Irregular fibers of complex polynomials in two variables

Arnaud Bodin

December 2001

Introduction

Let $f : \mathbb{C}^n \rightarrow \mathbb{C}$ be a polynomial. The bifurcation set \mathcal{B} for f is the minimal set of points of \mathbb{C} such that $f : \mathbb{C}^n \setminus f^{-1}(\mathcal{B}) \rightarrow \mathbb{C} \setminus \mathcal{B}$ is a locally trivial fibration. For $c \in \mathbb{C}$, we denote the fiber $f^{-1}(c)$ by F_c. The fiber F_c is irregular if c is in \mathcal{B}. If $s \notin \mathcal{B}$, then F_s is a generic fiber and is denoted by F_{gen}. The tube T_c for the value c is a neighborhood $f^{-1}(\mathcal{D}_c^2(c))$ of the fiber F_c, where $\mathcal{D}_c^2(c)$ stands for a 2-disk in \mathbb{C}, centered at c, of radius $\varepsilon \ll 1$. We assume that affine critical singularities are isolated. The value c is regular at infinity if there exists a compact set K of \mathbb{C}^n such that the restriction of f, $f : T_c \setminus K \rightarrow \mathcal{D}_c^2(c)$ is a locally trivial fibration.

Set $n = 2$. Let $j_c : H_1(F_c) \rightarrow H_1(T_c)$ be the morphism induced by the inclusion of F_c in T_c. The first part of this work is the study of this morphism. Let G_c the dual graph of $F_c = f^{-1}(c)$, and \tilde{G}_c the dual graph of a compactification of the fiber F_c obtained by a resolution at infinity of f. The value c is acyclic if the dual graph G_c and some dual graphs $G_{c, P}$ obtained by compactification have the same number of cycles (see the full definition later). This is a combinatoric condition, for example if the fiber F_c is connected then c is acyclic if and only if $H_1(G_c)$ is isomorphic to $H_1(\tilde{G}_c)$. Finally we define $j_\infty : H_1(F_c \setminus K) \rightarrow H_1(T_c \setminus K)$ induced by inclusion.

Theorem.

(A) j_c is injective if and only if F_c is connected and c is acyclic.

(B) j_c is surjective if and only if j_∞ is surjective and c is acyclic.

(C) j_c is an isomorphism if and only if c is a regular value at infinity.

E. Artal-Bartolo, Pi. Cassou-Noguès and A. Dimca have proved the part (C) in [ACD] for polynomials with a connected fiber F_c. In fact we have a stronger result for the part (A) because the rank of the kernel of j_c is: $\text{rk Ker } j_c = n(F_c) - 1 + \text{rk } H_1(\tilde{G}_c) - \text{rk } H_1(G_c)$ where $n(F_c)$ is the number of connected components of F_c.

We apply these results to the study of neighborhoods of irregular fibers. Set $n \geq 2$. Let F_c° be the smooth part of F_c: F_c° is obtained by intersecting F_c with a large $2n$-ball and cutting out a small neighborhood of the (isolated) singularities. Then F_c° can be embedded
in \(F_{\text{gen}} \). We study the following commutative diagram that links the three elements \(F_c^\ast \), \(F_{\text{gen}} \), and \(T_c \):

\[
\begin{array}{ccc}
H_q(F_c^\ast) & \xrightarrow{j_c^\ast} & H_q(T_c) \\
\downarrow{\ell_c} & & \uparrow{k_c} \\
H_q(F_{\text{gen}}) & & \\
\end{array}
\]

where \(\ell_c \) is the morphism induced in integral homology by the embedding; \(j_c^\ast \) and \(k_c \) are induced by inclusions. The morphism \(k_c \) is well-known and \(V_q(c) = \text{Ker} \ k_c \) are vanishing cycles for the value \(c \). Let \(h_c \) be the monodromy induced on \(H_q(F_{\text{gen}}) \) by a small circle around the value \(c \). Then we prove that the image of \(\ell_c \) are invariant cycles by \(h_c \):

\[
\text{Ker}(h_c - \text{id}) = \ell_c(H_q(F_c^\ast)).
\]

This formula for the case \(n = 2 \) has been obtained by F. Michel and C. Weber in [MW]. Finally we give a description of vanishing cycles with respect to eigenvalues of \(h_c \) for homology with complex coefficients. For \(\lambda \neq 1 \) and \(p \) a large integer the characteristic space \(E_\lambda = \text{Ker}(h_c - \lambda \text{id})^p \) is composed of vanishing cycles for the value \(c \). For \(\lambda = 1 \) the situation is different. If \(K_q(c) = V_q(c) \cap \text{Ker} \ (h_c - \text{id}) \) are invariant and vanishing cycles we have

\[
K_q(c) = \ell_c(\text{Ker} j_c^\ast).
\]

And for \(n = 2 \) we get the formula

\[
\text{rk} K_1(c) = r(F_c^\ast) - 1 + \text{rk} H_1(\tilde{G}_c).
\]

In the view of [DN], vanishing cycles are important: the monodromy \(h_\infty : H_1(F_{\text{gen}}) \longrightarrow H_1(F_{\text{gen}}) \) induces by a large circle around the set \(\mathcal{B} \) and Broughton’s decomposition \(H_1(F_{\text{gen}}) = \bigoplus_{c \in \mathcal{B}} V_1(c) \) determine the monodromy representation \(\pi_1(\mathbb{C} \setminus \mathcal{B}) \longrightarrow \text{Aut} H_1(F_{\text{gen}}) \).

The former formula for \(\text{rk} K_1(c) \) enables us to describe where the vanishing cycles are with respect to a decomposition of the homology of the generic fiber given by the resolution of singularities.

1 Irregular fibers and tubes

1.1 Bifurcation set

We can describe the bifurcation set \(\mathcal{B} \) as follows: let \(\text{Sing} = \{z \in \mathbb{C}^n \mid \text{grad}_f(z) = 0\} \) be the set of affine critical points and let \(\mathcal{B}_{\text{aff}} = f(\text{Sing}) \) be the set of affine critical values. The set \(\mathcal{B}_{\text{aff}} \) is a subset of \(\mathcal{B} \). The value \(c \in \mathbb{C} \) is regular at infinity if there exists a disk \(D \) centered at \(c \) and a compact set \(K \) of \(\mathbb{C}^n \) with a locally trivial fibration \(f : f^{-1}(D) \setminus K \longrightarrow D \). The non-regular values at infinity are the critical values at infinity and are collected in \(\mathcal{B}_\infty \). The finite set \(\mathcal{B} \) of critical values is now:

\[
\mathcal{B} = \mathcal{B}_{\text{aff}} \cup \mathcal{B}_\infty.
\]

In this article we always assume that affine singularities are isolated, that is to say that \(\text{Sing} \) is an isolated set in \(\mathbb{C}^n \). For \(n = 2 \) this hypothesis implies that the generic fiber is a connected set.
1.2 Preliminaries

In this paragraph $n = 2$. The inclusion of F_c in T_c induces a morphism $j_c : H_1(F_c) \rightarrow H_1(T_c)$. We firstly recall notations and results from [ACD].

Let denote $F_{\text{aff}} = F_c \cap B_R^1 (R \gg 1)$ and $F_{\infty} = F_c \setminus F_{\text{aff}}$, thus $F_{\text{aff}} \cap F_{\infty} = K_c = f^{-1}(c) \cap S_R^3$ is the link at infinity for the value c. Similarly $T_{\text{aff}} = T_c \cap B_R^1$ and $T_{\infty} = T_c \setminus T_{\text{aff}}$. We denote $j_\infty : H_1(F_{\infty}) \rightarrow H_1(T_{\infty})$ the morphism induced by inclusion. The morphism $j_{\text{aff}} : H_1(F_{\text{aff}}) \rightarrow H_1(T_{\text{aff}})$ is an isomorphism. $H_1(F_{\text{aff}} \cap F_{\infty})$ and $H_1(T_{\text{aff}} \cap T_{\infty})$ are isomorphic.

Mayer-Vietoris exact sequences for the decompositions $F_c = F_{\text{aff}} \cup F_{\infty}$ and $T_c = T_{\text{aff}} \cup T_{\infty}$ give the commutative diagram (\mathcal{D}):

$$
\begin{array}{cccc}
0 & \rightarrow & H_1(F_{\infty} \cap F_{\text{aff}}) & \rightarrow \\
& & \rightarrow & H_1(F_{\infty}) \oplus H_1(F_{\text{aff}}) \rightarrow \leftarrow \\
& & \rightarrow & H_1(F_c) \rightarrow \rightarrow 0
\end{array}
$$

$$
\begin{array}{cccc}
0 & \rightarrow & H_1(T_{\infty} \cap T_{\text{aff}}) & \rightarrow \\
& & \rightarrow & H_1(T_{\infty}) \oplus H_1(T_{\text{aff}}) \rightarrow \rightarrow \\
& & \rightarrow & H_1(T_c) \rightarrow H_0(T_{\infty} \cap T_{\text{aff}})
\end{array}
$$

The 0 at the upper-right corner is provided by the injectivity of $H_0(F_{\infty} \cap F_{\text{aff}}) \rightarrow H_0(F_{\infty})$ (F_c need not to be a connected set) hence $H_0(F_{\infty} \cap F_{\text{aff}}) \rightarrow H_0(F_{\infty}) \oplus H_0(F_{\text{aff}})$ is injective.

1.3 Resolution of singularities

To compactify the situation, for $n = 2$, we need resolution of singularities at infinity [LW]:

$$
\begin{array}{cccc}
\mathbb{C}^2 & \rightarrow & \mathbb{CP}^2 & \rightarrow \\
\downarrow & \rightarrow & \downarrow & \rightarrow \\
\Sigma & \rightarrow & \mathbb{CP}^1 & \rightarrow
\end{array}
$$

\tilde{j} is the map coming from the homogenization of j; π is the minimal blow-up of some points on the line at infinity L_∞ of \mathbb{CP}^2 in order to obtain a well-defined morphism $\phi_w : \Sigma_w \rightarrow \mathbb{CP}^1$: this is the weak resolution. We denote $\phi_w(\infty)$ by D_∞, and let D_{dic} be the set of components D of $\pi_w^{-1}(L_\infty)$ that verify $\phi_w(D) = \mathbb{CP}^1$. Such a D is a dicritical component. The degree of a dicritical component D is the degree of the branched covering $\phi_w : D \rightarrow \mathbb{CP}^1$. For the weak resolution the divisor $\phi_w^{-1}(\infty) \cap \pi_w^{-1}(L_\infty)$, $c \in \mathbb{C}$, is a union of bamboos (possibly empty) (a bamboo is a divisor whose dual graph is a linear tree). The set B_∞ is the set of values of ϕ_w on non-empty bamboos with the set of critical values of the restriction of ϕ_w to the dicritical components.

We can blow-up more points to obtain the total resolution, $\phi : \Sigma_\infty \rightarrow \mathbb{CP}^1$, such that all fibers of ϕ are normal crossing divisors that intersect the dicritical components transversally; moreover we blow-up affine singularities. Then $D_\infty = \phi^{-1}(\infty)$ is the same as above and for $c \in B$ we denote D_c the divisor $\phi_c^{-1}(c)$.

The dual graph \tilde{G}_c of D_c is obtained as follows: one vertex for each irreducible component of D_c and one edge between two vertices for one intersection of the corresponding components. A similar construction is done for D_∞, we know that \tilde{G}_∞ is a tree [LW]. The multiplicity of a component is the multiplicity of ϕ_c on this component.
1.4 Study of j_{∞}

See [ACD]. Let ϕ be the weak resolution map for f. Let denote by Dic_c the set of points P in the dicritical components, such that $\phi(P) = c$. To each $P \in \text{Dic}_c$ is associated one, and only one, connected component T_P of T_{∞}; T_P is the place at infinity for P. We have $T_{\infty} = \bigsqcup_{P \in \text{Dic}_c} T_P$ and we set $F_P = T_P \cap F_{\infty} = T_P \cap F_c$ and $K_P = \partial F_P$, finally $n(F_P)$ denotes the number of connected components of F_P. Let \bar{F}_P be the strict transform of c by ϕ, intersected with T_P. The study of j_{∞} follows from the study of $j_P : H_1(F_P) \rightarrow H_1(T_P)$. Let m_P be the intersection multiplicity of \bar{F}_P with the divisor $\pi^{-1}_w(L_{\infty})$ at P.

Case of $P \in \bar{F}_P$. The group $H_1(T_P)$ is isomorphic to \mathbb{Z} and is generated by $[M_P]$, M_P being the boundary of a small disk with transversal intersection with the dicritical component. Moreover if $F_P = \bigsqcup_{i=1}^{n(F_P)} F_P^i$ then $j_P([F_P^i]) = j_P([K_P^i]) = m_P[I_i[M_P]]$.

Case of P being a bamboo. The group $H_1(T_P)$ is also isomorphic to \mathbb{Z} and is generated by $[M_P]$, M_P being the boundary of a small disk, with transversal intersection with the last component of the bamboo. Then $j_P[F_P^i] = j_P[K_P^i] = m_P[I_i[M_P]]$. The integer ℓ_i only depends of the position where F_P^i intersects the bamboo, moreover $\ell_i \geq 1$ and $\ell_i = 1$ if and only if F_P^i intersects the bamboo at the last component. For a computation of ℓ_i, refer to [ACD].

As a consequence j_P is injective if and only if $n(F_P) = 1$ and j_{∞} is injective if and only if $n(F_P) = 1$ for all P in Dic_c. In fact the rank of the kernel of j_{∞} is the sum of the ranks of the kernels of j_P then

$$\text{rk ker } j_{\infty} = \sum_{P \in \text{Dic}_c} (n(F_P) - 1).$$

Finally j_{∞} is surjective if and only if for all $P \in \text{Dic}_c$, j_P is surjective.

1.5 Acyclicity

The value c is acyclic if the morphism $\psi : H_0(T_{\infty} \cap T_{aff}) \rightarrow H_0(T_{\infty}) \oplus H_0(T_{aff})$ given by the Mayer-Vietoris exact sequence is injective.

Let give some interpretations of the acyclicity condition.

1. The injectivity of ψ can be view as follows: two branches at infinity that intersect the same place at infinity have to be in different connected components of F_c.

2. Let G_c be the dual graph of F_c (one vertex for an irreducible component of F_c, two vertices are joined by an edge if the corresponding irreducible components have non-empty intersection, if a component has auto-intersection it provides a loop) and let $G_{c,P}$ be the graph obtained from G_c by adding edges to vertices that correspond to the same place at infinity T_P. In other words c is acyclic if and only if there is no new cycles in $G_{c,P}$, that is to say $H_1(G_c) \cong H_1(G_{c,P})$ for all P in Dic_c.
3. Another interpretation is the following: \(c \) is acyclic if and only if the morphism \(h' \) of the diagram \((D)\) is surjective. This can be proved by the exact sequence:

\[
H_1(T_\infty) \oplus H_1(T_{\text{aff}}) \xrightarrow{h'} H_1(T_c) \xrightarrow{\varphi} H_0(T_\infty \cap T_{\text{aff}}) \xrightarrow{\psi} H_0(T_\infty) \oplus H_0(T_{\text{aff}}) \xrightarrow{\tilde{\psi}} H_0(T_c).
\]

4. Let consider the above Mayer-Vietoris exact sequence in reduced homology, the morphism \(\tilde{\psi} : \tilde{H}_0(T_\infty \cap T_{\text{aff}}) \rightarrow \tilde{H}_0(T_\infty) \oplus \tilde{H}_0(T_{\text{aff}}) \) is surjective because \(\tilde{H}_0(T_c) = \{0\} \). Moreover \(\tilde{\psi} \) is injective if and only if \(\psi \) is injective. As \(\tilde{\psi} \) is surjective, \(\tilde{\psi} \) is injective if and only if \(\text{rk } \tilde{H}_0(T_\infty \cap T_{\text{aff}}) = \text{rk } \tilde{H}_0(T_\infty) + \text{rk } \tilde{H}_0(T_{\text{aff}}) \), that is to say \(c \) is acyclic if and only if

\[
\sum_{P \in \text{Dic}_c} n(F_P) - 1 = \#\text{Dic}_c - 1 + n(F_c) - 1. \tag{*}
\]

This implies the lemma:

Lemma 1. \(j_\infty \) is injective \(\iff \) \(F_c \) is a connected set and \(c \) is acyclic.

Proof. If \(j_\infty \) is injective then \(n(F_P) = 1 \) for all \(P \) in \(\text{Dic}_c \), then \(H_0(T_\infty \cap T_{\text{aff}}) \cong H_0(T_\infty) \) and \(\psi \) is injective, hence \(c \) is acyclic and from equality \((*)\), we have \(n(F_c) = 1 \) i.e. \(F_c \) is a connected set. Conversely, if \(c \) is acyclic and \(n(F_c) = 1 \) then equality \((*)\) gives \(n(F_P) = 1 \) for all \(P \) in \(\text{Dic}_c \), thus \(j_\infty \) is injective. \(\square \)

Let us define a stronger notion of acyclicity. Let \(\tilde{G}_c \) be the dual graph of \(\phi^{-1}(c) \). The graph \(\tilde{G}_c \) can be obtained from \(G_c \) by adding edges between vertices that belong to the same place at infinity for all \(P \) in \(\text{Dic}_c \). The value \(c \) is strongly acyclic if \(H_1(\tilde{G}_c) \cong H_1(G_c) \). Strong acyclicity implies acyclicity, but the converse can be false. However if \(F_c \) is a connected set (that is to say \(G_c \) is a connected graph) then both conditions are equivalent. This is implicitly expressed in the next lemma, which is just a result involving graphs.

Lemma 2. \(\text{rk } H_1(\tilde{G}_c) - \text{rk } H_1(G_c) = \sum_{P \in \text{Dic}_c} (n(F_P) - 1) - (n(F_c) - 1) \).

1.6 Surjectivity

Part (B). \(j_c \) surjective \(\iff j_\infty \) surjective and \(c \) acyclic.

Proof. Let us suppose that \(j_c \) is surjective then a version of the five lemma applied to diagram \((D)\) proves that \(j_\infty \) is surjective. As \(j_c \) and \(j_\infty \) are surjective, diagram \((D)\) implies that \(h' : H_1(T_\infty) \oplus H_1(T_{\text{aff}}) \rightarrow H_1(T_c) \) is surjective, that means that \(c \) is acyclic. Conversely if \(j_\infty \) is surjective and \(c \) is acyclic then \(h' \) is surjective and diagram \((D)\) implies that \(j_c \) is surjective. \(\square \)
1.7 Injectivity

Part (A). j_c is injective $\iff F_c$ is a connected set and c is acyclic.

It follows from lemma 1 and from the next lemma.

Lemma 3. j_c injective $\iff j_\infty$ injective.
Moreover the rank of the kernel is:

$$\text{rk} \ker j_c = \text{rk} \ker j_\infty = \sum_{P \in \text{Dic}} (n(F_P) - 1) = n(F_c) - 1 + \text{rk} H_1(\overline{G}_c) - \text{rk} H_1(G_c).$$

Proof. The first part of this lemma can be proved by a version of the five lemma. However we shall only prove the equality of the ranks of $\ker j_c$ and $\ker j_\infty$. It will imply the lemma because we already know that $\text{rk} \ker j_\infty = \sum_{P \in \text{Dic}} (n(F_P) - 1)$ and from lemma 2 we then have $\text{rk} \ker j_\infty = n(F_c) - 1 + \text{rk} H_1(\overline{G}_c) - \text{rk} H_1(G_c)$.

The study of the morphism $j_c : H_1(F_c) \rightarrow H_1(T_c)$ is equivalent to the study of the morphism $H_1(T_{\text{off}}) \rightarrow H_1(T_c)$ induced by inclusion that, by abuse, will also be denoted by j_c. To see this, it suffices to remark that F_c is obtained from $F_{\text{off}} = F_c \cap B^4_R$ by gluing $F_c \cap S^3_R \times [0, +\infty]$ to its boundary $F_c \cap S^3_R$. Then the morphism $H_1(F_{\text{off}}) \rightarrow H_1(F_c)$ induced by inclusion is an isomorphism; finally $j_{\text{off}} : H_1(F_{\text{off}}) \rightarrow H_1(T_{\text{off}})$ is also an isomorphism. The long exact sequence for the pair (T_c, T_{off}) is:

$$H_2(T_c) \rightarrow H_2(T_c, T_{\text{off}}) \rightarrow H_1(T_{\text{off}}) \rightarrow H_1(T_c)$$

but $H_2(T_c) = 0$ (see [ACD] for example) then the rank of $\ker j_c$ is the rank of $H_2(T_c, T_{\text{off}})$. On the other hand, the study of $j_\infty : H_1(F_\infty) \rightarrow H_1(T_\infty)$ is the same as the study of $H_1(\partial T_\infty) \rightarrow H_1(T_\infty)$ induced by inclusion (and denoted by j_∞) because the morphisms $H_1(\partial F_\infty) \rightarrow H_1(F_\infty)$ and $H_1(\partial F_\infty) \rightarrow H_1(\partial T_\infty)$ induced by inclusions are isomorphisms. The long exact sequence for $(T_\infty, \partial T_\infty)$ is:

$$H_2(T_\infty) \rightarrow H_2(T_\infty, \partial T_\infty) \rightarrow H_1(\partial T_\infty) \rightarrow H_1(T_\infty).$$

As $H_2(T_\infty) = 0$ (see [ACD]), then the rank of $\ker j_\infty$ is the same as $H_2(T_\infty, \partial T_\infty)$. Finally the groups $H_2(T_\infty, \partial T_\infty)$ and $H_2(T_c, T_{\text{off}})$ are isomorphic by excision, and then the ranks of $\ker j_c$ and of $\ker j_\infty$ are equal. That completes the proof. \qed

1.8 Bijectivity

Part (C). j_c is an isomorphism $\iff c \notin \mathcal{B}_\infty$

Proof. If $c \notin \mathcal{B}_\infty$, then the isomorphism $j_{\text{off}} : H_1(F_{\text{off}}) \rightarrow H_1(T_{\text{off}})$ implies that j_c is an isomorphism. Let suppose that c is a critical value at infinity and that j_c is injective. We have to prove that j_c is not surjective. As j_c is injective then by lemma 3, j_∞ is injective. By the part (B) it suffices to prove that j_∞ is not surjective. Let P be a point of Dic, that provides irregularity at infinity for the value c, then $n(F_P) = 1$ because j_∞ is injective. Let us prove that the morphism j_P is not surjective. For the case of $P \in \overline{F}_P$, the
intersection multiplicity m_P is greater than 1, then j_P is not surjective. For the second case, in which P belongs to a bamboo, then $m_P \ell_i > 1$ except for the situation where only one strict transform intersects the bamboo at the last component. This is exactly the situation excluded by the lemma “bamboo extremity fiber” of [MW]. Hence j_∞ is not surjective and j_c is not an isomorphism.

1.9 Examples

We apply the results to two classical examples.

Broughton polynomial. Let $f(x, y) = x(xy + 1)$, then $B_{\emptyset} = \emptyset$, $B = B_\infty = \{0\}$. Then for $c \neq 0$, j_c is an isomorphism. The value 0 is acyclic since $H_1(G_0) \cong H_1(\tilde{G}_0)$. The fiber F_0 is not connected hence j_0 is not injective. As the new component of \tilde{G}_0 is of multiplicity 1 the corresponding morphism j_∞ is surjective, hence j_0 is surjective.

\[
\begin{align*}
\bullet & \quad \bullet & \quad \bullet & \quad \bullet \\
G_0 & & & & & \tilde{G}_0
\end{align*}
\]

Briançon polynomial. Let $f(x, y) = yp^3 + y^2 + a_1 ps + a_0 s$ with $s = xy + 1$, $p = x(xy + 1) + 1$, $a_1 = -\frac{5}{3}$, $a_0 = -\frac{1}{3}$. The bifurcation set is $B = B_\infty = \{0, c = -\frac{16}{9}\}$, moreover all fibers are smooth and irreducible. The value 0 is not acyclic then j_0 is neither injective nor surjective (but j_∞ is surjective).

\[
\begin{align*}
\bullet & \quad \bullet & \quad \bullet \\
G_0 & & & & & \tilde{G}_0
\end{align*}
\]

The value c is acyclic, and F_c is connected (since irreducible) then j_c is injective. The morphism j_c is not surjective: j_∞ is not surjective because the compactification of F_c does not intersect the bamboo at the last component.

\[
\begin{align*}
+2 & \quad +6 & \quad +3 \\
G_c & \quad \bullet & \quad \tilde{G}_c
\end{align*}
\]

2 Situation around an irregular fiber

For $f : \mathbb{C}^n \to \mathbb{C}$ we study the neighborhood of an irregular fiber.

2.1 Smooth part of F_c

Let fix a value $c \in \mathbb{C}$ and let B_{R}^{2n} be a large closed ball ($R \gg 1$). Let $B_{1}^{2n}, \ldots, B_{p}^{2n}$ be small open balls around the singular points (which are supposed to be isolated) of F_c:
Irregular fibers of complex polynomials

\(F_c \cap \text{Sing} \). We denote \(B_1^{2n} \cup \ldots \cup B_p^{2n} \) by \(B_1 \). Then the smooth part of \(F_c \) is

\[
F_c^s = F_c \cap B_{2n}^R \setminus B_1.
\]

It is possible to embed \(F_c^s \) in the generic fiber \(F_{\text{gen}} \) (see [MW] and [NN]). We now explain the construction of this embedding by W. Neumann and P. Norbury. As \(F_c \) has transversal intersection with the balls of \(B_1 \) and with \(B_{2n}^R \), then there exists a small disk \(D_2^2(c) \) such that for all \(s \) in this disk, \(F_s \) has transversal intersection with these balls. According to Ehresmann fibration theorem, \(f \) induces a locally trivial fibration

\[
f_1 : f^{-1}(D_2^2(c)) \cap B_{2n}^R \setminus B_1 \rightarrow D_2^2(c).
\]

In fact, as \(D_2^2(c) \) is null homotopic, this fibration is trivial. Hence \(F_c^s \times D_2^2(c) \) is diffeomorphic to \(f^{-1}(D_2^2(c)) \cap B_{2n}^R \setminus B_1 \). That provides an embedding of \(F_c^s \) in \(F_s \) for all \(s \) in \(D_2^2(c) \); and for such a \(s \) with \(s \neq c \), \(F_s \) is a generic fiber. The morphism induced in homology by this embedding is denoted by \(\ell_c \). Let \(j_c^s \) be the morphism induced by the inclusion of \(F_c^s \) in \(T_c = f^{-1}(D_2^2(c)) \). Similarly \(k_c \) denotes the morphism induced by the inclusion of the generic fiber \(F_{\text{gen}} = F_s \) (for \(s \in D_2^2(c), s \neq c \)) in \(T_c \). As all morphisms are induced by natural maps we have the lemma:

Lemma 4. The following diagram commutes:

\[
\begin{array}{ccc}
H_q(F_c^s) & \xrightarrow{j_c^s} & H_q(T_c) \\
\ell_c & \downarrow & \uparrow k_c \\
H_q(F_{\text{gen}}) & &
\end{array}
\]

2.2 Invariant cycles by \(h_c \)

Invariant cycles by the monodromy \(h_c \) can be recovered by the following property.

Proposition 5.

\[
\ker (h_c - \text{id}) = \ell_c(H_q(F_c^s)).
\]

For \(n = 2 \), there is a similar formula in [MW], even for non-isolated singularities.

Proof. The proof uses a commutative diagram due to W. Neumann and P. Norbury [NN]:

\[
\begin{array}{ccc}
H_q(F_{\text{gen}}, F_c^s) & \xrightarrow{\varphi} & V_q(c) \\
\uparrow \psi & & \uparrow i \\
H_q(F_{\text{gen}}) & \xrightarrow{i - h_c} & H_q(F_{\text{gen}})
\end{array}
\]

The morphism \(i \) is the inclusion and \(\psi \) is an isomorphism, so \(\ker(h_c - \text{id}) \) equals \(\ker \varphi \). The long exact sequence for the pair \((F_{\text{gen}}, F_c^s) \) is:

\[
\cdots \rightarrow H_q(F_c^s) \xrightarrow{\ell_c} H_q(F_{\text{gen}}) \xrightarrow{\varphi} H_q(F_{\text{gen}}, F_c^s) \rightarrow \cdots
\]

So \(\text{Im} \ell_c = \ker \varphi = \ker(h_c - \text{id}) \).
We are able to apply this result to the calculus of the rank of $\ker(h_c - \text{id})$ for $n = 2$. Let denote the number of irreducible components in F_c by $r(F_c)$, and let Sing_c be $\text{Sing} \cap \tilde{F}_c$; the affine singularities on F_c. Then $H_2(F_{p\text{gen}}^c, F_c^c)$ has rank the cardinal of Sing_c, which is also the rank of $\ker \ell_c$. Moreover $\text{rk} \ H_1(F_c^c) = r(F_c) - \chi(F_c) + \# \text{Sing}_c$.

$$\text{rk} \ker (h_c - \text{id}) = \text{rk} \text{Im} \ell_c$$

$$= \text{rk} H_1(F_c^c) - \text{rk} \ker \ell_c$$

$$= r(F_c) - \chi(F_c) + \# \text{Sing}_c$$

$$= r(F_c) - \chi(F_c).$$

Remark. We obtain the following fact (see [MW]): if the fiber F_c ($c \in \mathcal{B}$) is irreducible then $h_c \neq \text{id}$. The proof is as follows: if $r(F_c) = 1$ and $h_c = \text{id}$ then from one hand $\text{rk} \ker(h_c - \text{id}) = \text{rk} H_1(F_{p\text{gen}}^c) = 1 - \chi(F_{p\text{gen}}^c)$ and from the other hand $\text{rk} \ker(h_c - \text{id}) = 1 - \chi(F_c)$; thus $\chi(F_c) = \chi(F_{p\text{gen}}^c)$ which is absurd for $c \in \mathcal{B}$ by Suzuki formula.

2.3 Vanishing cycles

Now and until the end of this paper homology is homology with complex coefficients.

Vanishing cycles for eigenvalues $\lambda \neq 1$. Let E_λ be the space $E_\lambda = \ker(h_c - \lambda \text{id})^p$ for a large integer p.

Lemma 6. If $\lambda \neq 1$ then $E_\lambda \subset V_q(c)$.

Proof. If $\sigma \in H_q(F_{p\text{gen}})$ then $h_c(\sigma) - \sigma \in V_q(c)$. This is just the fact that the cycle $h_c(\sigma) - \sigma$ corresponds to the boundary of a “tube” defined by the action of the geometrical monodromy. We remark this fact can be generalized for $j \geq 1$ to

$$h_c^j(\sigma) - \sigma \in V_q(c).$$

Let p be an integer that defines E_λ, then for $\sigma \in E_\lambda$:

$$0 = (h_c - \lambda \text{id})^p(\sigma) = \sum_{j=0}^{p} \binom{p}{j} (-\lambda)^{p-j} h_c^j(\sigma)$$

$$= \sum_{j=0}^{p} \binom{p}{j} (-\lambda)^{p-j} (h_c^j(\sigma) - \sigma) + \sum_{j=0}^{p} \binom{p}{j} (-\lambda)^{p-j} \sigma$$

$$= \sum_{j=0}^{p} \binom{p}{j} (-\lambda)^{p-j} (h_c^j(\sigma) - \sigma) + (1 - \lambda)^p \sigma.$$

Each $h_c^j(\sigma) - \sigma$ is in $V_q(c)$, and a sum of such elements is also in $V_q(c)$, then $(1 - \lambda)^p \sigma \in V_q(c)$. As $\lambda \neq 1$, then $\sigma \in V_q(c)$. \qed
Vanishing cycles for the eigenvalue $\lambda = 1$. We study what happens for cycles associated to the eigenvalue 1. Let recall that vanishing cycles $V_q(c) = \text{Ker } k_c$ for the value c, are cycles that “disappear” when the generic fiber tends to the fiber F_c. Hence cycles that will not vanish are cycles that already exist in F_c. From the former paragraph these cycles are associated to the eigenvalue 1.

Let (τ_1, \ldots, τ_p) be a family of $H_q(F_{\text{gen}})$ such that the matrix of h_c in this family is:

$$
\begin{pmatrix}
1 & 1 & (0) \\
1 & 1 & \\
1 & \\
(0) & \\
1 & \\
1 &
\end{pmatrix}
$$

Then, the cycles $\tau_1, \ldots, \tau_{p-1}$ are vanishing cycles. It is a simple consequence of the fact that $h_c(\sigma) - \sigma \in V_q(c)$, because for $i = 1, \ldots, p - 1$, we have $h(\tau_{i+1}) - \tau_{i+1} = \tau_i$, and then τ_i is a vanishing cycle. It remains the study of the cycle τ_p and the particular case of Jordan blocks (1) of size 1×1. We will start with the second part.

Vanishing and invariant cycles. Let $K_q(c)$ be invariant and vanishing cycles for the value c. $K_q(c) = \text{Ker}(h_c - \text{id}) \cap V_q(c)$. Let us remark that the space $K_q(c) \oplus \bigoplus_{c' \neq c} V_q(c')$ is not equal to $\text{Ker}(h_c - \text{id})$. But equality holds in cohomology.

Lemma 7. $K_q(c) = \ell_c(\text{Ker } j_c^*)$.

This lemma just follows from the description of invariant cycles (proposition 5) and from the diagram of lemma 4. For $n = 2$ we can calculate the dimension of $K_1(c)$.

Proposition 8. For $n = 2$, $\text{rk } K_1(c) = r(F_c) - 1 + \text{rk } H_1(G_c)$.

Proof. The proof will be clear after the following remarks:

1. $K_1(c) = \ell_c(\text{Ker } j_c^*)$, by lemma 7.

2. $j_c^* = j_c \circ i_c$ with $i_c : H_1(F_c) \to H_1(F_c^c)$ the morphism induced by inclusion. It is consequence of the commutative diagram:

$$
\begin{array}{ccc}
H_1(F_c) & \xrightarrow{i_c} & H_1(F_c^c) \\
\downarrow j_c & & \downarrow j_c^* \\
H_1(T_c) & \to & H_1(T_c)
\end{array}
$$

3. $\text{rk } \text{Ker } j_c^* = \text{rk } \text{Ker } i_c + \text{rk } \text{Ker } j_c \cap \text{Im } i_c$, which is general formula for the kernel of the composition of morphisms.

4. $\text{Ker } j_c \cap \text{Im } i_c = \text{Ker } j_c$, because cycles of $H_1(F_c)$ that do not belong to $\text{Im } i_c$ are cycles corresponding to $H_1(G_c)$, so they already exist in F_c and are not vanishing cycles.

5. $\text{rk } \text{Ker } i_c = \sum_{z \in \text{Sing}_c} r(F_c, z)$, where $F_{c, z}$ denotes the germ of the curve F_c at z.
6. \(\text{rk} \ker j_c = \text{rk} \ker j_\infty = \sum_{P \in \text{Disc}} (n(F_P) - 1) = n(F_c) + \text{rk} H_1(\tilde{G}_c) - \text{rk}(G_c), \) it has been proved in lemma 3.

7. \(r(F_c) + \text{rk} H_1(G_c) = n(F_c) + \sum_{z \in \text{Sing}_c} (r(F_c, z) - 1). \) This a general formula for the graph \(G_c, \) the number of vertices of \(G_c \) is \(r(F_c) \), the number of connected components is \(n(F_c) \), the number of loops is \(\text{rk} H_1(G_c) \) and the number of edges for a vertex that correspond to an irreducible component \(F_{i_{\tau}} \) of \(F_c \) is: \(\sum_{z \in F_{i_{\tau}}} (r(F_{i_{\tau}}, z) - 1). \)

8. \(\text{rk} K_1(c) = \text{rk} \ker j_c^\ast - \# \text{Sing}_c \) because \(\ker i_c \) is a subspace of \(\ker \ell_c \) so \(\text{rk} K_1(c) = \text{rk} \ker j_c^\ast - \text{rk} \ker \ell_c \) and the dimension of \(\ker \ell_c \) is \(\# \text{Sing}_c \) (see paragraph 2.2).

We complete the proof:

\[
\begin{align*}
\text{rk} K_1(c) &= \text{rk} \ell_c(\ker j_c^\ast) \\
&= \text{rk} \ker j_c^\ast - \text{rk} \ker \ell_c \\
&= \text{rk} \ker j_c \circ i_c - \# \text{Sing}_c \tag{8} \\
&= \text{rk} \ker i_c + \text{rk} \ker j_c \cap \text{Im} i_c - \# \text{Sing}_c \tag{3} \\
&= \text{rk} \ker i_c - \# \text{Sing}_c + \text{rk} \ker j_c \tag{4} \\
&= \sum_{z \in \text{Sing}_c} (r(F_c, z) - 1) + n(F_c) + \text{rk} H_1(\tilde{G}_c) - \text{rk}(G_c) \tag{5} \\
&= r(F_c) - 1 + \text{rk} H_1(\tilde{G}_c). \tag{7}
\end{align*}
\]

\(\square \)

Filtration. Let \(\phi \) be the map provided by the total resolution of \(f \). The divisor \(\phi^{-1}(c) \) is denoted by \(D = \sum m_i D_i \) where \(m_i \) stands for the multiplicity of \(D_i \). We associate to \(D_i \) a part of the generic fiber denoted by \(F_i \). We briefly recall this construction (see [MW]), let \(V = \phi^{-1}(D^2(c)) \) be a tubular neighborhood of \(D \), we will identify the generic fiber \(F_{gen} \) with \(\phi^{-1}(s) \setminus \pi^{-1}(L_{\infty}) \) for a generic value \(s \in \partial D^2(c) \), \(\pi \) is the blow-up. There is a natural deformation retraction \(R : V \longrightarrow D \), and we set \(F_i = R^{-1}(D_i) \cap F_{gen} \). The filtration of the homology of the generic fiber is the sequence of inclusions:

\[
W_{-1} \subset W_0 \subset W_1 \subset W_2 = H_1(F_{gen}).
\]

with

- **\(W_{-1} \):** the boundary cycles, that is to say, if \(\bar{F}_{gen} \) is the compactification of \(F_{gen} \) and \(i_s : H_1(F_{gen}) \longrightarrow H_1(\bar{F}_{gen}) \) is induced by inclusion then \(W_{-1} = \ker i_s \).

- **\(W_0 \):** these are gluing cycles: the homology group on the components of \(F_i \cap F_j \) \((i \neq j)\).

- **\(W_1 \):** the direct sum of the \(H_1(F_i) \).

- **\(W_2 \):** \(H_1(F_{gen}) \).

The subspaces \(W_0 \) and \(W_1 \) depend on the value \(c \).
Jordan blocks for \(n = 2 \). For polynomials in two variables, the size of Jordan blocks for the monodromy \(h_c \) is less or equal to 2. Let denote by \(\sigma \) and \(\tau \) cycles of \(H_1(F_{\text{gen}}) \) such that \(h(\sigma) = \sigma \) and \(h(\tau) = \sigma + \tau \). The matrix of \(h_c \) for the family \((\sigma, \tau) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \). We already know that the cycle \(\sigma \) vanishes.

A large cycle is a cycle of \(W_2 = H_1(F_{\text{gen}}) \) that has a non-trivial class in \(W_2/W_1 \). According to [MW] \(\tau \) is large cycle; moreover large cycles associated to the eigenvalue \(1 \) are the embedding of \(H_1(\tilde{G}_c) \) in \(H_1(F_{\text{gen}}) \).

So large cycles are not vanishing cycles. The number of classes of large cycles in \(W_2/W_1 \) is \(\text{rk} \, H_1(\tilde{G}_c) \), this is also the number of Jordan 2-blocks for the eigenvalue \(1 \).

Vanishing cycles. We are now able to describe vanishing cycles. For all the spaces \(W_{-1}, W_0/W_{-1}, W_1/W_0 \) and \(W_2/W_1 \) the cycles associated to eigenvalues different from 1 are vanishing cycles.

Proposition 9. Vanishing cycles for the eigenvalue \(1 \) are dispatch as follows:

- for \(W_{-1} \): \(r(F_c) - 1 \) cycles,
- for \(W_0 \): \(\text{rk} \, H_1(\tilde{G}_c) \) other cycles,
- \(W_1, W_2 \): no cycle.

Proof. We have already remark that large cycles associated to \(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \) are not vanishing cycles, so vanishing cycles in \(W_2 \) are in \(W_1 \). Moreover there is \(\text{rk} \, H_1(\tilde{G}_c) \) Jordan 2-blocks for the eigenvalue \(1 \) that provide \(\text{rk} \, H_1(\tilde{G}_c) \) vanishing cycles (like \(\sigma \)) in \(W_0 \). The other vanishing cycles for the eigenvalue \(1 \) are invariant cycles by \(h_c \), in other words they belong to \(K_1(c) \). We have \(W_1 \cap K_1(c) = W_0 \cap K_1(c) \) because invariant cycles for \(W_1 \) that are not in \(W_0 \) correspond to the genus of the smooth part \(F_c^* \) of \(F_c \) (this is due to the equality \(\text{Ker}(h_c - \text{id}) = \tau_c(H_1(F_c^*)) \)). As they already appear in \(F_c \), these cycles are not vanishing cycles for the value \(c \). Finally, if we have two distinct cycles \(\sigma \) and \(\sigma' \) in \(W_0 \cap K_1(c) \), with the same class in \(W_0/W_{-1} \), then \(\sigma' = \sigma + \pi, \pi \in W_{-1} \); this implies that \(\pi = \sigma' - \sigma \) is a vanishing cycle of \(K_1(c) \). We can choose the \(r(F_c) - 1 \) remaining cycles of \(K_1(c) \) in \(W_{-1} \). \(\square \)

References

[MW] F. MICHEL and C. WEBER, On the monodromies of a polynomial map from \(\mathbb{C}^2 \) to \(\mathbb{C} \), to appear in Topology.

Arnaud Bodin
Centre de Recerca Matemàtica, Apartat 50, 08193 Bellatera, Spain
abodin@crm.es