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Introduction

The spirit of these notes is to use the famous Weyl law (on the asymptotic distribution of
eigenvalues of the Laplace operator on a compact manifold) as a case study to introduce
and illustrate one of the many applications of the pseudo-differential calculus. The material
presented here corresponds to a 24 hours course taught in Toulouse in 2012 and 2013.
We introduce all tools required to give a complete proof of the Weyl law, mainly the
semiclassical pseudo-differential calculus, and then of course prove it! The price to pay is
that we avoid presenting many classical concepts or results which are not necessary for our
purpose (such as Borel summations, principal symbols, invariance by diffeomorphism or
the G̊arding inequality). More importantly, we neither discuss important subjects such as
dynamical aspects (relationship with the geodesic flow, the Egorov Theorem) nor quantum
mechanical interpretations. We hope to treat them in a future course.

The prerequisite is some familiarity with basic functional analysis, distributions theory
and Fourier transform on the Schwartz space, but we don’t assume any knowledge on
differentiable manifolds to which the first (short) chapter is devoted. These notes are self
contained but we include a bibliography with classical textbooks on microlocal analysis
for the interested reader.
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Chapter 1

Background on analysis on
manifolds

In this section we briefly introduce basic notions and notation about manifolds, integration
and differential operators thereon for readers with no background on these topics.

Definition 1.1. A smooth manifold of dimension n is a Hausdorff1 topological space
M which is σ-compact2 such that, for any m ∈M ,

1. there exists an homeomorphism κ : M ⊃ U → V ⊂ Rn, between an open neighbor-
hood U of m and an open subset V of Rn.

2. If κ1 : U1 → V1 and κ2 : U2 → V2 are as in item 1, then the map

κ2 ◦ κ−11 : κ1(U1 ∩ U2)→ κ2(U1 ∩ U2)

is smooth.

Note that item 1 is of topological nature hence has a clear sense on M . In item 2,
κ1(U1 ∩ U2) and κ2(U1 ∩ U2) are open subsets of Rn so the notion of smoothness is clear.
Note also that, in item 2, κ2 ◦ κ−11 is automatically a diffeomorphism, since its inverse
κ1 ◦ κ−12 is smooth as well by definition (swap the roles of κ1 and κ2).

An open subset U as in item 1 is called a coordinate patch (at m) and the triple
(U, V, κ) a coordinate chart or a local coordinates system (strictly speaking, the
coordinates are the n components of the map κ). A collection of charts (Ui, Vi, κi) such
that ∪iUi = M is called an atlas.

Exercise 1.2 (The 2-sphere. Part 1). Consider the 2-sphere S2,

S2 := {m = (x, y, z) ∈ R3 | x2 + y2 + z2 = 1}.
1in french: ”séparé”
2ie a countable union of compact sets
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1. Show that κ3 : m ∈ S2 ∩ {z > 0} 7→ (x, y) is a local chart onto an open subset of R2

to be determined. Compute κ−13

2. Same question with κ2 : m ∈ S2 ∩ {y > 0} 7→ (x, z).

3. Check directly that κ3 ◦ κ−12 is a diffeomorphism between open subset of R2.

4. Let V = (0, 2π)× (0, π). Determine the range U ⊂ S2 of

V 3 (θ, φ) 7→
(

sinφ cos θ, sinφ sin θ, cosφ
)
∈ S2.

Show that m ∈ U 7→ (θ, φ) ∈ V define local coordinates.

The notion of continuity is well defined on a topological space. In particular, we can
consider the space C0(M) of (complex valued) continuous functions on M . If M is not
compact, it is also useful to introduce the space C0

0 (M) of continuous functions vanishing
outside a compact set.

The manifold structure allows to define the notion of smoothness.

Definition 1.3. A function ϕ : M → R (or C) is smooth if, for all coordinate chart
(U, V, κ), the map ϕ ◦ κ−1 : V → R is smooth.

Exercise 1.4. Check that we obtain an equivalent definition if we consider the coordinate
charts of an atlas rather than all coordinate charts.

It is straightforward to check that smooth functions onM form a vector space, which we
denote by C∞(M). One also defines the subspace C∞0 (M) of smooth functions vanishing
outside a compact set. Note that, if M is compact, C∞(M) = C∞0 (M).

In the sequel, we shall use the following standard operatorial notation

κ∗ϕ = ϕ ◦ κ−1, κ∗ψ = ψ ◦ κ, (1.1)

for functions ϕ defined on U and functions ψ defined on V . κ∗ψ is called the pullback of
ψ (which is a function on U) and κ∗ϕ the pushforward of ϕ. Obviously,

κ∗κ∗ = I, κ∗κ
∗ = I,

as operators on functions on U and functions on V respectively.

Proposition 1.5 (Partition of unity). Assume that M is a smooth compact manifold and
that we are given a finite open cover of M ,

M =

N⋃
i=1

Wi, Wi open subset of M.
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Then there exist θi ∈ C∞0 (Wi), i = 1, . . . , N , such that

1 =
N∑
i=1

θi on M.

Furthermore, each θi can be taken of the form θi = ϕ2
i for some ϕi ∈ C∞0 (Wi).

A useful application of this result is that, when W1, . . . ,WN are coordinate patches,
each smooth function f on M can be written

∑
i θif , ie as a (finite) sum of functions

supported in coordinate patches.

Proof. Since each Wi is open, for any m ∈ Wi we can choose open subsets U im and Ũ im
contained in a coordinate patch at m such that

m ∈ U im b Ũ im ⊂Wi. (1.2)

Then, by compactness, we obtain a finite open cover of M

M =
N⋃
i=1

(
U imi1

∪ · · · ∪ U imini
)
. (1.3)

By pulling back cutoffs on Rn, we can select

φimik
∈ C∞0

(
Ũ imik

)
such that φimik

= 1 on U imik
and φimik

≥ 0 on M. (1.4)

We then introduce

Φi =

(
ni∑
k=1

φimik

)2

, Φ =

N∑
i=1

Φi.

Clearly Φi belongs to C∞0 (Wi) by (1.2) and (1.4). By (1.4), we also have Φi ≥ 1 on each
U i
mik

hence on their union (over k). Therefore (1.3) implies that Φ ≥ 1 on M so that we

can define

ϕi =
1√
Φ

ni∑
k=1

φimik
∈ C∞0 (Wi),

which obviously satisfies
∑N

i=1 ϕ
2
i = 1. �

For convenience, we assume in the sequel that M is compact.

Exercise 1.6. Show that C∞(M) is dense in C0(M) equipped with the norm ||ϕ||∞ =
supM |ϕ|.
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Definition 1.7. A smooth volume density on M is a non negative Borel measure dµ
such that, for any chart (U, V, κ), there exists a smooth positive function vκ such that∫

ϕdµ =

∫
κ(U)

ϕ ◦ κ−1(x)vκ(x)dx, (1.5)

for all ϕ ∈ C0
0 (U). Here dx stands for the Lebesgue measure on κ(U) ⊂ Rn.

In the sequel, we shall denote

κ∗dµ = vκ(x)dx, (1.6)

as a short hand for (1.5). Unlike (1.1), this is only a notation since we have not defined
the notion of pullback and pushforward for volume densities (and don’t wish to do so for
the moment).

Example (the 2-sphere. Part 2). According to the notation of Exercise 1.2, 4th question,
one defines a volume density on U ⊂ S2 by considering

κ∗dµ = sinφdφdθ, θ ∈ (0, 2π), φ ∈ (0, π), (1.7)

with κ(ω) = (θ, φ). This is the so called induced measure3 on S2. We point out that this
measure is natural to the extent that it allows to justify∫

R3

f(x, y, z)dxdydz =

∫ ∞
0

(∫
S2
f(rω)dµ(ω)

)
r2dr. (1.8)

Indeed, using the diffeomorphism

(r, θ, φ) 7→ (r sinφ cos θ, r sinφ sin θ, r cosφ) ,

which maps (0,∞)× (0, 2π)× (0, π) onto the complement of a Lebesgue negligible set in
R3 and whose Jacobian is −r2 sinφ, one has∫

R3

f(x, y, z)dxdydz =

∫ ∞
r=0

∫ 2π

θ=0

∫ π

φ=0
f(r sinφ cos θ, r sinφ sin θ, r cosφ) sinφdφdθr2dr,

which gives an explicit meaning to (1.8).

Exercise 1.8 (Change of coordinates). Show that if (U1, V1, κ1) and (U2, V2, κ2) are two
charts (on a general manifold M) with non empty U1 ∩ U2, then

vκ2 =
∣∣det d

(
κ1 ◦ κ−12

)∣∣ vκ1 ◦ (κ1 ◦ κ−12

)
,

on κ2(U1 ∩ U2).

3induced by the Lebesgue measure on R3
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Remark. By continuity and positivity of vκ in (1.5), we have the following useful property:
for all K b U , there exists C > 0 such that

C−1
∫
|κ∗ϕ|dx ≤

∫
|ϕ|dµ ≤ C

∫ ∣∣κ∗ϕ∣∣dx, (1.9)

for all continuous ϕ with supp(ϕ) ⊂ K.

Exercise 1.9. Show that if ϕ ∈ C0(M) and
∫
M |ϕ|dµ = 0 then ϕ ≡ 0.

This exercise implies that, for p ∈ [1,∞), the map ϕ 7→
( ∫

M |ϕ|
p
)1/p

is a norm on
C0(M). This allows to state the following definition.

Definition 1.10. Fix a smooth volume density dµ. The Lebesgue spaces Lp(M) :=
Lp(M,dµ) are

Lp(M) = closure of C∞(M) for the norm

(∫
|ϕ|pdµ

)1/p

,

for 1 ≤ p <∞.

In particular, this will allow us to use the Hilbert space L2(M) whose inner product
will be denoted by (., .)L2(M) and satisfies

(ϕ, φ)L2(M) =

∫
M
ϕφdµ,

at least for ϕ, φ ∈ C0(M). Note the following consequence of (1.9): for all compact subset
K of a given coordinate patch U , there exists C > 0 such that

C−1||κ∗ϕ||L2(Rn) ≤ ||ϕ||L2(M) ≤ C||κ∗ϕ||L2(Rn), (1.10)

for all continuous ϕ such that supp(ϕ) ⊂ K.

Exercise 1.11. Let u ∈ L2(M). Let K b U be a compact subset of a coordinate patch U .
Show that there exists a unique uκ ∈ L2(κ(K), dx) such that

(u, ϕ)L2(M) =

∫
uκ(x)

(
κ∗ϕ

)
(x)vκ(x)dx, ϕ ∈ C∞0 (K).

Definition 1.12. A differential operator on M is a linear map P : C∞(M)→ C∞(M)
such that

supp(Pϕ) ⊂ supp(ϕ), ϕ ∈ C∞(M).
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This is an abstract definition. The following proposition gives the explicit structure of
such operators and shows that we recover the usual notion of differential operator on an
open subset of Rn. This result is known as the Peetre Theorem.

Proposition 1.13. Let P be a differential operator on M and (U, V, κ) be a coordinate
chart. Then, for all K b U there exist m ∈ N and smooth functions aα ∈ C∞(κ(K)),
|α| ≤ m, such that

(Pϕ) ◦ κ−1(x) =
∑
|α|≤m

aα(x)∂αx
(
ϕ ◦ κ−1

)
(x), (1.11)

for all ϕ ∈ C∞0 (K).

Note that (1.11) can be written more compactly in operator form as

κ∗Pκ
∗ =

∑
|α|≤m

aα(x)∂αx , on C∞0
(
κ(K)

)
. (1.12)

For completeness, we prove Proposition 1.13 in Appendix A, though this proof will
play no role in the sequel and might be skipped in the first reading.



Chapter 2

The Weyl law: statement of the
problem

In this section, we state the Weyl law for the Laplace Beltrami operator on a compact
manifold and also record some related useful results. The detailed proofs will be given
later and this part can be seen as a motivation for the semiclassical pseudo-differential
calculus which will be investigated in the next sections.

To fully define the Laplace Beltrami operator (or Laplacian) on a manifold, one needs
to introduce the definition of a Riemannian metric which in turn requires to define objects
such as the tangent bundle and tensors. Although they are fundamental in differential
geometry, the precise knowledge of these objects is not necessary to state and prove the
Weyl law so we will only record the properties and formulas relative to the Laplacian and
the Riemannian volume density which we shall need. We refer for instance to [3] for an
introduction to Riemannian geometry.

In the sequel, we shall call a Riemannian manifold a smooth manifold M of dimen-
sion n on which there are a volume density dvolg and a differential operator ∆g with the
following properties:

1. ∆g is formally selfadjoint on C∞0 (M) with respect to dvolg, ie∫
M

∆gϕ φ dvolg =

∫
M
ϕ ∆gφ dvolg, ϕ, φ ∈ C∞0 (M). (2.1)

2. ∆g is non positive, ie∫
M

∆gϕ ϕ dvolg ≤ 0, ϕ ∈ C∞0 (M). (2.2)

Note that, by item 1, the left hand side of (2.2) is real valued.

3. In local coordinates: for every coordinate chart (U, V, κ), there exists a n × n
symmetric matrix (gjk(x)) with smooth and real valued coefficients on V such that(

gjk(x)
)
1≤j,k≤n is positive definite at every point x ∈ V, (2.3)

13
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and, if we set
|g(x)| := det(gjk(x))−1/2,

then

κ∗dvolg = |g(x)|dx, (2.4)

and

κ∗∆gκ
∗ =

n∑
j,k=1

|g(x)|−1 ∂

∂xj

(
|g(x)|gjk(x)

∂

∂xk

)

=
n∑

j,k=1

gjk(x)
∂2

∂xj∂xk
+ |g(x)|−1 ∂

∂xj

(
|g(x)|gjk(x)

) ∂

∂xk
. (2.5)

Exercise 2.1. Check directly that the operator defined by the right hand side of (2.5) is
symmetric with respect to |g(x)|dx on C∞0 (V ).

Example (the 2-sphere. Part 3). On the same coordinate patch as in Exercise 1.2 and
the example after Definition 1.7, the matrix (gjk(x)) is defined by(

1 0

0
(

sinφ
)−2) ,

hence

κ∗dvolg = sinφdφdθ,

κ∗∆gκ
∗ =

∂2

∂φ2
+

1

sin2 φ

∂2

∂θ2
+

cosφ

sinφ

∂

∂φ
.

Note in particular that κ∗dvolg is nothing but (1.7).

Theorem 2.2 (Diagonalization of ∆g). Let M be a compact Riemannian manifold. There
exists an orthonormal basis (ej)j∈N of L2(M) = L2(M,dvolg) of C∞ functions such that

−∆gej = λjej ,

with
0 ≤ λ0 ≤ λ1 ≤ λ2 ≤ · · · , lim

j→∞
λj = +∞.

Note that once the existence of smooth eigenfunctions is established, it is clear that
the eigenvalues must be nonnegative since, by (2.2),

λj = (−∆gej , ej)L2(M) ≥ 0.

Proof of Theorem 2.2. See Section 7.2.
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The functions ej are called the eigenfunctions of ∆g and the real numbers λj the
eigenvalues of −∆g. One can then define the couting function of eigenvalues by

N(λ) := #{j ∈ N | λj ≤ λ},

whose asymptotic behaviour is the purpose of the Weyl law. Note that N(λ) is finite for
each λ ∈ R since λj goes to infinity as j →∞.

Theorem 2.3 (Weyl law). If M is a compact Riemannian manifold of dimension n, then

N(λ) ∼ (2π)−nωnvolg(M)λn/2, λ→ +∞,

where ωn is the volume of the unit ball in Rn and volg(M) =
∫
M dvolg.

In the rest of this section, we introduce the functional calculus associated to ∆g and
explain its role in the proof of Theorem 2.3. This will in particular motivate the analysis
of functions of semiclassical operators which will be studied later.

Let us denote by B(R) the algebra of bounded Borel functions on R (actually, piecewise
continuous will be sufficient here). For any u ∈ L2(M), which can be uniquely written as

u =
∑
j∈N

ujej , uj = (ej , u)L2(M),

with convergence in L2(M), and any f ∈ B(R), we set

f(−∆g)u :=
∑
j∈N

f(λj)ujej . (2.6)

Obviously this defines an element in L2(M) since it is a sum of orthogonal terms such that∑
j

|f(λj)uj |2 ≤ sup
R
|f |2

∑
j

|uj |2 =
(

sup |f |
)2||u||2L2(M) <∞. (2.7)

It is also easy to check that the map u 7→ f(−∆g)u is linear on L2(M) and continuous
since, by (2.7),

||f(−∆g)||L2(M)→L2(M) ≤ sup
R
|f |. (2.8)

In the following proposition, L(L2(M)) denotes the algebra of bounded operators on
L2(M).

Proposition 2.4. The map

B(R) 3 f 7→ f(−∆g) ∈ L(L2(M)) (2.9)

is a continuous morphism of algebras. In particular

f1(−∆g)f2(−∆g) = (f1f2)(−∆g),
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for all f1, f2 ∈ B(R). Furthermore,

f(−∆g)
∗ = f(−∆g),

for all f ∈ B(R). In particular, if f is real valued then f(−∆g) is selfadjoint. Finally

f ≥ 0 =⇒ f(−∆g) ≥ 0. (2.10)

Proof. Left to the reader as an exercise. �

The morphism (2.9) is usually called the functional calculus of the Laplacian. Of
course, it has nothing to do with the particular structure of the operator ∆g and only uses
that it can be diagonalized in a orthonormal basis with real eigenvalues.

The interest of the functional calculus in proof of the Weyl law is the following. Let
1[0,1] be the characteristic function of [0, 1]. Then, for all λ > 0, 1[0,1](−∆g/λ) is a finite
rank (selfadjoint) operator. According to 2.6, it is given by

1[0,1](−∆g/λ)u =
∑

λj∈[0,λ]

(ej , u)L2(M)ej .

The key observation is that

N(λ) = tr
(
1[0,1](−∆g/λ)

)
, (2.11)

which follows from

tr
(
1[0,1](−∆g/λ)

)
=
∑
j∈N

1[0,1](λj/λ) =
∑

λj∈[0,λ]

1. (2.12)

Here tr denotes the trace of the operator which, in the present situation where the operator
has finite rank and is selfadjoint, is the well defined sum of its (non zero) eigenvalues. We
shall recall the notion of trace for operators in infinite dimension in Section 4.2 and see
that the present formula coincides with the general definition (see Definition 4.11).

By (2.11), the proof of the Weyl law will be reduced to the computation of trace
asymptotics of functions of ∆g. Analyzing the orthogonal projection 1[0,1](−∆g/λ) is a
difficult question but, as we shall see, studying smooth functions of ∆g will be sufficient.
We shall prove the following result.

Theorem 2.5. Let f ∈ C∞0 (R). Then

lim
λ→+∞

λ−n/2tr
(
f(−∆g/λ)

)
= (2π)−nvolg(M)

∫
Rn
f(|η|2)dη.

Proof. See Section 7.3.

Using this theorem, it is now easy to prove Theorem 2.3 by a classical monotonicity
argument.
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Proof of Theorem 2.3. Fix f−, f+ ∈ C∞0 (R) such that

f− ≤ 1[0,1] ≤ f+. (2.13)

By (2.10) and (2.11), we have

tr
(
f−(−∆g/λ)

)
≤ N(λ) ≤ tr

(
f+(−∆g/λ)

)
. (2.14)

This can also be checked directly by remarking that the eigenvalues of the operators(
f+ − 1[0,1])(−∆g/λ) and

(
1[0,1] − f−)(−∆g/λ) are non negative. Multiplying (2.14) by

λ−n/2 and then taking the liminf in the first inequality and the limsup in the second one,
Theorem 2.5 implies that

CM

∫
f−(|η|2)dη ≤ lim inf

λ→∞
λ−n/2N(λ) ≤ lim sup

λ→∞
λ−n/2N(λ) ≤ CM

∫
f+(|η|2)dη, (2.15)

where CM = (2π)−nvolg(M). By a standard approximation procedure whose details are
left to the reader, we can select sequences f−,k, f+,k ∈ C∞0 (R) vanishing outside a fixed
compact neighborhood of [0, 1] (e.g. [−1, 2]), uniformly bounded, satisfying (2.13) and
such that

lim
k→∞

f−,k = 1(0,1), lim
k→∞

f+,k = 1[0,1].

Since the sphere {|η| = 1} has zero Lebesgue measure, we note that both limits of f−,k(|η|2)
and f+,k(|η|2) coincide with the characteristic function of the unit ball almost everywhere.
By using (2.15) for f−,k, f+,k and then by letting k go to infinity, we obtain

lim inf
λ→∞

λ−n/2N(λ) = lim sup
λ→∞

λ−n/2N(λ) = CM

∫
|η|<1

dη,

which completes the proof. �
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Chapter 3

Pseudodifferential calculus

3.1 The Fourier transform

In this short section, we briefly review basic facts about the Fourier transform. We fix in
particular some notation and conventions (e.g. on the definition of the Fourier transform)
but also introduce the notion of seminorms which will be of constant use in this chapter.

In the sequel, we will extensively use the japanese bracket 〈x〉 defined by

〈x〉 = (1 + |x|2)1/2,

for x ∈ Rn.

Definition 3.1. The Schwartz space S = S(Rn) is the set of smooth functions Rn → C
such that, for all α ∈ Nn and all N ≥ 0,

|∂αxu(x)| ≤ CαN 〈x〉−N , x ∈ Rn.

Exercise 3.2. Prove that u ∈ S if and only if, for all α, β ∈ Nn,

|xβ∂αxu(x)| ≤ Cαβ.

It is convenient to introduce the following so called seminorms

N SN (u) := max
|α|≤N

sup
Rn
〈x〉N |∂αxu(x)|,

for N ≥ 0 and u ∈ S. They are actually norms on S, however the natural topology of S
is not given by a single norm but by the whole family of (semi)norms

(
N SN
)
N

. It will not
be necessary to describe in detail this topology (so called Fréchet space topology) but we
will need many estimates involving such seminorms which is the reason why we introduce
them.

Seminorms allow to define convergent sequences in S as follows: given u ∈ S and
(uj) a sequence in S,

uj → u in S def⇐⇒ for all N ≥ 0, N SN
(
uj − u

)
→ 0.

19
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Definition 3.3. For u ∈ S, the Fourier transform of u is

û(ξ) =

∫
Rn
e−iy·ξu(y)dy, ξ ∈ Rn.

In the following proposition, we give a first illustration of the use of seminorms in
continuity issues on the Schwartz space.

Proposition 3.4. The map u 7→ û is linear from S to S and continuous in the following
sense: for all N ≥ 0 there exists C > 0 and M > 0 such that

N SN (û) ≤ CN SM (u), u ∈ S.

Proof. The smoothness of û follows by standard differentiation under the integral sign.
Furthermore

ξα∂βξ û(ξ) = i|α|−|β|
∫
Rd
∂αy
(
e−iy·ξ

)
yβu(y)dy

= (−i)|α|+|β|
∫
Rd
e−iy·ξ∂αy

(
yβu(y)

)
dy

the second line being obtained by integrations by part. Using that, for some M and C
depending on α and β,

〈y〉d+1|∂αy
(
yβu(y)

)
| ≤ CN SM (u),

we obtain
|ξα|
∣∣∂βξ û(ξ)

∣∣ ≤ CN SM (u), u ∈ S.

By remarking that, for each integer N ≥ 0,

〈ξ〉N ≤ CN
∑
|α|≤N

|ξα|, ξ ∈ Rd,

the result follows. �

Exercise 3.5. Using Proposition 3.4, check that if uj → u in S then ûj → û in S.

We recall without proof the following Fourier inversion formula

u(x) = (2π)−n
∫
eix·ξû(ξ)dξ, (3.1)

for all u ∈ S and x ∈ Rn. Using this formula, we obtain the following identities which will
motivate the definition of pseudo-differential operators in the next section. By differenti-
ation under the integral sign, we have

∂ju(x) = (2π)−n
∫
eix·ξiξj û(ξ)dξ, (3.2)
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meaning that, up the factor i, differentiation with respect to xj corresponds to multipli-
cation by ξj on the Fourier side. To deal more easily with the i factor, one introduces

Dj =
1

i
∂j , D = (D1, . . . , Dn), (3.3)

so that a more general form of (3.2) is

Dαu(x) = (2π)−n
∫
eix·ξξαû(ξ)dξ. (3.4)

3.2 Definition of pseudo-differential operators

To motivate the definition of pseudo-differential operators, we consider first a differential
operator

P =
∑
|α|≤m

aα(x)Dα, (3.5)

which we write in term of Dα (recall (3.3)) rather than ∂α. If we set

p(x, ξ) :=
∑
|α|≤m

aα(x)ξα, (3.6)

which is a polynomial in ξ with x dependent coefficients, then (3.4) implies that

Pu(x) =
∑
|α|≤m

aα(x)(2π)−n
∫
eix·ξξαû(ξ)dξ,

=
∑
|α|≤m

(2π)−n
∫
eix·ξaα(x)ξαû(ξ)dξ,

that is

Pu(x) = (2π)−n
∫
eix·ξp(x, ξ)û(ξ)dξ. (3.7)

The function p is called the symbol of the operator P . Pseudo-differential operators are a
generalization of differential operators in that they are defined by symbols which are non
necessarily polynomials with respect to ξ. Let us introduce the symbols we shall consider.

Definition 3.6. For m,µ ∈ R, the space Sµ,m = Sµ,m(Rn × Rn) is the set of smooth
functions a : R2n → C such that, for all α, β ∈ Nn,

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cαβ〈x〉µ〈ξ〉m−|β|, x, ξ ∈ Rn.

When µ = 0, we use the standard notation

Sm := S0,m.
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Exercise 3.7. 1. Show that, in (3.6), p ∈ Sm iff the functions aα are bounded and all
their derivatives are bounded.

2. Let f be a smooth function non vanishing on Rd. Show that, for γ 6= 0,

∂γ
(

1

f

)
= linear combination of

∂γ1f · · · ∂γjf
f1+j

,

with 1 ≤ j ≤ |γ|, γ1 + · · ·+ γj = γ and γ1, . . . , γj 6= 0.

3. Show that if a ∈ Sm (with m ∈ R) satisfies |a(x, ξ)| ≥ c〈ξ〉m for some c > 0 (one
says that a is elliptic) then 1/a ∈ S−m.

We can now define pseudo-differential operators.

Definition 3.8. Given u ∈ S and a ∈ Sµ,m, we set

a(x,D)u(x) = (2π)−d
∫
Rd
eix·ξa(x, ξ)û(ξ)dξ.

The operator a(x,D) is called the pseudo-differential operator of symbol a and will
also be denoted by

Op(a) := a(x,D).

Examples. 1) By (3.7), differential operators are pseudo-differential ones with symbols
which are polynomial with respect to ξ.

2) The Fourier inversion formula reads

Op(1) = I. (3.8)

3) If z ∈ C \ [0,+∞) and if we set az(ξ) =
1

|ξ|2 − z
, then az ∈ S−2 (see Exercise 3.7) and,

by (3.7),

(−∆− z)Op(az) = I,

which means (at least formally) that the inverse of −∆−z is a pseudo-differential operator.

The third example is an important motivation for the introduction of pseudo-differential
operators for it shows that they are convenient tools to analyze (and construct) the inverse
of an elliptic operator (ie an operator with an elliptic symbol, in the sense of item 3 of
Exercise 3.7). However, this example is of very special nature since it deals with constant
coefficients operators (ie x independent). In this case, finding an inverse is an easy task.
We shall see in Chapter 6 how pseudo-differential operators allow to analyze the inverse
of general (x dependent) elliptic operators, including operators on manifolds.

To give a first flavour of what happens for operators with variable coefficients, we
suggest the reader to work out the following exercise.
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Exercise 3.9. Let V : Rn → R be smooth and such that ∂αV is bounded for all α. Set

p(x, ξ) = |ξ|2 + V (x) + i, a(x, ξ) =
(
|ξ|2 + V (x) + i

)−1
.

1. Show that p ∈ S2, a ∈ S−2.

2. Check that p(x,D) = −∆ + V (x) + i.

3. Show that there exists r ∈ S−1 such that, for all u ∈ S,

p(x,D)a(x,D)u = u+ r(x,D)u.

The last question shows that, in general, Op(p)Op(1/p) is not the identity, which only
happens for constant coefficients operators. There is a corrective term Op(r). We shall
see in the sequel how the pseudo-differential calculus allows to deal with such remainders
and is a more robust tool for PDEs than the pure Fourier analysis.

Before entering the core of the subject in the next section, it remains to define semi-
classical pseudo-differential operators.

Definition 3.10 (Semiclassical operators). For a ∈ Sµ,m and h ∈ (0, 1], we set

Oph(a) = a(x, hD) := Op(ah)

with ah(x, ξ) := a(x, hξ).

The interest of this definition, compared to Definition 3.8, will be clearer below when
we shall control important estimates with respect to h. However, we can already motivate
its introduction as follows. Consider a general differential operator P as in (3.5) and split
its symbol (3.6) into homogeneous pieces

p =
m∑
j=0

pm−j , pm−j(x, ξ) =
∑

|α|=m−j

aα(x)ξα.

Obviously, we have pm−j(x, hξ) = hm−jpm−j(x, ξ) hence

hmp(x, ξ) =
m∑
j=0

hjpm−j(x, hξ),

which implies that

hmP =

m∑
j=0

hjOph(pm−j). (3.9)

Now recall that one of our main goals is to prove Theorem 2.5 which involves the operator
∆g/λ where λ is large. By setting h2 = 1/λ, we see from (3.9) (and the expression (2.5)
of ∆g in local coordinates) that

∆g/λ = h2∆g,

is, in local coordinates, a sum of semiclassical operators.
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3.3 Symbolic calculus

In this section, we will see that pseudo-differential operators form a class which is stable
under composition and adjunction. We work in the semiclassical setting for two reasons:
it will be important for the final application to the Weyl law and it covers the ‘standard’
calculus corresponding to h = 1.

As we did for the Schwartz space in Section 3.1, it is important to introduce suitable
seminorms on Sµ,m. We will use

N Sµ,m

N (a) = max
|α+β|≤N

sup
R2n

〈x〉−µ〈ξ〉−m+|β|∣∣∂αx ∂βξ a(x, ξ)
∣∣.

When there is no confusion, we shall drop the dependence on Sm,µ from the notation and
write NN for N Sm,µ

N .

Exercise 3.11. Let m1,m2, µ1, µ2 be real numbers such that m1 ≤ m2 and µ1 ≤ µ2.

1. Show that Sµ1,m1 ⊂ Sµ2,m2.

2. Show that this embedding is continuous ie that, for all N2 ∈ N, there exist C and N1

such that

N Sµ2,m2

N2
(a) ≤ CN Sµ1,m1

N1
(a),

for all a ∈ Sµ1,m1.

Exercise 3.12. Let m1,m2, µ1, µ2 be real numbers.

1. Show that if a ∈ Sµ1,m1 and b ∈ Sµ2,m2 then ab ∈ Sµ1+µ2,m1+m2.

2. Show that the map (a, b) 7→ ab is continuous ie that, for all N ∈ N, there exist C
and N1, N2 such that

N Sµ1+µ2,m1+m2

N (ab) ≤ CN Sµ1,m1

N1
(a)N Sµ2,m2

N2
(b),

for all a ∈ Sµ1,m1 and b ∈ Sµ2,m2.

3. Show similarly that, for fixed α, β ∈ Nn, the map a 7→ ∂αx ∂
β
ξ a is continuous from

Sµ1,m1 to Sµ1,m1−|β|.

The following proposition mainly states that pseudo-differential operators are (contin-
uous) linear maps on S.

Proposition 3.13. For all h ∈ (0, 1], all a ∈ Sµ,m, Oph(a) maps S into itself. Actually,
for fixed h, the bilinear map

(a, u) 7→ Oph(a)u

is continuous from Sµ,m × S to S.
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Proof. See Proposition 3.22.

This proposition is useful for it shows for instance that one can compose two pseudo-
differential operators, as endomorphisms on the Schwartz space. The continuity property
will be used to define the action of pseudo-differential operators on temperate distributions
by duality (see Definition 3.18). However, we already point out that the most important
mapping properties of pseudo-differential operators for the applications concern L2 or
Sobolev spaces rather than the Schwartz space. This will be investigated in Section 5.1.

We now state the main results of this chapter, which will be refered to as symbolic
calculus, and which describe the composition and the adjoint of pseudo-differential op-
erators.

Theorem 3.14 (composition). If a ∈ Sµ1,m1 and b ∈ Sµ2,m2, then

Oph(a)Oph(b) = Oph
(
(a#b)(h)

)
where, if we set

(a#b)j =
∑
|α|=j

1

α!
∂αξ aD

α
x b,

we have for all J ,

(a#b)(h) =
∑
j<J

hj(a#b)j + hJr#J (a, b, h),

for some
r#J (a, b, h) ∈ Sµ1+µ2,m1+m2−J .

More precisely, the map (a, b) 7→ r#J (a, b, h) is bilinear and equicontinuous in the following
sense: for all seminorm NN in Sµ1+µ2,m1+m2−J , there exist C > 0 and seminorms N Sµ1,m1

N1

and N Sµ2,m2

N2
such that

NN (r#J (a, b, h)) ≤ CN Sµ1,m1

N1
(a)N Sµ2,m2

N2
(b),

for all a ∈ Sµ1,m1, all b ∈ Sµ2,m2 and h ∈ (0, 1].

Proof. Consequence of Proposition 3.30.

The equicontinuity is the fact that the constant C and the seminorms are independent
of h. We also note that it is straightforward to check the continuity of the bilinear map

(a, b) 7→ (a#b)j ∈ Sµ1+µ2,m1+m2−j

on Sµ1,m1 × Sµ2,m2 , by using Exercise 3.12. In particular, the map

(a, b) 7→ (a#b)(h)

is equicontinuous.
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Exercise 3.15. 1. Check that if a and b are polynomial in ξ, this theorem follows
directly from the Leibniz rule.

2. Show that if a and b do not depend on x, then Oph(a)Oph(b) = Oph(ab).

We next consider the adjoint. To this end, we denote

(u, v) :=

∫
Rn
u(x)v(x)dx, u, v ∈ S, (3.10)

which is the inner product of L2(Rn), but restricted to Schwartz functions.

Theorem 3.16 (adjoint). For all a ∈ Sµ,m and u, v ∈ S, we can write(
u,Oph(a)v

)
=
(
Oph(a∗(h))u, v

)
where, if we set

a∗j :=
∑
|α|=j

1

α!
∂αξ D

α
xa,

we have for all J ,

a∗(h) =
∑
j<J

hja∗j + hJr∗J(a, h)

for some
r∗J(a, h) ∈ Sµ,m−J .

More precisely, the map a 7→ r∗J(a, h) is antilinear and equicontinuous in the sense that,
for all seminorm NN in Sµ,m−J , there exist C > 0 and a seminorm N Sµ,m

N1
such that

NN (r∗J(a, h)) ≤ CN Sµ,m

N1
(a), (3.11)

for all a ∈ Sµ,m and h ∈ (0, 1].

Proof. Consequence of Proposition 3.25.

Similarly to Theorem 3.14, here again the symbols of the expansion depend continu-
ously on a: for all j, the map

a 7→ a∗j ∈ Sµ,m−j

is antilinear and continuous on Sµ,m. This follows from Exercise 3.12.

In a formal way, Theorem 3.16 means that

Oph(a)∗ = Oph(a∗(h)). (3.12)

This is formal since the adjoint on the left hand side has not been properly defined.
Nevertheless, we will use freely this notation in the sequel (to be completely rigorous one
may consider (3.12) as a definition of Oph(a)∗ and then Theorem 3.16 states that this
definition is compatible with the usual definition of an adjoint).
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Exercise 3.17. 1. If a is polynomial in ξ, check that Theorem 3.16 is a direct conse-
quence of the Leibniz formula.

2. If a does not depend on x, show that(
u,Oph(a)v

)
=
(
Oph(a)u, v), u, v ∈ S.

Remark. Both Theorem 3.14 and 3.16 have been stated in the semi-classical framework,
but they hold in particular for h = 1.

One useful application of Proposition 3.13 and Theorem 3.16 is to allow to define the
action of a pseudo-differential operator on a temperate distribution.

Let us denote by 〈., .〉S′,S the bilinear pairing between S ′ and S. For a temperate
distribution u ∈ S ′ and a Schwartz function S, we then set

(u, ϕ) := 〈u, ϕ〉S′,S . (3.13)

This extends the definition of (3.10) to the case when u is a distribution (recall that if u
is a function, then 〈u, v〉S′,S =

∫
uv).

Definition 3.18. If u ∈ S ′ and a ∈ Sµ,m, one defines Oph(a)u to be the temperate
distribution given by (

Oph(a)u, ϕ
)

:=
(
u,Oph(a∗(h))ϕ

)
, ϕ ∈ S.

We note that this definition makes sense, ie indeed defines a temperate distribution,
since ∣∣(Oph(a)u, ϕ

)∣∣ =
∣∣(u,Oph(a∗(h))ϕ

)∣∣ ≤ CuN SNu (Oph(a∗(h))ϕ)

≤ C ′u,hN SN ′u,h (ϕ)

where the first inequality follows from the fact that u ∈ S ′ and the second one from
Proposition 3.13.

Exercise 3.19. Check that if u ∈ S then Definition 3.18 coincides with the previous
definition of a pseudo-differential operator acting on S.

3.4 Proofs

We shall derive the results of Section 3.3 from a more general framework described in
this section whose main results are Propositions 3.25 and 3.30. The interest of these
propositions is to give sufficiently explicit formulas for the remainders in the symbolic
calculus theorems. They allow not only to prove easily Theorems 3.14 and 3.16, but also
to extend those theorems to other classes of symbols.



28 CHAPTER 3. PSEUDODIFFERENTIAL CALCULUS

Definition 3.20. Let ν ∈ R. The space Aν = Aν(R2n) is the space of smooth functions
R2n → C such that

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cαβ(1 + |x|+ |ξ|)ν ,

or equivalently such that the following (semi)norms are finite for all N

NAνN (a) := max
|α|+|β|≤N

sup
R2n

(1 + |x|+ |ξ|)−ν |∂αx ∂
β
ξ a(x, ξ)|.

As before, the seminorms allow to define the notion of convergent sequence by

aj → a in Aν def⇐⇒ for all N ≥ 0, NAνN

(
aj − a

)
→ 0.

The classes Aν contain the classes Sµ,m in the following sense.

Proposition 3.21. Fix m,µ ∈ R. Then

Sµ,m ⊂ A|µ|+|m|,

continuously in the following sense: for all N ≥ 0, there exist C > 0 and M > 0 such that

NA|µ|+|m|N (a) ≤ CN Sµ,m

M (a),

for all a ∈ Sµ,m.

Proof. It simply follows from the fact that

〈x〉µ〈ξ〉m ≤ C(1 + |x|+ |ξ|)|µ|+|m|

and thus
(1 + |x|+ |ξ|)−|µ|−|m||a(x, ξ)| ≤ C〈x〉−µ〈ξ〉−m|a(x, ξ)|,

which implies the estimate with N = M = 0. Higher order seminorms are treated similarly
using that 〈ξ〉m−|β| ≤ 〈ξ〉m. �

Conformally to Definition 3.8, we still denote

Op(a)u = a(x,D)u(x) = (2π)−n
∫
Rn
eix·ξa(x, ξ)û(ξ)dξ,

for u ∈ S and a ∈ Aν .

Proposition 3.22. The map (a, u) 7→ Op(a)u is bilinear from Aν×S to S and continuous
in the sense that, for all N ≥ 0, there exist C > 0 and M,M ′ ≥ 0 such that

N SN (a(x,D)u) ≤ CNAνM (a)N SM ′(u),

for all u ∈ S and all a ∈ Aν .
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Proof. The smoothness of a(x,D)u follows by differentiation under the integral sign. By
integration by part and the Leibniz rule, we have

xα∂βxa(x,D)u =
∑
γ≤β

Cγβ i
|γ|−|α|

∫
Rn
∂αξ
(
eix·ξ

)
(∂β−γx a)(x, ξ)ξγ û(ξ)dξ

=
∑
γ≤β

Cγβ i
|γ|+|α|

∑
δ≤α

Cδα

∫
Rn
eix·ξ(∂β−γx ∂α−δξ a)(x, ξ)∂δξ

(
ξγ û(ξ)

)
dξ.

Now, using the rough estimate

(1 + |x|+ |ξ|)ν ≤ C〈x〉|ν|〈ξ〉|ν|,

we observe that for some M and C depending on α, β, we have∣∣∂β−γx ∂α−δξ a(x, ξ)
∣∣ ≤ C〈x〉|ν|〈ξ〉|ν|NAνM (a), (3.14)

for all a ∈ Aν and all γ ≤ β, δ ≤ α. On the other hand, by Proposition 3.4, there exist C
and M ′ such that

|∂δξ
(
ξγ û(ξ)

)
| ≤ C〈ξ〉−n−1−|ν|N SM ′(u), (3.15)

for all u ∈ S and all γ ≤ β, δ ≤ α. Using (3.14) and (3.15), we obtain

|xα|
∣∣∂βxa(x,D)u

∣∣ ≤ C〈x〉|ν|NAνM (a)N SM ′(u),

which, as in end of the proof of Proposition 3.4, implies that, for each integer N and each
multiindex β, there are C,M,M ′ such that

〈x〉N−|ν|
∣∣∂βxa(x,D)u

∣∣ ≤ CNAνM (a)N SM ′(u).

Since this is true for all N , the same estimate holds with 〈x〉N instead of 〈x〉N−|ν| in the
left hand side, after the possible replacement of C, M and M ′ by larger values. This
completes the proof. �

Exercise 3.23. Check, using Proposition 3.22, that if aj → a in Aν and uj → u in S,
then Op(aj)uj → Op(a)u in S.

We now state a very useful lemma saying that any symbol in Aν can be approached by
a sequence in C∞0 (R2n) which is bounded in Aν and converges to a in Aν′ for all ν ′ > ν.

Lemma 3.24. Let χ ∈ C∞0 (R2n) such that χ ≡ 1 near 0. For a ∈ Aν , define

aj(x, ξ) := a(x, ξ)χ(x/j, ξ/j), j ≥ 1.

Then,
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1. for all seminorm NN of Aν , there exists C such that

NN (aj) ≤ CNN (a), j ≥ 1, a ∈ Aν .

2. For all ν ′ > ν, aj → a in Aν′ as j →∞.

Proof. By the Leibniz rule, ∂αx ∂
β
ξ aj(x, ξ) is equal to

χ(x/j, ξ/j)∂αx ∂
β
ξ a(x, ξ) +

∑
γ≤α, δ≤β
γ+δ 6=0

j−|γ|−|δ|CγαC
δ
β(∂γx∂

δ
ξχ)(x/j, ξ/j)∂α−γx ∂β−δξ a(x, ξ).

In particular, using the boundedness of χ and its derivatives, we get for each fixed N and
|α+ β| ≤ N ,

|∂αx ∂
β
ξ aj(x, ξ)| ≤ C(1 + |x|+ |ξ|)νNAνN (a),

from which the first item follows. To prove the second one, we observe that the previous
computation yields

N ν′
N (a− aj) ≤ max

|α+β|≤N
sup
R2d

|1− χ(x/j, ξ/j)|(1 + |x|+ |ξ|)−ν′
∣∣∂αx ∂βξ a(x, ξ)

∣∣+ Cj−1NAν
′

N (a)

. jν−ν
′
+ j−1,

using that 1− χ(x/j, ξ/j) is supported in |x|+ |ξ| & j and the fact that

(1 + |x|+ |ξ|)−ν′
∣∣∂αx ∂βξ a(x, ξ)

∣∣ ≤ (1 + |x|+ |ξ|)ν−ν′NAνN (a).

The proof is complete. �

Proposition 3.25. Fix ν ∈ R. For all a ∈ Aν and all u, v ∈ S, one has(
v,Op(a)u

)
L2 =

(
Op(a∗)v, u

)
L2 ,

where, for all K ≥ 0,

a∗ =
∑
|α|≤K

1

α!
Dα
x∂

α
ξ a+ rK , (3.16)

and the antilinear map a 7→ rK is continuous from Aν to Aν . The structure of rK is as
follows: for all integers M1,M2 such that

2M1 > n+ |ν|, 2M2 > n+ |ν|, (3.17)

there exists a family of functions (bα,γ1,γ2) indexed by

|α| = K + 1, |γ1| ≤ 2M1, |γ2| ≤ 2M2, (3.18)
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such that

|bα,γ1,γ2(t, z, ζ)| ≤ C〈z〉−2M1〈ζ〉−2M2 , t ∈ (0, 1), z ∈ Rn, ζ ∈ Rn, (3.19)

and such that for all a ∈ Aν

rK(x, ξ)=
∑

α,γ1,γ2

∫ 1

0

∫ ∫
R2n

e−iz·ζ
(
∂α+γ1x ∂α+γ2ξ a

)
(x+ tz, ξ + ζ)bα,γ1,γ2(t, z, ζ)dzdζdt.(3.20)

We split the proof of this proposition into several lemmas.

Lemma 3.26 (Peetre’s inequality). Fix a dimension d ≥ 1. For all ν ∈ R, there exists
C > 0 such that

〈X + Y 〉ν ≤ C〈X〉ν〈Y 〉|ν|, X, Y ∈ Rd.
In particular, if d = n,

(1 + |x+ z|+ |ξ + ζ|)ν ≤ C(1 + |x|+ |ξ|)ν〈z〉|ν|〈ξ〉|ν|, x, ξ, z, ζ ∈ Rn. (3.21)

Proof. We may replace 〈X〉 by 1 + |X| everywhere. Then

(1 + |X + Y |) ≤ (1 + |X|+ |Y |) ≤ (1 + |X|)(1 + |Y |),

and by raising this equality to the power ν we get the result when ν ≥ 0. If ν < 0, the
result for −ν yields

(1 + |X|)−ν ≤ (1 + |X + Y |)−ν(1 + | − Y |)|ν|

and we obtain the result for ν by multiplying this inequality by (1 + |X|)ν(1 + |X + Y |)ν .
To prove (3.21), we simply observe that

(1 + |x+ z|+ |ξ + ζ|)ν ≤ C(1 + |x|+ |ξ|)ν(1 + |z|+ |ζ|)|ν|

and that (1 + |z|+ |ζ|)|ν| ≤ (1 + |z|)|ν|(1 + |ζ|)|ν|. The proof is complete. �

Lemma 3.27. Fix K ≥ 0. For all ν ∈ R, the map a 7→ rK is continuous from Aν to Aν .

Proof. Fix M1,M2 satisfying (3.17) and multi-indices γ, β. Then there exist C,N ≥ 0
such that, for all α, γ1, γ2 satisfying (3.18), we have∣∣∂γx∂βξ (∂α+γ1x ∂α+γ2ξ a

)
(x+ tz, ξ + ζ)

∣∣ ≤ NAνN (a)(1 + |x+ tz|+ |ξ + ζ|)ν ,

≤ CNAνN (a)(1 + |x|+ |ξ|)ν〈z〉|ν|〈ζ〉|ν|,

using (3.21) in the second line and the fact that |t| ≤ 1. Using (3.19), it follows that rK
is a smooth function that can be differentiated under the integral sign and satisfies∣∣∂γx∂βξ rK(x, ξ)

∣∣ ≤ CNAνN (a)(1 + |x|+ |ξ|)ν
∫ ∫

R2n

〈z〉|ν|−2M1〈ζ〉|ν|−2M1dzdζ,

where the integral is finite by (3.17). This means exactly that a 7→ rK is continuous on
Aν . �
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Lemma 3.28. If (3.16) holds for all a ∈ S(R2n) then it holds for all ν and all a ∈ Aν .

Proof. Fix ν ∈ R and M1,M2 satisfying (3.17). Fix a ∈ Aν . We can then choose ν ′ > ν
sufficiently close to ν so that

2M1 > n+ |ν ′|, 2M2 > n+ |ν ′|.

Define aj as in Lemma 3.24 and denote by rjK the symbol obtained by replacing a by aj
in (3.20). Since we assume that (3.16) holds for symbols in the Schwartz space, we have(

v,Op(aj)u
)
L2 =

∑
|α|≤K

1

α!

(
Op(Dα

x∂
α
ξ aj)v, u

)
L2 +

(
Op(rjK)v, u

)
L2 , (3.22)

for all u, v ∈ S and j ≥ 1. As j →∞, we have aj → a in Aν′ by Lemma 3.24 and thus

Dα
x∂

α
ξ aj → Dα

x∂
α
ξ a, rjK → rK in Aν′ ,

using Lemma 3.27 for rjK . Now if u ∈ S(Rn), Proposition 3.22 shows that we have the
following convergences in S(Rn)

Op(aj)u→ Op(a)u, Op(Dα
x∂

α
ξ aj)v → Op(Dα

x∂
α
ξ a)v, Op(rjK)v → Op(rK)v.

This allows to let j →∞ in (3.22) which yields the result. �

Lemma 3.29. For all a ∈ S(R2n), define

a∗(x, ξ) = (2π)−n
∫ ∫

R2n

e−iz·ζa(x+ z, ξ + ζ)dζdz. (3.23)

Then a∗ ∈ S(R2n) and(
v,Op(a)u

)
L2 =

(
Op(a∗)v, u

)
L2 , u, v ∈ S. (3.24)

Proof. To show that a∗ belongs to S(R2n) it suffices to check that, for all α, β, γ, δ there
exists C such that ∣∣xγξδ∂αx ∂βξ a∗(x, ξ)∣∣ ≤ C, x ∈ Rn, ξ ∈ Rn. (3.25)

Since a(x + z, ξ + ζ) and its derivatives decay fast with respect to z, ζ, locally uniformly
with respect to x, ξ, a∗ is well defined and, by differentiation under the integral sign, is
smooth and

∂αx ∂
β
ξ a
∗(x, ξ) = (2π)−n

∫ ∫
R2n

e−iz·ζ
(
∂αx ∂

β
ξ a
)
(x+ z, ξ + ζ)dzdζ.

By writing

xγ = (x+ z − z)γ =
∑
γ1≤γ

Cγ
1

γ (x+ z)γ−γ1(−z)γ1



3.4. PROOFS 33

and similarly ξδ = (ξ + ζ − ζ)δ, we obtain that xγξδ∂αx ∂
β
ξ a
∗(x, ξ) is a linear combination

of integrals of the form∫ ∫
R2n

zγ1ζγ2e−iz·ζaα,β,γ1,γ2(x+ z, ξ + ζ)dzdζ, (3.26)

where aα,β,γ1,γ2 ∈ S(R2n) is given by

aα,β,γ1,γ2(y, η) = yγ−γ1ηδ−γ2(∂αx ∂
β
ξ a)(y, η).

By integration by part with respect to ζ, (3.26) reads

(−i)|γ1|
∫ ∫

R2n

e−iz·ζ∂γ1ζ
(
ζγ2aα,β,γ1,γ2(x+ z, ξ + ζ)

)
dzdζ,

which, by integration by part in z to handle the powers of ζ remaining after the expansion
of the derivative according to the Leibnitz rule, is a linear combination of integrals of the
form ∫ ∫

R2n

e−iz·ζ∂
γ′2
z ∂

γ′1
ζ aα,β,γ1,γ2(x+ z, ξ + ζ)dzdζ,

with γ′1 ≤ γ1 and γ′2 ≤ γ2. Since ∂
γ′1
ζ ∂

γ′2
z aα,β,γ1,γ2 belongs to S(R2n) the integral above is

bounded in C as x, ξ vary in Rn so we get (3.25). Let us now prove (3.24). For all u, v ∈ S,
we have (

v, a(x,D)u
)
L2 =

∫
v(x)a(x,D)u(x)dx

= (2π)−n
∫ ∫

eix·ξv(x)a(x, ξ)û(ξ)dξdx

= (2π)−n
∫ ∫ ∫

ei(x−y)·ξv(x)a(x, ξ)u(y)dydξdx

= (2π)−n
∫ ∫ ∫

ei(x−y)·ξā(x, ξ)v(x)u(y)dydξdx.

From this calculation, we see that(
v,Op(a)u

)
L2 =

∫ ∫
v(x)A(x, y)u(y)dydx

=

∫ ∫
B(x, y)v(y)u(x)dxdy

where

A(x, y) = (2π)−n
∫
ei(x−y)·ξa(x, ξ)dξ, (3.27)

is the kernel of Op(a) and

B(x, y) = (2π)−n
∫
ei(x−y)·ξa(y, ξ)dξ.
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To prove (3.24) it suffices to see that B(x, y) is the kernel of Op(a∗) namely

B(x, y) = (2π)−n
∫
ei(x−y)·ξa∗(x, ξ)dξ. (3.28)

Denoting by ·̂ the Fourier transform with respect to ξ, this means that ̂̄a(y, y − x) =
â∗(x, y − x), ie ̂̄a(x+ z, z) = â∗(x, z), x, z ∈ Rn,

or equivalently, by taking the inverse Fourier transform with respect to z, that

a∗(x, ξ) = (2π)−n
∫
eiz·ξ̂̄a(x+ z, z)dz

= (2π)−n
∫ ∫

eiz·(ξ−η)̂̄a(x+ z, η)dηdz.

The change of variable η−ξ = ζ in the last integral shows that the last equality is precisely
(3.23). Hence (3.28) holds true and this completes the proof. �

Proof of Proposition 3.25. By Lemma 3.28, we may assume that a ∈ S(R2n).
Step 1: the expansion. The starting point is to write a∗ given by (3.23) as an iterate
integral

a∗(x, ξ) = (2π)−n
∫ (∫

R2n

e−iz·ζa(x+ z, ξ + ζ)dζ

)
dz. (3.29)

Expanding a(x+ z, ξ + ζ) by the Taylor formula in z, we get

a(x+ z, ξ + ζ) =
∑
|α|≤K

1

α!
(∂αx a)(x, ξ + ζ)zα +

∑
|α|=K+1

K + 1

α!
RK,α(x, z, ξ + ζ)zα, (3.30)

where

RK,α(x, z, η) =

∫ 1

0
(1− t)K(∂αx a)(x+ tz, η)dt. (3.31)

Inserting each term of the expansion
∑
|α|≤K · · · of (3.30) into the integral in ζ of (3.29),

which makes sense for the integrand decays fast with respect to ζ, we obtain∫
zαe−iz·ζ(∂αx a)(x, ξ + ζ)dζ =

∫
(i∂ζ)

αe−iz·ζ(∂αx a)(x, ξ + ζ)dζ,

= (−i)|α|
∫
e−iz·ζ(∂αx ∂

α
ξ a)(x, ξ + ζ)dζ

= (−i)|α|∂̂αx ∂αξ a(x, z)eiz·ξ. (3.32)

Integrating now (3.32) with respect to z according to (3.29) and using the Fourier inversion
formula, we get

(2π)−n
∫ (∫

zαe−iz·ζ(∂αx a)(x, ξ + ζ)dζ

)
dz = Dα

x∂
α
ξ a(x, ξ).
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This shows that (3.16) holds with

rK(x, ξ) = (2π)−n
∫  ∑

|α|=K+1

K + 1

α!

∫
zαe−iz·ζRK,α(x, z, ξ + ζ)dζ

 dz. (3.33)

Note that we are not allowed at the moment to swap the sum over α and the integral with
respect to z for this is ony a semi-convergent integral (ie iterate ones). We now proceed
to the analysis of such terms.

Step 2: the remainder. By the same integrations by part as those leading to (3.32),
we have ∫

zαe−iz·ζRK,α(x, z, ξ + ζ)dζ =

∫
e−iz·ζDα

ξ RK,α(x, z, ξ + ζ)dζ. (3.34)

Note that these integrals make clearly sense since (3.31) decays fast with respecto to η.
To get some decay with respect to z, we next integrate by part thanks to

〈z〉−2M1(1−∆ζ)
M1e−iz·ζ = e−iz·ζ ,

so that we can write the right hand side of (3.34) as

〈z〉−2M1

∫
e−iz·ζ(1−∆ξ)

M1Dα
ξ RK,α(x, z, ξ + ζ)dζ.

Using now that, for fixed ξ, the amplitude of the above integral decays fast with respect
to ζ and using Peetre’s inequality we have∣∣(1−∆ξ)

M1Dα
ξ RK,α(x, z, ξ + ζ)〈z〉−2M1

∣∣ ≤ Cx,ξ〈z〉|µ|−2M1〈ζ〉−n−1,

which is integrable with respect to z and ζ if (3.17) holds. We can then use the Fubini
Theorem in the right hand side of (3.33) to get

rK(x, ξ) =
∑

|α|=K+1

K + 1

α!

∫ (∫
e−iz·ζ(1−∆ξ)

M1Dα
ξ Rn,α(x, z, ξ + ζ)〈z〉−2M1dz

)
dζ.

We finally integrate by part in the above integral with respect to z thanks to

〈ζ〉−2M2(1−∆z)
M2e−iz·ζ = e−iz·ζ ,

with M2 as in (3.17). Expanding the corresponding derivatives according to the Leibniz
rule and taking (3.31) into account, we obtain a linear combination of integrals of the form
(3.20). �
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Proof of Theorem 3.16. We apply Proposition 3.25 to ah(x, ξ) = a(x, hξ). According
to (3.16) with K = J − 1, we have

Op(a∗h) =
∑
|α|<J

1

α!
Op(∂αξ D

α
xah) +Op(rJ−1)

=
∑
|α|<J

1

α!
h|α|Oph(∂αξ D

α
xa) +Op(rJ−1)

since ∂αξ D
α
xah(x, ξ) = h|α|

(
∂αξ D

α
xa
)
(x, hξ). By (3.20), we also have

Op(rJ−1) = hJOph(r∗J(a, h))

with r∗J(a, h) which is the function of (x, ξ) given by

∑
α,γ1,γ2

h|γ2|
∫ 1

0

∫ ∫
R2n

e−iz·ζ
(
∂α+γ1x ∂α+γ2ξ a

)
(x+ tz, ξ + hζ)bα,γ1,γ2(t, z, ζ)dzdζdt. (3.35)

Our remaing task is to prove (3.11). Since a belongs to Sµ,m and |α+ γ2| ≥ J , we have∣∣∂α+γ1x ∂α+γ2ξ a(x+ tz, ξ + hζ)
∣∣ ≤ 〈x+ tz〉µ〈ξ + hζ〉m−JN Sm,µ

N1
(a)

≤ C〈x〉µ〈ξ〉m−J〈z〉|µ|〈ζ〉|m−J |N Sm,µ

N1
(a)

using the Peetre inequality and the fact that |t|, |h| ≤ 1, and where we can take

N1 = 2(M1 +M2 + J),

by (3.18). IfM1 andM2 have been chosen1 so that |µ|−2M1 < −n and |m−J |−2M2 < −n,
we obtain from (3.19) that∫

[0,1]×R2n

∣∣(∂α+γ1x ∂α+γ2ξ a
)
(x+ tz, ξ + hζ)bα,γ1,γ2(t, z, ζ)

∣∣dtdzdζ ≤ C〈x〉µ〈ξ〉m−JN Sm,µ

N1
(a),

hence that

N Sµ,m−J
0 (r∗J(a, h)) ≤ CN Sm,µ

N1
(a),

which is precisely (3.11) for N = 0. The general case (ie N ≥ 0) is obtained similarly after
differentiation of r∗J(a, h) under the integral sign in (3.35). �

In the next proposition, we consider the composition of pseudo-differential operators.

Proposition 3.30. Let ν, κ ∈ R. For all a ∈ Aν and b ∈ Aκ, one has

Op(a)Op(b) = Op(c),

1note that the choice will depend on J
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with c ∈ Aν+κ such that, for all integer K ≥ 0, there exists a bilinear map (a, b) 7→ rK
from Aν ×Aκ to Aν+κ such that

c(x, ξ) =
∑
|α|≤K

cα(x, ξ) + rK(x, ξ), cα(x, ξ) =
1

α!
∂αξ a(x, ξ)Dα

x b(x, ξ),

and with the following structure: for all integers M1,M2 ≥ 0 such that

2M1 > n+ |ν|, 2M2 > n+ |κ|,

there exists a family of functions (dα,γ1,γ2) indexed by

|α| = K + 1, |γ1| ≤ 2M1, |γ2| ≤ 2M2,

such that

|dα,γ1,γ2(t, ζ, z)| ≤ C〈ζ〉−2M1〈z〉−2M2 , t ∈ (0, 1), z ∈ Rn, ζ ∈ Rn,

and such that, for all a ∈ Aν and all b ∈ Aκ,

rK(x, ξ) =
∑

α,γ1,γ2

∫ 1

0

∫ ∫
R2n

e−iz·ζ
(
∂α+γ1ξ a

)
(x, ξ + ζ)

(
∂α+γ2x b

)
(x+ tz, ξ)dα,γ1,γ2(t, ζ, z)dzdζdt.

The proof is very similar to the proof of Proposition 3.25 so we shall only sketch the
main steps. We hope that this more synthetic exposition will be a pedagogic alternative
to the detailed proof of Proposition 3.25.

Proof. Step 1: rK depends continuously on (a, b). By Peetre’s inequality, for each
term in the sum defining rK we have

|
(
∂α+γ1ξ a

)
(x, ξ + ζ)

(
∂α+γ2x b

)
(x+ tz, ξ)| . NAν|α+γ1|(a)NAκ|α+γ2|(b)(1 + |x|+ |ξ|)ν+κ〈ζ〉|ν|〈z〉|κ|

for all x, ξ, z, ζ ∈ Rn, t ∈ (0, 1) and (a, b) ∈ Aν × Aκ. The decay of dα,γ1,γ2 and the
conditions on M1,M2 show that the integrals (with respect to (z, ζ)) are convergent and
with modulus of order

NAν|α+γ1|(a)NAκ|α+γ2|(b)(1 + |x|+ |ξ|)ν+κ.

Similar estimates holds for derivatives with respect to x, ξ (note that we can differentiate
under the integral sign) which shows that (a, b) 7→ rK takes values in Aν+κ and depends
continuously on (a, b).

Step 2: We can assume symbols belongs to S(R2n). Indeed assume that the result
holds for symbols in S(R2n) and let a ∈ Aν , b ∈ Aκ. Fix ν ′ > ν and κ′ > κ. We can then
pick aj , bj ∈ S(R2n) such that

aj → a in Aν′ , bj → b in A′κ,
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as j →∞. Denote cjα, r
j
K the expressions of cα, rK related to aj and bj . Then, clearly,

cjα =
1

α!
∂αξ ajD

α
x bj →

1

α!
∂αξ aD

α
x b = cα in Aν′+κ′

and, by Step 1,

rjK → rK in Aν′+κ′ .

In particular, for all u ∈ S, we have∑
|α|≤K

Op(cjα)u+Op(rjK)u→
∑
|α|≤K

Op(cα)u+Op(rK)u, in S. (3.36)

Therefore, if Proposition 3.30 holds for all Schwartz symbols, namely if the left hand side
of (3.36) equals Op(aj)Op(bj)u, then by letting j → ∞ and using Proposition 3.22 (or
Exercise 3.23) we get

Op(a)Op(b)u =
∑
|α|≤K

Op(cα)u+Op(rK)u,

for all u ∈ S.

Step 3: Computation of the kernel. By Step 2, we can consider Schwartz symbols.
This allows to consider

A(x,w) = (2π)−n
∫
ei(x−w)·θa(x, θ)dθ, B(w, y) = (2π)−n

∫
ei(w−y)·ξb(w, ξ)dξ

which are the kernels of Op(a) and Op(b), ie

Op(a)u(x) =

∫
A(x,w)u(w)dw, Op(b)u(w) =

∫
B(w, y)u(y)dy.

See also (3.27). The kernel of Op(a)Op(b) is then

C(x, y) =

∫
A(x,w)B(w, y)dw

= (2π)−n
∫
ei(x−y)·ξ

(
(2π)−n

∫ ∫
ei(x−w)·(θ−ξ)a(x, θ)b(w, ξ)dwdθ

)
dξ

which, after the change of variables z = w − x, ζ = θ − ξ, is precisely the kernel of Op(c)
with

c(x, ξ) = (2π)−n
∫ ∫

e−iz·ζa(x, ξ + ζ)b(x+ z, ξ)dzdζ. (3.37)



3.4. PROOFS 39

Step 4: Taylor expansion and integration by part. We expand a(x, ξ+ ζ)b(x+z, ξ)
by the Taylor formula with respect to z and then integrate with respect to ζ. After the
same integration by part as in the proof of Proposition 3.25 we see that∫

e−iz·ζa(x, ξ + ζ)b(x+ z, ξ)dζ

is the sum of∑
|α|≤K

1

α!

∫
e−iz·ζ(∂αξ a)(x, ξ + ζ)(Dα

x b)(x, ξ)dζ = eiz·ξ
∑
|α|≤K

1

α!
∂̂αξ a(x, z)(Dα

x b)(x, ξ) (3.38)

(where ̂ is the Fourier transform with respect to ζ) and of

∑
|α|=K+1

K + 1

α!

∫ ∫ 1

0
e−iz·ζ(∂αξ a)(x, ξ + ζ)(Dα

x b)(x+ tz, ξ)(1− t)Kdtdζ. (3.39)

The integration of (3.38) with respect to z yields the expected
∑
|α|≤K cα(x, ξ). In (3.39),

we integrate by part thanks to

〈z〉−2M2(1−∆ζ)
M2e−iz·ζ = e−iz·ζ ,

then integrate with respect to z and then swap the integrations with respect to z and ζ,
for we have sufficient decay in z and ζ. We finally integrate by part using

〈ζ〉−2M1(1−∆z)
M1e−iz·ζ = e−iz·ζ ,

and we obtain the expect form of rK . �

Proof of Theorem 3.14. Similar to the proof of Theorem 3.16 and left to the reader as
an exercise. �



40 CHAPTER 3. PSEUDODIFFERENTIAL CALCULUS



Chapter 4

Some tools of spectral theory

In this section H and K are two separable Hilbert spaces (over C). Everywhere L(H,K)
is the (Banach) space of continuous (or bounded) linear maps from H to K. We denote
the norm of A ∈ L(H,K) by ||A||H→K. If H = K, we set as usual L(H) = L(H,H).

4.1 Hilbert-Schmidt operators

Lemma 4.1. Let A ∈ L(H,K). If (ej)j∈N and (fk)k∈N are orthonormal bases of H and
K respectively, then ∑

j

||Aej ||2K =
∑
k

||A∗fk||2H.

Proof. For each j, we have

||Aej ||2K =
∑
k

∣∣(fk, Aej)K∣∣2 =
∑
k

∣∣(A∗fk, ej)K∣∣2.
Summing over j and swapping the summations with respect to j and k, we get∑

j

||Aej ||2K =
∑
k

∑
j

∣∣(A∗fk, ej)K∣∣2 =
∑
k

||A∗fk||2H

which is precisely the result. �

Definition 4.2. An operator A ∈ L(H,K) is Hilbert-Schmidt if

||A||HS :=

∑
j

||Aej ||2K

1/2

<∞,

for some orthonormal basis (ej)j∈N of H. We denote by S2(H,K) the set of Hilbert-Schmidt
operators from H to K. If H = K, we denote it by S2(H).

41
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Note that ||A||HS is independent of the choice of the orthonormal basis by Lemma 4.1.

Proposition 4.3. 1. If A ∈ S2
(
H,K

)
, then A∗ ∈ S2

(
K,H

)
and

||A||HS = ||A∗||HS.

2. For all A ∈ S2
(
H,K

)
, we have

||A||H→K ≤ ||A||HS.

3. S2
(
H,K

)
is a vector space and || · ||HS is a norm thereon.

4. S2
(
H,K

)
is complete.

5. If H1 and K1 are separable Hilbert spaces and

A ∈ S2
(
H,K

)
, B ∈ L(H1,H), C ∈ L(K,K1)

then CAB ∈ S2
(
H1,K1

)
and

||CAB||HS ≤ ||C||K→K1 ||A||HS||B||H1→H.

Proof. Item 1 follows directly from Lemma 4.1. To prove item 2, we fix u ∈ H and write

u = lim
N→∞

uN , uN =
∑
j≤N

(
ej , u

)
Hej .

Then, by the triangle inequality and the Cauchy-Schwartz inequality,

||AuN ||K ≤
∑
j≤N
|
(
ej , u

)
H|
∣∣∣∣Aej∣∣∣∣K

≤

∑
j≤N
|
(
ej , u

)
H|

2

1/2∑
j≤N

∣∣∣∣Aej∣∣∣∣2K
1/2

≤ ||A||HS||u||H.

Letting N go to infinity and using the continuity of A, we obtain ||Au||K ≤ ||A||HS||u||H
which yields the result. The proof of item 3 is a routine which we omit; we only point out
that ||A||HS = 0 only if A = 0 by item 2. Let us now prove item 4. Let (Aj) be a Cauchy
sequence in S2

(
H,K

)
. By item 2, it is a Cauchy sequence in L(H,K) hence converges in

operator norm to a bounded operator A. It remains to show that A is Hilbert-Schmidt
and that ||A−Aj ||HS → 0. Fix ε > 0. Then for J > 0 large enough

||Ak −Aj ||HS ≤ ε, j, k ≥ J.
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This implies in particular that,∑
m≤N

||(Ak −Aj)em||2K ≤ ε2, N ≥ 0, j, k ≥ J.

Thus, by letting k go to infinity for fixed N and j and then N to infinity, we see that A
is Hilbert-Schmidt and that ||A − Aj ||HS ≤ ε for j ≥ J . Therefore ||A − Aj ||HS → 0. We
finally prove item 5. We first observe that

||CAej ||2K1
≤ ||C||2K→K1

||Aej ||2K

hence by summing over j, we see that CA ∈ S2(H,K1) and that ||CA||HS ≤ ||C||K→K1 ||A||HS.
To handle the case when B 6= IH, we observe that

CAB =
(
B∗(CA)∗

)∗
which shows that CAB is Hilbert-Schmidt and that

||CAB||HS ≤ ||B∗||H→H1 ||CA||HS ≤ ||C||K→K1 ||A||HS||B||H1→H,

using item 1 and the fact that the operator norms of an operator and its adjoint coincide.
�

Proposition 4.4. Let A ∈ S2(H,K) and (fk)k∈N be an orthonormal basis of K. Define

ΠN = orthogonal projection on span {fk | k ≤ N}.

Then
||ΠNA−A||HS → 0, N →∞.

Proof. By item 1 of Proposition 4.3, it is equivalent to show that ||A∗ΠN − A∗||HS → 0.
Writing this Hilbert-Schmidt norm in term of the orthonormal basis (fk), we obtain

||A∗(ΠN − 1)||2HS =
∑
k>N

||A∗fk||2H

which clearly goes to zero as N →∞. �

Remark. Of course if we consider a projection PN onto the N first vectors of an or-
thonormal basis of H, we also have APN → A in the Hilbert-Schmidt class. This follows
directly from Proposition 4.4 by taking the adjoint.

Using that ΠN is a finite rank operator and the property 2 in Proposition 4.3, we
derive automatically the following corollary.

Corollary 4.5. Hilbert-Schmidt operators are compact.
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We conclude this section with an important example of Hilbert-Schmidt operator.

To any K ∈ L2(R2n), we can associate the sesquilinear form

Q(v, u) =

∫ ∫
v(x)K(x, y)u(y)dydx, u, v ∈ L2(Rn).

By the Cauchy-Schwarz inequality, Q is obviously continuous on L2(Rn)2 hence there
exists a unique bounded operator AK : L2(Rn)→ L2(Rn) such that

Q(v, u) =
(
v,AKu

)
L2(Rn).

Definition 4.6. AK is the operator with L2 kernel K.

Proposition 4.7. The operator AK belongs to S2
(
L2(Rn)

)
and

||AK ||HS = ||K||L2(R2n).

Proof. Let (ej)j∈N be an orthonormal basis of L2(Rn). Then the countable family(
ek ⊗ ej

)
(j,k)∈N2 , ek ⊗ ej(x, y) := ek(x)ej(y)

is an orthonormal basis of L2(R2n): that this is an orthonormal system is a simple calcu-
lation which we omit and proving that finite linear combinations are dense follows from
the density of L2(Rn) ⊗ L2(Rn) in L2(R2n) and the density of finite linear combinations
of (ej) in L2(Rn). Then

||AK ||2HS =
∑
j

||AKej ||2L2(Rn) =
∑
j

∑
k

∣∣(ek, AKej)L2(Rn)

∣∣2
=

∑
j

∑
k

∣∣Q(ek, ej)
∣∣2

=
∑
(j,k)

∣∣(ek ⊗ ej ,K)L2(R2n)

∣∣2 = ||K||2L2(R2n),

completes the proof. �

4.2 Trace class operators

Definition 4.8. A linear operator T : H → H is trace class if there exist

1. a positive integer N ,

2. separable Hilbert spaces K1, . . . ,KN ,

3. Hilbert Schmidt operators A1, . . . , AN and B1, . . . , BN with Aj , Bj ∈ S2(H,Kj),
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such that

T =

N∑
j=1

A∗jBj . (4.1)

We denote by S1(H) the set of trace class operators on H and define

||T ||tr := inf


N∑
j=1

||Aj ||HS||Bj ||HS

 ,

the infimum being taken over all N , (Kj), (Aj), (Bj) as in 1,2,3 such that (4.1) holds.

Note that this definition implies that trace class operators are bounded and more
precisely Hilbert-Schmidt.

Proposition 4.9. 1. For all T ∈ S1(H),

||T ||H→H ≤ ||T ||tr.

2. S1(H) is a vector space and || · ||tr is a norm thereon.

3. If T is trace class, then T ∗ is trace class and

||T ∗||tr ≤ ||T ||tr.

4. If K is another separable Hilbert space and

A,B ∈ L(K,H), T ∈ S1(H),

then A∗TB ∈ S1(K) and

||A∗TB||tr ≤ ||A||K→H||T ||tr||B||K→H.

Proof. 1. For all ε > 0, we can find

N ε, Kε1, . . . ,KεNε , Aε1, . . . , A
ε
Nε , Bε

1, . . . , B
ε
Nε

such that

T =
∑
j≤Nε

(Aεj)
∗Bε

j , (4.2)

and

||T ||tr ≤
Nε∑
j=1

||Aεj ||HS||Bε
j ||HS < ||T ||tr + ε. (4.3)
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Using

||T ||H→H ≤
∣∣∣∣ ∑
j≤Nε

(Aεj)
∗Bε

j

∣∣∣∣
H→H

≤
∑
j≤Nε

∣∣∣∣Aεj∣∣∣∣H→H∣∣∣∣Bε
j

∣∣∣∣
H→H

≤
∑
j≤Nε

∣∣∣∣Aεj∣∣∣∣HS

∣∣∣∣Bε
j

∣∣∣∣
HS
,

we obtain that ||T ||H→H < ||T ||tr + ε. Since this true for all ε, we obtain the desired
inequality.

Let us now prove item 2. Proving that S1(H) is a vector space (ie a subspace of L(H))
is a routine which uses that the sum of two sums as in the right hand side of (4.1) is still
of this form. Let us check that || · ||tr is a norm. Observe first that ||T ||tr = 0 if and only
if T = 0 by item 1 and the obvious fact that ||0||tr = 0. Let next T, T̃ be in S1(H) and
write

T =

N∑
j=1

A∗jBj , T̃ =

Ñ∑
j=1

Ã∗j B̃j ,

according to Definition 4.8. Then

||T + T̃ ||tr ≤
N∑
j=1

||Aj ||HS||Bj ||HS +
Ñ∑
j=1

||Ãj ||HS||B̃j ||HS.

Taking first the infimum over the set of N, (Kj), (Aj) and (Bj) as in Definition 4.8, we
obtain

||T + T̃ ||tr ≤ ||T ||tr +
Ñ∑
j=1

||Ãj ||HS||B̃j ||HS.

Taking next the infimum over the set of Ñ , (K̃j), (Ãj) and (B̃j), we conclude that

||T + T̃ ||tr ≤ ||T ||tr + ||T̃ ||tr.

Let us now fix λ ∈ C and show that ||λT ||tr = |λ|||T ||tr. Since we know that ||0||tr = 0 we
may assume that λ 6= 0. Using (4.1), we have λT =

∑N
j=1 λA

∗
jBj , hence

||λT ||tr ≤ |λ|
∑
j≤N
||Aj ||HS||Bj ||HS,

and by taking the same infimum as in Definition 4.8,

|λ|−1||λT ||tr ≤ ||T ||tr,

that is ||λT ||tr ≤ |λ|||T ||tr. Writing T = λ−1λT , we also have ||T ||tr ≤ |λ|−1||λT ||tr and
the result follows.
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We now prove item 3. Using (4.1), we have T ∗ =
∑

j≤N B
∗
jAj hence T ∗ is trace class

and
||T ∗|| ≤

∑
j≤N
||B∗j ||HS||Aj ||HS =

∑
j≤N
||Aj ||HS||Bj ||HS.

By taking the same infimum as in Definition 4.8, we conclude that ||T ∗||tr ≤ ||T ||tr.
Let us finally prove item 4. Using (4.1) and item 5 of Proposition 4.3 we see that

A∗TB =
∑
j=1

(AjA)∗(BjB)

is trace class and that

||A∗TB|| ≤ ||A||K→H

 N∑
j=1

||Aj ||HS||Bj ||HS

 ||B||K→H,
which, by taking the infimimum over N , (Kj), (Aj), (Bj), yields the result. �

Lemma 4.10. Let T ∈ S1(H) and (ej)j∈N be an orthonormal basis of H. Then the sum∑
j∈N

(
ej , T ej

)
H

is (absolutely) convergent and does not depend on the choice of the orthonormal basis.

Proof. It suffices to prove the result when T = A∗B with A,B : H → K Hilbert-Schmidt
operators, for some separable Hilbert space K. Pick an orthonormal basis (fk) of K. Then,
for each j, (

ej , T ej
)
H =

(
Aej , Bej

)
K =

∑
k

(
fk, Aej

)
K
(
fk, Bej

)
K. (4.4)

On the other hand, using that A is Hilbert-Schmidt,∑
j

∑
k

∣∣(fk, Aej)K∣∣2 =
∑
j

||Aej ||2K <∞,

and similarly forB. Therefore, seen as families indexed by (k, j),
(
fk, Aej

)
K and

(
fk, Bej

)
K

are l2, so when we sum (4.4) over j we are allowed to swap the sums with respect to j and
k so that ∑

j

(
ej , T ej

)
H =

∑
k

∑
j

(
fk, Aej

)
K
(
fk, Bej

)
K

=
∑
k

∑
n

(
ej , A

∗fk
)
H
(
ej , B∗fk

)
H

=
∑
k

(
B∗fk, A

∗fk
)
H (4.5)
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which is independent of (ej)j∈N. �

This lemma allows to state the following definition.

Definition 4.11. The trace of T ∈ S1(H) is the complex number

tr(T ) :=
∑
j∈N

(
ej , T ej

)
H,

for some (hence all) orthonormal basis (ej)j∈N of H. If we wish to specify the Hilbert space
on which T is defined, we shall sometimes use the notation trH(T ) for tr(T ).

Exercise 4.12. Assuming that Theorem 2.2 is proved, check that (2.12) holds with tr
defined according to Definition 4.11.

Proposition 4.13. 1. The trace is linear on S1(H) and for all T ∈ S1(H),∣∣tr(T )
∣∣ ≤ ||T ||tr. (4.6)

In particular, the trace is continuous on S1(H).

2. We have the identities

trH(A∗B) = trK(BA∗), A,B ∈ S2(H,K), (4.7)

trH(A∗TB) = trK(TBA∗), T ∈ S1(K), A,B ∈ L(H,K). (4.8)

The second property is often called cyclicity of the trace.

Proof. 1. The linearity is obvious. Let us prove (4.6). Using (4.1), we have

|tr(T )| ≤
∑
j≤N
|tr(A∗jBj)| ≤

∑
j≤N

(∑
m∈N
|
(
Ajem, Bjem

)
Kj
|

)

≤
∑
j≤N

(∑
m∈N
||Ajem||Kj ||Bjem||Kj

)
≤

∑
j≤N
||Aj ||HS||Bj ||HS,

so the estimate follows by taking the infimum over N, (Kj), (Aj), (Bj).
Let us now prove item 2. We observe first that (4.7) follows directly from (4.5). To

prove (4.8), we may assume by linearity that T = A∗1B1 with A1, B1 ∈ S2(H,K1). Let then
ΠN be the orthogonal projection onto (the span of) the N first vectors of an orthonormal
basis of H, as in Lemma 4.4. We observe that

trH(A∗TB) = lim
N→∞

trH(ΠNA
∗TB) (4.9)
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by continuity of the trace and the fact that ΠNA
∗TB =

(
ΠNA

∗A∗1
)
B1B with

(
ΠNA

∗A∗1
)
→

A∗A∗1 in the Hilbert-Schmidt class by Proposition 4.4. For fixed N , ΠNA
∗ is Hilbert-

Schmidt hence, by (4.7), we have

trH(ΠNA
∗TB) = trK(TBΠNA

∗). (4.10)

Since TBΠNA
∗ readsA∗1(B1BΠNA

∗) where the bracket converges toB1BA
∗ in the Hilbert-

Schmidt class by Proposition 4.4, we obtain

trK(TBA∗) = lim
N→∞

trK(TBΠNA
∗). (4.11)

By combining (4.9), (4.10) and (4.11), we get the result. �

We conclude this section with a useful example of calculation of a trace. We consider
Hilbert-Schmidt operators with L2 kernels, as in Definition 4.6.

Proposition 4.14. Let A = AK1 and B = AK2 be operators on L2(Rn) with L2 kernels
K1,K2 ∈ L2(R2n). Then

trL2(Rn)
(
AB
)

=

∫ ∫
K1(x, y)K2(y, x)dxdy.

Proof. Let us observe first that A∗ is the operator with L2 kernel K∗1 (x, y) := K1(y, x).
Observe also that

(
K∗1 ,K2

)
L2(R2n)

=

∫ ∫
K1(x, y)K2(y, x)dxdy.

The conclusion follows then from the following calculation. Given an orthonormal basis
(ej) of L2(Rn), we have

tr(AB) =
∑
j

(
ej , ABej

)
L2(Rn) =

∑
j

(
A∗ej , Bej

)
L2(Rn)

=
∑
j

∑
k

(
ek, A∗ej

)
L2(Rn)

(
ek, Bej

)
L2(Rn)

=
∑
j

∑
k

(
ek ⊗ ej ,K∗1

)
L2(R2n)

(
ek ⊗ ej ,K2

)
L2(R2n)

=
(
K∗1 ,K2

)
L2(R2n)

,

using in the fourth line that (ek⊗ej)(j,k) is an orthonormal basis of L2(R2n) (see Proposition
4.7). �
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4.3 Functional calculus via the Helffer-Sjöstrand formula

In this paragraph, for a function defined on C or R2, we will use the operator

∂ = ∂x + i∂y.

We recall that if a function g = g(x+ iy) is holomorphic on some open subset of C, then
∂g = 0.

Definition 4.15. Let f ∈ C∞0 (R). An almost analytic extension of f is a function

f̃ ∈ C∞0 (R2) such that

1. for all N ≥ 0, ∂f̃(x, y) = O(|y|N ),

2. f̃(x, 0) = f(x).

We comment that the first condition is equivalent to the fact that ∂f̃ vanishes at
infinite order on {y = 0}, ie that

∂ky∂f̃(x, 0) = 0, k ≥ 0, x ∈ R. (4.12)

If one identifies R2 and C, this means that ∂f̃ vanishes at infinite order on the real line.
Using this identification, the second condition states that the restriction of f̃ on the real
line coincides with f .

We also record that, since f̃ is compactly supported, the first condition has no influence
on the growth of ∂f̃ at infinity. More precisely, by choosing χ ∈ C∞0 (R2) which is equal

to 1 near the support of f̃ and non negative, we have∣∣∂f̃(x, y)
∣∣ ≤ CN |y|Nχ(x, y), (x, y) ∈ R2.

This estimate is easily obtained by writing that ∂f̃ coincides with the remainder of its
Taylor expansion with respect to y to order N multiplied by χ.

The next proposition gives a simple explicit way to construct almost analytic exten-
sions. It can be found on Chapter 8 of [2].

Proposition 4.16. Let f ∈ C∞0 (R). Let χ1, χ2 ∈ C∞0 (R) such that

χ1 ≡ 1 near the support of f, χ2 ≡ 1 near 0.

Then

f̃(x, y) := χ1(x)χ2(y)
1

2π

∫
ei(x+iy)ξχ2(yξ)f̂(ξ)dξ

is an almost analytic extension of f .
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Proof. Obviously, we have f̃(x, 0) = χ1(x)f(x) = f(x) by the Fourier inversion formula.
Since ei(x+iy)ξ is holomorphic, ∂f̃ is, up to the constant 1/2π, the sum of the following
three terms,

χ′1(x)χ2(y)

∫
ei(x+iy)ξχ2(yξ)f̂(ξ)dξ (4.13)

iχ1(x)χ′2(y)

∫
ei(x+iy)ξχ2(yξ)f̂(ξ)dξ (4.14)

iχ1(x)χ2(y)

∫
ei(x+iy)ξχ′2(yξ)ξf̂(ξ)dξ. (4.15)

In (4.13), we expand e−yξχ2(yξ) by the Taylor formula which gives a remainder of the
form

χ′1(x)χ2(y)

∫
eixξO((yξ)N )f̂(ξ)dξ = O(yN )

and a linear combination of terms of the form

χ′1(x)χ2(y)

∫
eixξ(yξ)kf̂(ξ)dξ = 0,

since, by the Fourier inversion formula, the integral equals ykf (k)(x) up to a multiplicative
constant and since χ′1 vanishes on supp(f). Obviously, (4.14) vanishes near y = 0. In
(4.15), using that χ′2 vanishes near 0, the integral can be written∫

ei(x+iy)ξ
χ′2(yξ)

(yξ)N
yNξN+1f̂(ξ)dξ = O(yN ),

and this completes the proof. �

In the sequel, for a continuous function B(x, y) defined on R2 \{y = 0}, or equivalently
on C \ R, with values in a Banach space, we shall denote∫

|Imz|≥ε
∂f̃(z)B(z)L(dz) :=

∫
|y|≥ε

(∫
R
∂f̃(x, y)B(x, y)dx

)
dy, ε > 0,

and ∫
C
∂f̃(z)B(z)L(dz) := lim

ε→0

∫
|Imz|≥ε

∂f̃(z)B(z)L(dz), (4.16)

when the limit exists.

The following proposition will be of constant use: it justifies the existence of integrals
involving almost analytic extensions and, in the applications, it will allow to estimate
certain remainder terms.
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Proposition 4.17. Fix f ∈ C∞0 (R) and f̃ an almost analytic extension of f supported in
[a, b] + i[c, d]. For all continuous function

B : [a, b] + i[c, d] \ R→ B

with values in a Banach space B and such that, for some C,M ≥ 0,

||B(z)||B ≤ C|Im(z)|−M , z ∈ [a, b] + i[c, d] \ R,

the following hold:

1. the integral ∫
C
∂f̃(z)B(z)L(dz)

is well defined in the sense of (4.16),

2. we have the bound∣∣∣∣∣∣∣∣∫
C
∂f̃(z)B(z)L(dz)

∣∣∣∣∣∣∣∣
B
≤ C sup

[a,b]+i[c,d]\R

∣∣∣∣Im(z)MB(z)
∣∣∣∣
B.

Proof. By standard results, the map y 7→
∫
R ∂f̃(x, y)B(x+iy)dx is continuous on [c, d]\{0}

and satisfies∣∣∣∣∣∣∣∣∫
R
∂f̃(x, y)B(x+ iy)dx

∣∣∣∣∣∣∣∣
B
≤ (b− a) sup

x∈[a,b]

∣∣∣∣yMB(x+ iy)
∣∣∣∣
B sup
x∈[a,b]

∣∣y−M∂f̃(x, y)
∣∣,

for all y ∈ [c, d] \ {0}. The result follows easily after integration with respect to y. �

The main interest of almost analytic extensions in these notes is the following Cauchy
type formula.

Proposition 4.18. Let f ∈ C∞0 (R) and f̃ ∈ C∞0 (R2) be an almost analytic extension of
f . Then

1

2π

∫
C
∂f̃(z)(λ− z)−1−jL(dz) =

(−1)j

j!
f (j)(λ), (4.17)

for all integer j ≥ 0 and λ ∈ R.

Proof. Observe on one hand that ∂jxf̃ is an almost analytic extension of f (j) (use for
instance (4.12)) and on the other hand that, by integrations by part in x,∫

|Imz|≥ε
∂f̃(z)(λ− z)−1−jL(dz) =

(−1)j

j!

∫
|Imz|≥ε

∂∂jxf̃(z)(λ− z)−1L(dz).
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Therefore, it suffices to prove the result when j = 0 which we do now. For fixed ε, we
integrate by part with ∂ and use that ∂(λ− z)−1 = 0 to get∫

|Imz|≥ε
∂f̃(z)(λ− z)−1L(dz) = i

∫
R
f̃(x,−ε) 1

λ− x+ iε
− f̃(x, ε)

1

λ− x− iε
dx. (4.18)

Then, using

f̃(x,±ε) = f(x)± ε∂yf̃(x, 0) +O(ε2〈x〉−2)

and the fact that
1

|λ− x± iε|
≤ 1

ε
,

the right hand side of (4.18) can be written

2ε

∫
R
f(x)

dx

(x− λ)2 + ε2
+ iε

∫
R
∂yf̃(x, 0)

2(x− λ)

(x− λ)2 + ε2
dx+O(ε)

that is,

2

∫
R
f(λ+ εt)

dt

1 + t2
− iε

∫
R
∂x∂yf̃(λ+ s, 0) ln(s2 + ε2)ds+O(ε). (4.19)

By dominated convergence, using the bound
∣∣ ln(s2 + ε2)

∣∣ ≤ C max
(
| ln ε|, 〈s〉

)
, (4.19)

converges to 2πf(λ) as ε goes to zero. �

Exercise 4.19. Check that if B = L(H,K) and if u ∈ H then(∫
C
∂f̃(z)B(z)L(dz)

)
u =

∫
C
∂f̃(z)B(z)uL(dz).

Proposition 4.22 below is the main result of this section. Its interest is to give ex-
pressions of functions of ∆g in term of its resolvent. We note that the definition of the
resolvent given below uses implicitly the result of Theorem 2.2; of course the proof of
Theorem 2.2 (given in the next chapter) will not use Proposition 4.22.

Definition 4.20 (Resolvent of the Laplacian). For z ∈ C \ [0,+∞) we define

R(z) = (−∆g − z)−1 := fz(−∆g),

with fz(λ) = (λ− z)−1, using (2.6).

Notice that, by (2.8), one has in particular∣∣∣∣(−∆g − z)−1
∣∣∣∣
L2(M)→L2(M)

≤ 1

|Im(z)|
, z ∈ C \ R. (4.20)
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Exercise 4.21. Show that the map z 7→ R(z) is continuous from C\[0,+∞) to L(L2(M)).
Hint. Use (and prove) that R(z)−R(ζ) = −(z − ζ)R(z)R(ζ).

Proposition 4.22 (Helffer-Sjöstrand formula). Let f ∈ C∞0 (R) and f̃ be an almost ana-
lytic extension of f . Then

f(−∆g) =
1

2π

∫
C
∂f̃(z)(−∆g − z)−1L(dz). (4.21)

Proof. Both sides of the identity are well defined bounded operators (by Proposition 4.17
for the right hand side) hence it suffices to check that they coincide on a dense subspace.
We consider the subspace a finite linear combinations of eigenfunctions of ∆g, ie of vectors
of the form u =

∑
j≤J

(
ej , u

)
L2(M)

ej . The right hand side of (4.21) applied to such a

vector reads

1

2π

∫
C
∂f̃(z)(−∆g − z)−1L(dz)u =

∑
j≤J

(
ej , u

)
L2(M)

1

2π

∫
C
∂f̃(z)(−∆g − z)−1ejL(dz)

=
∑
j≤J

(
ej , u

)
L2(M)

1

2π

∫
C
∂f̃(z)(λj − z)−1ejL(dz)

=
∑
j≤J

(
ej , u

)
L2(M)

f(λj)ej ,

= f(−∆g)u,

using Proposition 4.18 to go from the second to the third line. This completes the proof.
�



Chapter 5

L2 bounds for pseudo-differential
operators

5.1 L2 estimates

We recall the following notation which will use extensively in this chapter,

Sm = S0,m, (u, v) =

∫
Rn
uv, ||u||2 = (u, u).

Recall that Sm was introduced in Definition 3.6 and that (., .) and || · || are respectively
the inner product and the norm of L2(Rn).

The main result of this section is the following.

Theorem 5.1. Fix the dimension n. Then there exist C > 0 and a seminorm N S0

N of S0

such that

||Op(a)u|| ≤ CN S0

N (a)||u||, (5.1)

for all a ∈ S0 and all u ∈ S.

This result means that pseudo-differential operators with symbols in S0 are bounded
on L2. We point out that this L2 boundedness remains true for a larger class of symbols
(e.g. symbols in A0, see Definition 3.20) by the so called Calderón-Vaillancourt theorem
whose proof is more technical. Moreover, Theorem 5.1 is sufficient for many interesting
applications, in particular for those considered in these notes.

Here is the semiclassical version of Theorem 5.1.

Corollary 5.2. There exist C > 0 and N ≥ 0 (depending on n) such that

||Oph(a)u|| ≤ CN S0

N (a)||u||,

for all a ∈ S0, all u ∈ S and all h ∈ (0, 1].
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Notice that the right hand side does not depend on h. This corollary is a straightfor-
ward consequence of Theorem 5.1 and the following exercise.

Exercise 5.3. For a ∈ S0, denote ah(x, ξ) = a(x, hξ). Show that for all N ≥ 0 there
exists C > 0 such that

N S0

N (ah) ≤ CN S0

N (a),

for all a ∈ S0 and h ∈ (0, 1].
Hint. Use that h|β|〈ξ〉β ≤ 〈hξ〉|β|.

Before proving Theorem 5.1, we record a few comments and consequences.
Since S is dense in L2(Rn), Theorem 5.1 implies that Op(a) has a unique continuous

extension as a linear map on L2(Rn) (also called its closure) which we shall denote by
Op(a), or even simply by Op(a) when there is no possible confusion (of course, a similar
convention will be used for Oph(a) in the semiclassical case).

Exercise 5.4. Let u ∈ L2(Rn) and a ∈ S0. Considering L2 functions as temperate
distributions, show that Op(a)u, defined as above, coincides with Op(a)u in the sense of
Definition 3.181.

From the L2 boundedness of pseudo-differential operators, we will easily derive the
continuity of pseudo-differential operators on the Sobolev spaces Hs(Rn). We recall that,
for s ∈ R, Hs(Rn) is the space of temperate distributions u whose Fourier transform û
belongs to L2

loc and such that

∣∣∣∣u∣∣∣∣2
Hs := (2π)−n

∫
〈ξ〉2s

∣∣û(ξ)
∣∣2dξ <∞.

Equivalently, Hs(Rn) is the closure of the Schwartz space for the norm || · ||Hs defined
above. In the case when s ∈ N, these definitions are equivalent to require that ∂αu (in the
distributions sense) belongs to L2(Rn) for all |α| ≤ s.

Exercise 5.5. Let u be a temperate distribution (or u ∈ L2(Rn)) and s ∈ R. Denote

〈D〉s = Op(〈ξ〉s).

1. Show that u ∈ Hs(Rn) iff 〈D〉su ∈ L2(Rn), and that

||u||Hs = ||〈D〉su||L2 .

2. Show that 〈D〉s is a bijective isometry from Hs(Rn) to L2(Rn) with inverse 〈D〉−s.

Corollary 5.6 (Action on Sobolev spaces). Let m, s ∈ R. Let a ∈ Sm. Then Op(a) maps
continuously Hs(Rn) on Hs−m(Rn).

1here we consider the case when h = 1 since the dependence on h is irrelevant for this question.
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Proof of Corollary 5.6. By symbolic calculus, we can write

〈D〉s−mOp(a)〈D〉−s = Op(b),

for some b ∈ S0. Therefore, we have

Op(a) = 〈D〉m−sOp(b)〈D〉s,

where 〈D〉s maps Hs in L2 by Exercise 5.5, Op(b) maps L2 in L2 by Theorem 5.1 and
〈D〉m−s maps L2 in Hs−m by Exercise 5.5. The result follows. �

The rest of the section is devoted to the proof of Theorem 5.1 which rests on the
following lemma.

Lemma 5.7 (The Schur test). Let K be a continuous function on R2n such that

sup
x∈Rn

∫
|K(x, y)|dy ≤M, sup

y∈Rn

∫
|K(x, y)|dx ≤M.

Set

Ku(x) =

∫
K(x, y)u(y)dy.

Then
||Ku|| ≤M ||u||,

for all u ∈ S.

Proof. We leave as an exercise (Exercise 5.8 below) the proof that Ku is a well defined
continuous function. Then

|Ku(x)| ≤
∫
|K(x, y)u(y)|dy =

∫
|K(x, y)|1/2|K(x, y)|1/2|u(y)|dy

≤
(∫
|K(x, y)|dy

)1/2(∫
|K(x, y)||u(y)|2dy

)1/2

(5.2)

by the Cauchy-Schwartz inequality. Therefore, squaring this inequality and integrating
with respect to x, we get∫

|Ku(x)|2dx ≤M
∫ ∫

|K(x, y)||u(y)|2dydx ≤M2||u||2

using the Fubini Theorem. This completes the proof. �

Exercise 5.8. Check that Ku is a well defined continuous function for every u ∈ S.

We shall see that the L2 boundedness of Op(a) is a fairly direct consequence of the
Schur test if a ∈ S−ε for some ε > 0. To deal with the case ε = 0, we will use the following
lemma.
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Lemma 5.9. Fix N ≥ 0. For all a ∈ S0 denote M(a) := N S0

N (a). Then

b := (2M(a)2 − |a|2)1/2

belongs to S0 and there exists C > 0 such that

N S0

N (b) ≤ CM(a), (5.3)

for all a ∈ S0.

Proof. If M(a) = 0, then a = b = 0 and the result is trivial. Otherwise, after division by
M(a), we may assume that M(a) = 1. Then b is smooth and

|b|2 = 2− |a|2 ≤ 2 = 2 sup
R2n

|a|2 ≤ 2M(a)2.

If |α|+ |β| > 0, an induction shows that ∂αx ∂
β
ξ b is a (universal) linear combination of(

2− |a|2
)−k/2

∂α1
x ∂β1ξ a1 · · · ∂

αj
x ∂

βj
ξ aj , a1, . . . , aj = a or a, (5.4)

with

α1 + · · ·+ αj = α, β1 + · · ·+ βj = β, 1 ≤ j ≤ 2N, 1 ≤ k ≤ 2N.

Thus, if |α+ β| ≤ N
〈ξ〉|β||∂αx ∂

β
ξ b(x, ξ)| . 1,

for all (x, ξ) ∈ R2n and all a such that M(a) = 1, which proves (5.3). For |α + β| >
N , the form of ∂αx ∂

β
ξ b given by (5.4) remains of course valid and allows to check that

|∂αx ∂
β
ξ b(x, ξ)| . Ca,α,β〈ξ〉−|β|, ie that b ∈ S0 (but Ca,α,β is not any longer uniform with

respect to a). �

Proof of Theorem 5.1. Let us fix m > n and consider first the case when a ∈ S−m.
The kernel of Op(a) is

K(x, y) = (2π)−n
∫
ei(x−y)·ξa(x, ξ)dξ.

(See (3.27) where this formula was obtained). Note that the assumption on m guarantees
the convergence of the integral and its boundedness with respect to (x, y). By integration
by part, we have(

1 + (x1 − y1)2
)
K(x, y) = (2π)−n

∫
ei(x−y)·ξ

(
1− ∂2ξ1

)
a(x, ξ)dξ,

whose (modulus of the) right hand side is bounded by(
(2π)−n

∫
〈ξ〉−mdξ

)
sup
R2n

∣∣(1− ∂2ξ1)a(x, ξ)
∣∣〈ξ〉m.
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Repeating the integrations by part with respect to the other variables, we obtain

|K(x, y)| ≤ C〈x1 − y1〉−2 · · · 〈xn − yn〉−2N S−m
N0

(a),

for some N0 > 0 (here N0 = 2n is sufficient). By the Schur test, this implies that

||Op(a)u|| ≤ CN S−m
N0

(a)||u||. (5.5)

Now assume only that a ∈ S−m/2. By symbolic calculus (Theorems 3.14 and 3.16 with
h = 1), one can write

Op(a)∗Op(a) = Op(ã), (5.6)

for some ã ∈ S−m depending continuously on a. Therefore, we have

||Op(a)u||2 =
(
u,Op(a)∗Op(a)u

)
=
(
u,Op(ã)u

)
≤ ||u||||Op(ã)u||

≤ CN S−m
N0

(ã)||u||2, (5.7)

using (5.5) in the last step. The continuous dependence of ã on a shows that, for some
N1,

N S−m
N0

(ã) ≤ CN S−m/2
N1

(a)2.

Using (5.7), this shows that (5.5) holds with m replaced by m/2 and N0 replaced by N1.
Iterating this procedure, we obtain for each k ∈ N the existence of Ck and Nk such that

||Op(a)u|| ≤ CkN S−m/2
k

Nk
(a)||u||. (5.8)

At this point, since k can be chosen as large as we wish, we obtain the L2 boundedness
of Op(a) whenever a ∈ S−ε for some ε > 0. To complete the proof for a ∈ S0, we proceed
as follows. Let us fix k such that m/2k ≤ 1. By symbolic calculus, the symbol ã in (5.6)
satifies ã− aa ∈ S−1, therefore∣∣∣∣Op(a)u

∣∣∣∣2 =
(
u,Op(a∗)Op(a)u

)
=

(
u,Op(|a|2)u

)
+
(
u,Op(ra)u

)
, (5.9)

for some ra ∈ S−1 depending continuously on a ∈ S0. Using the notation of Lemma 5.9
with some N to be chosen latter, we have similarly∣∣∣∣Op(b)u∣∣∣∣2 =

(
u,Op(|b|2)u

)
+
(
u,Op(rb)u

)
= 2M2

a ||u||2L2 −
(
u,Op(|a|2)u

)
+
(
u,Op(rb)u

)
, (5.10)

with rb ∈ S−1 depending continuously on b ∈ S0. Using that
∣∣∣∣Op(b)u∣∣∣∣2 is nonnegative,

(5.9) and (5.10) yield∣∣∣∣Op(a)u
∣∣∣∣2 ≤ 2M(a)2||u||2 +

(
u,Op(ra)u

)
+
(
u,Op(rb)u

)
.
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Using (5.8) for ra and rb, we obtain

∣∣∣∣Op(a)u
∣∣∣∣2 ≤

(
2M(a)2 + CkN S−m/2

k

Nk
(ra) + CkN S−m/2

k

Nk
(rb)

)
||u||2. (5.11)

We now observe that ra = r#−1(a
∗, a) (see Theorems 3.14 and 3.16 for the notation) so

that, by continuity of a 7→ a∗ in S0 and continuity of r#−1(a
∗, a) ∈ S−1 ⊂ S−m/2

k
with

respect to a∗ and a in S0, there exists Mk such that

N S−m/2
k

Nk
(ra) . N S0

Mk
(a)2, (5.12)

for all a ∈ S0. Using this bound for b and choosing N = Mk in Lemma 5.9, we obtain

N S−m/2
k

Nk
(rb) . N S0

Mk
(b)2 . N S0

Mk
(a)2, (5.13)

Summing up, (5.11), (5.12) and (5.13) show that

||Op(a)u||2L2 . N S0

N (a)2||u||2, a ∈ S0, u ∈ S,

which is precisely the result. �

5.2 Hilbert-Schmidt estimates

The main result of this section is the following.

Theorem 5.10. Let ρ > n/2. Then, for all h ∈ (0, 1] and a ∈ S−ρ,−ρ

1. Oph(a) is Hilbert-Schmidt on L2(Rn),

2. its Hilbert-Schmidt norm reads

||Oph(a)||HS = (2πh)−n/2||a||L2(R2n).

Before giving the proof, we record the following useful result which is a simple analogue
of Lemma 3.24 and whose proof is left as an exercise to the reader.

Exercise 5.11. Let m,µ ∈ R and a ∈ Sµ,m. Show that, if we set

aj(x, ξ) = χ(x/j, ξ/j)a(x, ξ),

with χ ∈ C∞0 which is equal to 1 near (0, 0), then for all µ′ > µ and m′ > m,

aj → a in Sµ
′,m′ .
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Proof of Theorem 5.10. Assume first that a belongs to the Schwartz class. Then, using
Definition 4.6 (see also the calculation leading to (3.27)), we see that

Oph(a) = AK , K(x, y) = (2πh)−nâ

(
x,
y − x
h

)
(5.14)

where â is the Fourier transform of a(x, ξ) with respect to ξ. Since∫ ∫ ∣∣∣∣â(x, y − xh
)∣∣∣∣2 dxdy = hn

∫ ∫
|â(x, z)|2dxdz = (2πh)n

∫ ∫
|a(x, ξ)|2dxdξ,

the result follows from Proposition 4.7. In the general case, Exercise 5.11 allows to pick
aj ∈ C∞0 (R2n) which converges to a in S−ρ

′,−ρ′ with ρ > ρ′ > n/2. Then

||Oph(aj)||HS = (2πh)−n/2||aj ||L2(R2n). (5.15)

Since aj → a in L2(R2n), Oph(aj) is a Cauchy sequence in S2(L
2) hence in the space of

bounded operators. On the other hand, aj → a in S0,0 hence Oph(aj)→ Oph(a) pointwise
on the Schwartz space. This implies that the limit of Oph(aj) in S2(L

2) is necessarily
the L2 bounded operator Oph(a) which is thus an Hilbert-Schmidt operator. By letting
j →∞ in (5.15), the result follows. �

A simple and useful consequence of Theorem 5.10 is the following one.

Corollary 5.12. If a ∈ S−ε,−ε, for some ε > 0, then Oph(a) is a compact operator on
L2(Rn).

Proof. By Exercise 5.11, we may choose aj ∈ C∞0 (R2n) such that aj → a in S0,0. By
Theorem 5.1, this implies the following convergence in operator norm on L2(Rn),

Oph(aj)→ Oph(a), j →∞.

Since each Oph(aj) is Hilbert-Schmidt by Theorem 5.10, hence is compact by Corollary
4.5, this implies that Oph(a) is compact. �

5.3 Trace class estimates

In this section, we give a simple criterion for a pseudo-differential operator to be trace
class and give a simple formula for its trace. This is the purpose of the following theorem.

Theorem 5.13. Fix ρ > n.

1. For all a ∈ S−ρ,−ρ and h ∈ (0, 1], Oph(a) is trace class on L2(Rn).

2. There exist C and a seminorm N S−ρ,−ρ
N such that for all a ∈ S−ρ,−ρ and all h ∈ (0, 1],

||Oph(a)||tr ≤ Ch−nN S−ρ,−ρ
N (a).
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3. For all a ∈ S−ρ,−ρ and all h ∈ (0, 1],

tr
(
Oph(a)

)
= (2πh)−n

∫ ∫
a(x, ξ)dxdξ. (5.16)

We will need a general lemma.

Lemma 5.14. Let a1, a2 ∈ Sµ,m with m < −n. If Op(a1) = Op(a2) then a1 = a2.

Let us remark that the condition m < −n can be removed, but the proof is more
straightforward with this extra condition and sufficient for the present purpose.

Proof. If u ∈ S(Rn) and x is fixed, the condition m < −n allows to write

Op(a1)u(x) = (2π)−n
∫ ∫

ei(x−y)·ξa1(x, ξ)u(y)dydξ,

= (2π)−n
∫
â1(x, y − x)u(y)dy,

where ·̂ is the Fourier transform with respect to ξ. Thus the assumption Op(a1) = Op(a2)
implies that, if we set bx(y) = â1(x, y − x)− â2(x, y − x), we have∫

bx(y)u(y)dy = 0, for all u ∈ S(Rn).

This implies that, for each fixed x, bx(·) ≡ 0. By taking the inverse Fourier transform, we
see that a1 = a2. �

Proof of Theorem 5.13. We will prove item 1 and item 2 simultaneously. Set w(x, ξ) =
〈x〉ρ/2〈ξ〉ρ/2, which belongs to Sρ/2,ρ/2, and

Wh := 〈x〉ρ/2〈hD〉ρ/2 = Oph(w).

On the other hand, introduce

Bh := 〈hD〉−ρ/2〈x〉−ρ/2 = Oph

(
〈x〉−ρ/2〈ξ〉−ρ/2

)∗
,

which is Hilbert-Schmidt by Proposition 5.10 with ||Bh||HS ≤ Ch−n/2. Since BhWh = I
on the Schwartz space, we have

Oph(a) = Bh
(
WhOph(a)

)
, (5.17)

and therefore ∣∣∣∣Oph(a)
∣∣∣∣
tr
≤ ||Bh||HS

∣∣∣∣WhOph(a)
∣∣∣∣
HS
.

By symbolic calculus and the fact that w ∈ Sρ/2,ρ/2, we have

WhOph(a) = Oph(ch), (5.18)
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for some bounded family (ch)h∈(0,1] of S−ρ/2,−ρ/2 depending continuously on a ∈ S−ρ,−ρ.
This implies that for some N and C,

||ch||L2(R2n) ≤ CN S−ρ,−ρ
N (a), a ∈ S−ρ,−ρ, h ∈ (0, 1].

The conclusion follows then from Proposition 5.10. To prove item 3, it suffices to prove
the result when h = 1. We start with the following computation. If b, c are Schwartz
functions on R2n, then Op(b) and Op(c) are Hilbert-Schmidt so using Proposition 4.14 and
(5.14), we have

tr (Op(b)Op(c)) = (2π)−2n
∫ ∫

b̂ (x, y − x) ĉ (y, x− y) dxdy. (5.19)

On the other hand, we recall from the symbolic calculus (see (3.37)) that one can write
Op(b)Op(c) = Op(a) with

a(x, ξ) = (2π)−n
∫ ∫

e−iz·ζb(x, ξ + ζ)c(x+ z, ξ)dzdζ.

Thus, using the change of variables z = y − x and ζ = η − ξ, we have

(2π)−n
∫ ∫

a(x, ξ)dxdξ = (2π)−n
∫ ∫ ∫ ∫

e−i(y−x)·(η−ξ)b(x, η)c(y, ξ)dydηdxdξ

= (2π)−n
∫ ∫

b̂ (x, y − x) ĉ (y, x− y) dydx

which shows together with (5.19) that (5.16) holds when Op(a) = Op(b)Op(c) and b, c are
Schwartz functions, ie

tr
(
Op(b)Op(c)

)
= (2π)−n

∫ ∫
(b#c)(x, ξ)dxdξ. (5.20)

We next check that this remains true if b, c ∈ S−ρ/2,−ρ/2. Indeed, according to Exercise
5.11, we may approximate b, c by Schwartz functions bj , cj for the topology of S−ρ

′/2,−ρ′/2

with ρ > ρ′ > n. Then
Op(bj)Op(cj) = Op(bj#cj),

with bj#cj → b#c in S−ρ
′,−ρ′ as j →∞ by Theorem 3.14, and we also have

Op(bj)Op(cj)→ Op(b)Op(c), Op(bj#cj)→ Op(b#c) in trace class norm,

by Proposition 5.10 in the first case and items 1 and 2 of the present proposition in the
second case. On the other hand, we have

bj#cj → b#c in L1(R2n),

using the embedding S−ρ
′,−ρ′ ⊂ L1(R2n). Using (5.20) for bj and cj , and then letting j go

to infinity, we obtain that (5.20) remains true if b, c ∈ S−ρ/2,−ρ/2. To complete the proof,
it suffices to note that, for any a ∈ S−ρ,−ρ, one can write

Op(a) = Op(b)Op(c), (5.21)
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for some b and c in S−ρ/2,−ρ/2, using (5.17) and (5.18). Thus

tr
(
Op(a)

)
= (2π)−n

∫ ∫
(b#c)(x, ξ)dxdξ,

by the previous step. Since Op(b)Op(c) = Op(b#c), Lemma 5.14 and (5.21) imply that
a = b#c and the result follows. �

Exercise 5.15. Show that if K is an operator with kernel K ∈ S(R2n), then K is trace
class and

trL2(R2n)(K) =

∫
Rn
K(x, x)dx.

Hint. Write K as Op(a) for some suitable a (use (3.27) to find a).



Chapter 6

Elliptic parametrix and
applications

In this chapter, we construct a parametrix for a semiclassical elliptic operator, that is an
approximate inverse of h2P − z if P is a second order elliptic differential operator. Here
h is the semiclassical parameter and z is a spectral parameter which, in this chapter, will
belong to C \ [0,+∞). This analysis can be generalized in many directions but we focus
on this example which will be sufficient for our applications. In Section 6.1, we construct
the parametrix for an operator which is globally elliptic on Rn, to ignore the problems
of localization and local charts on a manifold. In Section 6.2, we explain how to use the
result on Rn to obtain fairly directly a parametrix on any relatively compact subset of an
open set and also derive the local elliptic regularity theorem.

6.1 Parametrix on Rn

Let P be a differential operator on Rn of the form

P = p2(x,D) + p1(x,D) + p0(x), (6.1)

with

p2(x, ξ) =
n∑

j,k=1

ajk(x)ξjξk, p1(x, ξ) =
n∑
j=1

bj(x)ξj ,

such that ajk = akj for all j, k. We assume that

p2−j ∈ S2−j , j = 0, 1, 2. (6.2)

We refer to Definition 3.6 for S2−j and recall that, according to Exercise 3.7, this condition
is equivalent to the fact that ajk, bj , p0 are smooth functions which are bounded on Rn
together with all their derivatives. Throughout this section, p2 will be called the principal
symbol of P . We assume that p2 is a real valued and such that, for some c > 0,

p2(x, ξ) ≥ c|ξ|2, x, ξ ∈ Rn, (6.3)

65
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which is our ellipticity assumption. We consider the semiclassical operator

P (h) := h2P =
2∑
j=0

hjp2−j(x, hD),

and look for an approximate inverse for P (h)−z in terms of pseudo-differential operators.
Since

P (h)− z = Oph(p2 − z) + hOph(p1) + h2Oph(p0),

and using the intuition suggested by Exercise 3.9, it is natural to consider the function
(p2 − z)−1 which is well defined provided that

z ∈ C \ [0,+∞), (6.4)

since p2 takes its values in [0,+∞). We record the following useful result.

Lemma 6.1. There exists C > 0 such that∣∣(p2(x, ξ)− z)−1∣∣ ≤ C 〈z〉
d(z,R+)

〈ξ〉−2,

for all x, ξ ∈ Rn and all z satisfying (6.4).

Proof. We write
1

p2 − z
=
p2 + 1

p2 − z
1

p2 + 1
,

where, by (6.3), we have

0 ≤ 1

p2(x, ξ) + 1
≤ C〈ξ〉−2

and, by the inequalities |p2 − z| ≥ d(z,R+) and d(z,R+) ≤ |z|,∣∣∣∣p2 + 1

p2 − z

∣∣∣∣ =

∣∣∣∣1 +
z + 1

p2 − z

∣∣∣∣ ≤ 1 +
|z|+ 1

d(z,R+)
≤ C 〈z〉

d(z,R+)
,

which completes the proof. �

Proposition 6.2. For all z ∈ C \ [0,+∞), (p2− z)−1 belongs to S−2. More precisely, for
all α, β ∈ Nn, there exists Cαβ and such that

∣∣∣∂αx ∂βξ (p2(x, ξ)− z)−1
∣∣∣ ≤ Cαβ ( 〈z〉

d(z,R+)

)|α|+|β|+1

〈ξ〉−2−β, (6.5)

for all x, ξ ∈ Rn and all z satisfying (6.4). Furthermore, the map z 7→ (p2 − z)−1 is
continuous from C \ [0,+∞) to S−2.
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Proof. We start by proving (6.5). The case α = β = 0 follows from Lemma 6.1. Otherwise,
by item 2 of Exercise 3.7, we have to consider terms of the form

∂α1
x ∂β1ξ p2 · · · ∂

αj
x ∂

βj
ξ p2

(p2 − z)1+j
= O

(
〈ξ〉2j−|β1|−···−|βj |

)
O
(
〈ξ〉−2−2j 〈z〉1+j

d(z,R+)1+j

)
= O

(
〈ξ〉−2−|β| 〈z〉1+j

d(z,R+)1+j

)
,

using Lemma 6.1 and the fact that β1 + · · · + βj = β. Since 〈z〉/d(z,R+) ≥ 1 and
j ≤ |α| + |β|, we can replace 1 + j by 1 + |α| + |β| in the last line, and we obtain the
expected estimates. This implies in particular that (p2 − z)−1 ∈ S−2. Let us prove the
continuous dependence on z. Fix z0. Then

(p2 − z)−1 − (p2 − z0)−1 = (z − z0)(p2 − z)−1(p2 − z0)−1.

By considering (p2−z0)−1 as a symbol in S0 and using the continuity of the map (a, b) 7→ ab
from S−2 × S0 to S−2 (see the Exercise 3.12), (6.5) implies that for any seminorm NN of
S−2, there exists M ≥ 0 such that

NN
(
(p2 − z)−1 − (p2 − z0)−1

)
≤ C|z − z0|

(
〈z〉

d(z,R+)

)M
.

Since the right hand side goes to zero as z → z0, we get the result. �

To construct our approximate inverse, we try to find a sequence of symbols

qz,−2−k ∈ S−2−k, k ≥ 0,

such that, for each N ,

(P (h)− z)

(
N−1∑
k=0

hkOph
(
qz,−2−k

))
= I + hNOph

(
rz,−N (h)

)
, (6.6)

with (rz,−N (h))h∈(0,1] bounded in S−N , and all these symbols satisfying nice bounds in
term of z. To determine the conditions to be satisfied by the symbols qz,−2−k, we expand
the left hand side of (6.6) according to the composition formula (see Theorem 3.14 and
the notation thereof) from which we get

(P (h)− z)

(
N−1∑
k=0

hkOph
(
qz,−2−k

))
=

N−1∑
k=0

hkOph(cz,k) + hNOph
(
rz,−N (h)

)
, (6.7)

with

cz,0 = (p2 − z)qz,−2 (6.8)

cz,k = (p2 − z)qz,−2−k +
∑

j+l+m=k
l<k

(
p2−j#qz,−2−l

)
m
, (6.9)
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for 1 ≤ k ≤ N − 1, and with

rz,−N (h) =
2∑
j=0

N−1∑
k=0

ho(k,j)r#J(k,j)
(
p2−j , qz,−2−k, h

)
, (6.10)

where

J(k, j) = max
(
N − k − j, 0

)
, o(k, j) = k + j −N + J(k, j). (6.11)

Note that o(k, j) ≥ 0 (for all terms but one we have o(k, j) = k+j−N ; we have introduced
this notation only to deal with the term corresponding to j = 2 and k = N − 1).

By comparing the right hand sides of (6.6) and (6.7), we see that we have to require
first that cz,0 = 1, that is

qz,−2 = (p2 − z)−1, (6.12)

and that cz,k = 0 for k ≥ 1, that is

qz,−2−k = − 1

p2 − z
∑

j+l+m=k
l<k

(
p2−j#qz,−2−l

)
m
, k ≥ 1. (6.13)

This defines the functions qz,−2−k inductively since the right hand side of (6.13) depends
only on qz,−2, . . . , qz,−2−(k−1). So defined, it is easy to check by induction that qz,−2−k
belongs to S−2−k (we shall review this fact more precisely below) and, using (6.11), this
implies in turn that

r#J(k,j)
(
p2−j , qz,−2−k, h

)
∈ S−j−k−J(k,j) ⊂ S−N .

In particular, this implies that rz,−N (h) ∈ S−N .

We have proved a large part of the following theorem.

Theorem 6.3. There exist symbols djk ∈ S2j−k, which are polynomial in ξ and indepen-
dent of z and h, such that the symbols

qz,−2−k =
2k∑
j=1

djk
(p2 − z)1+j

, k ≥ 1, (6.14)

qz,−2 =
1

p2 − z
,

satisfy for all z ∈ C \ [0,+∞), all N ≥ 1 and all h ∈ (0, 1],

(P (h)− z)

(
N−1∑
k=0

hkOph(qz,−2−k)

)
= I + hNOph(rz,−N (h)),



6.1. PARAMETRIX ON RN 69

with a remainder such that, for all α, β, there exist Cαβ and Mαβ such that

∣∣∂αx ∂βξ rz,−N (x, ξ, h)
∣∣ ≤ Cαβ〈ξ〉−N−|β|( 〈z〉

d(z,R+)

)Mαβ

, (6.15)

for all z ∈ C \ [0,+∞), all h ∈ (0, 1] and all x, ξ ∈ Rn. Finally, the maps

z 7→ qz,−2−k ∈ S−2−k, z 7→ rz,−N (h) ∈ S−N ,

are continuous on C \ [0,+∞).

Let us comment on this theorem. If one fixes N ≥ 0 (as large as we wish) and defines

Qz(h) =
N−1∑
k=0

hkOph(qz,−2−k), Rz(h) = Oph(rz,−N (h)),

we have

(P (h)− z)Qz(h) = I + hNRz(h), (6.16)

and it follows from Corollary 5.2 and (6.15) that there exist C,M ≥ 0 such that

||Rz(h)||L2(Rn)→L2(Rn) ≤ C
(

〈z〉
d(z,R+)

)M
, h ∈ (0, 1], z ∈ C \ [0,+∞).

This means in particular that, for a given z, hNRz(h) is small when h is small, hence
that the right hand side of (6.16) is close to the identity in the operator norm on L2(Rn).
This is a first justification that Qz(h) is an approximate inverse of P (h) − z. Another
justification is in term of regularity as follows. By Corollary 5.6, we know that for all
s ∈ R,

Qz(h) : Hs → Hs+2, Rz(h) : Hs → Hs+N , (6.17)

for the symbol of Qz(h) belongs to S−2 and the one of Rz(h) to S−N . Since N is as large
as we wish, Rz(h) can be considered as a smoothing operator and one can thus interpret
(6.16) by saying that we have inverted P (h) − z modulo a smoothing operator. It is
customary in PDE to treat smoothing operators as residual and we will see an illustration
of this fact in Corollary 6.4 below.

The dependence on z in Theorem 6.3 is a more technical aspect whose interest will
become clearer in the next chapter. We only mention that the continuous dependence of
the symbols on z and the bound (6.15) will be important when we use the Helffer-Sjöstrand
formula (see in particular Proposition 4.17).

Proof. The proof of (6.14) follows by induction using the form of (a#b)j (see Theorem
3.14) and Exercise 3.7. We omit the complete verification of this and only record that
(6.13) implies

qz,−3 = − p1
(p2 − z)2

+
1

i

∇xp2 · ∇ξp2
(p2 − z)3

,
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which is indeed of the form (6.14) for k = 1. To prove (6.15) one observes that Proposition
6.2 and (6.14) imply that the seminorms of qz,−2−k in S−2−k are bounded by (non negative)

powers of 〈z〉/d(z,R+) hence the same holds for the seminorms of r#ν(k,j)
(
p2−j , qz,−2−k, h

)
in S−N by symbolic calculus. The continuous dependence on z follows from Proposition
6.2 and (6.14) for qz,−2−k. This implies in turn the continuous dependence of rz,−N (h)

on z, using (6.10) and the continuous dependence of r#J (a, b, h) on a and b as stated in
Theorem 3.14. �

We now give an application to the elliptic regularity. Theorem 6.3 means that one can
construct a right parametrix for P (h)−z, that is an approximate inverse of P (h)−z to the
right. One can also obtain a left parametrix using the following argument. We fix z = −1
and h = 1 to simplify the notation and since this will be sufficient to prove Corollary 6.4.
Using that P ∗ is of the same form as P , ie a second order differential operator with symbol
in S2 and the same principal symbol as P , one can find pseudo-differential operators Q
and R with symbols in S−2 and S−N respectively such that(

P ∗ + 1
)
Q = I +R.

By taking the adjoint (using Theorem 3.16) in this identity, we get

Q̃
(
P + 1

)
= I + R̃, (6.18)

where, for all s,

Q̃ = Q
∗

: Hs → Hs+2, R̃ = R
∗

: Hs → Hs+N ,

since the symbols of Q̃ and R̃ are respectively in S−2 and S−N . With this at hand, it is
easy to prove the following elliptic regularity result.

Corollary 6.4 (Global elliptic regularity). Let B be a first order (pseudo-)differential
operator on Rn with symbol in S1. Assume that u ∈ L2(Rn) and f ∈ Hs(Rn) satisfy

Pu = f +Bu. (6.19)

Then u belongs to Hs+2. In particular, if f belongs to ∩sHs, then u is smooth.

Proof. Let us set B1 = B + 1. The equation (6.19) is then equivalent to

(P + 1)u = f +B1u. (6.20)

We consider Q̃, R̃ defined as above with N such that N ≥ s+ 2. Applying Q̃ to both sides
of (6.20) and using (6.18), we get

u = Q̃f + Q̃B1u− R̃u, (6.21)

where Q̃f ∈ Hs+2, R̃u ∈ HN ⊂ Hs+2 and Q̃B1u ∈ H1 since B1u ∈ H−1. Therefore,

u ∈ Hs+2 +H1 ⊂ Hmin(s+2,1).
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If s + 2 ≤ 1 we are done. Otherwise, we have u ∈ H1 which is an improvement with
respect to the initial assumption that u ∈ L2. It implies that Q̃B1u ∈ H2 and thus (6.21)
yields

u ∈ Hs+2 +H2 ⊂ Hmin(s+2,2).

Repeating this argument a finite number of steps, we see that u belongs to Hs+2. �

6.2 Localization of the parametrix

In this short section, we explain how to localize the construction of Section 6.1. This
will be useful to prove the local version of Corollary 6.4 (see Theorem 6.7 below) and to
construct a parametrix for −∆g in coordinates patches which will be the central tool of
the next chapter.

Let V be an open subset of Rn. Assume that we are given a second order differential
operator PV on V with smooth coefficients of the form

PV = −
n∑

j,k=1

gjk(x)∂j∂k +
n∑
j=1

cj(x)∂j + c0(x)

such that, for all x ∈ V ,

(gjk(x)) is a positive definite matrix. (6.22)

Of course, the Laplace-Beltrami operator written in local coordinates is of this form (see
(2.3) and (2.5)), which is the reason why we consider operators of this form. Notice
however that no self-adjointness will be required in this part.

Proposition 6.5. Let V0 b V . Then, one can find an elliptic operator P globally defined
on Rn, of the form (6.1) and such that (6.2) and (6.3) hold, with the property that

PV = P on V0. (6.23)

This proposition means that, locally (ie in V0), one can assume that PV is the restriction
of an operator globally defined on Rn.

Exercise 6.6. Let G(x) be a real symmetric matrix with coefficients depending continu-
ously on x ∈ V and such that G(x) is positive definite for each x. Show that for all V0 b V
there exists C, c > 0 such that

c ≤ G(x) ≤ C,

for all x ∈ V0.

Proof of Proposition 6.5. Let χ ∈ C∞0 (V ) with values in [0, 1] and with χ ≡ 1 on V0. Set

P = −(1− χ)∆ + χPV .
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Obviously, P is a second order operator with symbol in S2 and which satisfy (6.23). Its
principal symbol is (1−χ(x))|ξ|2+χ(x)

∑
jk g

jk(x)ξjξk. By Exercise 6.6, there exists c > 0
such that

(1− χ(x))|ξ|2 + χ(x)
∑
jk

gjk(x)ξjξk ≥ (1− χ(x))|ξ|2 + χ(x)c|ξ|2 ≥ min(c, 1)|ξ|2,

and this completes the proof. �

One obtains the following local elliptic regularity result.

Theorem 6.7. Let BV be a first order differential operator on V with smooth coefficients
and fV ∈ C∞(V ). Assume that v ∈ L2

loc(V ) satisfies

PV v = fV +BV v, (6.24)

in the distributions sense on V . Then v ∈ C∞(V ).

Proof. It suffices to show that, for all k ∈ N and all χ ∈ C∞0 (V ), χv ∈ Hk(Rn). This is
true for k = 0 by assumption. Assume that this is true for k and let us show that it is
true for k + 1. Fix χ ∈ C∞0 (V ) and multiply (6.24) by χ. Then

PV χv = χfV + χBV v − [χ, PV ]v,

where

[χ, PV ] := χPV − PV χ,

By the Leibnitz rule, this is a first order differential operator with coefficients supported
in supp(∇χ) ⊂ supp(χ). Then, if χ̃ ∈ C∞0 (V ) is equal to 1 near the support of χ, we have

χBV v − [χ, PV ]v = χBV χ̃v − [χ, PV ]χ̃v ∈ Hk−1(Rn),

since χ̃v ∈ Hk(Rn) by the induction assumption and χBV − [χ, PV ] is a first order differ-
ential operator. If we set

u = χv ∈ L2(Rn), f = χfV + χBV χ̃v − [χ, PV ]χ̃v ∈ Hk−1(Rn),

and use Proposition 6.5 with V0 = supp(χ), then

Pu = f,

which, by Corollary 6.4, implies that u ∈ Hk+1(Rn). This completes the proof of the
induction, hence of the theorem. �

In the next theorem, we give a local version of Theorem 6.3.
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Theorem 6.8. Let V0 b V and χ0, χ1, χ2 ∈ C∞0 (V0) such that

χ1 ≡ 1 near supp(χ0), χ2 ≡ 1 near supp
(
χ1

)
.

Let the symbols
qz,−2−k ∈ S−2−k, z ∈ C \ [0,+∞),

be defined as in Theorem 6.3 for the operator P of Proposition 6.5 and set, for fixed N ,

QVN,z(h) = χ1

(
N−1∑
k=0

hkOph(qz,−2−k)

)
χ0.

Then (
h2PV − z

)
QVN,z(h) = χ0 + hNχ2Oph(rN,z,V (h))χ0, (6.25)

with rN,z,V (h) ∈ S−N depends continuously on z and satisfies, for any seminorm N S−N
M

of S−N ,

N S−N
M

(
rN,z,V (h)

)
≤ CM,N

(
z

d(z,R+)

)K(M,N)

, (6.26)

for all
z ∈ C \ [0,+∞), h ∈ (0, 1].

Apart from the technical estimates (6.26), the main result of this theorem is (6.25)
whose right hand side is not of the form I+O(hN ) as in Theorem 6.3. In the applications,
χ0 will be one term of a partition of unity and we will get a parametrix in the same spirit
as in Theorem 6.3 by summing the contributions of all terms of the partition.

Proof. The operator
(
h2PV − z

)
QVN,z(h) reads

χ1

(
h2PV − z

)(N−1∑
k=0

hkOph(qz,−2−k)

)
χ0 + [h2PV , χ1]

(
N−1∑
k=0

hkOph(qz,−2−k)

)
χ0,

where, as in the proof of Theorem 6.7, [h2PV , χ1] = h2(PV χ1 − χ1PV ) is a first order
differential operator. Since h2PV = P (h) on the support of χ1, Theorem 6.3 shows that

χ1

(
h2PV − z

)(N−1∑
k=0

hkOph(qz,−2−k)

)
χ0 = χ1

(
I + hNOph(rz,−N (h))

)
χ0,

= χ0 + hNχ1Oph(rz,−N (h))χ0.

On the other hand, since the coefficients of [h2PV , χ1] vanish where χ1 ≡ 1 hence near
supp(χ0), we see that all terms of the expansion of the symbol of [h2PV , χ1]Oph(a)χ0

vanish, whatever the symbol a is. By picking χ̃0 which is equal to one near supp(χ0) and
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such that χ1 ≡ 1 near supp(χ̃0) the symbolic calculus and the support properties allow to
write, for all N ,

[h2PV , χ1]Oph(a)χ0 = χ2

(
[h2PV , χ1]Oph(a)χ̃0

)
χ0,

= hNχ2Oph(rN (h))χ0

for some rN (h) ∈ S−N depending continuously on a. Using this fact for

a =
N−1∑
k=0

hkqz,−2−k,

and using the z dependence of such symbols implied by Proposition 6.2 and (6.14), we see
that the corresponding rN (h) satisfies bounds of the form (6.26). The same holds for the
remainder rz,−N (h) above by (6.15) so the result follows. �



Chapter 7

Proof of the Weyl law

In this chapter, we use the construction of Chapter 6 (mainly Theorem 6.8) to prove
Theorems 2.2 and 2.3 (or rather Theorem 2.5 which, as we have seen in Chapter 2, implies
Theorem 2.3).

7.1 The resolvent of the Laplacian on a compact manifold

The purpose of this section is to prove Proposition 7.2 below, which is an analogue of
Theorem 6.3 on a compact manifold.

By Proposition 1.5, we can choose a partition of unity on M associated to a finite atlas
(Ui, Vi, κi)i∈F (here F is a finite set), namely

1 =
∑
i∈F

θi, supp(θi) ⊂ Ui. (7.1)

For each i ∈ F , define

χ0,i := θi ◦ κ−1i ∈ C
∞
0 (Vi) ⊂ C∞0 (Rn), (7.2)

and choose χ1,i, χ2,i ∈ C∞0 (Rn) such that

χ1,i ≡ 1 near supp(χ0,i), supp(χ1,i) ⊂ Vi,

and
χ2,i ≡ 1 near supp(χ1,i), supp(χ2,i) ⊂ Vi.

According to the notation (1.12), we also denote

−κi∗∆gκ
∗
i =: Pi, (7.3)

which is a differential operator on Vi ⊂ Rn and wet let p2,i be its principal symbol, namely

p2,i =
n∑

j,k=1

gjki (x)ξjξk,

75
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as follows from (2.5). Here and in the sequel, all the functions, operators, etc... are
indexed by i which labels the charts.

By (2.5), each Pi satisfies the same assumptions as the operator PV in Section 6.2.
Therefore, if we fix an integer

N ≥ 1, (7.4)

Theorem 6.8 allows to can find pseudo-differential operators Qi,N (h, z) and Ri,N (h, z) of
the following form

Qi,N (h, z) = χ1,i

(
N−1∑
k=0

hkOph(qz,−2−k,i)

)
χ0,i, (7.5)

where qz,−2−k,i is of the form (6.14) with p2 replaced by p2,i, and

Ri,N (h, z) = χ2,iOph(rN,z,Vi(h))χ0,i. (7.6)

Their main property is that(
h2Pi − z

)
Qi,N (h, z) = χ0,i + hNRi,N (h, z), (7.7)

for all z ∈ C \ [0,+∞) and all h ∈ (0, 1]. The dependence on z and h of the symbols
qz,−2−k,i and rN,z,Vi(h) is as in Theorem 6.8.

To built an operator on M , let us define

QN (h, z) =
∑
i

κ∗iQi,N (h, z)κi∗, RN (h, z) =
∑
i

κ∗iRi,N (h, z)κi∗, (7.8)

seen as operators acting on C∞(M). Here we slightly abuse the notation since κi∗ is
only defined on C∞(Ui) (or even L2(Ui)) but not outside Ui. The precise meaning of
these expressions is the following. Denote by eUi the extension map by 0 outside Ui,
by rUi the restriction map to Ui ⊂ M and similarly eVi , rVi for Vi ⊂ Rn. Then, for a
pseudo-differential operator A on Rn, we set

κ∗iAκi∗ := eUiκ
∗
i (rViAeVi)κi∗rUi , (7.9)

which is now perfectly defined. For a general operator A, there is no reason in general
why κ∗iAκi∗ϕ should belong to C∞(M) for all ϕ ∈ C∞(M). Indeed, if ϕ ∈ C∞(M) then
κi∗rUiϕ is simply the map ϕ ◦ κ−1i : Vi → R which is smooth, but its extension by 0
outside Vi is in general not a smooth function on Rn. Nevertheless this the case if ϕ ◦ κ−1i
belongs to C∞0 (Vi). Similarly, if u is a Schwartz function, then rViAu is smooth on Vi
hence κ∗i (rViAu) is smooth on Ui, but its extension by 0 will in general not be smooth on
M . This will however be the case if we know that supp(Au) b Vi.

With this discussion in mind, it is not hard to prove the following property which we
leave as an exercise.



7.1. THE RESOLVENT OF THE LAPLACIAN ON A COMPACT MANIFOLD 77

Exercise 7.1. Fix cutoffs χi, χ̃i ∈ C∞0 (Vi) and a symbol a ∈ Sµ,m (for some µ,m ∈ R).
Check that

eUiκ
∗
i rVi (χ̃iOph(a)χi) eViκi∗rUi

maps C∞(M) in C∞(M).

All this means that, in (7.8), one has to consider that the (natural) extension and
restriction operators have been dropped from the notation for simplicity, but the exact
definition is as in (7.9).

The operators defined in (7.8) have the following properties.

Proposition 7.2. For all z ∈ C \ [0,+∞) and all h ∈ [0, 1),

1. QN (h, z) and RN (h, z) map C∞(M) into C∞(M),

2. QN (h, z) and RN (h, z) have bounded closures on L2(M) which are compact,

3. in the sense of operators on C∞(M),

(−h2∆g − z)QN (h, z) = I + hNRN (h, z). (7.10)

Furthermore, there exist C = C(N) and M = M(N) such that

∣∣∣∣RN (h, z)ϕ
∣∣∣∣
L2(M)

≤ C
(

〈z〉
d(z,R+)

)M
||ϕ||L2(M), (7.11)

for all z ∈ C \ [0,+∞), all h ∈ [0, 1) and all ϕ ∈ C∞(M).

Proof. Item 1 follows from Exercise 7.1 using the cutoffs χ0,i, χ1,i and χ2,i involved in (7.5)
and (7.6). Item 2 is a consequence of Corollary 5.12, since the symbols involved in (7.5)
and (7.6) are compactly supported in x and of negative order in ξ (using that N ≥ 1 by
(7.4) for RN (h, z)) and using (1.10) to translate estimates on L2(Rn) to L2(M) (see the
proof of Proposition 7.3 below for more details on this point). Item 3 is a consequence
of (7.1), (7.2) and (7.7). The estimate on RN (h, z) follows from Theorem 5.1, the last
estimate of Theorem 6.8 with N = 0 and (1.10) as above. �

The following proposition will be useful to deal with trace class estimates.

Proposition 7.3 (Further properties of RN (h, z)). Assume that N > n. Then there exist
Hilbert Schmidt operators

Ai,N (h, z) : L2(M)→ L2(Rn), Bi,N (h) : L2(M)→ L2(Rn)

such that,

RN (h, z) =
∑
i

Ai,N (h, z)∗Bi,N (h),
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and, for some constant C,M ,

∣∣∣∣Ai,N (h, z)
∣∣∣∣
HS
≤ Ch−n/2

(
〈z〉

d(z,R+)

)M
, (7.12)∣∣∣∣Bi,N (h)

∣∣∣∣
HS
≤ Ch−n/2, (7.13)

for all h ∈ [0, 1) and all z ∈ C \ [0,+∞). In addition, the map

z 7→ Ai,N (h, z)

is continuous from C \ [0,+∞) to the Hilbert-Schmidt class.

Proof. For the sake of clarity, we use the precise definition (7.9) (ie the right hand side
of (7.9) rather than the left hand side) to distinguish properly what is defined on M and
what is defined on Rn. We can then write each term of RN (h, z) as

eUiκ
∗
i (rViχ2,iOph(rN,z,Vi)χi,0eVi)κi∗rUi = Ai,N (h, z)Bi,N (h)

with

Ai,N (h, z) = eUiκ
∗
i rViχ2,iOph(rN,z,Vi)〈x〉N/2〈hD〉N/2

and

Bi,N (h) = 〈hD〉−N/2〈x〉−N/2χi,0eViκi∗rUi .

Using that eUiκ
∗
i rViχ2,i maps L2(Rn) to L2(M) and more precisely that∣∣∣∣eUiκ∗i rViχ2,iu

∣∣∣∣
L2(M)

. ||u||L2(Rn), u ∈ S(Rn)

by (1.9), and similarly that χi,0eViκi∗rUi maps L2(M) into L2(Rn), the result follows from
the fact that 〈hD〉−N/2〈x〉−N/2 is Hilbert-Schmidt on L2(Rn) by Theorem 5.10, and from
the fact that

χ2,iOph(rN,z,Vi)〈x〉N/2〈hD〉N/2 = Oph(aN,z(h)), aN,z(h) ∈ S−N/2,−N/2

(hence is Hilbert-Schmidt too), by symbolic calculus and the fact that χ2,irN,z,Vi belongs
to S−N,−N (the decay in x is due to χ2,i). In both cases, we also use item 5 of Proposition
4.3. The dependence on z of Ai,N (h, z) follows from Theorem 3.14 and Theorem 6.8. �

7.2 Diagonalization of ∆g

In this section, we fix (for instance) N = 1 and z = −1. By Proposition 7.2, one can find
h > 0 small enough and two operators Q,R : C∞(M)→ C∞(M), with bounded closures
Q, R on L2(M), such that (

− h2∆g + 1
)
Q = I +R, (7.14)
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as well as

||R||L2(M)→L2(M) ≤ 1/2. (7.15)

Moreover Q is compact on L2(M). All this follows by taking Q := Q(h,−1) and R =
hR(h,−1) with h small enough.

Proposition 7.4. 1. The operator I +R is invertible on L2(M).

2. The operator
K := Q(I +R)−1

maps C∞(M) in C∞(M).

3. As operators on C∞(M), (
− h2∆g + 1

)
K = I. (7.16)

Notice that item 1 is a direct consequence of (7.15). The main difficulty is to prove
item 2. We will use the following lemma.

Lemma 7.5 (Elliptic regularity on M). Let u ∈ L2(M), f ∈ C∞(M) and λ ∈ C. Assume
that, for all φ ∈ C∞(M),(

(−∆g + λ)φ, u
)
L2(M)

= (φ, f)L2(M). (7.17)

Then u ∈ C∞(M).

Of course, this lemma means that if u ∈ L2(M) is such that (−∆g + λ̄)u, taken in the
distributions sense, is smooth on M then u is smooth on M . However since we have not
discussed distributions on manifolds (and do not need to), we prefer to state the lemma
in the form above.

Proof. Let (U, V, κ) be a coordinate chart and denote by PV the expression of the Laplacian
in these coordinates, ie PV = −κ∗∆gκ

∗. According to Exercise 1.11, we can consider the
expression of u in local coordinates which we denote uκ ∈ L2

loc(V ). By specializing (7.17)
to φ ∈ C∞0 (U) and using (7.17), we have∫

(PV + λ)κ∗φ(x)uκ(x)|g(x)|dx =

∫
κ∗φ(x)κ∗f(x)|g(x)|dx,

where we recall that |g(x)|dx = κ∗dvolg (see 2.4). This implies that, in the distribution
sense on V ⊂ Rn,

(PV + λ)∗
(
|g|uκ

)
= |g|κ∗f,

where the formal adjoint is taken with respect to the Lebesgue measure dx, ie using (2.5),

P ∗V w(x) =

n∑
j,k=1

∂2

∂xj∂xk

(
gjk(x)w(x)

)
− ∂

∂xk

(
w(x)|g(x)|−1 ∂

∂xj

(
|g(x)|gjk(x)

))
.



80 CHAPTER 7. PROOF OF THE WEYL LAW

A simple calculation using the Leibniz rule shows that

(PV + λ)∗ = PV + λ̄+BV ,

for some first order differential operator BV (with smooth coefficients). Therefore, by the
smoothness of κ∗f and |g|, Theorem 6.7 imply that |g|uκ is smooth. Since |g| does not
vanish and U is arbitrary, we obtain that u is smooth on M . �

Proof of Proposition 7.4. Let us prove item 2. Fix f ∈ C∞(M) and define

u = Kf.

We wish to show that u ∈ C∞(M). By (7.14) and the formal selfadjointness of ∆g with
respect to dvolg (see (2.1)), we have(

(−h2∆g + 1)φ,Qψ
)
L2(M)

= (φ, (I +R)ψ)L2(M),

for all φ, ψ ∈ C∞(M). If we replace ψ by a sequence ψj ∈ C∞(M) which converges to
(I +R)−1f in L2(M), we obtain in the limit(

(−h2∆g + 1)φ, u
)
L2(M)

= (φ, f)L2(M). (7.18)

Since this is true for all φ ∈ C∞(M), Lemma 7.5 implies that u is smooth. Item 3 is then
a straightforward consequence of (7.18) since, as we know that u = Kf is smooth, the
formal selfadjointness of ∆g yields(

φ, (−h2∆g + 1)Kf
)
L2(M)

= (φ, f)L2(M), (7.19)

which implies the result since this holds for all φ, f ∈ C∞(M) which is dense in L2(M).
�

Proposition 7.6. 1. K is a compact selfadjoint operator on L2(M).

2. Ker(K) = {0}.

3. All eigenfunctions of K are smooth and are eigenfunctions of ∆g.

4. σ(K) ⊂ (0,+∞).

Proof. In item 1, we know that K is compact, so it remains to prove the selfadjointness.
By density of C∞(M) in L2(M), it suffices to show that

(f1,Kf2)L2(M) = (Kf1, f2)L2(M),

for all f1, f2 ∈ C∞(M). This is a straightforward consequence of the formal selfadjointness
of ∆g on C∞(M) and by taking f = f2 and φ = Kf1 in (7.19). Let us now prove item 2.
By (7.19), we have (

(−h2∆g + 1)φ,Kf
)
L2(M)

= (φ, f)L2(M), (7.20)
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for all φ, f ∈ C∞(M). By density of C∞(M) in L2(M) and continuity of K on L2(M),
this is still true if f ∈ L2(M). In particular, if f ∈ Ker(K), one has (φ, f)L2(M) = 0 for all
φ ∈ C∞(M) hence f = 0 that is precisely the result. Let us now prove item 3. Assume
that u ∈ L2(M) satisfies

Ku = µu,

for some µ ∈ R. By item 2, we can assume that µ 6= 0. Using (7.20), it is easy to check
that (

(−h2∆g + 1− µ−1)φ, u
)
L2(M)

= 0,

for all φ ∈ C∞(M). Using Lemma 7.5, we see that u is smooth. Furthermore, this identity
then shows that

(−h2∆g + 1− µ−1)u = 0,

ie that u is an eigenfunction of ∆g. We finally prove item 4. By taking φ = Kf in (7.20)
with f ∈ C∞(M) and by the non positivity of ∆g (see (2.2)), we obtain(

(−h2∆g + 1)Kf,Kf
)
L2(M)

= (Kf, f)L2(M) ≥ 0,

from which the result follows by density of C∞(M) in L2(M). �

Proof of Theorem 2.2. By item 1 and 4 of Proposition 7.6, one can consider the
sequence

µ0 ≥ µ1 ≥ µ2 ≥ · · · > 0, lim
j→∞

µj = 0

of eigenvalues of K. We let (ej)j≥0 be an associated orthonormal basis of eigenfunctions.
By item 3 of Proposition 7.6, they are smooth and eigenfunctions of ∆g. Furthermore,
using (7.16), we have

−∆jej = λjej

with λj = h−2(µ−1j − 1). The sequence (λj)j≥0 is non decreasing since (µj)j≥0 is non
increasing and positive. Furthermore, λj → +∞. Since λj is non negative, as explained
after the statement of Theorem 2.2, the proof is complete. �

7.3 Proof of the Weyl law

The purpose of this section is to prove Theorem 2.5 which, as shown in Chapter 2, implies
the Weyl law stated in Theorem 2.3.

Let us fix f ∈ C∞0 (R) and define h = λ−1/2 so that

λ−n/2f(−∆g/λ) = hnf(−h2∆g).

The first tool to analyze this operator is Proposition 4.22 which allows to write

f(−h2∆g) =
1

2π

∫
∂f̃(z)

(
− h2∆g − z

)−1
L(dz), (7.21)
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for (any hence) some almost analytic extension f̃ ∈ C∞0 (C) of f . The second tool is
the following approximation of the resolvent, where QN (h, z) and RN (h, z) are defined in
Proposition 7.2.

Lemma 7.7. For all h ∈ (0, 1] and z ∈ C \ [0,+∞),(
− h2∆g − z

)−1
= QN (h, z)− hN

(
− h2∆g − z

)−1RN (h, z). (7.22)

We recall that the resolvent is well defined by Definition 4.20 which uses Theorem 2.2
proved in the previous section.

Proof. Let (ej)j∈N be an orthonormal basis of eigenfunctions of ∆g and let E be the space
of finite linear combinations of such eigenfunctions. Fix φ ∈ E and define

Φ = (−h2∆g − z̄)−1φ,

which is still an element of E . We then fix an arbitrary ψ ∈ C∞(M) and test the identity
(7.10) against Φ and ψ. Using the easily verified fact that, since φ ∈ E ,

(−h2∆g − z̄)(−h2∆g − z̄)−1φ = φ,

and the fact that the adjoint of (−h2∆g − z̄)−1 is (−h2∆g − z)−1 by Proposition 2.4, we
get (

φ,QN (h, z)ψ
)
L2(M)

=
(
φ, (−h2∆g − z)−1

(
I +RN (h, z)

)
ψ
)
L2(M)

.

By density of E and C∞(M) in L2(M), the result follows. �

By combining the formula (7.21) and the decomposition (7.22), we see that, for any
N ≥ 0, one obtains that

f(−h2∆g) = FN (f, h) + hNTN (f, h)

with

FN (f, h) =
1

2π

∫
∂f̃(z)QN (h, z)L(dz)

and

TN (f, h) = − 1

2π

∫
∂f̃(z)

(
− h2∆g − z

)−1RN (h, z)L(dz).

More precisely, the integrals converge in operator norm on L2(M) by Proposition 4.17 and
the a priori bounds (4.20) and (7.11).

Proposition 7.8. If N > n, TN (f, h) is trace class and

||TN (f, h)||tr . h−n, h ∈ (0, 1].
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Proof. By choosing N > n and using Proposition 7.3, the second term in the right hand
side of (7.22) is a sum of

hN
(
− h2∆g − z

)−1
Ai,N (h, z)∗Bi,N (h)

where Ai,N (h, z)∗ is Hilbert-Schmidt hence so is
(
− h2∆g − z

)−1
Ai,N (h, z)∗ by item 5 of

Proposition 4.3. Actually, by (4.20) and (7.12), one has

∣∣∣∣hN(− h2∆g − z
)−1

Ai,N (h, z)∗
∣∣∣∣
HS
. hN−

n
2

〈z〉M

|Im(z)|M+1
.

We can then integrate in z, using that the space of Hilbert-Schmidt operators is complete
(see item 4 of Proposition 4.3) and the fact that ∂f̃(z) has compact support and satisifes
|∂f̃(z)| . |Im(z)|M+1. We obtain that∣∣∣∣∣∣∣∣∫ ∂f̃(z)hN

(
− h2∆g − z

)−1
Ai,N (h, z)∗L(dz)

∣∣∣∣∣∣∣∣
HS

. h−n/2. (7.23)

Using next that ||Bi,N (h)||HS . h−n/2 (see Proposition 7.3), we get the result. �

The following final proposition will complete the proof of Theorem 2.5.

Proposition 7.9. For all N , FN (f, h) is trace class and

tr
(
FN (f, h)

)
= (2πh)−nvolg(M)

∫
f(|η|2)dη +O(h1−n).

We isolate first the following formula.

Exercise 7.10. We consider the operator (7.9) and assume additionally that

A = χ1Bχ0,

with χ0, χ1 ∈ C∞0 (Vi) and χ0χ1 = χ0, and also that B is trace class. Prove that

trL2(M) (eUiκ
∗
i (rViAeVi)κi∗rUi) = trL2(Rn)(χ0B).

Hint: use (and prove) that (
eViκi∗rUi

)(
eUiκ

∗
i rVi

)
= 1Vi ,

as a multiplication operator on L2(Rn).

Proof of Proposition 7.9. Recall the structure of QN (h, z) which is given by (7.8) where
each Qi,N (h, z) is of the form

χ1,i

N−1∑
k=0

hkOph(q−2−k,z,i)χ0,i
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where, on the support of χ1,i, one has

q−2,z,i =
1

p2,i − z

with p2,i the principal symbol of −∆g in the i-th chart, and

q−2−k,z,i =
2k∑
j=1

djk,i
(p2,i − z)1+j

,

with djk,i polynomial in ξ and independent of z (see Theorem 6.3). Using Proposition
4.18 (and an elementary Fubini argument which we omit) we obtain that

1

2π

∫
∂f̃(z)χ1,iOph(q−2,z,i)L(dz) = χ1,iOph(f ◦ p2,i), (7.24)

and similarly, for k ≥ 1, that

1

2π

∫
∂f̃(z)χ1,iOph(q−2−k,z,i)L(dz) =

2k∑
j=1

(−1)j

j!
χ1,iOph(djk,if

(j) ◦ p2,i). (7.25)

Since p2,i is elliptic, f (j)◦p2,i has compact support in ξ. Thanks to the compact support of
χ1,i, we see that the pseudo-differential operators in the left hand sides of (7.24) and (7.25)
have compactly supported symbols on R2n. Therefore they are trace class by Theorem
5.13. Using (5.16) and Exercise 7.10, one can compute the traces and we see that the trace
of all terms corresponding to k ≥ 1 have a trace of order hk−n = O(h1−n). This combined
with Proposition 7.8 shows that

tr
(
FN (f, h)

)
=
∑
i∈F

(2πh)−n
∫ ∫

χ0,i(x)f(p2,i(x, ξ))dxdξ +O(h1−n).

It remains to remark that

p2,i(x, ξ) =
∣∣Hi(x)ξ

∣∣2 = ξ ·Hi(x)2ξ,

where Hi(x) is a square matrix which is the positive definite square root of (gjki (x)) (see
(2.3)) in the i-th chart. Notice that

det(Hi(x)) = |gi(x)| = det(gjki (x))−1/2.

Thus, using the change of variable Hi(x)ξ = η, we obtain

(2πh)−n
∫ ∫

χ0,i(x)f(p2,i(x, ξ))dxdξ = (2πh)−n
∫ ∫

χ0,i(x)f(|η|2)|gi(x)|dxdη

= (2πh)−n
(∫

f(|η|2)dη
)∫

θidvolg

using (1.5), (2.4) and (7.2) in the last line. Summing over i and using (7.1), the result
follows. �



Appendix A

Proof of the Peetre Theorem

In this section, we give a proof of Proposition 1.13. It is based on the following technical
lemma.

Lemma A.1. Let V be an open subset of Rn and Q : C∞0 (V ) → C∞0 (V ) a linear map
such that

supp(Qϕ) ⊂ supp(ϕ), ϕ ∈ C∞0 (V ). (A.1)

Then, for all x ∈ V and all C > 0, there exist a neighborhood W of x and an integer k ≥ 0
such that, for all ϕ ∈ C∞0 (V ) and all y ∈W ,

∂αϕ(y) = 0 for all |α| ≤ k =⇒ |(Qϕ)(y)| ≤ C.

Proof. We argue by contradiction. There are then x ∈ V and C > 0 such that for all k ∈ N
and all neighborhood W of x we can find y ∈W and ϕk ∈ C∞0 (V ) such that ∂αϕk(y) = 0
for all |α| ≤ k and |(Pϕk)(y)| > C. In particular, we can choose a sequence of disjoint
balls B(yk, rk) and a sequence ϕk ∈ C∞0 (V ) such that

|yk − x| → 0, ∂αϕk(yk) = 0 for |α| ≤ k, |(Pϕk)(yk)| > C. (A.2)

Fix now χ ∈ C∞0 (B(0, 1)) such that χ ≡ 1 on B(0, 1/2) and set

Mj := #{(β, γ) | |β + γ| ≤ j} × max
|β+γ|≤j

(β + γ)!

β!γ!
×max
|β|≤j

||∂βχ||L∞ . (A.3)

We consider even indices k = 2j. Using that ∂αϕ2j(yk) = 0 for |α| ≤ 2j, the Taylor
formula allows to find 0 < δ2j < min(r2j , 1) such that

max
|γ|≤j

sup
y∈B(y2j ,δ2j)

|∂γϕ2j(y)| ≤ 1

Mj
(δ2j/2)j . (A.4)

Then, if we define ψj ∈ C∞0 (B(y2j , δ2j)) by

ψj(y) = ϕ2j(y)χ

(
y − y2j
δ2j

)
85



86 APPENDIX A. PROOF OF THE PEETRE THEOREM

it is not hard to check, using the Leibnitz rule, (A.3) and (A.4), that

||∂αψj ||L∞ ≤ 2−j , |α| ≤ j.

Therefore, the following function is smooth

Ψ :=
∑
j≥0

ψj

and belongs to C∞0 (V ). We then observe that, for each j, y2j+1 /∈ supp(Ψ). Since the
support is preseved by Q, we see that

QΨ(y2j+1) = 0

hence that QΨ(x) = 0, using the first property in (A.2). On the other hand, since Ψ and
ϕ2j coincide near y2j , we have Q(Ψ− ϕ2j)(y2j) = 0 and therefore∣∣QΨ(y2j)

∣∣ ≥ C,
by the last property of (A.2). This implies that |QΨ(x)| ≥ C which yields a contradiction.
�

Lemma A.2. The operator Q : C∞0 (V )→ C∞0 (V ) is continuous.

Proof. We prove first that Q is continuous from C∞0 (V ) to C0
0 (V ), by contradiction. Then,

there exists K b V such that, for all j ∈ N we can find ψj such that

ψj ∈ C∞0 (K), ||Qψj ||L∞ > j max
|α|≤j

sup
K
|∂αψj |.

Up to the replacement of ψj by ψj/||Qψj ||L∞ we can assume that

||Qψj ||L∞ = 1 and ψj → 0 in C∞0 (K).

For each j, there exists xj ∈ K such that |Qψj(xj)| = 1 and, by possibly taking subse-
quences, we may assume that xj converges to some x ∈ K. By Lemma A.1, we can find
a neighborhood x, containing all xj for j large enough, and an integer k such that, for all
ϕ ∈ C∞0 (V ),

∂αϕ(xj) = 0 for |α| ≤ k =⇒ |Qϕ(xj)| ≤ 1/2.

(Choose C = 1/2.) Let χ ∈ C∞0 (V ) be equal to 1 near x (hence near all xj for j large)
and set

ϕj(·) = ψj(·)−
∑
|α|≤k

1

α!
∂αψj(xj)(· − xj)αχ(·).

Then |Qϕj(xj)| ≤ 1/2 for all j large enough. On the other hand, if we set χj,α(·) =
(· − xj)αχ(·), we have

Qϕj(xj) = Qψj(xj)−
∑
|α|≤k

1

α!
∂αψj(xj)(Qχj,α)(xj)
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where the sequence (Qχj,α)(xj) is bounded, by boundedness of the sequence xj (expand
(· − xj)α according to the binomial formula), and where the term ∂αψj(xj) go to zero.
This implies that limj→∞ |Qψj(xj)| ≤ 1/2 which yields a contradiction.

To complete the proof, it suffices to observe that, for any multiindex α, ∂αQ preserves
the supports hence is continuous from C∞0 (V ) to C0

0 (V ), ie Q is continuous from C∞0 (V )

to C
|α|
0 (V ) for all α. �

Proof of Proposition 1.13. We consider Q := κ∗Pκ
∗ which is support preserving. Fix

an open subset K b V . By continuity of Q, there exists C > 0 and m ∈ N such that

||Qϕ||L∞ ≤ C max
|α|≤m

sup
K
|∂αϕ|,

for all ϕ ∈ C∞0 (K). This estimate and the fact that Q is support preserving (ie non
increasing) implies that, for any x ∈ K, the map

ϕ 7→ (Qϕ)(x),

is a distribution of order at most m which is supported at x. A classical result of Distri-
butions Theory shows that it is a linear combination of the Dirac measure at x and its
derivatives up to order m. In other words, there are (uniquely defined) complex numbers
aα(x) such that

(Qϕ)(x) =
∑
|α|≤m

aα(x)∂αϕ(x), (A.5)

for all ϕ ∈ C∞0 (K) and actually, by the support property, for all ϕ ∈ C∞0 (V ). To complete
the proof, it suffices to show that the maps x 7→ aα(x) are smooth. This is a local statement
so it suffices to show that these maps are smooth near any point of K. Pick χ0 ∈ C∞0 (K)
which is equal to 1 near such a point x. Then, for β = 0,

a0 =
(
Qχ0

)
(x), near x,

hence a0 is smooth on a neighborhood W of x. Consider next the operator

Q0ϕ = Qϕ− a0ϕ,

which is continuous on C∞0 (W ) to itself. For |β| = 1, we set χβ(y) = yβχ1(y), with
χ1 ∈ C∞0 (W ) which is equal to 1 near x. By (A.5),

aβ = Q0χβ, near x,

which, as above, implies that aβ is smooth near x. Analogously, by considering successively
the operators Qk = Q−

∑
|α|≤k aα(x)∂α, k = 1, . . . ,m− 1, one proves that all coefficients

of Q are smooth near any x ∈ K. This completes the proof. �
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