)

Since T'BII Ny A* reads A (B BIInA*) where the bracket converges to By BA* in the Hilbert-
Schmidt class by Proposition 4.4, we obtain

tri(TBAY) = ]\}im tri(TBIIy A™). (4.11)
—00
By combining (4.9), (4.10) and (4.11), we get the result. O

We conclude this section with a useful example of calculation of a trace. We consider
Hilbert-Schmidt operators with L? kernels, as in Definition 4.6.

Proposition 4.14. Let A = Ay, and B = A, be operators on L*(R"™) with L? kernels
K1, Ko € L2(R?"). Then

trL2(Rn)(AB) —/ Ki(z,y)Ks(y, x)dzdy.

Proof. Let us observe first that A* is the operator with L? kernel K (z,y) := Ki(y,z).
Observe also that

(KT, K2) 12 g2y =/ Ky (z,y) Ka(y, x)dzdy.

The conclusion follows then from the following calculation. Given an orthonormal basis
(ej) of L*(R™), we have

tr(AB) = Z(ffj,ABej)Lz(Rn) = Z(A*ej7B€j)L2(Rn)

j j
= ZZ (ekvA*ej)L2(Rn)(ek7Bej)L2(Rn)
ik
= Z Z (ex ® €, KT)L%R%) (ex ®7j, K2)L2(R2n)
ik

= (KikaKQ)LZ(RZn)a

using in the fourth line that (e;®e;)(; k) is an orthonormal basis of L?(R*") (see Proposition
4.7). O
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4.3 Functional calculus via the Helffer-Sjostrand formula
In this paragraph, for a function defined on C or R?, we will use the operator
0 =0y +1i0,.

We recall that if a function g = g(z + iy) is holomorphic on some open subset of C, then
0g = 0.

Definition 4.15. Let f € C§°(R). An almost analytic extension of f is a function
f € Cg°(R?) such that

1. for all N >0, 0f (z,y) = O(|y|V),

2. f(z,0) = f(z).

We comment that the first condition is equivalent to the fact that 5f vanishes at
infinite order on {y = 0}, ie that

e
o59f(2,00=0, k>0, z€R, (4.12)

If one identifies R? and C, this means that 5]7 vanishes at infinite order on the real line.
Using this identification, the second condition states that the restriction of f on the real
line coincides with f.

We also record that, since fis compactly supported, the first condition has no influence
on the growth of df at infinity. More precisely, by choosing x € C§° (R?) which is equal
to 1 near the support of fand non negative, we have

0f(z,y)| < CnlyVx(z,y),  (z,y) € R2.

This estimate is easily obtained by writing that 5]? coincides with the remainder of its
Taylor expansion with respect to y to order N multiplied by .

The next proposition gives a simple explicit way to construct almost analytic exten-
sions. It can be found on Chapter 8 of [2].

Proposition 4.16. Let f € Cg°(R). Let x1,x2 € C§°(R) such that
x1 =1 near the support of f, x2 =1 near 0.

Then
~ 1

Floaw) = a@hel)y [ € oo

is an almost analytic extension of f.



4.3. FUNCTIONAL CALCULUS VIA THE HELFFER-SJOSTRAND FORMULA 51

Proof. Obviously, we have f (w 0) = x1(z)f(x) = f(x) by the Fourier inversion formula.
Since @)% is holomorphic, 8f is, up to the constant 1 /27, the sum of the following
three terms,

i (@)xe ) / ey (ye) F€)de (4.13)
i1 (2)xh(v) / ey, (ye) Fle)de (4.14)
(@ / ST (e FlE)de (4.15)

n (4.13), we expand e ¥ yo(y¢) by the Taylor formula which gives a remainder of the
form

~

(@) x2(y) / e70((ye) ™) F(e)de = O(y™)

and a linear combination of terms of the form
¥lehal) [ e T —o

since, by the Fourier inversion formula, the integral equals y* f(*)(z) up to a multiplicative
constant and since X} vanishes on supp(f). Obviously, (4.14) vanishes near y = 0. In
(4.15), using that x/ vanishes near 0, the integral can be written

/emngg]&g yNEN e = oy"),

and this completes the proof. O

In the sequel, for a continuous function B(x,y) defined on R?\ {y = 0}, or equivalently
on C\ R, with values in a Banach space, we shall denote

/Ilmzlzeaf(Z)B(Z)L(dZ) = /ly26 </R@f(x,y)B(:c,y)dx> dy,  €>0,

and

/(C 0f(2)B(2)L(dz) := lim 0f(2)B(z)L(dz), (4.16)

€20 Jimmz|>e

when the limit exists.

The following proposition will be of constant use: it justifies the existence of integrals
involving almost analytic extensions and, in the applications, it will allow to estimate
certain remainder terms.
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Proposition 4.17. Fiz f € C{°(R) and J? an almost analytic extension of f supported in
[a,b] + i[c,d]. For all continuous function

B:[a,b] +i[c,d| \R— B
with values in a Banach space B and such that, for some C, M > 0,
I1B)ls < Cltm(2)] ™, 2 € [a,0] +i[c,d] \ R
the following hold:

1. the integral

/ 0f(2)B(2)L(dz)
C

is well defined in the sense of (4.16),

2. we have the bound

/8f L(dz)

Proof. By standard results, the map y — [ 5]?(33, y)B(x+iy)dz is continuous on [c, d]\{0}
and satisfies

<C sup ||Im(z YMB(z)

B [a,b]+i[c,d]\R | ‘B

/ 0f (z,y)B(x + iy)dx
R

< (b—a) sup ||[yMB(z+iy)||, sup \y Maf(x,y)|,
B z€|a,b] z€lab

for all y € [¢,d] \ {0}. The result follows easily after integration with respect to y. O

The main interest of almost analytic extensions in these notes is the following Cauchy
type formula.

Proposition 4.18. Let f € C°(R) and fe CS°(R?) be an almost analytic extension of
f- Then

2 370 - = S o0, (1.7

for all integer 7 > 0 and X € R.

Proof. Observe on one hand that %f is an almost analytic extension of fU) (use for
instance (4.12)) and on the other hand that, by integrations by part in x,

ST\ — N1 (g = D 5 T — V1L (ds
/|1m2|>eaf(z)(A )1 L(d2) i Amzzgaa"’f( YA = 2)"1L(d).
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Therefore, it suffices to prove the result when j = 0 which we do now. For fixed €, we
integrate by part with 0 and use that (A — 2)~! = 0 to get

_ ~ 1
— 1L = / — ——dz. (4.1
[ BT ) = [ F =5~ T Oy e (@19)
Then, using B B
f(a, %) = f(2) + €8, f(2,0) + O(* () %)
and the fact that ) .
— <
IAN—ztie] T €
the right hand side of (4.18) can be written
)
2e [ 1)+ [ 0.0 2 S e+ 09
that is,
/f/\+6t /5‘8f)\+80)1n(s +e*)ds + Ofe). (4.19)

By dominated convergence, using the bound |In(s® + €%)| < C'max (|In€l,(s)), (4.19)
converges to 27 f(\) as € goes to zero. O

Exercise 4.19. Check that if B = L(H,K) and if u € H then

</ a7z dz)u—/f)f (2)uL(dz).

Proposition 4.22 below is the main result of this section. Its interest is to give ex-
pressions of functions of A, in term of its resolvent. We note that the definition of the
resolvent given below uses implicitly the result of Theorem 2.2; of course the proof of
Theorem 2.2 (given in the next chapter) will not use Proposition 4.22.

Definition 4.20 (Resolvent of the Laplacian). For z € C\ [0, +00) we define

R(z) = (-Ag — z)_l = f2(=Ay),
with f.(\) = (A — 2)71, using (2.6).
Notice that, by (2.8), one has in particular

<1 Leo\r (4.20)

(=4 — Z)_lHLQ(M)—>L2(M) ~ |Im(z)|’
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Exercise 4.21. Show that the map z — R(z) is continuous from C\ [0, +00) to L(L*(M)).
Hint. Use (and prove) that R(z) — R(() = —(z — () R(2)R(C).

Proposition 4.22 (Helffer-Sjostrand formula). Let f € C§°(R) and f be an almost ana-
lytic extension of f. Then

180 = 5= [ 978, - =) L(a2). (4.21)

Proof. Both sides of the identity are well defined bounded operators (by Proposition 4.17
for the right hand side) hence it suffices to check that they coincide on a dense subspace.
We consider the subspace a finite linear combinations of eigenfunctions of Ay, ie of vectors
of the form u = >, (ej,u)Lg(M)ej. The right hand side of (4.21) applied to such a
vector reads

- /(c )~y — 2 L = 3 (e50) priary 5 /(C FF(2) (= Ay — =) Ye;L(d2)

J<J
1 .
= X )z [T -2 e L)
J<J
= Z (ejau)LZ(M)f(A])ejv
J<J
= f(_Ag)uv

using Proposition 4.18 to go from the second to the third line. This completes the proof.
O



Chapter 5

L? bounds for pseudo-differential
operators

5.1 L? estimates

We recall the following notation which will use extensively in this chapter,
sm=som o) = [ P = ).
]Rn

Recall that S™ was introduced in Definition 3.6 and that (.,.) and || - || are respectively
the inner product and the norm of L?(R™).
The main result of this section is the following.

Theorem 5.1. Fix the dimension n. Then there exist C' > 0 and a seminorm ./\/]50 of S°
such that

|0p(a)ul] < ONF (a)|[l], (5.1)
for alla € S° and all u € S.

This result means that pseudo-differential operators with symbols in S are bounded
on L?. We point out that this L? boundedness remains true for a larger class of symbols
(e.g. symbols in A°, see Definition 3.20) by the so called Calderdn-Vaillancourt theorem
whose proof is more technical. Moreover, Theorem 5.1 is sufficient for many interesting
applications, in particular for those considered in these notes.

Here is the semiclassical version of Theorem 5.1.

Corollary 5.2. There exist C > 0 and N > 0 (depending on n) such that
0
10pn(a)ul| < CNF (a)|full,
for alla € S°, allu € S and all h € (0,1].

95
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Notice that the right hand side does not depend on h. This corollary is a straightfor-
ward consequence of Theorem 5.1 and the following exercise.

Exercise 5.3. For a € S°, denote ap(z,€) = a(x,h€). Show that for all N > 0 there
exists C' > 0 such that
S0 S0
NR (an) < CNy (a),

for all a € S° and h € (0,1].
Hint. Use that hIP1(€)8 < (hg)IBl,

Before proving Theorem 5.1, we record a few comments and consequences.

Since S is dense in L?(R"), Theorem 5.1 implies that Op(a) has a unique continuous
extension as a linear map on L?(R") (also called its closure) which we shall denote by
Op(a), or even simply by Op(a) when there is no possible confusion (of course, a similar
convention will be used for Opp(a) in the semiclassical case).

Exercise 5.4. Let u € L*(R") and a € S°. Considering L? functions as temperate

distributions, show that Op(a)u, defined as above, coincides with Op(a)u in the sense of
Definition 3.18".

From the L? boundedness of pseudo-differential operators, we will easily derive the
continuity of pseudo-differential operators on the Sobolev spaces H*(R™). We recall that,
for s € R, H%(R"™) is the space of temperate distributions v whose Fourier transform
belongs to L120c and such that

lJul 2, = (2m) ™ / (€)% |a(e)|2de < oo.

Equivalently, H*(R") is the closure of the Schwartz space for the norm || - ||gs defined
above. In the case when s € N, these definitions are equivalent to require that 0“u (in the
distributions sense) belongs to L?(R") for all |a| < s.

Exercise 5.5. Let u be a temperate distribution (or u € L?>(R™)) and s € R. Denote

1. Show that v € H*(R™) iff (D)*u € L*(R™), and that
ullzrs = [[(D)*ul| 2.

2. Show that (D)* is a bijective isometry from H*(R™) to L*(R™) with inverse (D)~*.

Corollary 5.6 (Action on Sobolev spaces). Let m,s € R. Let a € S™. Then Op(a) maps
continuously H*(R™) on H*~™(R").

'here we consider the case when h = 1 since the dependence on h is irrelevant for this question.
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Proof of Corollary 5.6. By symbolic calculus, we can write
(D)*""Op(a)(D)~* = Op(b),
for some b € S°. Therefore, we have
Op(a) = (D)™ *Op(b)(D)®,

where (D)* maps H® in L? by Exercise 5.5, Op(b) maps L? in L? by Theorem 5.1 and
(D)™=% maps L? in H*~™ by Exercise 5.5. The result follows. O

The rest of the section is devoted to the proof of Theorem 5.1 which rests on the
following lemma.

Lemma 5.7 (The Schur test). Let K be a continuous function on R?" such that

sup /]K(:c,y)]dy < M, sup /\K(a:,y)\da: < M.

Tz€R™ yEeR™
Set
Kulw) = [ Kwg)ulwis
Then
|[[Kul] < M|lull,
for allu e S.

Proof. We leave as an exercise (Exercise 5.8 below) the proof that Ku is a well defined
continuous function. Then

[Ku(z)] < /IK(ﬂf?y)U(y)ldyz/IK(ﬂs,y)lmK(ﬂﬁ,y)\”zIU(y)ldy

([ 1 miay) " ([ 1 lutokan) " (52)

by the Cauchy-Schwartz inequality. Therefore, squaring this inequality and integrating
with respect to =, we get

IN

/ Ku(a)2dz < M / / K (2, ) [uy) Pdydz < M2|[u]

using the Fubini Theorem. This completes the proof. O

Exercise 5.8. Check that Ku is a well defined continuous function for every u € S.

We shall see that the L? boundedness of Op(a) is a fairly direct consequence of the
Schur test if a € S7¢ for some € > 0. To deal with the case ¢ = 0, we will use the following
lemma.
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Lemma 5.9. Fiz N > 0. For all a € S° denote M(a) := J\/}go(a). Then

bi= (2M(a)” — laf)"?
belongs to SO and there exists C > 0 such that

N (b) < CM(a), (5.3)
for all a € S°.

Proof. If M(a) = 0, then a = b = 0 and the result is trivial. Otherwise, after division by
M (a), we may assume that M (a) = 1. Then b is smooth and

> =2 — |a|* <2 =2sup|al® < 2M(a)?
R2n

If |a| 4+ |8] > 0, an induction shows that 8};‘8? b is a (universal) linear combination of

(2- |a]2)7k/28§‘18§1a1 . --8?j8§jaj, ai,...,a; =aora, (5.4)
with

Thus, if |+ 8] < N
(©)?0207 b, )| S 1,

for all (z,£) € R? and all a such that M(a) = 1, which proves (5.3). For |a + 3| >
N, the form of 8?8? b given by (5.4) remains of course valid and allows to check that

]836?()(3:,5)\ < Coapl€)™P ie that b € SO (but C, 44 is not any longer uniform with
respect to a). O

Proof of Theorem 5.1. Let us fix m > n and consider first the case when a € S™™.
The kernel of Op(a) is

K(ay) = (n) " [ & a(a, e
(See (3.27) where this formula was obtained). Note that the assumption on m guarantees

the convergence of the integral and its boundedness with respect to (z,y). By integration
by part, we have

(1+ (z1 — 1)) K (2,y) = (2m) " / eI - O )alw, €)dg,

whose (modulus of the) right hand side is bounded by

(2m)~" [ (€)7™dE ) sup (1 — 8Z))a(=, )| (€)™
((am™ f@7mae)
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Repeating the integrations by part with respect to the other variables, we obtain
K ()] < Clar—y1) 72 (20 — yn) NR,  (a),
for some Ny > 0 (here Ny = 2n is sufficient). By the Schur test, this implies that

|Op(a)ul| < CNR, ™ (a)lfull. (5.5)

m/2

Now assume only that a € S~™/=. By symbolic calculus (Theorems 3.14 and 3.16 with

h = 1), one can write

Op(a)*Op(a) = Op(a), (5.6)

for some @ € S™™ depending continuously on a. Therefore, we have

10p(a)ul[* = (u, Op(a)* Op(a)u) = (u, Op(@)u) < |lulll|Op(@)ull
< ONR, @)l (5.7)

using (5.5) in the last step. The continuous dependence of @ on a shows that, for some
Nl')

N3 (@) < CNE ™ ()
Using (5.7), this shows that (5.5) holds with m replaced by m/2 and Ny replaced by Nj.
Iterating this procedure, we obtain for each k € N the existence of C} and Nj such that

m/2k

10p(a)ul] < CRNR, ™ (a)]full. (5.8)

At this point, since k can be chosen as large as we wish, we obtain the L? boundedness
of Op(a) whenever a € S~¢ for some € > 0. To complete the proof for a € S°, we proceed
as follows. Let us fix & such that m/2* < 1. By symbolic calculus, the symbol @ in (5.6)
satifies @ — @a € S, therefore

|| Op(a)ul|[* = (u, Op(a*)Op(a)u)
= (u, Op(Ja)u) + (u, Op(ra)u), (5.9)

for some r, € S~! depending continuously on a € S°. Using the notation of Lemma 5.9
with some N to be chosen latter, we have similarly

[|Op(Byul[* = (u, Op([b[*)u) + (u, Op(rs)u)
= 2MZ||u|[32 — (u, Op(|a|*)u) + (u, Op(rp)u), (5.10)

with 7, € S~ depending continuously on b € S°. Using that HQo(b)uﬂz is nonnegative,
(5.9) and (5.10) yield

|[Op(a)u]|* < 20 (a)?||ul? + (u, Op(ra)u) + (u, Op(ry)u).
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Using (5.8) for r, and rp, we obtain
ok ok
[[Op(ay]]” < (2M(a>2 +ONR () + CNR m)) ful®. (5.11)

We now observe that r, = ri(a*,a) (see Theorems 3.14 and 3.16 for the notation) so
that, by continuity of a + a* in S° and continuity of ri(a*,a) e 571 c §7m/?" with
respect to a* and a in S, there exists M}, such that

—my2k 0
NR, (ra) S Ni (@), (5.12)
for all a € SY. Using this bound for b and choosing N = M, in Lemma 5.9, we obtain
—my2k 0 0
Summing up, (5.11), (5.12) and (5.13) show that
0
|Op(a)ull?: SNR (@)?lul?, aes ues,

which is precisely the result. (I

5.2 Hilbert-Schmidt estimates

The main result of this section is the following.

Theorem 5.10. Let p > n/2. Then, for all h € (0,1] and a € S™P~F
1. Opp(a) is Hilbert-Schmidt on L*(R™),
2. its Hilbert-Schmidt norm reads

1Opn(@)lliss = (2mh) ™" lal| L2 (gen).-

Before giving the proof, we record the following useful result which is a simple analogue
of Lemma 3.24 and whose proof is left as an exercise to the reader.

Exercise 5.11. Let m,pu € R and a € S*™. Show that, if we set
aj(z,§) = x(x/j,¢/7)a(=,§),
with x € C§° which is equal to 1 near (0,0), then for all ¢/ > p and m’ > m,

. ’ oo
a; —a in SH™
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Proof of Theorem 5.10. Assume first that a belongs to the Schwartz class. Then, using
Definition 4.6 (see also the calculation leading to (3.27)), we see that

Omn(a) = A,  K(z,y) = (2rh)™"a (x 4 ; "’“) (5.14)

where @ is the Fourier transform of a(z, &) with respect to €. Since

/ / a(x, T)‘dedyz e / / @z, 2)Pdedz = (2mh)" / / lalx, &) 2dude,

the result follows from Proposition 4.7. In the general case, Exercise 5.11 allows to pick
a; € C§°(R*™) which converges to a in S~ with p > p/ > n/2. Then

10pn(aj)|lus = (27h) /% laj| L2 (gen) (5.15)

Since a; — a in L2(R?"), Opp(a;) is a Cauchy sequence in Sa(L?) hence in the space of
bounded operators. On the other hand, a; — a in S%° hence Opp,(a;) — Opy(a) pointwise
on the Schwartz space. This implies that the limit of Opp(a;) in S2(L?) is necessarily
the L? bounded operator Opy(a) which is thus an Hilbert-Schmidt operator. By letting
j — oo in (5.15), the result follows. O

A simple and useful consequence of Theorem 5.10 is the following one.

Corollary 5.12. If a € S™%7¢, for some ¢ > 0, then Opp(a) is a compact operator on
L2(R™).

Proof. By Exercise 5.11, we may choose a; € C§°(R*") such that a; — a in S%°. By
Theorem 5.1, this implies the following convergence in operator norm on L?(R"),

Opn(a;) — Opp(a), J — oo.

Since each Opy(a;) is Hilbert-Schmidt by Theorem 5.10, hence is compact by Corollary
4.5, this implies that Opp(a) is compact. O

5.3 Trace class estimates

In this section, we give a simple criterion for a pseudo-differential operator to be trace
class and give a simple formula for its trace. This is the purpose of the following theorem.

Theorem 5.13. Fiz p > n.
1. For alla € S~ and h € (0,1], Opy(a) is trace class on L*(R™).

2. There exist C and a seminorm Ny """ such that for alla € S~7~° and all h € (0, 1],

10pn(a)llee < CRT"NR " (a).
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3. For alla € S~”~° and all h € (0,1],
tr(Opp(a)) = (2h) ™" // a(x,&)dzdé. (5.16)

We will need a general lemma.
Lemma 5.14. Let aj,as € S#™ with m < —n. If Op(a1) = Op(az) then a1 = as.

Let us remark that the condition m < —n can be removed, but the proof is more
straightforward with this extra condition and sufficient for the present purpose.

Proof. If u € S(R™) and z is fixed, the condition m < —n allows to write
Oplaru(e) = (o) [ [ e oo uly)dys
= @0 [y - auw)s

where ~ is the Fourier transform with respect to £. Thus the assumption Op(ai) = Op(as2)
implies that, if we set b,(y) = a1(x,y — z) — az(x,y — =), we have

/bx(y)u(y)dy =0, for all v € S(R™).

This implies that, for each fixed z, b,(-) = 0. By taking the inverse Fourier transform, we
see that a1 = as. O

Proof of Theorem 5.13. We will prove item 1 and item 2 simultaneously. Set w(z,&) =
(z)P/2(£)P/? | which belongs to SP/%/2 and

On the other hand, introduce
By := (hD)~P*(x)~*/* = Opy (<x>fp/2<§>—p/z)*7

which is Hilbert-Schmidt by Proposition 5.10 with ||By||gs < Ch~™/2. Since B,W), = I
on the Schwartz space, we have

Opi(a) = By, (WrOpp(a)), (5.17)

and therefore

||Opn(a)|],, < 1|1Bllus||WnOpn(a)|]ys-
By symbolic calculus and the fact that w € S?/2#/2 we have

WrOpp(a) = Opp(cn), (5.18)
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for some bounded family (cp)pe(o,1) of S—P/2=r/2 depending continuously on a € S~P P
This implies that for some N and C,|

llenllz2reny < CNR " "(a),  a€S™”77 he(0,1].

The conclusion follows then from Proposition 5.10. To prove item 3, it suffices to prove
the result when h = 1. We start with the following computation. If b, ¢ are Schwartz
functions on R?", then Op(b) and Op(c) are Hilbert-Schmidt so using Proposition 4.14 and
(5.14), we have

tr (Op(b)Op(c)) = (2m)~ // xz,y —x)c(y,x —y)dxdy. (5.19)

On the other hand, we recall from the symbolic calculus (see (3.37)) that one can write

Op(b)Op(c) = Op(a) with
a(z,§) = (2m)™ " // e~ Sh(x, € + C)ela + 2, €)dzdC.

Thus, using the change of variables z =y — x and { = n — £, we have

(2m)™ / / a(z, §)dzde (2m)™ / / / / e W= =8p(z. n)e(y, €)dydndzds
= (2m)” // (z,y — T —y) dydx

which shows together with (5.19) that (5.16) holds when Op(a) = Op(b)Op(c) and b, ¢ are

Schwartz functions, ie

tr(Op4)0p(e) = (2m) " [ [ (bt €)dad (5.20)

We next check that this remains true if b,c € S=°/2,/2, Indeed, according to Exercise
5.11, we may approximate b, ¢ by Schwartz functions b;, ¢; for the topology of S—p'/2=p'/2
with p > p’ > n. Then

Op(b;)Op(c;j) = Op(bj#c;),
with bj#c; — b#c in S=+=F" as j = 0o by Theorem 3.14, and we also have

Op(b;)Op(c;) — Op(b)Op(c), Op(bj#cj) — Op(b#c) in trace class norm,

by Proposition 5.10 in the first case and items 1 and 2 of the present proposition in the
second case. On the other hand, we have

bj#c; — b#c  in LY(R®™),

using the embedding S~ ¢ L'(R?"). Using (5.20) for b; and c;, and then letting j go
to infinity, we obtain that (5.20) remains true if b, ¢ € S—P/2=p/2 To complete the proof,
it suffices to note that, for any a € S™% 7, one can write

Op(a) = Op(b)Op(c), (5.21)



64 CHAPTER 5. L? BOUNDS FOR PSEUDO-DIFFERENTIAL OPERATORS
for some b and ¢ in S~#/>7°/2 using (5.17) and (5.18). Thus

tr(Op(a)) = (27)~ / / b#kc)(z, €)dude,

by the previous step. Since Op(b)Op(c) = Op(b#c), Lemma 5.14 and (5.21) imply that
a = b#c and the result follows. O

Exercise 5.15. Show that if K is an operator with kernel K € S(R*"), then K is trace
class and

trregeny (K) = A K(z,z)dz.

Hint. Write K as Op(a) for some suitable a (use (3.27) to find a).



Chapter 6

Elliptic parametrix and
applications

In this chapter, we construct a parametrix for a semiclassical elliptic operator, that is an
approximate inverse of h>P — z if P is a second order elliptic differential operator. Here
h is the semiclassical parameter and z is a spectral parameter which, in this chapter, will
belong to C \ [0, +00). This analysis can be generalized in many directions but we focus
on this example which will be sufficient for our applications. In Section 6.1, we construct
the parametrix for an operator which is globally elliptic on R", to ignore the problems
of localization and local charts on a manifold. In Section 6.2, we explain how to use the
result on R™ to obtain fairly directly a parametrix on any relatively compact subset of an
open set and also derive the local elliptic regularity theorem.

6.1 Parametrix on R"

Let P be a differential operator on R™ of the form

P = py(x, D) + p1(x, D) + po(x), (6.1)
with . .
pa(z,€) = > ap(@)&h,  pi(@,€) =) bi(2),
Jk=1 j=1

such that aj, = ay; for all j, k. We assume that
pa; €8*7,  j=0,1,2. (6.2)

We refer to Definition 3.6 for S?~7 and recall that, according to Exercise 3.7, this condition
is equivalent to the fact that a;z,bj, po are smooth functions which are bounded on R"
together with all their derivatives. Throughout this section, po will be called the principal
symbol of P. We assume that py is a real valued and such that, for some ¢ > 0,

pQ("L‘aé) > C|£|27 IE,g € Rn, (63)

65
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which is our ellipticity assumption. We consider the semiclassical operator

2
P(h) := h*P = Wpy j(z,hD),
j=0

and look for an approximate inverse for P(h) — z in terms of pseudo-differential operators.
Since

P(h) — z = Opp(p2 — 2) + hOpi(p1) + h*Opp(po),

and using the intuition suggested by Exercise 3.9, it is natural to consider the function
(p2 — z)~! which is well defined provided that

z€ C\ [0, +00), (6.4)
since po takes its values in [0, +00). We record the following useful result.

Lemma 6.1. There exists C > 0 such that

()

1 < -2
‘(p2(x’£) Z) } = Cd(Z,R+) <£> s
for all x,& € R™ and all z satisfying (6.4).
Proof. We write
1 p+1 1
p2—z pa—zp2+ 1
where, by (6.3), we have
1
0< —— < C)2
= w1

and, by the inequalities |ps — 2| > d(z,R") and d(z,R") < |2|,

po + 1 z+1 |z| +1 (z)
=11 <l4+ —<C—"=L—
b2 — = ' +P2—Z B +d(Z,R+) B d(Z,R+)7
which completes the proof. O

Proposition 6.2. For all z € C\ [0, 4+00), (p2 — 2)~! belongs to S=2. More precisely, for
all a, p € N", there exists Cop and such that
5 . (2) o +|B]+1 .
o )7 < L — :
2o me. -7 < Cos (i) O (65)
for all x,& € R™ and all z satisfying (6.4). Furthermore, the map z — (pa — 2z)~ ' is
continuous from C \ [0, +00) to S~2.
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Proof. We start by proving (6.5). The case & = 8 = 0 follows from Lemma 6.1. Otherwise,
by item 2 of Exercise 3.7, we have to consider terms of the form

a1gbr, . 9% gbi ]
8xla§ P2 890]'85]102 - 0 <<§>23—|ﬁ1|__|[3]|> O <£>—2—2jL+j‘
(2= )" Az RE)

=0 <<§>_2_|5| d(z<,215>£1++)j1+j> ’

using Lemma 6.1 and the fact that 81 + --- + 8; = B. Since (z)/d(z,R*) > 1 and
J < |a| + 8|, we can replace 1 + j by 1+ |a| + |5] in the last line, and we obtain the
expected estimates. This implies in particular that (po — 2)~! € S~2. Let us prove the
continuous dependence on z. Fix zy. Then

(p2—2)"" = (p2—20)"" = (2= 20)(p2 — 2) ' (p2 — 20) "

By considering (pa—2) ! as a symbol in S° and using the continuity of the map (a, b) +— ab
from S72 x S° to S~2 (see the Exercise 3.12), (6.5) implies that for any seminorm Ny of
S~2, there exists M > 0 such that

M
Ny ((p2—2)7" = (p2 — 20)7") < Clz — 2 <d(z<?&+)> :

Since the right hand side goes to zero as z — zg, we get the result. O

To construct our approximate inverse, we try to find a sequence of symbols
qz,—2—k € 5727]67 k > O?

such that, for each N,

N-1
(P(h) — 2) (Z h*Opy, (qz,_Q_k)> =1+ h"Opp(r.—n(h)), (6.6)

k=0

with (rz—n(h))ne(,] bounded in S~V and all these symbols satisfying nice bounds in
term of z. To determine the conditions to be satisfied by the symbols ¢, o, we expand
the left hand side of (6.6) according to the composition formula (see Theorem 3.14 and
the notation thereof) from which we get

N-1 N-1
(P(h) = 2) <Z h*Opn (qz,—2—k)> = > W Opn(cap) + WV O (ro—n(h)), (6.7)
k=0

k=0

with

Cz0 = (P2—2)Qz,—2 (68>
ok = (2= 2Gemak+ Y. (P2-s#az—21),, (6.9)

JH+m=k
<k
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for 1 <k <N —1, and with

2 N-1
TZ,*N(h) = Z h’O(k’j)r?]%(k’j) (p2—j7 qz,—2—k> h’)v (610)
j=0 k=0
where
J(k,j) = max (N — k — ,0), olk,j)=k+j— N+ J(k,j). (6.11)

Note that o(k, j) > 0 (for all terms but one we have o(k, j) = k+j— N; we have introduced
this notation only to deal with the term corresponding to j =2 and k = N — 1).

By comparing the right hand sides of (6.6) and (6.7), we see that we have to require
first that c, o = 1, that is

qz,—2 = (p2 - z)_la (612)
and that ¢, = 0 for k¥ > 1, that is

1
Gak=——— Y (p2j#a:-21),, k=1 (6.13)
p2— 2 JEm=k
<

This defines the functions ¢, _o_j inductively since the right hand side of (6.13) depends
only on q; —2,...,q, _2_(x—1)- So defined, it is easy to check by induction that q. 2
belongs to S~27% (we shall review this fact more precisely below) and, using (6.11), this
implies in turn that

Tj#(k ) (P2—js Qz,—2—k, ) € §—i—k=J(kj) - g—N

In particular, this implies that 7, _y(h) € S™V.
We have proved a large part of the following theorem.

Theorem 6.3. There exist symbols d;j, € S2i=F which are polynomial in & and indepen-
dent of z and h, such that the symbols

2k 4.
— J
q27—2—k - Zl (p? . Z)]'+j’ k 2 17 (614)
j=
1
qz,—2 = ;
p2 — =z

satisfy for all z € C\ [0,400), all N > 1 and all h € (0,1],

N-1
(P(h) - z) <Z hkOph(QZ,2k)> = I+ hNOp(ro,—n(h)),
k=0
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with a remainder such that, for all a, 3, there exist Copg and M, such that

M
(020, N (2, &,h)| < Cap() ™17 <d(<]1>%+)> y (6.15)

for all z € C\ [0,+00), all h € (0,1] and all x,& € R". Finally, the maps
2>y o ) € S2=k z—r1,_n(h) € SN,
are continuous on C\ [0, +00).

Let us comment on this theorem. If one fixes N > 0 (as large as we wish) and defines

N-1
Q=(h) = > h*Opn(gz2-k),  R=(h) = Opu(r-—n(h)),

k=0

we have
(P(h) — 2)Q.(h) = I + hNR.(h), (6.16)

and it follows from Corollary 5.2 and (6.15) that there exist C, M > 0 such that

= \"
IRy <€ (i)« PE @1 2 €T\ 400)
This means in particular that, for a given z, AN R.(h) is small when A is small, hence
that the right hand side of (6.16) is close to the identity in the operator norm on L?(R").
This is a first justification that Q.(h) is an approximate inverse of P(h) — z. Another
justification is in term of regularity as follows. By Corollary 5.6, we know that for all
s €R,

Q.(h): H* — H*™2  R,(h): H* — H*V, (6.17)

for the symbol of Q. (h) belongs to S~2 and the one of R.(h) to S~. Since N is as large
as we wish, R,(h) can be considered as a smoothing operator and one can thus interpret
(6.16) by saying that we have inverted P(h) — z modulo a smoothing operator. It is
customary in PDE to treat smoothing operators as residual and we will see an illustration
of this fact in Corollary 6.4 below.

The dependence on z in Theorem 6.3 is a more technical aspect whose interest will
become clearer in the next chapter. We only mention that the continuous dependence of
the symbols on z and the bound (6.15) will be important when we use the Helffer-Sjostrand
formula (see in particular Proposition 4.17).

Proof. The proof of (6.14) follows by induction using the form of (a#0); (see Theorem
3.14) and Exercise 3.7. We omit the complete verification of this and only record that
(6.13) implies

P1 1Vaps - Vepo
(p2—2)% i (p2—2)°

qz,—3 = —

I



70 CHAPTER 6. ELLIPTIC PARAMETRIX AND APPLICATIONS

which is indeed of the form (6.14) for k = 1. To prove (6.15) one observes that Proposition
6.2 and (6.14) imply that the seminorms of ¢,_»_j in S~27* are bounded by (non negative)

powers of (z)/d(z, R") hence the same holds for the seminorms of Tf(k N (P2—js Gz,—2—1, b)

in S~V by symbolic calculus. The continuous dependence on z follows from Proposition
6.2 and (6.14) for g, 2. This implies in turn the continuous dependence of r, _n(h)

on z, using (6.10) and the continuous dependence of r#(a, b,h) on a and b as stated in
Theorem 3.14. 0

We now give an application to the elliptic regularity. Theorem 6.3 means that one can
construct a right parametrix for P(h)— z, that is an approximate inverse of P(h)—z to the
right. One can also obtain a left parametrix using the following argument. We fix z = —1
and h = 1 to simplify the notation and since this will be sufficient to prove Corollary 6.4.
Using that P* is of the same form as P, ie a second order differential operator with symbol
in 52 and the same principal symbol as P, one can find pseudo-differential operators Q
and R with symbols in S=2 and S~V respectively such that

(P*+1)Q=1+R.
By taking the adjoint (using Theorem 3.16) in this identity, we get
Q(P+1)=1+R, (6.18)
where, for all s,
Q=Q" :H*— H**?, R=R":H® — H*V,

since the symbols of C~2 and R are respectively in S72 and S™V. With this at hand, it is
easy to prove the following elliptic regularity result.

Corollary 6.4 (Global elliptic regularity). Let B be a first order (pseudo-)differential
operator on R™ with symbol in S'. Assume that u € L>(R") and f € H*(R") satisfy

Pu = f + Bu. (6.19)
Then u belongs to H5T2. In particular, if f belongs to NyH?, then u is smooth.
Proof. Let us set By = B + 1. The equation (6.19) is then equivalent to
(P+1)u= f+ Bu. (6.20)

We consider @, R defined as above with N such that N > s+ 2. Applying @ to both sides
of (6.20) and using (6.18), we get

u = @f + @Blu — éu, (6.21)
where Qf € H%2, Ru € HN c H"2 and QBju € H! since Byu € H!. Therefore,

= 512 + HL C Hmin(s+2,1)‘



6.2. LOCALIZATION OF THE PARAMETRIX 71

If s+ 2 < 1 we are done. Otherwise, we have u € H' which is an improvement with
respect to the initial assumption that u € L2. It implies that QBju € H? and thus (6.21)
yields

U E HS+2 + H2 C Hmin(s+2,2)'

Repeating this argument a finite number of steps, we see that u belongs to H12, O

6.2 Localization of the parametrix

In this short section, we explain how to localize the construction of Section 6.1. This
will be useful to prove the local version of Corollary 6.4 (see Theorem 6.7 below) and to
construct a parametrix for —A, in coordinates patches which will be the central tool of
the next chapter.

Let V' be an open subset of R™. Assume that we are given a second order differential
operator Py on V with smooth coefficients of the form

Zg aak+zcj +CO )
7,k=1

such that, for all x € V,
(gjk(x)) is a positive definite matrix. (6.22)

Of course, the Laplace-Beltrami operator written in local coordinates is of this form (see
(2.3) and (2.5)), which is the reason why we consider operators of this form. Notice
however that no self-adjointness will be required in this part.

Proposition 6.5. Let Vy € V. Then, one can find an elliptic operator P globally defined
on R", of the form (6.1) and such that (6.2) and (6.3) hold, with the property that

Py,=P on V. (6.23)

This proposition means that, locally (ie in Vj), one can assume that Py is the restriction
of an operator globally defined on R™.

Exercise 6.6. Let G(x) be a real symmetric matriz with coefficients depending continu-
ously on x € V' and such that G(z) is positive definite for each x. Show that for all Vo € V
there exists C,c > 0 such that

c<G(z) <C,

for all x € V.

Proof of Proposition 6.5. Let x € C§°(V) with values in [0,1] and with x =1 on Vp. Set

P=—-(1-x)A+xPv.
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Obviously, P is a second order operator with symbol in S? and which satisfy (6.23). Its
principal symbol is (1 —x(z))|€]2 + x(z) D ik g% ()€€, By Exercise 6.6, there exists ¢ > 0
such that

(1= x(2))€]* + x(2) Zgyk )€€k > (1= x(2))[€]* + x(2)cl¢|? > min(e, 1)[€[,

and this completes the proof. O

One obtains the following local elliptic regularity result.

Theorem 6.7. Let By be a first order differential operator on V with smooth coefficients
and fy € C®(V). Assume that v € L (V) satisfies

Pyv = fy + Byv, (6.24)
in the distributions sense on V. Then v € C*(V).

Proof. Tt suffices to show that, for all k¥ € N and all y € C5°(V), xv € H¥(R"). This is
true for £ = 0 by assumption. Assume that this is true for & and let us show that it is
true for k£ + 1. Fix xy € C§°(V) and multiply (6.24) by x. Then

Pyxv = xfv + xBvv — [x, Pv]v,

where
X, Pv] := xPv — Pyx,

By the Leibnitz rule, this is a first order differential operator with coefficients supported
in supp(Vx) C supp(x). Then, if ¥ € C§°(V) is equal to 1 near the support of y, we have

xByv — [x, Pvlv = xByxv — [x, Pv]xv € H*"1(R™),

since xv € H¥(R™) by the induction assumption and xBy — [x, Py] is a first order differ-
ential operator. If we set

U = Xv €L2(Rn)7 f:XfV'f_XBV%U_ [X?PV]%U GHk_l(Rn)a
and use Proposition 6.5 with V) = supp(x), then
Pu=f,

which, by Corollary 6.4, implies that v € H**'(R™). This completes the proof of the
induction, hence of the theorem. O

In the next theorem, we give a local version of Theorem 6.3.
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Theorem 6.8. Let Vo € V' and xo, x1, x2 € C5° (Vo) such that

x1 =1 near supp(xo), x2 =1 mnear supp(xl).

Let the symbols
qz—2-k € S_Q_ka S C\ [07 +OO)7

be defined as in Theorem 6.3 for the operator P of Proposition 6.5 and set, for fived N,

N—-1
Qn,:(h) = x1 <Z hkOPh(Qz,2k)> X0-

k=0

Then
(W*Py — 2) QY.(h) = x0 + h™ x20ph(rn.2.v (1)) X0, (6.25)

with ry . v(h) € SN depends continuously on z and satisfies, for any seminorm NAS[N
of 7N,

—-N

Nii

z

(rnzv(h) < Cun (

TR , (6.26)

>K(M,N)
for all
z€ C\[0,+0), he(0,1].

Apart from the technical estimates (6.26), the main result of this theorem is (6.25)
whose right hand side is not of the form I +O(h") as in Theorem 6.3. In the applications,
xo will be one term of a partition of unity and we will get a parametrix in the same spirit
as in Theorem 6.3 by summing the contributions of all terms of the partition.

Proof. The operator (hQPV - z) QK ,(h) reads

N-1 N-1
x1 (B*Py — 2) <Z hkOph(qz,2k)> xo + [W* Py, x1 (Z hk@%(Qz,Zk)) X0
k=0 k=0

where, as in the proof of Theorem 6.7, [R2Py, x1] = h?(Pyx1 — x1Pv) is a first order
differential operator. Since h?Py = P(h) on the support of x1, Theorem 6.3 shows that

N-1
x1 (R*Py — z) (Z hkOph(qz,—z—k)> xo = x1(I+h"0pp(r.—n(h))) xo,

k=0
= xo+h"x10p(rz—n (h)) xo-
On the other hand, since the coefficients of [h?Py, x1] vanish where x; = 1 hence near

supp(xo), we see that all terms of the expansion of the symbol of [h2Py, x1]Opn(a)xo
vanish, whatever the symbol a is. By picking X which is equal to one near supp(xo) and
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such that x1 = 1 near supp(Xo) the symbolic calculus and the support properties allow to
write, for all IV,

[W*Py,x1]Opn(a)xo = x2 ([W*Pv, x1]0pn(a)Xo0) X0
= WM x20pn(rn(h))xo

for some 7x(h) € S™V depending continuously on a. Using this fact for

N—

—_

k
a = h*q. 2k,
k=0

and using the z dependence of such symbols implied by Proposition 6.2 and (6.14), we see
that the corresponding ry(h) satisfies bounds of the form (6.26). The same holds for the
remainder 7, _n(h) above by (6.15) so the result follows. O



Chapter 7

Proof of the Weyl law

In this chapter, we use the construction of Chapter 6 (mainly Theorem 6.8) to prove
Theorems 2.2 and 2.3 (or rather Theorem 2.5 which, as we have seen in Chapter 2, implies
Theorem 2.3).

7.1 The resolvent of the Laplacian on a compact manifold

The purpose of this section is to prove Proposition 7.2 below, which is an analogue of
Theorem 6.3 on a compact manifold.

By Proposition 1.5, we can choose a partition of unity on M associated to a finite atlas
(Ui, Vi, Ki)icr (here F is a finite set), namely

1= ZOi, supp(6;) C U;. (7.1)
1eF
For each i € F, define
Xo,i i=0; 0 k71 € C°(V;) € C°(R™), (7.2)

and choose X1, x2,i € C5°(R™) such that

X1 =1 near supp(xo.), supp(x1,i) C Vi

and
X2, =1 near supp(x1),  supp(xz;) C Vi.

According to the notation (1.12), we also denote
—kixAgR; =1 P, (7.3)
which is a differential operator on V; C R™ and wet let po ; be its principal symbol, namely
n
ik
D2, = Z 91" ()&,
jk=1

75
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as follows from (2.5). Here and in the sequel, all the functions, operators, etc... are
indexed by ¢ which labels the charts.

By (2.5), each P; satisfies the same assumptions as the operator Py in Section 6.2.
Therefore, if we fix an integer

N >1, (7.4)

Theorem 6.8 allows to can find pseudo-differential operators @Q; n(h, z) and R; y(h,z) of
the following form

N—1
Qin(h,z) = Xxui <Z hk@?h(Qz,—Q—k,i)) X045 (7.5)
k=0

where ¢, o ; is of the form (6.14) with ps replaced by ps;, and

Rin(h,2z) = x2i0pn(rN,zv;(h))X0,- (7.6)

Their main property is that
(h*P; — 2) Qin(h, 2) = X0, + W™ Ri v (h, 2), (7.7)

for all z € C\ [0,400) and all h € (0,1]. The dependence on z and h of the symbols
¢z—2-k; and rn . v;(h) is as in Theorem 6.8.
To built an operator on M, let us define

On(h,2) = KiQin(h,2)kin,  Ry(h,z) =Y kR n(h, 2)kis, (7.8)

seen as operators acting on C°°(M). Here we slightly abuse the notation since k. is
only defined on C*(U;) (or even L?(U;)) but not outside U;. The precise meaning of
these expressions is the following. Denote by ey, the extension map by 0 outside Uj,
by ry, the restriction map to U; C M and similarly ey;,ry, for V; C R™. Then, for a
pseudo-differential operator A on R™, we set

ki Akix = ey, (rv, Aey,) Kixru,, (7.9)

which is now perfectly defined. For a general operator A, there is no reason in general
why k} Ak« should belong to C*°(M) for all ¢ € C>°(M). Indeed, if ¢ € C°>°(M) then
KixTyU; is simply the map ¢ o /{;1 : V; — R which is smooth, but its extension by 0
outside V; is in general not a smooth function on R". Nevertheless this the case if por; L
belongs to C3°(V;). Similarly, if v is a Schwartz function, then ry, Au is smooth on Vj
hence k7 (ry, Au) is smooth on U;, but its extension by 0 will in general not be smooth on
M. This will however be the case if we know that supp(Au) € V.

With this discussion in mind, it is not hard to prove the following property which we
leave as an exercise.
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Exercise 7.1. Fiz cutoffs xi,xi € C§°(Vi) and a symbol a € S*™ (for some pu,m € R).
Check that

evikirv, (XiOpn(a)xi) ev, KTy,

maps C°(M) in C°(M).

All this means that, in (7.8), one has to consider that the (natural) extension and
restriction operators have been dropped from the notation for simplicity, but the exact
definition is as in (7.9).

The operators defined in (7.8) have the following properties.
Proposition 7.2. For all z € C\ [0,400) and all h € [0,1),
1. On(h,z) and Ry(h,z) map C*(M) into C*>°(M),
2. On(h,z) and Ry (h,z) have bounded closures on L?>(M) which are compact,

3. in the sense of operators on C*°(M),

(—=h*A, — 2)Qn(h, 2) = T + RN Ry (h, 2). (7.10)

Furthermore, there exist C = C(N) and M = M(N) such that

() \"
HRN(ha z)(pHLZ(M) <C d(Z,R+) H()DHLQ(M)7 (711>

for all z € C\ [0,400), all h € [0,1) and all p € C°(M).

Proof. Ttem 1 follows from Exercise 7.1 using the cutoffs xo i, x1,; and x2,; involved in (7.5)
and (7.6). Item 2 is a consequence of Corollary 5.12, since the symbols involved in (7.5)
and (7.6) are compactly supported in z and of negative order in £ (using that N > 1 by
(7.4) for Ry(h,z)) and using (1.10) to translate estimates on L?(R™) to L?(M) (see the
proof of Proposition 7.3 below for more details on this point). Item 3 is a consequence
of (7.1), (7.2) and (7.7). The estimate on Ry(h, z) follows from Theorem 5.1, the last
estimate of Theorem 6.8 with N =0 and (1.10) as above. O

The following proposition will be useful to deal with trace class estimates.

Proposition 7.3 (Further properties of Ry (h, z)). Assume that N > n. Then there exist
Hilbert Schmadt operators

A;in(hy2) s LA(M) — L*(R"), Bin(h): L*(M) — L*(R™)

such that,
Ru(h,z) = Ain(h,2)*Bin(h),
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and, for some constant C, M,

< C%W2<<du)>M, (7.12)

|Bin(h)||yg < Ch™2, (7.13)

‘ ‘A'LvN(h’ Z) | ‘HS

for all h €]0,1) and all z € C\ [0,400). In addition, the map
2z A;N(h, 2)

is continuous from C\ [0,400) to the Hilbert-Schmidt class.

Proof. For the sake of clarity, we use the precise definition (7.9) (ie the right hand side
of (7.9) rather than the left hand side) to distinguish properly what is defined on M and
what is defined on R™. We can then write each term of Ry (h, 2z) as

ev,k; (Tvix2,i0pn (TN 2 vi)Xi0ev;) kistu, = Ai n(h, 2)B; n(h)
with
Ain(hy2) = eu,kirvX2iOpn(rn,zv;) (@) /> (hD)N/?
and
Bin(h) = (hD)™N2(x)""y; pev;kiry,.
Using that ey, x}rv; x2,; maps L*(R") to L*(M) and more precisely that
HeUififT%XQ,z‘uHLz(M) Sllullpewny,  uw e SR

by (1.9), and similarly that x; gev; kiry, maps L?(M) into L?(R™), the result follows from
the fact that (hD)~N/2(z)~N/2 is Hilbert-Schmidt on L?(R™) by Theorem 5.10, and from
the fact that

X2i0ph (v o) (@) N2 (RD)Y? = Op(anz(h),  anz(h) € STNETN2

(hence is Hilbert-Schmidt too), by symbolic calculus and the fact that x2 7y .1, belongs
to S~V (the decay in z is due to xa,;). In both cases, we also use item 5 of Proposition
4.3. The dependence on z of A; y(h, z) follows from Theorem 3.14 and Theorem 6.8. [

7.2 Diagonalization of A,

In this section, we fix (for instance) N =1 and z = —1. By Proposition 7.2, one can find
h > 0 small enough and two operators @, R : C*°(M) — C°° (M), with bounded closures
Q, R on L?(M), such that

(—h*Ag+1)Q=1+R, (7.14)
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as well as
HEHL2(M)_>L2(M) <1/2. (7.15)

Moreover @ is compact on L2(M). All this follows by taking Q := Q(h,—1) and R =
hR(h,—1) with h small enough.

Proposition 7.4. 1. The operator I + R is invertible on L*(M).

2. The operator

K:=QI+R)"
maps C*°(M) in C*°(M).
3. As operators on C*(M),
(—h*Ag+ 1)K =1. (7.16)

Notice that item 1 is a direct consequence of (7.15). The main difficulty is to prove
item 2. We will use the following lemma.

Lemma 7.5 (Elliptic regularity on M). Letu € L*(M), f € C®°(M) and X\ € C. Assume
that, for all p € C>°(M),

((_Ag + >‘)¢7 U)LQ(M) = (¢7 f)LQ(M) (717)
Then u € C™(M).

Of course, this lemma means that if u € L?(M) is such that (—A, + A)u, taken in the
distributions sense, is smooth on M then u is smooth on M. However since we have not
discussed distributions on manifolds (and do not need to), we prefer to state the lemma
in the form above.

Proof. Let (U, V, k) be a coordinate chart and denote by Py the expression of the Laplacian
in these coordinates, ie Py = —k,Ayx*. According to Exercise 1.11, we can consider the
expression of v in local coordinates which we denote u,, € L (V). By specializing (7.17)
to ¢ € C§°(U) and using (7.17), we have

/u%+xmwmmammwm$:/mawmﬂmwwwm

where we recall that |g(x)|dx = k*dvol, (see 2.4). This implies that, in the distribution
sense on V C R",

(Py + A)*(lglux) = gl f,

where the formal adjoint is taken with respect to the Lebesgue measure dz, ie using (2.5),

e (@) — o (wlo(o)] 5 (1o @) )
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A simple calculation using the Leibniz rule shows that
(Py +X)* = Py + A+ By,

for some first order differential operator By (with smooth coefficients). Therefore, by the
smoothness of x,f and |g|, Theorem 6.7 imply that |g|u, is smooth. Since |g| does not
vanish and U is arbitrary, we obtain that u is smooth on M. [l

Proof of Proposition 7.4. Let us prove item 2. Fix f € C°°(M) and define
u=Kf.

We wish to show that w € C°°(M). By (7.14) and the formal selfadjointness of A, with
respect to dvoly (see (2.1)), we have

((_h2Ag + 1)¢a Q¢)L2(M) = (¢7 (I + R)w)LQ(M)v

for all ¢, € C*°(M). If we replace ¢ by a sequence 1); € C°°(M) which converges to
(I + R)~'f in L?(M), we obtain in the limit

((_hQAg + 1)¢7 U)LQ(M) = (¢> f)L2(M) (7'18)

Since this is true for all ¢ € C*°(M), Lemma 7.5 implies that u is smooth. Item 3 is then
a straightforward consequence of (7.18) since, as we know that v = K f is smooth, the
formal selfadjointness of A, yields

(&, (=h*Dg + DES) 120y = (&, P12 ): (7.19)
which implies the result since this holds for all ¢, f € C°°(M) which is dense in L?(M).
O
Proposition 7.6. 1. K is a compact selfadjoint operator on L*(M).
2. Ker(K) = {0}.
3. All eigenfunctions of K are smooth and are eigenfunctions of Ag.
4. 0(K) C (0,400).

Proof. In item 1, we know that K is compact, so it remains to prove the selfadjointness.
By density of C*°(M) in L*(M), it suffices to show that

(f1, Kf2) 2oy = (K f1, f2) 2 ()

for all fi, fo € C°°(M). This is a straightforward consequence of the formal selfadjointness
of Ay on C°°(M) and by taking f = fo and ¢ = K f1 in (7.19). Let us now prove item 2.
By (7.19), we have

((_hQAg + 1)¢7Kf)L2(M) = (¢7 f)L2(M)7 (720)
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for all ¢, f € C°(M). By density of C°°(M) in L?(M) and continuity of K on L?(M),
this is still true if f € L2(M). In particular, if f € Ker(K), one has (¢, 2 = 0 for all
¢ € C°(M) hence f = 0 that is precisely the result. Let us now prove item 3. Assume
that u € L%(M) satisfies

Ku = pu,

for some p € R. By item 2, we can assume that p # 0. Using (7.20), it is easy to check
that

((_hQAg +1- :U“_l)d)v u)L2(M) = 07
for all ¢ € C*°(M). Using Lemma 7.5, we see that u is smooth. Furthermore, this identity

then shows that
(=h?Ay+1—p Hu =0,

ie that u is an eigenfunction of A,. We finally prove item 4. By taking ¢ = K f in (7.20)
with f € C°°(M) and by the non positivity of A, (see (2.2)), we obtain

((_hQAg + 1)Kf7 Kf)L2(M) - (Kfv f)LQ(M) > 0,
from which the result follows by density of C°°(M) in L?(M). O

Proof of Theorem 2.2. By item 1 and 4 of Proposition 7.6, one can consider the
sequence
fo = p1 = p2 = - >0, lim p; =0
Jj—00
of eigenvalues of K. We let (e;);>0 be an associated orthonormal basis of eigenfunctions.
By item 3 of Proposition 7.6, they are smooth and eigenfunctions of A,. Furthermore,
using (7.16), we have
—Ajej = Ajej
with \j = h*Q(Mj_1 —1). The sequence ()j);>0 is non decreasing since (u;);>0 is non

increasing and positive. Furthermore, A; — 400. Since A; is non negative, as explained
after the statement of Theorem 2.2, the proof is complete. O

7.3 Proof of the Weyl law

The purpose of this section is to prove Theorem 2.5 which, as shown in Chapter 2, implies
the Weyl law stated in Theorem 2.3.
Let us fix f € C3°(R) and define h = A\~'/2 so that

AT F(=Dg /) = WU F(=hPAy).

The first tool to analyze this operator is Proposition 4.22 which allows to write

F=h2A,) = % /af(z)( C 1A, - 2) ' L(d2), (7.21)



82 CHAPTER 7. PROOF OF THE WEYL LAW

for (any hence) some almost analytic extension fe C3°(C) of f. The second tool is
the following approximation of the resolvent, where Qn(h, z) and Ry (h, z) are defined in
Proposition 7.2.

Lemma 7.7. For all h € (0,1] and z € C\ [0, +00),
(= h2A, —2) " = Qn(h,2) — WV (= h2A, — 2) "Ry (h, 2). (7.22)

We recall that the resolvent is well defined by Definition 4.20 which uses Theorem 2.2
proved in the previous section.

Proof. Let (e;)jen be an orthonormal basis of eigenfunctions of Ay and let £ be the space
of finite linear combinations of such eigenfunctions. Fix ¢ € £ and define

P = (—h*A, —2)" ¢,

which is still an element of £. We then fix an arbitrary ¢ € C°°(M) and test the identity
(7.10) against ® and 1. Using the easily verified fact that, since ¢ € &,

(_h2Ag - 2)(_h2Ag - Z)_IGZ) = ¢a

and the fact that the adjoint of (—h?A, — 2)~! is (—=h2A, — 2)~! by Proposition 2.4, we
get
(¢7 QN(ha Z)w)LQ(M) = (d)v (_h2Ag - Z)il('[ + RN(h7 Z))WLQ(M)

By density of & and C*°(M) in L?(M), the result follows. O

By combining the formula (7.21) and the decomposition (7.22), we see that, for any
N > 0, one obtains that

F(=h*Ag) = Fx(f, h) + BN Tn(f, h)

with
Fx(f,h) = % /a}?(z)QN(h, 2)L(dz)

and

Tn(f,h) = —% /af(z)( — h2A, — 2) 'R (h, 2)L(dz).

More precisely, the integrals converge in operator norm on L?(M) by Proposition 4.17 and
the a priori bounds (4.20) and (7.11).

Proposition 7.8. If N > n, Tn(f,h) is trace class and

TN (f, )|l SAT", he(0,1].
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Proof. By choosing N > n and using Proposition 7.3, the second term in the right hand
side of (7.22) is a sum of

WN (= h2A, —2)7!

Ain(h,2)"B;n(h)
where A; v (h, z)* is Hilbert-Schmidt hence so is ( — h2A, — z)flAivN(h, z)* by item 5 of
Proposition 4.3. Actually, by (4.20) and (7.12), one has

[N (= h2Ag — 2) M Ain(h 2|y S hN*%7<Z>M
g & ’ HS ~ |Im(z)\M“‘

We can then integrate in z, using that the space of Hilbert-Schmidt operators is complete

(see item 4 of Proposition 4.3) and the fact that 0f(z) has compact support and satisifes
10f(2)| < [Im(2)|M+!. We obtain that

< hT2, (7.23)

H/af(z)hN( — B30y —2) " Asn(h, 2) L(dz) .

Using next that ||B; x(h)|lus < h~™/? (see Proposition 7.3), we get the result. O

The following final proposition will complete the proof of Theorem 2.5.

Proposition 7.9. For all N, Fx(f,h) is trace class and

tr(Fw(.) = ) "voly (M) [ F(lnf)in+ O
We isolate first the following formula.
Exercise 7.10. We consider the operator (7.9) and assume additionally that
A = x1Bxo,
with xo, x1 € C3° (Vi) and xox1 = Xo, and also that B is trace class. Prove that
trr2an (eusk; (rv; Aey;) Kisty,;) = tr2@ny (xoB)-
Hint: use (and prove) that
(evz.ni*rUi) (eU,L./ifrVi) =1y,
as a multiplication operator on L*(R™).

Proof of Proposition 7.9. Recall the structure of Qn(h,z) which is given by (7.8) where
each Q; n(h, z) is of the form

N-1
X1i > W Opn(g-a—k-i)x0.
k=0
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where, on the support of x1;, one has

1

DP2i— %

q—2.275 =

with po; the principal symbol of —A, in the i-th chart, and

2k

¢ djg
2 ki = E —
i2Y2 — (p271 _ Z)1+]’
J:

with d;; polynomial in ¢ and independent of z (see Theorem 6.3). Using Proposition
4.18 (and an elementary Fubini argument which we omit) we obtain that

1 [~
27r/8f<Z)X1,iQ3h(Q—Q,z,i)L(dz) = X1iO0pn(f 0 p2,i), (7.24)
and similarly, for £ > 1, that
1 s 2k (_1)] ‘
o [0 s E@) = 3 S @iV e p). (29
i =

Since po ; is elliptic, f o p2,; has compact support in . Thanks to the compact support of
X1,i, we see that the pseudo-differential operators in the left hand sides of (7.24) and (7.25)
have compactly supported symbols on R?”. Therefore they are trace class by Theorem
5.13. Using (5.16) and Exercise 7.10, one can compute the traces and we see that the trace
of all terms corresponding to k > 1 have a trace of order h*~" = O(h!~"). This combined
with Proposition 7.8 shows that

tr(Fy(f,h)) =Y _(2mh)” X0,i(2) f (p2(x, €))dxdé + O(h'™™).
" ze]—' // '

It remains to remark that
2
p2i(x,€) = |Hi(x)¢|” = € - Hi(x)?¢,

where H;(x) is a square matrix which is the positive definite square root of (gg *(2)) (see
(2.3)) in the i-th chart. Notice that

det(H;(x)) = |gi(x)| = det(g]"(z)) /.

Thus, using the change of variable H;(z)¢ = n, we obtain

Cat) ™ [ [ xoi)aito)dode = @an) ™ [ [ o) (nPlgi(e)ldodn

= (2rh)” (/fn\ )/edvol

using (1.5), (2.4) and (7.2) in the last line. Summing over i and using (7.1), the result
follows. O



Appendix A

Proof of the Peetre Theorem

In this section, we give a proof of Proposition 1.13. It is based on the following technical
lemma.

Lemma A.1. Let V' be an open subset of R™ and Q : C§°(V) — C3°(V) a linear map
such that

supp(Q¢) C supp(y), ¢ € Cge(V). (A1)

Then, for allz € V and all C > 0, there exist a neighborhood W of x and an integer k > 0
such that, for all ¢ € C°(V') and ally € W,

0% (y) =0 forall |a| <k o 1(Qp)(y)| < C.

Proof. We argue by contradiction. There are then x € V and C' > 0 such that for all k € N
and all neighborhood W of z we can find y € W and ¢}, € C°(V') such that 0%pr(y) =0
for all |a| < k and |(Pyy)(y)| > C. In particular, we can choose a sequence of disjoint
balls B(yg, ) and a sequence ¢y, € C3°(V) such that

lye — 2] =0, %pr(yr) =0 for [af <k, [(Peor)(yr)| > C. (A.2)
Fix now x € C3°(B(0,1)) such that x =1 on B(0,1/2) and set

|
My = #(0) [ 18+1 < b x e s 0n i (A3)

We consider even indices £ = 2j. Using that 0%p2;(yr) = 0 for |a| < 24, the Taylor
formula allows to find 0 < d2; < min(ry;, 1) such that

max  sup  [07p2;(y)| < —(02;/2). (A.4)
IyI<3 yEB(y2j,02;) J
Then, if we define ¢; € C5°(B(y2;, 02;)) by
— Y
V;i(y) = w25 (y)x <y52j>
2j

85
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it is not hard to check, using the Leibnitz rule, (A.3) and (A.4), that
10l <277, Ja| <.
Therefore, the following function is smooth
DI
Jj=0

and belongs to C3°(V'). We then observe that, for each j, y2;41 ¢ supp(¥). Since the
support is preseved by @, we see that

Q¥ (y2j4+1) =0
hence that Q¥ (z) = 0, using the first property in (A.2). On the other hand, since ¥ and
9; coincide near ya;, we have Q(V — ¢2;)(y2;) = 0 and therefore

|Q¥(y2)| > C,

by the last property of (A.2). This implies that |Q¥(z)| > C which yields a contradiction.
U

Lemma A.2. The operator Q : C§°(V) = C§°(V) is continuous.

Proof. We prove first that Q is continuous from C5°(V) to CJ(V'), by contradiction. Then,
there exists K € V such that, for all j € N we can find ; such that

¥; € Gy (K), |Qvj|[Lee > j maxsup [0%¢;].
I<i K

|
Up to the replacement of ¢; by 1;/||Q;||L~ we can assume that
[|Qvj||Le =1 and Y; = 0 in C3°(K).

For each j, there exists x; € K such that |Qi;(x;)| = 1 and, by possibly taking subse-
quences, we may assume that x; converges to some x € K. By Lemma A.1, we can find
a neighborhood x, containing all x; for j large enough, and an integer £ such that, for all
p e Cge(V),

Poa) =0 forlal <k =  |Qp(x)| < 1/2.
(Choose C' = 1/2.) Let x € C§°(V) be equal to 1 near x (hence near all z; for j large)
and set

1 (0% (0%
() =i() = D 197 i(5) (= 2)"X().
lal<k
Then |Qy;(x;)| < 1/2 for all j large enough. On the other hand, if we set xja(:) =
(- —xj)*x(:), we have

Qoj(x) = Qubjay) — > éaawj(xj)(QXj,axxj)

| <k
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where the sequence (Qxj)(z;) is bounded, by boundedness of the sequence z; (expand
(- — xj)* according to the binomial formula), and where the term 0%v;(z;) go to zero.
This implies that lim;_,o [Qv;(x;)| < 1/2 which yields a contradiction.

To complete the proof, it suffices to observe that, for any multiindex o, 0“@Q) preserves
the supports hence is continuous from C§°(V) to CJ(V), ie Q is continuous from C§(V)

to C[‘)al(V) for all a. O

Proof of Proposition 1.13. We consider @) := . Px* which is support preserving. Fix
an open subset K € V. By continuity of @), there exists C' > 0 and m € N such that

[|Qe¢||ree < C max sup [0%p|,
lal<m g

for all ¢ € C§°(K). This estimate and the fact that @ is support preserving (ie non
increasing) implies that, for any = € K, the map

@ = (Qp)(x),

is a distribution of order at most m which is supported at . A classical result of Distri-
butions Theory shows that it is a linear combination of the Dirac measure at x and its
derivatives up to order m. In other words, there are (uniquely defined) complex numbers
aq () such that

(Qp)(z) = Y aa(2)d¢(x), (A.5)

la|<m

for all ¢ € C§°(K) and actually, by the support property, for all ¢ € C5°(V'). To complete
the proof, it suffices to show that the maps x — a,(x) are smooth. This is a local statement
so it suffices to show that these maps are smooth near any point of K. Pick xo € C5°(K)
which is equal to 1 near such a point x. Then, for § =0,

ap = (@Qxo)(x),  near z,
hence ag is smooth on a neighborhood W of x. Consider next the operator
Qoyp = Qp — aop,

which is continuous on C§°(W) to itself. For |8] = 1, we set x5(y) = v’x1(y), with
X1 € C3°(W) which is equal to 1 near z. By (A.5),

ag = QoXs, near ,

which, as above, implies that ag is smooth near x. Analogously, by considering successively
the operators Qp = Q — Z\a|<k aq(x)0%, k=1,...,m—1, one proves that all coefficients
of () are smooth near any x € K. This completes the proof. O
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