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Abstract. We show how the formalism of Levi currents on complex manifolds, as
introduced by Sibony, can be used to study the analytic structure of singular sets
associated to families of plurisubharmonic functions, in the sense of Slodkowski.

1. Introduction

The theory of several complex variables originated as the study of holomorphic
functions; however, soon enough, plurisubharmonic functions made their appearence
and proved themselves as a useful instrument to solve problems originated in the
holomorphic category.

Probably, one of the best known and oldest examples of this phenomenon is the Levi
problem ([14], [36] for a survey): characterizing domains of holomorphy in terms of the
pseudoconvexity of the boundary; Oka’s solution [24,25] for domains in Cn highlighted
the role of strictly plurisubharmonic exhaustions, whose existence was later shown to
be equivalent to Steinness, by Grauert for manifolds [9] and Narasimhan for analytic
spaces [21,22].

The geometric counterpart of holomorphic functions is represented by complex ana-
lytic varieties, which are locally given as zeroes of holomorphic functions. This notion
does not have a straightforward analogue for plurisubharmonic functions: they lack the
rigidity of holomorphic functions, hence the geometry they describe with their level
sets is not significant, in relation with complex analytic varieties; in fact, quite the
opposite is true: the level sets of a strictly plurisubharmonic function do not support
any kind of complex structure and are examples of B-regular sets (i.e., sets where the
(restrictions of) plurisubharmonic functions are dense in the continuous ones, intro-
duced in [31, 32]), which play an important role in the study of the regularity of the
∂-problem (see [31]).

However, there is a rigidity property shared between holomorphic and plurisubhar-
monic functions: holomorphic functions obey a maximum modulus property, which,
for instance, characterizes algebras of holomorphic functions on plane domains (see
Rudin [29]), and (pluri)subharmonic functions likewise satisfy a maximum property.
Indeed, Rudin’s theorem can be deduced as a special case of subharmonicity, in turn
obtained via the maximum property [41].

It is quite clear that the maximum property for plurisubharmonic functions does
not hold on arbitrary sets, for example it does not hold on B-regular sets; on the other
hand, given an open domain of an analytic variety, plurisubharmonic functions attain
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their maximum on the boundary. It is therefore reasonable to expect that sets where
the maximum property holds should bear some resemblance of complex structure; this
idea originated, more or less explicitly, a number of constructions related to function
algebras, such as Shilov boundary, Jensen boundary, peak points, Choquet boundaries
(see [7] for a comprehensive exposition), and some of these were also employed to give
more general definitions of plurisubharmonicity in the context of uniform algebras [8].

By localizing the idea of Jensen boundary, we obtain the notion of local maximum
set for h-plurisubharmonic functions [37]; these sets enjoy many properties of analytic
varieties, with h + 1 playing the role of the dimension. Moreover, local maximum
sets for plurisubharmonic functions (usually just called local maximum sets) are 1-
pseudoconcave, in the sense that their complement is (n−2)-pseudoconvex according to
Rothstein [28], a property which is true also for complex analytic varieties of dimension
at least 1. So, for instance, the largest local maximum set contained in the boundary
of a pseudoconvex set will contain any germ of analytic variety and, more generally,
any positive, ∂∂-closed current of bidimension (1, 1) and with compact support [23].

In particular, compact local maximum sets, just like compact analytic varieties,
force plurisubharmonic functions (and hence holomorphic functions) to be constant on
them; therefore, no strictly plurisubharmonic function can exist in a neighbourhood
of a compact local maximum set. This consideration was the core of the investigation
of weakly complete spaces, started by Slodkowski and Tomassini in [39], with the
definition of the kernel of a weakly complete space (which is the set of points where no
plurisubharmonic exhaution can be strictly plurisubharmonic) and continued by them
and the second author in a series of papers [15–20].

At the same time, Sibony introduced and studied ([33–35]) the idea of Levi current:
a positive current of bidimension (1, 1) which is ∂∂-closed and vanishes when wedged
with ∂∂u, for u a plurisubharmonic function; in a previous paper [2], we investigated
the relation between Levi currents, local maximum sets and the kernel of a weakly
complete space [39]. It is quite clear that local maximum sets are, as the name suggests,
just sets, whereas currents imply more structure; in fact, while it is clear that the
support of a Levi current is a local maximum set and while it is possible, given a local
maximum set, to produce a Levi current with support contained in it, we do not know
yet whether it is true that every local maximum set is the support of a Levi current.

It is interesting to note that, already in [1, Remark 1.5 - (i)], the authors noted the
link between local maximum sets and pluriharmonic positive currents.

Again in the work [34], Sibony also briefly mentioned Liouville currents, whose
definition is similar to the one of Levi current, but in the last property: one asks that
T ∧ ∂∂u = 0 for every u plurisubharmonic and bounded; as Levi currents are related
to the kernel of a weakly complete space, Liouville currents could be linked to the core
of a complex space, as defined and investigated by Harz, Shcherbina, and Tomassini
in [11–13], which is the set of points where no bounded plurisubharmonic function can
be strictly plurisubharmonic.

In a recent paper [38], Slodkowski showed that the core is a union of “primitive”
sets, which are 1-pseudoconcave and enjoy a Liouville property, namely every bounded
plurisubharmonic function is constant on them; this result had been previously ob-
tained for complex surfaces in [12] and was also independently proved in the general
case by Poletski and Shcherbina in [26]. Slodkowski proved this by tackling a more
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general problem, with respect to a family of plurisubharmonic functions, satisfying
some given properties, called admissible class.

In the present paper, we intend to deepen the investigation of the relations be-
tween plurisubharmonic functions (and local maximum sets) and positive currents of
bidimension (1, 1) (as generalizations of complex analytic varieties or Levi-flat sets),
by expanding the results of [2]: we introduce a generalization of Levi currents (the
F-currents, see Definition 3.1), where the condition T ∧ ∂∂u should hold for u in an
admissible class F , as defined by Slodkowski in [38], see Definition 2.1. To any such
class, we can also associate a singular locus, as the set where no element of the class can
be strictly plurisubharmonic. Examples of admissible classes, and of the corresponding
singular sets, are given by all plurisubharmonic function (and the minimal kernels, as
introduced in [39]), or by all bounded plurisubharmonic functions (and the cores, as
introduced in [11]).

The following is our main result.

Theorem 1.1. Let X be a complex manifold and let F be an admissible class.

(1) All F-currents are supported in the singular locus of F . If F contains an
exhaustion function, the singular locus is empty if and only if there are no
F-currents.

(2) All elements of F are constant on the supports of extremal F-currents.
(3) There exists an F-current whose support is equal to the union of the supports

of all F-currents.
(4) Assume that F(X) contains an exhaustion function. Let T be a F-current. If

sptT is compact, then it is a local maximum set.
(5) Assume that K ⊂ X is an F-component, or a compact local maximum set.

Then there exists T ∈ F̂ such that sptT ⊆ K.

The paper is organized as follows. In Section 2 we define admissible classes and
their associated singular loci, and we state the properties that we need in the sequel.
In Section 3 we introduce the notion of F-currents, and study such currents and their
supports. The proof of Theorem 1.1 is then given in Section 4. We conclude the paper
with some remarks about the decomposition of F on the levels sets of elements of F ,
and on the localization of the definitions in the paper to the case of compact subsets,
see Section 5.
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2. Admissible families and singular loci

In this section, following [38], we define admissible class and the associated singular
loci, and we recall their properties that we will need in the sequel. We fix a complex
manifold X. We say that an open subset U ⊂ X is allowable if it is either relatively
compact in X or cocompact. Notice in particular that X is allowable.
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Definition 2.1. An admissible class F is the datum, for every allowable open set
U ⊂ X, of a family F(U) of continuous plurisubharmonic functions satisfying the
following properties for every allowable sets W,U,U1, . . . Um:

(A1) for every sequence φn ∈ F(X), there exists a sequence of positive εn ∈ R such
that the series

∑∞
n=1 εnφn converges locally uniformly to an element of F(X);

(A2) whenever φ ∈ F(U) and W ⊂ U , then φ|W ∈ F(W );
(A3) if {U1, . . . Um} is a finite cover of X and φ : X → R is such that φ|Ui

∈ F(Ui)
for all 1 ≤ i ≤ m, then φ ∈ F(X);

(A4) the set F(U) is a convex cone and contains all bounded C∞ plurisubharmonic
functions on U ;

(A5) for every φ1, . . . φm ∈ F(U), and every C∞ convex function v : Rm → R of at
most linear growth and such that ∂v

∂ti
≥ 0, i = 1, . . . ,m on the joint range of

(φm, . . . , φm), the function φ := v(φ1, . . . , φm) belongs to F(U);
(A6) for every φ ∈ F(U) which is strongly plurisubharmonic on U and ρ ∈ C∞(U)

with spt ρ ⊂ U , there exists t > 0 such that φ+ tρ ∈ F(U).

Remark 2.2. Observe that condition (A4) implies the following property:

(A7) every point p ∈ X admits an open neighbourhood Ω such that, for all allowable
open subset V ⊂ Ω, F(V ) ∩ C∞ is dense (for the topology of locally uniform
convergence) in F(V )

We will use this property a number of times in the following, hence we prefer to add
it to the list of properties of an admissible class.

Remark 2.3. In general, an allowable class F is not closed by maximum, i.e., the
maximum of two elements in a given class F is not necessarily in F . On the other
hand, by the condition (A5), the class is closed by maxε for all positive ε, where
maxε(x, y) is any smooth approximation of the function max(x, y).

Definition 2.4. The singular locus of an admissible class F is the complement ΣF =
ΣFX of the set of points x ∈ X such that there exists φ ∈ F(X) which is strongly
plurisubharmonic at x.

Definition 2.5. An F-component is an equivalence class of the relation ∼ defined as
follows: x ∼ y if φ(x) = φ(y) for all φ ∈ F .

Observe that this relation is meaningful mostly on ΣF . Indeed, the component of a
point outside of ΣF is given by that single point.

The following are examples of allowable families, giving rise to well-studied singular
sets, see [38, Section 5] for more details.

Example 2.6. Let us consider, for a given k ∈ N∪{∞}, the class F defined as follows:

• the set of all lower-bounded, Ck psh functions on U , for all relatively compact
open set U , and
• the set of all lower-bounded, Ck psh functions φ on U , such that the sub-levels

sets {φ ≤ c} are relatively compact in X for all c ∈ R, for all cocompact open
set U .

The singular loci associated to F as above are the minimal kernels, as introduced and
studied in [18,39]; in particular, in the series of paper [15–20], the authors considered
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the case of complex surfaces such that F(X) contains a real analytic exhaustion. As a
consequence of this detailed study, one notices that, in such a case, the singular locus
does not depend on the regularity k.

Example 2.7. Let us now consider, for a given k ∈ N ∪ {∞} the class F given, on
any admissible open set U , by all uniformly bounded Ck plurisubharmonic functions.

The singular loci in this case correspond to the cores, as introduced and studied in
[11–13]. It is known that, in the case of cores, regularity plays a role (see [10]).

In the remaining part of this section, we summarize the main properties of singular
loci, mainly from [38], that we will need in the sequel. We first need to recall the
following further definitions.

Definition 2.8. Given an admissible class F , an element φ ∈ F(X) is a F-minimal
function if it is strongly plurisubharmonic on X \ ΣFX .

Definition 2.9. Let Z be a locally closed set. We say that Z is a local maximum
set if every x ∈ Z admits a neighbourhood V with the following property: for every
compact set K ⊂ V and every function φ which is psh in a neighbourhood of K, we
have

(1) max
Z∩K

ψ = max
Z∩bK

ψ.

Remark 2.10. More generally, given ad admissible class F as in Definition 2.1, one
may say that Z is a local maximum set for F if the condition in Definition 2.9 is satisfied
for all φ ∈ F(V ), where V is an allowable open neighbourhood of Z. However, it is not
difficult to see that this is actually equivalent to be a local maximum set. It is clear
that any local maximum set is a local maximum set for F . On the other hand, take let
Z be a local maximum set for F . Take any point of Z, an open neighbourhood U and
a compact set K ⊂ U . We can, without loss of generality, reduce U and assume that
it is relatively compact, hence admissible. Take a psh function φ on a neighbourhood
of K. Again, without loss of generality, we can assume that φ is defined on U . If φ is
smooth, by condition (A4) in Definition 2.1, φ belongs to F(U). Hence (1) holds for
φ. The statement for a general upper semicontinuous plurisubharmonic φ now follows
by approximation.

Theorem 2.11 (Theorem 4.2 of [37]). Let X be a n-dimensional complex manifold.
A closed set Z is a local maximum set if and only if it is 1-pseudoconcave: it can be
covered by open sets Vi such that Vi \Z admits a (n− 2)-plurisubharmonic exhaustion
function.

Recall that, for a C2 function, to be (n−2)-plurisubharmonic means that its complex
Hessian has at least 2 non-negative eigenvalues.

The next result gives a characterization of local maximum sets in terms of the local
behaviour of admissibile functions. Although, by Remark 2.10, such result is implied
by [37, Proposition 2.3], we give here a proof of this, to show how the definition of
admissible classes precisely allows one to work as if doing so in the algebra of psh
functions.

Proposition 2.12. Let Z be a locally closed set and F be an admissible class. The
following conditions are equivalent.
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(1) Z is a local maximum set for the class F ;
(2) there do not exist z∗ ∈ Z, r > 0, ε > 0 and a strictly psh function u in
F(B(z∗, r)) such that u(z∗) = 0 and u(z) ≤ −ε|z − z∗|2 for z ∈ Z ∩B(z∗, r).

Proof. First, it is clear that the existence of a function u as in the second item contra-
dicts the fact that Z is a local maximum set for the class F .

For the other implication, suppose that Z is not a local maximum set for the class
F . Then there exists a compact subset K ⊂ Z, an allowable open neighbourhood U
of K, and an element u0 ∈ F(U) such that

max
K∩Z

u0 > max
∂K∩Z

u0.

By the density of smooth elements in F(U), we can assume that u0 ∈ C2(U). Then,
[37, Lemma 2.2] gives the existence of a strictly convex function f : U → R and a point
x∗ ∈ K \ ∂K such that

(u0 + f)(x∗) = 0 and (u0 + f)(x) ≤ −ε|x− x∗|2 for x ∈ K.

(the lemma is stated in Cn – and actually Rn, just for upper semicontinuous functions
– but the construction is local). By taking r sufficiently small, the function u := u0+f
is strictly psh on B(x∗, r) and satisfies the requirements in the statement. �

Theorem 2.13 ([38]). Let F be an admissible class.

(1) there exists a minimal function in F ;
(2) the singular locus ΣF is a local maximum set (hence 1-pseudoconcave), or

empty;
(3) all F-components of points in ΣF are 1-pseudoconcave;
(4) if x 6∈ ΣF , then the F-component containing x is {x}.

Remark 2.14. Items (1) and (2) in Theorem 2.13 were proved in [39] in the case of
minimal kernels (see Example 2.6) and in [11] in the case of cores (see Example 2.7);
the decomposition in F-components for cores was already proved in the 2-dimensional
case in [12] and extended to every dimension by Poletski and Shcherbina in [26].

3. Generalized Levi currents

In this section we fix a complex manifold X. Following the definition of Levi cur-
rents by Sibony [34], we define a natural generalization of this notion adapted to any
admissible class as in Definition 2.1.

Definition 3.1. Let F be an admissible class. An F-current is a current T on X
satisfying the following properties:

(C1) T is non-zero;
(C2) T is of bidimension (1, 1);
(C3) T is positive;
(C4) i∂∂̄T = 0;
(C5) T ∧i∂∂̄u = 0 for all u ∈ F(U) for U an allowable neighbourhood of the support

of T .

We denote by F̂ the set of all F-currents. We say that an F-current is extremal if
T = T1 = T2 whenever T = (T1 + T2)/2 for T1, T2 F-currents.
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Example 3.2. When F is as in Example 2.6 (resp. Example 2.7), we recover the
definition of Levi (resp. Liouville) currents, as in [34].

The following lemma permits to extend the definition of the intersections between
F-currents and some exact forms. The arguments of the proof are given in [34] and
are based on a method developed in [4]. We use here (A7) in order to (locally)
approximate continuous elements of F with smooth ones.

Lemma 3.3. Let F be an admissible class. Take u, un ∈ F , with un smooth and such
that un → u, and let T be a positive closed current on X of bidimension (1, 1). Then
the current T ∧ ∂u is well defined and

T ∧ ∂un → T ∧ ∂u.

Similar assertions hold for T ∧ ∂̄u, T ∧ ∂u ∧ ∂̄u, and T ∧ ∂∂̄u.

The following properties are a consequence of the previous lemma. They are stated
in [34, Section 4], see also [2, Lemma 2.3], in the case of Levi currents. Since a similar
proof works also in this more general settings, we will omit it here.

Lemma 3.4. Let F be an admissible class. Take u ∈ F and let T be a F-current.
Then the currents

T ∧ ∂u, T ∧ ∂̄u, and T ∧ ∂u ∧ ∂̄u
are well defined and vanish identically on X.

Corollary 3.5. Let F be an admissible class and take T ∈ F̂ . If u ∈ F ∩ C1, then the
2-vector field associated to T belongs to the kernel of i∂u∧∂̄u (||T ||-almost everywhere),
whenever the latter is non-zero.

In the statement above, ‖T‖ denotes the mass measure associated to T , see for
instance [6, p. 310].

Proof. The statement is equivalent to T ∧ i∂u∧ ∂̄u, hence follows from Lemma 3.4. �

The next lemma gives a first indication of the relation between the supports of F-
currents and the points where elements of F are strictly psh. The case of Levi currents
is given in [2, Corollary 2.6 and Lemma 2.7].

Lemma 3.6. Let F be an admissible class.

(1) If there exists u ∈ F and x ∈ X such that u is strictly psh at x, then x /∈ sptT

for any T ∈ F̂ ;
(2) Assume T ∈ F̂ has compact support. If u belongs to F(U) for some allowable

open neighbourhood of sptT , and is strictly psh at some x ∈ U , then x /∈ sptT .

Proof. We prove the two assertion separately.

(1) By (A7), we can assume that u is smooth, and strictly psh near x. Let U be
a small neighbourhood of x, where u is strictly psh. Then U is allowable, and
u ∈ F(U). Take a smooth function ρ supported on U . By (A4) in Definition

2.1, we have that u + ρ ∈ F(U). If now T is an element of F̂ , by Lemma 3.4
we must have T ∧ i∂(u + ρ) ∧ ∂̄(u + ρ) = 0. Since ρ is arbitrary, this implies

that T = 0. Hence, there are no elements of F̂ having x in their support.
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(2) As above, by (A7), we can assume that u is smooth. Since u is strictly psh at
x, the same is true in a neighbourhood. In order to prove that x /∈ sptT , it is
then enough to prove that T ∧ i∂∂̄u = 0 near x. We prove that this is true in
the allowable open set U .

First observe that T ∧ i∂∂̄u is a positive measure on U . Consider a second
open neighbourhood U ′ of sptT with sptT ⊂ U ′ b U and let χ be a smooth
function, compactly supported on U and equal to 1 on U ′. By replacing u
with χu, we can assume that u is defined on X, psh near sptT , and equal to
zero near the boundary of U . Since i∂∂̄T = 0 (by (C4) in Definition 3.1) an
application of Stokes Theorem gives that 〈T ∧ i∂∂̄u, 1〉 = 0. Since T ∧ i∂∂̄u is
a positive measure, this completes the proof.

�

A similar application of Stokes Theorem also gives the following result.

Lemma 3.7. Let F be an admissible class. Suppose that a current T satisfies the
properties (C1)-(C4) in Definition 3.1. If T has compact support, or if T is supported

on a F-component, then T satisfies the property (C5). In particular, T ∈ F̂ .

Proof. Assume first that T as compact support. Take U an allowable relatively com-
pact open neighbourhood of the support of T and fix u ∈ F(U). The current T ∧ i∂∂̄u
is well defined by Lemma 3.3 (and conditions (C2) and (C3)). It is also compactly
supported in U and, since T is positive (by (C3)), is a positive measure. We show
that 〈T ∧ i∂∂̄u, 1〉 = 0. Again by Lemma 3.3 (and conditions (C2) and (C3)), the
currents T ∧ i∂u and T ∧ i∂̄u are also well defined. By Stokes theorem, we have that
〈i∂∂̄(uT ), 1〉 = 〈i∂(∂̄u ∧ T ), 1〉 = 〈i∂̄(∂u ∧ T ), 1〉 = 0. The assertion follows (again by
Stokes theorem and (C4)) in this case.

In the case where the support of T is contained in a F-component, condition (C5)
in Definition 3.1) is trivially satisfied since any u ∈ F is constant on the support of T .
This completes the proof. �

We conclude this section with the following lemma, giving a relation between the
existence of F-currents and the absence of strictly psh functions.

Lemma 3.8. Let K be a compact set, or a F-component. If there are no F-currents
supported on K, there exists an allowable open neighbourhood U of K and an element
of F(U) which is strictly psh (on U).

Proof. Let S be a positive, ∂∂̄-closed current of bidimension (1,1) supported on K. By
Lemma 3.7, S is a F-current or S = 0. By assumption, we have that S = 0. Hence,
we can assume that there are no non-zero positive ∂∂̄-closed currents of bidimension
(1,1) supported on K. To conclude, we use a duality argument as in [34, Proposition
2.1], see also [23,40]. Consider the topological vector space of currents of bidimension
(1, 1) with the topology of weak convergence; denote by C the set of positive currents
of bidimension (1, 1) of mass 1 (with respect to some Hermitian metric on X) and
supported on K and by Y the set of ∂∂̄-closed currents on X. By the arguments
above, we have C ∩ Y = ∅. By Hahn-Banach theorem, C and Y are separated, i.e.,
there exist δ > 0 and a continuous linear functional L such that Y ⊆ kerL and
L(T ) > δ for all T ∈ C.
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By definition, Y is the annihilator of the space of ∂∂̄-exact (1, 1)-forms with compact
support, i.e., Y = {i∂∂̄u : u ∈ C∞c (X)}⊥.

As the spaces of test forms are reflexive, we have that the continuous linear functional
L can be represented as L(T ) = 〈T, i∂∂̄u〉 for some u ∈ C∞c (X).

The separation condition implies that 〈T, i∂∂̄u〉 ≥ δ for all T ∈ C; if we test this
condition against the current T = δxiξ ∧ ξ with x ∈ K (where δx is the Dirac mass at
x and ξ is any (1, 0) tangent vector at x), we obtain that u is strictly subharmonic on
the disc through x with complex direction ξ. The function u is then strictly psh on a
neighbourhood of K, hence it belongs to F(U) for every allowable neighbourhood of
its support, by the property (A4) of admissible classes. The proof is complete. �

4. Proof of Theorem 1.1

In this section we prove the assertions in Theorem 1.1.

Proposition 4.1. Let X be a complex manifold and F an admissible class. All F-
currents are supported in the singular locus ΣF of F . In particular, if ΣF is empty,
there are no F-currents.

Proof. Take x ∈ X and assume that there is a function φ ∈ F which is strictly psh
at x. In particular, φ ∈ (U) for some small allowable neighbourhood of x. By (A7)
(and up to possibly restricting U), we can approximate φ by smooth elements φn of
F , which are then strictly psh on some neighbourhood of x. We can then assume that
φ is smooth and strictly psh near x. We then use the property (A6) in Definition 2.1,
applied to a family of smooth functions ρi, 1 ≤ j ≤ 2 dimX such that the kernels of
αi := ∂(φ+ tjρj)∧ ∂̄(φ+ tjρi) are independent over R, where the tj ’s are given by that
property. This property stays true in a neighbourhood of x.

If T is a Levi current whose support contains x, by Lemma 3.4 we should have
T ∧ αi = 0 for all i. This gives a contradiction, and concludes the proof. �

Proposition 4.2. Let X be a complex manifold and F an admissible class. Suppose
that F contains an exhaustion function and that there are no F-currents. Then there
exists an element of F(X) which is an exhaustion function and everywhere strictly psh.
In particular, the singular locus ΣF is empty.

Proof. We can follow the arguments of the proof of [34, Theorem 4.4]. We will construct
a strictly psh exhaustion function on X by applying inductively Lemma 3.8.

By assumption, X admits an exhaustion function φ in F(X). We can then construct

a sequence of compact sets Kn such that Kn b ˚Kn+1, ∪nKn = X, and with the
property that, for all n,

Kn = {x ∈ X : u(x) ≤ max
y∈Kn

u(u) ∀u ∈ F}.

By applying Lemma 3.8, we can find a sequence of functions vn which are strictly psh
on Vn on some open allowable neighbourhood Vn of Kn. Choose for every n a convex
increasing function χn : R→ R such that{

χn(φ) < infKn vn on Kn−1

χn(φ) ≥ sup vn near ∂Kn
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and define

un := m̃ax(χn(φ), vn).

where m̃ax is some smooth function sufficiently close to max. This function is then
equal to vn on Kn−1 and to χn(φ) on X \ Kn. It is smooth strictly psh on a neigh-
bourhood V ′n of Kn−1, and it is a psh and continuous exhaustion function for X. It
belongs to F by Property (A3) of Definition 2.1.

By the first condition in Definition 2.1, there exist εn such that the sequence∑
n εnun ∈ F(X). This function satisfies the required properties. �

Proposition 4.3. Let T be an extremal F-current. All elements of F are constant on
the support of T .

Proof. Let U be an admissible neighbourhood of the support of T and fix v ∈ F(U);
we have that vT is again an F-current. Indeed, by Lemmas 3.3 and 3.4, we have that
the currents

∂v ∧ T, ∂̄v ∧ T, and ∂∂̄v ∧ T
are all well-defined and vanish identically. Therefore, ∂∂̄(vT ) is well defined and van-
ishes as well. Hence vT is a F-current.

Now, suppose that u ∈ F(U) is not constant on the support of T ; then, without loss
of generality, we can suppose that {u < 0} and {u > 0} both intersect the support of
T in a proper subset with non-empty interior. Consider a convex increasing function
h : R → R such that h(t) = 0 if and only if t ≤ 0 and h(t) > 0 otherwise. Then,
by the first part of the proof, h(u)T is a F-current, which is a contradiction with the
extremality of T . �

Definition 4.4. Let F be an admissible class. The support SF = SFX of F is the
union of the supports of all the F-currents.

Proposition 4.5. Let F be an admissible class. The set F̂ is closed for the weak
topology of currents. Moreover, there exists T ∈ F̂ such that sptT = SF .

In particular, observe that SF is closed in X.

Proof. Let Tn be a sequence of elements in F̂ and assume that there exists a current T
on X such that Tn → T (in the sense of currents). We can assume that T is non-zero.
Clearly T is positive and of bidimension (1,1). Since i∂∂̄Tn = 0 for all n, we deduce
that i∂∂̄T = 0. We need to prove that T ∧ i∂∂̄u = 0 for all u ∈ F . We follow the
argument given in [34] for the case of Levi currents.

Assume first that u is smooth. In this case, for any smooth function χ on X, we
have χTn ∧ i∂∂̄u→ χT ∧ i∂∂̄u. Since the left hand side of this expression vanishes for
all n, we deduce that the same is true for the right hand side. Since χ is arbitrary, we
obtain that T ∧ i∂∂̄u = 0, as desired.

Let now u be any element of F and let χ a smooth function with compact support.
It is enough to work locally near the support of χ, and we can assume that this support
is arbitrarily small. Recall that any element in F is a a continuous psh function on
X. By (A7), there exists a sequence un of smooth psh functions, converging to u in a
neighbourhood of χ. By the arguments above, we have χT ∧ ∂∂̄un = 0 for all n. The
first assertion now follows from Lemma 3.3.
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Let us now prove the second statement. Since F̂ is closed, it is separable. Let us
consider a countable dense subset Tj of F̂ . For εn small enough, consider the current

T =
∑

n εnTn (which is in F̂) and denote by S its support. By the density of the Tj in

F̂ , we obtain that any element of F̂ is supported on S. Hence, S = SF , and the proof
is complete. �

The following proposition gives the relation between F-currents and local maximum
sets, and concludes the proof of Theorem 1.1.

Proposition 4.6. Let F be an admissible class.

(1) Assume that F(X) contains an exhaustion function. Let T be a F-current. If
sptT is compact, then it is a local maximum set.

(2) Assume that K ⊂ X is an F-component, or a compact local maximum set.

Then there exists T ∈ F̂ such that sptT ⊆ K.

Proof. We prove the two assertion separately.

(1) Denote K := sptT , and assume it is not a local maximum set. We are going
to construct a psh function in neighbourhood of K, which is stricly psh at a
point of sptT . This will contradict Lemma 3.6.

In order to construct such a function, we apply Proposition 2.12: there exist
x ∈ K, ε > 0, a neighbourhood B of x (which we can assume to be the unit ball
centered at x = 0 in local coordinates y), and a smooth strictly psh function
u on B such that u(0) = 0 and −ε|y|2 − ε/8 ≤ u(y) ≤ −ε|y|2 for all y ∈ K ∩B
(by (A7), we can assume that u is smooth), where the first inequality follows
by possibly reducing the ball B.

The function u is only defined near x. In order to apply Lemma 3.6, we need
to extend it, as a psh function, on a neighbourhood of K. By assumption, X
admits an exhaustion function φ ∈ F(X). We can also assume that

φ(x) = −ε/4 and |φ| ≤ ε/4 on B.

By considering a smooth function χ which is 1 on a small neighbourhood of
K, and also compactly supported in a small neighbourhood of k, we can then
consider the function v defined by

v =

{
χmaxε(uφ) on B,

χu on X \B.

where maxε is smooth approximation of the max function. As in [2, Proposition
3.2], one can verify that this function is indeed psh in a neighbourhood of K,
and coincides with u in a neighbourhood of x. This concludes the proof.

(2) Assume that no F current is supported on K. Then, by Lemma 3.8, there exists
a strictly psh function in F(U), where U is an open allowable neighbourhood
of K. Fix x0 ∈ K. First observe that du(x0) 6= 0. For j = 1, . . . , 2n − 1,
choose a smooth function ρj compactly supported in U , with the property
that du0, dρ1, . . . , dρ2n−1 are linearly independent at x0. Property (A6) in
Definition 2.1 gives positive numbers tj such that u0 + tjρj ∈ F(U) for all j.
Set vj := u0+tjρj for all 1 ≤ j ≤ 2n1 and v0 := u0. As du0, dρ1, . . . , dρ2n−1 are
linearly independent at x0, the same holds true for dv0, dv1, . . . , dv2n−1. This
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implies that, in a neighbourhood of x0, we have ∩2n−1j=0 {vj(x) = u(x0)} = {x0}.
Since, by [38, Corollary 1.11], there is a compact 1-pseudoconcave subset of K
where all the vj ’s are constant, this gives the desired contradiction.

�

In particular, the following is then a consequence of Propositions 4.5 and 4.6.

Corollary 4.7. Let F be an admissible class. If the set SF is compact, it is a local
maximum set.

5. Localization results

We end this note with some results about the localization of F-currents and singular
loci to compact (or closed) subsets; first of all, by a standard distintegration procedure,
we can decompose any F-current on the levels of any admissible function, see [2,
Corollary 2.4] for the case of Levi currents.

Proposition 5.1. Let F be an admissible class. Take u ∈ F and let T be a F-current.
There exists a measure µ on R and a collection of currents Tc, c ∈ R such that

• Tc is supported on Yc = {x ∈ X : u(x) = c} for all c ∈ R;
• Tc is non zero for µ-almost every c ∈ R;
• whenever Tc 6= 0, Tc is an F-current;
• for every 2-dimensional form α on X we have

〈T, α〉 =

∫
R
〈Tc, α〉dµ(c) .

Moreover, if u ∈ C1 ∩ F and c is a regular value for u, then Tc = j∗Sc, where j is the
inclusion of Yc in X and Sc a current on the real manifold Yc.

Let now K be a compact set inside the complex manifold X and U be the set of all
relatively compact neighbourhoods of K in X. We can define the singular locus of F
in K as

ΣFK =
⋂
U∈U

ΣFU .

Theorem 5.2. Let F be an admissible class, K ⊂ X a compact set, and U be defined
as above.

(1) The set ΣFK can be partitioned in subsets {Fα}α∈A such that, for every U ∈ U
and φ ∈ F(U), φ is constant on Fα for all α ∈ A.

(2) Every extremal F-current supported in K is supported in some Fα.

(3) There exists TK ∈ F̂ , supported in K, such that its support is maximal, and
sptTK ⊆ ΣFK .

Proof. (1) Consider, for each U ∈ U and x ∈ ΣFK , the F-component Fx,U containing
x in U ; we have that {Fx,U ∩K}U∈U is a net of subsets whose intersection is a

set Fα ⊆ ΣFK which has the desired property.
(2) If T is an extremal F-current supported in K, functions in F(U) are constant

on sptT for all U ∈ U ; therefore, we have sptT ⊆ Fα for some α.
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(3) By Lemma 3.7, F-currents supported on K are non-zero positive plurihar-
monic currents of bidimension (1, 1). Consider the compact convex set of (1, 1)-
bidimension, positive, ∂∂-closed currents supported in K and with mass 1. By
Krein-Milman theorem, this set is the closure of the convex hull of its extremal
elements. Therefore, taking a dense sequence of extremal currents Tj , we can
build the current

TK =
∑

2−jTj ,

which is again a F-current. Then, sptTK contains the support of every F-
current supported in K. By the previous point, we have that sptTK ⊆ ΣFK .

�

Remark 5.3. (1) The sets Fα as above satisfy a local maximum property, outside
a suitably defined “boundary”, i.e., the Hausdorff limit of Fx,U ∩ bU for U ∈ U .

(2) In general, currents Tj may not have disjoint supports: consider K ' P2 as
the exceptional divisor in the blow-up of C3 at the origin; for any allowable
class F , ΣFK = K and we can pick Tj as the current of integration on some
projective line P1 in K. Obviously, all the supports of the Tj ’s will intersect
and in fact the whole K is one unique F-component.

(3) The sets ΣFK and sptTK can be different. Consider in P2 the set C := K+

for a given Hénon map f (i.e., a polynomial diffeomorphism of C2). Recall
that K+ is the set of points in C2 with bounded forward orbit. Then C is
compact in the projective plane and, by the main result of [5], it supports only
one positive, ∂∂-closed, (1, 1)-current of mass 1, which is the Green current
T+. So, T+ = TC and sptTC is equal to the closure in P2 of J+ = ∂K+.
If f is appropriately chosen, some connected component Ω of K+ \ J+ is a
Fatou-Bieberbach domain, biholomorphic to C2, and we have ∂Ω = J+ [3,27].
Therefore, every psh function which is continuous on C ′ := Ω ∪ J+ needs to
be constant on C ′ (since it restricts to a bounded psh function on Ω ∼= C2).
Hence, ΣFC′ = C ′ ) sptTC′ = sptTC . (We used in this remark the notations
C and C ′ to avoid confusion with the set K already defined in the dynamical
setting as the set of points with bounded both forward and backward orbits).

(4) In the case of all continuous plurisubharmonic functions, the set ΣFK is the
same as the psh kernel defined in [20], or the core of a compact set as defined
in [30].
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