
1. Selberg’s sieve

1.1. The basic sieve. Suppose we have a set of integers A of some number the-
oretic importance, e.g. the set of primes, or the set of squarefree numbers within
sum interval. A fundamental problem is to estimate the cardinality of A. If the
set is defined by the conjunction of a large of individually simple conditions, the
inclusion-exclusion principle is among the first things that come to mind.

Theorem 1. Let X be a finite set, A1, . . . , Ak be subsets of X. Then

(1) |X \
k⋃
i=1

Ai| = |X| −
k∑
i=1

|Ai|+
∑
i<j

|Ai ∩Aj | − · · · ± |A1 ∩ · · · ∩Ak|.

In its pure form this principle is hardly ever useful, since on the right hand side
there are 2k terms. Usually each term can be computed with an error term which
is at least O(1), so even in the best possible case the total error becomes O(2k).
If we e.g. express the number of primes in [

√
x, x] in this way, we would obtain

π(x)− π(
√
x) = x

log x +O(2
√

2x/ log x), which is worse than trivial.

However, if the size of the sets Ai and of the intersections thereof decreases
rapidly, we can get a better error term by not looking at each individual term, but
by neglecting whole classes of summands in one step. This method is best explained
with an example.

Example 2. The number of squarefree integers in the interval [x, x+ y] is 6
π2 y +

(x+ y)1/2+ε.

Proof. Let X be the set of all integers in [x, x + y], and Ai be the subset of all
integers in [x, x + y] divisible by p2i , where pi is the i-th prime number. Suppose
we replace the right hand side of (1) by

(2) |X| −
∑
i

∗
|Ai|+

∑
i<j

∗
|Ai ∩Aj | − . . . ,

wher
∑∗

means that the sum is restricted to terms |Ai1 ∩Ai2 ∩ · · ·∩Ai` |, for which
p2i1 · · · p

2
i`
≤ t, and t is a parameter to be determined later. All integers in X, which

are not divisible by a square > t are included and excluded in such a way that in
the end squarefree numbers are counted once, and numbers divisible by a square
are not counted. Numbers divisible by a square a2 > t are not counted correctly.
Such an integer occurs in τ(a) sets, where τ denotes the number of divisors, hence
the difference between (2) and the right hand side of (1) is

≤ max
a≤
√
x+y

τ(a)
∑

√
t<a≤

√
x+y

[
x+ y

a2

]
−
[ x
a2

]
≤ (x+ y)ε

(
y√
t

+
√
x+ y

)
.

Next

|Ai1 ∩ . . . Aiell| =
[

x+ y

p2i1 · · · p
2
i`

]
−
[

x

p2i1 · · · p
2
i`

]
=

y

p2i1 · · · p
2
i`

+O(1),

1
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thus

|X| −
∑
i

∗
|Ai|+

∑
i<j

∗
|Ai ∩Aj | − . . . = |X|

∑
a≤
√
t

µ(a)

a2
+O(

√
t)

=
6

π2
y +O(y

∑
a>
√
t

1

a2
) +O(

√
t).

Collecting the error terms we obtain that the number of squarefree integers in
[x, x+ y] equals

6

π2
y +O(

y1+εxε√
t

+ (x+ y)1/2+ε + t1/2)

Taking t = y we see that the second error term dominates the other two, and our
claim follows. �

The reason that this method works is that the series
∑
a≥
√
t
y
a2 gets small as t

gets large. In other words, it relies on the fact that
∑

1
a2 converges. Therefore

this argument is often referred to as the converging sieve. In the same way we can
count the number of consecutive square free numbers, and even prove the k-tuple
conjecture for square free numbers. However, since

∑
1
p diverges, it does not tell

us anything about primes.

1.2. Brun’s sieve. To obtain information about primes one needs another method
to restrict the right hand side of (1). To do so recall where the signs in (1) come
from. Each integer in one of the Ai’s is removed by the first sum. Integers removed
to often are added again by the second sum. Integers re-added to often are again
removed by the third sum, and so on. From this reasoning the following is clear.

Theorem 3. Let X be a finite set, A1, . . . , Ak be subsets of X. Then for all even
` we have

|X \
k⋃
i=1

Ai| ≤ |X| −
k∑
i=1

|Ai|+
∑
i<j

|Ai ∩Aj | − · · ·+
∑

i1<i2<···<i`

|Ai1 ∩ · · · ∩Ai` |,

and for all odd ` we have

|X \
k⋃
i=1

Ai| ≥ |X| −
k∑
i=1

|Ai|+
∑
i<j

|Ai ∩Aj | − · · · −
∑

i1<i2<···<i`

|Ai1 ∩ · · · ∩Ai` |,

In other words, when truncating (1) the error always has the same sign as the
first term ommitted.

In probability theory, this statement is usually referred to as Bonferoni inequal-
ities, and they are obiously not very deep. Brun’s deep discovery was that they
actually yield interesting number theoretic results. In fact, by taking X = [

√
x, x],

Ai = {n ∈ X : n(n + 2) ≡ 0 (mod pi)} he showed that there are at most x
log2−ε x

prime twins up to x.
In this form Brun’s sieve is hardly used anymore, since most of the time Selberg’s

sieve is technically simpler and gives superior results. However, Iwaniec has shown
that the combinatorial approach by Brun can be turned into a sifting method which
in many cases is better than Selberg’s sieve. This sieve is commonly referred to as
the Rosser-Iwaniec sieve.
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1.3. Selberg’s Λ2-method. In both the converging sieve as in Brun’s sieve we
started with (1), and modified the right hand side into a shorter sum at the cost of
some error. In both cases we did so by completely ignoring most of the summands.
From a combinatorial point of view this is quite natural, however, from an analytic
point of view using an indicator function is discontinuous, which is pretty bad. It
should be better to smooth things out, that is, we are led to the following problem:

In the setting of Theorem 1, find weights λi1,...,i` , 1 ≤ ` ≤ k, i1 < i2 < · · · < i`,
such that

|X| −
k∑
i=1

λi|Ai|+
∑
i<j

λi,j |Ai ∩Aj | − · · · ± λ1,2,...,k|A1 ∩ · · · ∩Ak|

can be estimated with a small error and approximates the right hand side of (1)
well

Clearly the two goals conflict with each other, for the first we want the weights to
decrease rapidly, whereas for the second we want them to stay close to 1. Moreover,
we are trying to optimize a system containing 2k variables, which is tremendously
difficult. To describe Selberg’s idea of overcoming these difficulties, let us consider
the following problem: Given real numbers x, y, howe many prime numbers are
there in the interval [x, x+ y]? Moreover, as can already be seen from the example
of prime twins, upper bounds are easier then lower bounds, therefore we only look
at the problem of finding an upper bound.

Let X be the set of integers in [x, x + y], Ai be the subset of integers divisible
by pi. We would like to consider all primes pi up to

√
x+ y, however, if y <

√
x

then even the first sum on the right contains more than y terms, which means we
are in trouble. We therefore consider only primes up to some bound z, which we
shall determine later. Note that if we count integers without prime factors ≤ z, we
get an upper bound for the number of primes, which is what we want.

Looking at (1) from the point of view of a single element of X, which is contained
in m of the sets Ai, we can rewrite this equation as

1−m+

(
m

2

)
− · · · ± 1 =

{
1, m = 0

0, m > 0

In the same way we can rewrite the Bonferoni inequality as

1−m+

(
m

2

)
− · · ·+

(
m

`

)
=


1, m = 0

0, 1 ≤ m ≤ `
something non-negative, m > `

.

Hence the Bonferoni inequality is useful, since it is close to the indicator function
we want, and if it differs from what we want, then the sign of the difference is
predictable. So we can use this inequality for each single element of X, add things
up, and obtain an upper bound.

Applying this reasoning to our hunt for weights we see that in the concrete
problem of bounding the number of primes in an interval, we have to find real
numbers λd, such that∑

d|n

λd =

{
1, n = 1

something non-negative, n > 1
,
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so that we are sure to overestimate the quantity we are looking for, while at the
same time

∑
d |λd| is as small as possible, so that the error term coming from the

rounding errors does not explode.
The first condition can be satisfied by taking real numbers Λd with Λ1 = 1, and

putting
∑
d|n λd =

(∑
d|n Λd

)2
. If we further assume that Λd = 0 for all d which

are divisible by a prime p > z, we find that the number of integers n ∈ [x, x + y]
which are not divisible by a prime ≤ z is bounded above by

x+y∑
n=x

∑
d|n

Λd

2

=
∑
d,e

ΛdΛe

([
x+ y

[d, e]

]
−
[

x

[d, e]

])

= y
∑
d,e

ΛdΛe
[d, e]

+O

(∑
d

|Λd|

)2
 .

In applications we choose the Λd in such a way that the error term is of smaller
magnitude then the main term. The reason is that the optimal choice usually leads
to expressions of the form y

logA z
+O(z2), thus changing z by a small factor decreases

the error term significantly while leaving the main term asymptotically unchanged.
This reasoning also shows that when optimizing we should focus on the main term.
The standard way to do so would be via Lagrange multipliers, however, here it is
actually easier.

We begin by estimating some auxiliary sums, which occur during the computa-
tion.

Lemma 4. (1) We have
∑
n≤z

µ2(n)
ϕ(n) ≥ log z;

(2) We have
∑
n≤z

n
ϕ(n) � z.

Proof. Let γ(n) be the squarefree kernel of n, that is, the largest squarefree integer
dividing n. Then we have for n squarefree

1

ϕ(n)
=

1

n

∏
p|n

p

p− 1
=

1

n

∏
p|n

(
1 +

1

p
+

1

p2
+ . . .

)
=

∑
m

s(m)=n

1

m
.

Hence
∑
n≤z

1
ϕ(n) =

∑
s(m)≤z

1
m ≥

∑
m≤z

1
m ≥ log z.

For the second claim we have n
ϕ(n) =

∏
p|n

p
p−1 =

∑
d|n

µ2(d)
ϕ(d) . Hence∑

n≤z

n

ϕ(n)
=
∑
n≤z

∑
d|n

µ2(d)

ϕ(d)
=
∑
d≤z

µ2(d)

ϕ(d)

[z
d

]
≤ z

∑
d≤z

µ2(d)

dϕ(d)
� z,

since the sum clearly converges. �

We have
1

[d, e]
=

(d, e)

de
=

1

de

∑
f |(d,e)

ϕ(f),

thus

∑
d,e

ΛdΛe
[d, e]

=
∑
f

ϕ(f)
∑
f |d,f |e

Λd
d

Λe
e

=
∑
f

ϕ(f)

∑
f |d

Λd
d

2

=:
∑
f

ϕ(f)y2f .
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By Möbius inversion the yf determine the Λd as Λd = d
∑
d|f yfµ(f/d). In partic-

ular the condition Λd = 1 yields
∑
f yfµ(f) = 1. Putting L(z) =

∑
n≤z

µ2(n)
ϕ(n) we

find that the last equation implies∑
f

ϕ(f)y2f =
∑
f

(
yf −

µ(f)

ϕ(f)L(z)

)2

+
1

L(z)
.

Clearly this expression is minimzed by taking yf = µ(f)
ϕ(f)L(z) , and for this choice we

have in fact ∑
f

yfµ(f) =
1

L(z)

∑
f

µ2(f)

ϕ(f)
= 1,

provided that the yf are defined for f up to z. With this choice for the Λd the
main term becomes y

L(z) .

We now turn to the error term. We have

Λd = d
∑
d|f
f≤z

yfµ(f/d) = d
∑
d|f
f≤z

µ(f)µ(f/d)

ϕ(f)L(z)
=

dµ(d)

ϕ(d)L(z)

∑
(t,d)=1

t≤z/d

µ(t)2

ϕ(t)
.

Using Lemma 4 (2) we conclude∑
d≤z

|Λd| ≤
∑
d≤z

d

ϕ(d)L(z)

∑
t≤z/d

1

ϕ(t)
=

1

L(z)

∑
t≤z

1

ϕ(t)

∑
d≤z/t

d

ϕ(d)
≤ 1

L(z)

∑
t≤z

z

tϕ(t)
� z

L(z)
.

Putting things together we obtain that the number of integers n ∈ [x, x+ y], which

are not divisible by any prime number p < z is y
L(z) +O( z2

L(z)2 . Using Lemma 4 (1)

we obtain that this number is bounded above by y
log z +O( z2

log2 z
). The error term

becomes negligible for z =
√
y, in particular we have proven that the number of

primes in [x, x+ y] is bounded above by (2+o(1))y
log y .

1.4. The number of prime twins below x.

2. The large sieve

2.1. Some linear algebra. Let (V, 〈·, ·〉) be a hermitian vector space, and let
φ1, . . . , φr be an orthonormal family of elements of V . Then the abstract Fourier
expansion yields for every ξ ∈ V the inequality

∑r
i=1 |〈ξ, φi〉|2 ≤ ‖ξ‖2. A quite

natural problem, apparently first considered in the context of functional analysis,
is the question whether we can weaken the condition of orthonormality. Boas proved
the following.

Theorem 5. Let (V, 〈·, ·〉) be a hermitian vector space, and φ1, . . . , φr, ξ be elements
of V . Then we have

(3)

r∑
i=1

|〈ξ, φi〉|2 ≤ max
1≤i≤r

r∑
j=1

|〈φi, φj〉| · ‖ξ‖2.

Proof. Put A = max1≤i≤r
∑r
j=1 |〈φi, φj〉|. We first show that for any choice of the

complex numbers ui, 1 ≤ i ≤ r, we have∑
1≤i,j≤r

uiuj〈φi, φj〉 ≤ A
r∑
i=1

|ui|2.
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In fact, using the inequality between the quadratic and geometric mean the left
hand side is bounded above by∑

1≤i,j≤r

|ui|2 + |uj |2

2
〈φi, φj〉 =

r∑
i=1

|ui|2
r∑
j=1

〈φi, φj〉 ≤ A
r∑
i=1

|ui|2.

We now deduce (3). Many of the elementary inequalities are obtained by manip-

ulating the obvious inequality x2 ≥ 0. For example, the inequality a2+b2

2 ≥ ab

immediately follows from (a − b)2 ≥ 0. In the context of hermitian spaces this
inequality is replaced by ‖ξ‖2, which motivates the first inequality. The remainder
of the proof is just a calculation. For any choice of complex numbers ui we have

0 ≤

∥∥∥∥∥ξ −
r∑
i=1

uiφ

∥∥∥∥∥
2

= ‖ξ‖2 − 2

r∑
i=1

ui〈ξ, φi〉+
∑

1≤i,j≤r

uiuj〈φi, φj〉

≤ ‖ξ‖2 − 2

r∑
i=1

ui〈ξ, φi〉+A

r∑
i=1

|ui|2.

We now put ui = 〈ξ,φi〉
A and obtain

0 ≤ ‖ξ‖2 − 1

A

r∑
i=1

|〈ξ, φi〉|2,

which is our claim. �

The structure of the proof is worth being remembered. Sometimes one sets of
from x2 ≥ 0 like here, but more often one first uses Cauchy-Schwarz inequality
to separate a sum into an analytic and a number theoretic part. In any case one
ends up with squares, which one expands. The resulting expansion is often so
complicated that instead of evaluating the concrete example one is interested in
one resorts to general inequalities for bilinear forms. We shall see more examples
of this technique later.

2.2. Passing to number theory. In number theoretic applications the vector ξ
encodes the arithmetic object we want to study, while each φi is one aspect of
this object. For example, ξ could be the indicator function of the set of primes
in an interval, while the φi are indicator functions of arithmetic progressions. In
this way the large sieve was applied by Renyi. The problem with this approach
is that the indicator functions of arithmetic progressions are far for orthogonal.
Roth discovered that exponential sums give better orthogonality. Write e(t) =
e2πit. Suppose that ξ = (a1, a2, . . . , aN ), and let t1, . . . , tr ∈ [0, 1] be real numbers
satisfying mini,j |ti − tj | = δ. Here we identify [0, 1] with the circle , thus the
distance of 0.99 and 0.01 is 0.02. Put φi = (e(ti), e(2ti), . . . , e(Nti)). Then we have

|〈φi, φj〉| =

∣∣∣∣∣
N∑
n=1

e((ti − tj)n)

∣∣∣∣∣ ≤ min

(
N,

1

|ti − tj |

)
,

thus

max
i

∑
j

|〈φi, φj〉| ≤ N +

r/2∑
k=1

2

δk
≤ N + δ−1 log r.
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If we let the ti be the list of all rational numbers in [0, 1] with denominator ≤ Q,
then for ti 6= tj we have ∣∣∣∣a1q1 − a2

q2

∣∣∣∣ ≥ 1

q1q2
≥ 1

Q2
,

hence we obtain

Q∑
q=1

∑
1≤a≤q
(a,q)=1

∣∣∣∣∣
N∑
n=1

ane

(
an

q

)∣∣∣∣∣
2

≤
(
N + 2Q2 logQ

) N∑
n=1

|an|2.

By choosing the vectors φi a more careful, Selberg proved the following.

Theorem 6. For integers N,Q and complex numbers a1, . . . , an we have

(4)

Q∑
q=1

∑
1≤a≤q
(a,q)=1

∣∣∣∣∣
N∑
n=1

ane

(
an

q

)∣∣∣∣∣
2

≤
(
N +Q2

) N∑
n=1

|an|2.

2.3. Reformulations of the large sieve inequality. Let N ⊆ [1, N ] be a set
of integers, and put an = 1 ⇔ n ∈ N . Then (4) implies that the distribution of
N in residue classes modulo q cannot be too wild for too many q. Making this
precise is difficult, because e.g. the exponential sum

∑
n ∈ N e(n/2) influences

the distribution of N modulo all even modules. This problem can be avoided by
restricting ourselves to the case q prime. We have the following.

Theorem 7. Let N be a set of integers. Then we have∑
p≤Q

∗
p

q∑
a=1

∣∣∣∣#{n ∈ N : n ≡ a (mod p)} − |N |
p

∣∣∣∣2 ≤ (N +Q2)|N |,

where
∑∗

denotes summation over prime numbers only.

Proof. Put S(α) =
∑
n∈N e(nα), andN (p, a) = #{(n,m) ∈ N 2 : n ≡ m (mod p)}.

Then
p∑
a=1

∣∣∣∣S(
a

p
)

∣∣∣∣2 =
∑

n,m∈N

q∑
a=1

e

(
a(n−m)

p

)
= p#{(n,m) ∈ N 2 : n ≡ m (mod p)}

= p

p∑
a=1

N (p, a)2

Since S(0) = |N |, we deduce

p

p∑
a=1

∣∣∣∣N (p, a)− |N |
p

∣∣∣∣2 = p

p∑
a=1

N (p, a)2 − 2N
p∑
a=1

N (p, a) + |N |2

=

p∑
a=1

∣∣∣∣S (ap
)∣∣∣∣2 − S(0)2

=

p−1∑
a=1

∣∣∣∣S (ap
)∣∣∣∣2

Theorem 7 now follows from Theorem 6. �
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We can also reformulate the large sieve in terms of characters.

Theorem 8. Let a1, . . . , aN be complex numbers. Then we have

∑
q≤Q

q

ϕ(q)

∑
χ (mod q)

∗
∣∣∣∣∣
N∑
n=1

anχ(n)

∣∣∣∣∣
2

≤ (N +Q2)

N∑
n=1

|an|2,

where
∑∗

denotes summation over primitive characters only.

Proof. For χ primitive we have

χ(n) =
1

τ(χ)

q∑
a=1

χ(a)e

(
an

q

)
,

thus
N∑
n=1

anχ(n) =
1

τ(χ)

q∑
a=1

χ(a)

N∑
n=1

ane

(
an

q

)
.

Using |τ(χ)| = √q and putting S(α) =
∑N
n=1 ane(nα) we obtain

∑
χ (mod q)

∗
∣∣∣∣∣
N∑
n=1

anχ(n)

∣∣∣∣∣
2

=
1

q

∑
χ (mod q)

∗
∣∣∣∣∣
q∑
a=1

χ(a)S

(
a

q

)∣∣∣∣∣
2

.

If we replace the sum on the right by a sum over all characters modulo q, we obtain
an inequality, expanding the square we obtain

∑
χ (mod q)

∗
∣∣∣∣∣
N∑
n=1

anχ(n)

∣∣∣∣∣
2

=
1

q

∑
1≤a,b≤q

S

(
a

q

)
S

(
b

q

) ∑
χ (mod q)

χ(a)χ(b)

=
ϕ(q)

q

∑
(a,q)=1

∣∣∣∣S (aq
)∣∣∣∣2 .

Inserting this bound into (4) our claim follows. �

The basic philosophy of the reformulations is that the space of functions f :
Z/qZ→ C has three natural bases: The exponential functions, the character func-
tions, and the δ-functions. Quite often exponential sums are the easiest basis to
work with, but for the final results we are usually more interested in arithmetics
progressions or characters.

In general the reformulation in terms of characters is pretty optimal. However, if
one has some information on the support of the sequence an or if only a certain set
of modules q is interesting, the reader should not try to apply Theorem 6 directly,
but rather go back to Theorem 5 and use the extra information there. As an
example, we prove the following, which is known as Halász inequality.

Theorem 9. Let χ1, . . . , χr be distinct primitive character to modules ≤ Q, and
let a1, . . . , aN be copmlex numbers. Then we have

r∑
i=1

∣∣∣∣∣
N∑
n=1

anχi(n)

∣∣∣∣∣
2

≤ (N + 2rQ logQ)

N∑
n=1

|an|2.
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Proof. In view of Theorem 5 our aim is to compute maxi
∑r
j=1

∑N
n=1 χi(n)χj(n).

If χi = χj , then χiχj is a principal character, while for χ6 = χj we have that χiχj
is a non-principal character to a module ≤ Q2. The first case contributes at most
N , while for the second we use the Polya-Vinogradov-inequality to see that each
term contributes at most 2Q logQ. Inserting these values our claim follows. �

Theorem 9 is superior to Theorem 8, if R is somewhat smaller than Q. Hence it
is quite suitable to deal with a small set of really bad characters. For this reason
Halász inequality is of great importance in the problem of bounding the number of
zeros of L-series far off the critical line.

2.4. Applications of the large sieve. As first application we prove the following,
which is due to Linnik. For a prime number p let n(p) be the least quadratic non-

residue modulo p. The best known estimates is n(p)� p1/(4
√
e log p, which follows

by combining Burgess estimates for character sums with an elementary trick due
to Vinogradov. Since Burgess estimates in turn depend on Weil’s bounds for the
number of points on algebraic curves, this result is pretty deep, still it is far from
the expected bound n(p) < log1+ε p. Linnik showed that at least on average we
can do a lot better.

Theorem 10. For every c > 0 we have that the number of primes p < x with
n(p) > pc is O(log log x).

For the proof we shall use the following result without proof.

Lemma 11. For every c > 0 there exists some ρ(c) > 0, such that the number of
integers n ≤ x, which do not have a prime factor ≥ xc, is ≥ (ρ(c) + o(1))x.

Proof of Theorem 10. For 1 ≤ n ≤ N put an = 1, if all prime divisors of n are
≤ xc, and an = 0 otherwise. Let p1, . . . , pr be the list of all prime numbers p ≤ Q
with n(p) > Qc, and let χi be the quadratic character modulo pi. Since χi is
multiplicative and equal to 1 for all n ≤ xc, we find that χi(n) = 1 whenever
an = 1, thus ∑

n≤N

anχi(n) =
∑
n≤N

an ≥ ρ(c)N.

Inserting this into Theorem 9 we obtain

rρ(c)2N2 ≤ (N + 2rQ logQ)ρ(c)N.

Since the parameter r appears on both sides of this inequality, we have to pick Q
and N in such a way that the coefficient of r on the right is smaller than on the

left. For example, we can take Q = ρ(c)N
4 logN , and obtain rρ(c)2N2 ≤ 2ρ(c)N2, that

is, r ≤ 2
ρ(c) .

We conclude that the number of primes p ≤ Q with n(p) > Qc is bounded
independently of Q. Hence the number of primes p ∈ [

√
Q,Q] with n(p) > p2c is

also bounded, glueing together intervals of the form [x, x2] our claim follows. �

We could have proven the same result using Theorem 8 in place of Theorem 9.
However, since in this case r is very small, Theorem 9 gives smaller constants. On
the other hand one sees that for a sub-optimal choice of the paramters N and Q
it might happen that Theorem 9 yields a trivial result, while Theorem 8 is more
robust in this respect.
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This application also explains where the term large sieve comes from. For each
prime p with n(p) large we have that the set of integers which has no large prime
divisors is restricted to p+1

2 residue classes modulo p. We then compare the lower
bound coming from Lemma 11 with an upper bound which is valid for any set of
integers which is restricted to p+1

2 residue classes modulo p for many integers p.
Selberg’s sieve could not handle the removal of such a large number of classes, while
the large sieve can.

A possibly more important difference between Selberg’s sieve and the large sieve
is the fact that while the former sets of with a set of integer, the latter is an analytic
estimate for exponential sums or character sums. We can therefore apply the large
sieve even if we are not sifting anything. We shall do so in the proof of the Bombieri-
Vinogradov theorem, and this technique is central to studying the distribution of
zeros of L-series. A much simpler application is the following, which is known as
the Barban-Davenport-Hapberstam theorem.

Theorem 12. For x
logAx ≤ Q ≤ x we have

(5)
∑
q≤Q

∑
(a,q)=1

(
Ψ(x, q, a)− x

ϕ(q)

)2

� Qx log x.

Proof. Taking an = Λ(n) in Theorem 8 we obtain

(6)
∑
q≤Q

q

ϕ(q)

∑
χ (mod q)

∗
|Ψ(x, χ)|2 � (x+Q2)x log x.

To deduce (5) from this bound, we write

Ψ(x, q, a)− x

ϕ(q)
=

1

ϕ(q)

∑
χ 6=χ0

χ(a)Ψ(x, χ) +
Ψ(x)− x
ϕ(q)

.

To simplify notation we put Ψ′(x, χ) =

{
Ψ(x, χ)− x, χ principal

Ψ(x, χ), χ not principal
. If we

insert our expression fo Ψ(x, q, a) into (5), we cannot directly apply (6), because
the latter inequality runs over primitive characters only. Instead we obtain for a
single module q the equation∑

(a,q)=1

(
Ψ(x, q, a)− x

ϕ(q)

)2

=
1

ϕ(q)

∑
χ (mod q)

|Ψ′(x, χ)|2

If the character χ (mod q) is induced by the primitive character χ′ (mod q′), then
Ψ(x, χ) differs from Ψ(x, χ′) only in not counting prime powers which are coprime
q′, but not coprime q. Each prime divisor of q′ induces� log x prime powers, hence
we have Ψ(x, χ)−Ψ(x, χ′)� log2Qx. We conclude∑
q≤Q

∑
(a,q)=1

(
Ψ(x, q, a)− x

ϕ(q)

)2

=
∑
q≤Q

1

ϕ(q)

∑
χ (mod q)

|Ψ′(x, χ′)|2 +O(Q
√
x log3Qx)

=
∑
q≤Q

∑
d≤Q/q
(d,q)=1

1

ϕ(dq)

∑
χ (mod q)

∗
|Ψ′(x, χ′)|2 +O(Q

√
x log3Qx).
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Since ϕ is multiplicative, and
∑
n≤z

1
ϕ(n) � 1 + log z, we find that it suffices to

prove

(7)
∑
q≤Q

1 + logQ/q

ϕ(q)

∑
χ (mod q)

|Ψ′(x, χ′)|2 � Qx log x.

If we restrict the range for q to [U, 2U ], we have∑
U≤q≤2U

1 + logQ/q

ϕ(q)

∑
χ (mod q)

|Ψ′(x, χ′)|2 � 1 + logQ/U

U

∑
U≤q≤2U

q

ϕ(q)

∑
χ (mod q)

|Ψ′(x, χ′)|2

� (1 + logQ/U)(
x2

U
+ xU) log x

Summing things up we find that our estimate covers the range [x log x
Q , Q], but fails

to prove anything for the smallest q.
For the smallest q we do not use the large sieve, but the Siegel-Walfisz theorem.

For q < logA+1 x we have Ψ′(x, χ′) � xe−c
√
log x, and we find that the sum over

small q is negligible. Hence we have established (7), and the proof is complete. �

3. Vaughan’s identity

3.1. The identity. Suppose f : N → C is a function which is highly oscillating,
and we want to estimate

∑
p≤x f(p). Let P be the product of all prime numbers

≤
√
x. Then we have

f(1) +
∑

√
x<p≤x

f(p) =
∑
n≤x

(n,P )=1

f(n) =
∑
t|P
t≤x

∑
d≤x/t

f(dt).

If f is heavily oscillating we may expect that a sum of the form
∑
f(dt) can be

estimated in a non-trivial way, and such a saving would carry over to a non-trivial
bound for the whole sum over primes. However, in the present form this approach
does not work, since in most terms of the first sum t is not much smaller than
x, so the second sum contains most of the time only a few terms, and for a sum
e.g. of length 3 we cannot expect significant cancelation. Vinogradov managed to
rearrange these terms in such a way that they are covered by longer progressions,
however, his method was extremely complicated. In 1977 Vaughan found a much
simpler way of rearranging terms, which since became a standard way of evaluating
sums over primes. We begin by the following simple fact.

Lemma 13. Let F,G be meromorphic functions. Then we have

−ζ
′

ζ
= F − ζFG− ζ ′G+

(
−ζ
′

ζ
− F

)
(1− ζG).

Proof. Just expand the product. �

The idea of Vaughan is the following: On the left hand side we have something
connected to primes, while the right hand side contains 4 terms, three of which
are simple. The last one is a complicated product, so we choose F and G in such
a way that this last term becomes small. Hence F should be an approximation

to − ζ
′

ζ , and G should be an approximation to 1
ζ . We take the simplest choices,

defining F (s) =
∑
n≤U Λ(n)n−s, G(s) =

∑
n≤V µ(n)n−s. The parameters U, V are

optimized depending on the application at the very end of the argument. In the
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case mentioned above, where we want to estimate
∑
N≤n≤2N Λ(n)f(n), U and V

are usually small powers of N .
Inserting these Dirichlet series into the identity we obtain the following.

Theorem 14. For integers U, V we have

Λ(n) = a1(n) + a2(n) + a3(n) + a4(n),

where

a1(n) =

{
Λ(n), n ≤ U
0, n > U

a2(n) = −
∑

mdr=n
m≤U,d≤V

Λ(m)µ(d)

a3(n) =
∑
dm=n
m≤V

µ(m) log d

a4(n) = −
∑
mk=n

m>U,k 6=1

Λ(m)

∑
d|k
d≤V

µ(d)


Why this decomposition is helpful probably needs some explication. When inter-

changing the order of summation,
∑
n≤x

∑
d|n becomes

∑
d

∑
d|n,n≤x. Such a sum

is bad, since for d close to x the inner sum is too short to be estimated. However,
if one has an upper bound for d, which is significantly smaller than x, the inner
sum remains long and might be estimated in a good way. The reader should recall
Dirichlet’s hyperbola trick for the first application of this method.

3.2. Application of the identity: The general case. Suppose we want to
estimate the sum

∑
n≤N Λ(n)f(n). Then using Theorem 14 we see that we have

to handle the 4 sums Si =
∑
ai(n)f(n). We now describe the strategy of doing

so. We assume that the function f is well understood, bounded (or at least not
too large), and heavily oscillating, so that sums of the form

∑
n f(rn) are small.

We further assume that U and V are neither very small nor very close to N , in
particular, S1 is always negligible.

In each step we want to separate a sum containing only f from the number
theoretic functions µ and Λ. The latter will be estimated trivially. Write S2 as

S2 = −
∑
t≤UV

 ∑
md=t

m≤U,d≤V

µdΛ(t)

 ∑
r≤N/t

f(rt) ≤ logUV
∑
t≤UV

∣∣∣∣∣∣
∑
r≤N/t

f(rt)

∣∣∣∣∣∣ .
If there is no cancelation in the inner sum, and f is bounded, then this becomes
� N log2N , so essentially we did not lose anything. The length of the inner sum is
≥ N/UV , since we can hope for a saving of magnitude a small power of the length
of the sum, this is fine.
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The next sum is

S3 =
∑
d≤V

µ(d)
∑

h≤N/d

f(dh) log h =
∑
d≤V

∑
h≤N/d

f(N/d)

∫ h

1

dt

t

=

∫ N

1

∑
d≤V

µ(d)
∑

w≤h≤N/d

f(dh)
dt

t
� logN

∑
d≤V

max
w

∣∣∣∣∣∣
∑

w≤h≤N/d

f(dh)

∣∣∣∣∣∣
Note that for many choices of f a sum of the form

∑
f(dh) log h is not more

complicated than a sum of the form
∑
f(dh), however, since we have to deal with

the latter anyway expressing the logarithm via an integral saves some time.
The sum S4 is more complicated. To estimate it we use a trick we have already

seen in the proof of Theorem 5: If we have coefficients like µ and Λ we do not
understand, we estimate a bilinear form for arbitrary coefficients. Suppose for
M,N fixed that ∆ is a real number such that for all complex numbers bm, ck we
have∣∣∣∣∣∣

∑
M<m≤2M

bm
∑

V <k≤N/M

ckf(mk)

∣∣∣∣∣∣ ≤ ∆

(
2M∑
m=M

|bm|2
)1/2

 ∑
k≤N/M

|ck|2
1/2

.

Then we have

S4 =
∑

U<m≤N/V

Λ(m)
∑

V <k≤N/m

∑
d|k
d≤V

µ(d)

 f(mk)

≤ logN max
U≤M≤N/V

∆

(
2M∑
m=M

Λ(m)2

)1/2
 ∑
k≤N/M

d(k)2

1/2

≤ N1/2 log3N max
U≤M≤N/V

∆.

There is no general method for giving bounds for ∆. In particular, if f is
completely multiplicative we have∑

M<m≤2M

bm
∑

V <k≤N/M

ckf(mk) =
∑

M<m≤2M

bmf(m)
∑

V <k≤N/M

ckf(k),

thus taking bm = f(m), ck = f(k) we see that ∆ =
∑
M<m≤2M

∑
V <k≤N/M 1 =

N −MV , that is, there is no non-trivial estimate. In particular, we cannot use
Vaughan’s identity to bound Ψ(x, χ).

If we apply Cauchy-Schwarz, we obtain

∣∣∣∣∣∣
∑

M<m≤2M

bm
∑

V <k≤N/M

ckf(mk)

∣∣∣∣∣∣ ≤
(

2M∑
m=M

|bm|2
)1/2

 2M∑
m=M

∣∣∣∣∣∣
∑

V <k≤N/M

ckf(mk)

∣∣∣∣∣∣
2


1/2

.
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The first sum is what we want, the second we write as∑
V <j≤N/M

cj
∑

V <k≤N/M

ck
∑

M<m≤2M
m≤min(N/j,N/k)

f(mj)f(mk)

≤
∑

V <j≤N/M

|cj |2
∑

V <k≤N/M

∣∣∣∣∣∣∣∣
∑

M<m≤2M
m≤min(N/j,N/k)

f(mj)f(mk)

∣∣∣∣∣∣∣∣
We conclude that

∆ ≤

 max
V <j≤N/M

∑
V <k≤N/M

∣∣∣∣∣∣∣∣
∑

M<m≤2M
m≤min(N/j,N/k)

f(mj)f(mk)

∣∣∣∣∣∣∣∣


1/2

.

If f is bounded, and we bound the inner sum trivially, we obtain ∆� N1/2, so to
obtain a non-trivial result in the end a little cancelation in the inner sum suffices.

Collecting the estimates for S1–S4 we obtain the following.

Theorem 15. Suppose that |f(n)| ≤ 1, U, V ≥ 2, UV ≤ N . Then we have

∑
n≤N

f(n)Λ(n)� U + logN
∑
t≤UV

max
w

∣∣∣∣∣∣
∑

w≤r≤N/t

f(rt)

∣∣∣∣∣∣
+N1/2 log3N max

M≤M≤N/V
max

V≤j≤N/M

 ∑
V <k≤N/M

∣∣∣∣∣∣∣∣
∑

M<m≤2M
m≤min(N/k,N/j)

f(kj)f(mk)

∣∣∣∣∣∣∣∣


1/2

Quite often the sums
∑
f(rt) are referred to as type I sums, and the sums∑

f(mj)f(mk) as type II sums. Obviously type II sums are more complicated
than type I sums.

3.3. Application of the identity: An example. Vinogradov first used his
method to bound the sum

∑
n≤N Λ(n)e(nα). The estimation of this sum is the

crucial part in proving the ternary Goldbach problem. Hardy and Ramanujan had
expressed this sum using characters and used the generalized Riemann hypothesis
to bound the resulting character sums, in this way they showed that GRH implies
that every large odd integer is the sum of 3 prime numbers. Vinogradov gave the
first unconditional proof of this result. Helfgott’s proof that this statement is actu-
ally true for all integers follows the same lines, however, for small N a large power
of logN is no longer negligible when compared to a small power of N , which makes
the argument a lot more difficult. Here we use Vaughan’s identity to prove the
following.

Theorem 16. Let α ∈ [0, 1] be a real number, a, q be integers with (a, q) = 1 and
|α− a

q | ≤
1
q2 . Then we have∑

n≤N

Λ(n)e(nα)� log4N
(
Nq−1/2 +N4/5 +N1/2q1/2

)
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Note that this estimate is non-trivial for q > log9N , and if α is very close to a
q

with q very small, we can use the Siegel-Walfisz theorem to approximately compute
S(α).

We begin by estimating the type I sums.

Lemma 17. We have∑
t≤T

max
w

∣∣∣∣∣∣
∑

w≤r≤N/t

e(rtα)

∣∣∣∣∣∣�
(
N

q
+ T + q

)
log 2qT.

Proof. We have
∑N2

n=N1
e(nβ)� min(N1−N2,

1
‖β‖ ), where ‖·‖ denotes the minimal

distance to the nearest integer. Hence

∑
t≤T

max
w

∣∣∣∣∣∣
∑

w≤r≤N/t

e(rtα)

∣∣∣∣∣∣�
∑
t≤T

min

(
N

t
,

1

‖tα‖

)
Among q/2 consecutive values of t, there are at most k with ‖tα‖ < k/4, hence, if
we exclude the value closest to an integer, the remaining terms contribute at most
O(q log q) to the sum. We can cover [1, T ] by � T

q + 1 such intervals, hence if we

forget about one summand among q/2 consecutive ones, we can estimate the sum
by O((T +q) log q). Moreover, in the first interval there is no need for an exclusion.
For the missing terms we use the bound N

t , the contribution of these terms becomes

�
∑
d≤T/q

N
dq/2+1 �

N
q log T , and our claim follows. �

Hence Theorem 15 implies that∑
n≤N

Λ(n)e(nα)�
(
N

q
+ UV + q

)
log2 2qN

+N1/2 log3N max
U≤M≤N/V

max
V≤j≤N/M

 ∑
V <k≤N/M

min

(
M,

1

‖(k − j)α‖

)1/2

.

The last term is essentially independent of j, and we obtain that the second sum-
mand is bounded above by

N1/2 log3N max
U≤M≤N/V

M +
∑

1≤m≤N/M

min

(
N

m
,

1

‖mα‖

)1/2

� N1/2 log3N max
U≤M≤N/V

(
M +

N

M
+
N

q
+ q

)1/2

log1/2 qN.

We may assume that q < N , since otherwise our estimate is trivial anyway, and we
can take the maximum and the square root componentwise. Hence we obtain that
the sum in question is bounded by(

UV + q +NU−1/2 +NV −1/2 +Nq−1/2 + (Nq)1/2
)

log4N.

Choosing U = V = N2/5 makes the first, third and fourth term equal to N4/5, and
our claim follows.
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4. The Bombieri-Vinogradov theorem

4.1. The theorem. The generalized Riemann hyptohesis is equivalent to the state-
ment that for integers q, a with (q, a) = 1 we have Ψ(x, q, a) = x

ϕ(q) + O(x1/2+ε).

For many applications of GRH it is not the quality of the error term that is im-
portant, but the fact that we have an asymptotic for x as small as q2+ε. The
best unconditional result known is the Siegel-Walfisz theorem, which applies for
q < logA x and x > x0(A). This result has not been improved upon for 80 years, in
particular, there is still no effective version known. However, although we do not
know much more concerning the non-existence of zeroes of L-series off the critical
line, we do know that such zeroes are rare. At first such density results were just
seen as lending credibility to the Riemann hypothesis, but Hoheisel showed that
density estimates fo the ζ-function can be used to prove results about primes in
short intervals. Turán showed that density estimates for L-series are in a similar
way connected to the problem of estimating Ψ(x, q, a) for relatively small values of
x. Then Linnik proved zero-density estimates which were powerful enough to show
that there exists a constant C, such that for all q, a with (q, a) = 1 there exists
a prime number p ≡ a (mod q) and p ≤ qC . After the development of the large
sieve, Bombieri gave a density estimate, which allowed him to prove what is now
known as the Bombieri-Vinogradov theorem. Later Vaughan discovered his identity
and showed that it can be used to give a simple proof of the Bombieri-Vinogradov
theorem.

Theorem 18. For any fixed A we have

∑
q≤Q

max
y≤x

max
a:(q,a)=1

∣∣∣∣Ψ(y, q, a)− y

ϕ(q)

∣∣∣∣� x1/2Q log5 x

uniformly in x1/2

logA x
≤ Q ≤ x1/2.

By the Brun-Titchmarsh inequality we have Ψ(y, q, a) � y
ϕ(q) , hence the left

hand side of the inequality is trivially bounded above by
∑
q≤Q

x
ϕ(q) � x logQ,

that is, te Bombierei-Vinogradov theorem is non-trivial by some power of log x.
The formulation of the left hand side involving a double maximum might look a
little strange, but it implies some flexibility which is useful in applications.

4.2. Proof part I: An estimate for character sums. The main part of the
proof of Theorm 18 is the following.

Theorem 19. We have for all x,Q ≥ 1 the estimate∑
q≤Q

q

ϕ(q)

∑
χ (mod q)

∗
max
y≤x
|Ψ(x, χ)| �

(
x+ x5/6Q+ x1/2Q2

)
log4Qx,

where
∑∗

denotes summation over primitive characters only.

We begin by turning the large sieve into a bilinear inequality.
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Lemma 20. For integers M,N,Q and complex numbers am, bn, m ≤ M,n ≤ N
we have

∑
q≤Q

q

ϕ(q)

∑
χ (mod q)

∗
max
u

∣∣∣∣∣∣∣∣
∑
m≤M

∑
n≤N

mn≤u

ambnχ(nm)

∣∣∣∣∣∣∣∣
� (M +Q2)1/2(N +Q2)1/2

 ∑
m≤M

|am|2
1/2∑

n≤N

|bn|2
1/2

log 2MN

Proof. Applying Cauchy-Schwarz and then the large sieve in the form of Theorem 8
we obtain

(8)
∑
q≤Q

q

ϕ(q)

∑
χ (mod q)

∗
max
u

∣∣∣∣∣∣
∑
m≤M

∑
n≤N

ambnχ(nm)

∣∣∣∣∣∣
≤

∑
q≤Q

∑
χ

∗

∣∣∣∣∣∣
∑
m≤M

amχ(m)

∣∣∣∣∣∣
2


1/2∑
q≤Q

∑
χ

∗

∣∣∣∣∣∣
∑
n≤N

bnχ(n)

∣∣∣∣∣∣
2


1/2

� (M +Q2)1/2(N +Q2)1/2

 ∑
m≤M

|am|2
1/2∑

n≤N

|bn|2
1/2

log 2MN.

To introduce the condition mn ≤ u we use the Mellin transform formula

∫ T

−T

sin tβ

t
eitα dt =

{
π, |α| ≤ β
0, |α| > β

+O
(

1

T (|β − |α||

)
.

If we put

A(t, χ) =
∑
m≤M

amχ(m)m−it, B(t, χ) =
∑
n≤N

bnχ(n)n−it,

and β = log u, then

∑
m≤M

∑
n≤N

mn≤u

ambnχ(nm) =

∫ T

−T
A(T, χ)B(T, χ)

sin(t log u)

πt
dt

+O

(
1

T

∑
n,m

|ambn| log
∣∣∣mn
u

∣∣∣−1) .
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We now apply (8) to A(t, χ)B(t, χ) and find that the main term is bounded above
by

(M+Q2)1/2(N+Q2)1/2

 ∑
m≤M

|am|2
1/2∑

n≤N

|bn|2
1/2 ∫ T

−T
min

(
1

|t|
, log 2MN

)
dt

� (M +Q2)1/2(N +Q2)1/2

 ∑
m≤M

|am|2
1/2∑

n≤N

|bn|2
1/2

log 2MNT.

As long as T is bounded by some power of MN , this is of acceptable magnitude.
If we take T = MN , and assume that ‖u‖ = 1/2, which we may do, since shifting
u within an interval of the form [k, k+ 1] does not alter the summation conditions,

we have log
∣∣mn
u

∣∣ ≥ log u+1/2
u � 1

T , hence the error term is

�
∑
m,n

|ambn| �M1/2N1/2

 ∑
m≤M

|am|2
1/2∑

n≤N

|bn|2
2

,

which is also acceptable. �

We now insert Vaughan’s identity in the form Λ(n) = a1(n) + · · · + a4(n) into
the left hand side of Theorem 19. We shall choose the parameters U, V at the end.
We put Si(χ, y) =

∑
n≤y ai(n)χ(n). Then we have∑

q≤Q

q

ϕ(q)
max
y≤x
|S1(y, χ)| � U

∑
q≤Q

q

ϕ(q)
� QU.

Next we treat S4. We have

S4(y, χ) =
∑

U<m≤y/V

Λ(m)
∑

V <k≤y/m

∑
d|k
d≤V

µ(d)

χ(mk).

It is convenient to deal with summation parameters of the same magnitude, there-
fore we cut the sum over m into parts of the form M < m ≤ 2M . Using Lemma 20
we have

∑
q≤Q

q

ϕ(q)

∑
χ (mod q)

∗
max
y≤x

∣∣∣∣∣∣∣∣
∑

M<m≤2M

Λ(m)
∑

V <k≤y/m

∑
d|k
d≤V

µ(d)

χ(mk)

∣∣∣∣∣∣∣∣
� (Q2 +M)1/2

(
Q2 +

x

M

)1/2( 2M∑
m=M

Λ(m)2

)1/2
 ∑
k≤x/M

d(k)2

1/2

log x

� (Q2 +Qx1/2M−1/2 +QM1/2 + x1/2)(M logM)1/2
(
x log3 x

M

)1/2

log x

≤ (Q2x1/2 +QxM−1/2 +QM1/2x1/2 + x) log3 x
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Summing over intervals of the form [M, 2m] we obtain that the contribution of S4

to the whole sum is bounded above by

(Q2x1/2 +QxU−1/2 +QxV −1/2 + x) log4 x

The sum over S3 is bounded above by

∑
q≤Q

∑
χ

∗
max
y

log y
∑
d≤V

max
w

∣∣∣∣∣∣
∑

w≤h≤y/d

χ(h)

∣∣∣∣∣∣ .
If χ is a primitive character modulos q ≥ 2, we can use the Polya-Vinogradov
inequality to bound the inner sum by

√
q log q ≤

√
Q logQ. Since this expression

does not depend on anything, we find that non-principal characters contribute �
Q5/2V log2Qx. There is only one primitive principal character, which contributes
log x

∑
d≤V

x
d � x log2 x, hence we find that the S3 terms yield (Q5/2V +x) log2Qx.

Finally to compute the sum over S2 we cut

S2 = −
∑
t≤UV

 ∑
t=md

m≤U,d≤V

µ(d)Λ(m)

 ∑
r≤y/t

χ(rt)

into two parts depending on the size of t. More precisely, we write
∑
t≤UV =∑

t≤U +
∑
U<t≤UV . We treat the first sum like we did S3, and the second like we

did S4, and obtain that the sum over S2 can be bounded above by

(Q5/2U + x) log2Qx+ (Q2x1/2 +QxU−1/2 +Qx1/2U1/2V 1/2 + x) log2 x.

Putting everything together we find that∑
q≤Q

q

ϕ(q)

∑
χ (mod q)

∗
max
y≤x
|Ψ(x, χ)|

is bounded above by

(Q2x1/2+QxU−1/2+QxV −1/2+Qx1/2U1/2V 1/2) log4 x+(Q5/2U+Q5/2V+x) log2Qx

We now ahve to choose optimal values for U and V . Since for UV fixed both U +V
and U−1/2 + V −1/2 are minimal for U = V , we take U = V . The expression now
becomes

(Q2x1/2 +QxU−1/2 +Qx1/2U +Q5/2U + x) log4Qx.

We can choose U in such a way that the second and third term become equal to
Qx5/6, and we can choose U in such a way that the second and the last term are
both equal to Q3/2x2/3. Hence, depending on the relative size of x and Q we choose
one or the other optimization, but in any case the last expression is of magnitude
at most

(Q2x1/2 +Qx5/6 +Q3/2x2/3 + x) log4Qx.

If x ≤ Q3, the first term dominates the third one, while if x > Q3, the second
dominates the third. Hence we can neglect the third one, which completes the
proof of the theorem.
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4.3. Proof part II: Passing from characters to residue classes. We now
show how to deduce Theorem 18 from Theorem 19. The proof will be similar to
the proof of Theorem 12. As in the proof of that theorem put

Ψ′(x, χ) =

{
Ψ(x, χ)− x, χ principal

Ψ(x, χ), χ not principal
.

Then we have ∣∣∣∣Ψ(x, q, a)− x

ϕ(q)

∣∣∣∣ ≤ 1

ϕ(q)

∑
χ (mod q)

|Ψ′(x, χ)|.

Since the right hand side does not depend on a, the ineqiality remains valid if on the
left hand side we take the maximum over all a with (q, a) = 1. Replacing a character
χ by the primitive character χ1 inducing this character gives a contribution �
log2 qx. We obtain

max
y≤x

max
a:(q,a)=1

∣∣∣∣Ψ(y, q, a)− y

ϕ(q)

∣∣∣∣� log2 qx+
1

ϕ(q)
max
y≤x

∑
χ (mod q)

|Ψ′(y, χ1)|

Summing over q ≤ Q the first term becomes Q log2Qx, which is completely neg-
ligible. Since a primitive character χ1 (mod q) induces characters modulo each
multiple of q, we obtain∑
q≤Q

max
y≤x

max
a:(q,a)=1

∣∣∣∣Ψ(y, q, a)− y

ϕ(q)

∣∣∣∣� Q log2Qx+
∑
q≤Q

∑
d≤Q/q

1

ϕ(qd)
max
y≤x

∑
χ (mod q)

∗
|Ψ′(y, χ)|

Since ϕ(qd) ≥ ϕ(q)ϕ(d), and
∑
t≤z

1
ϕ(t) � log z, the right hand side is bounded

above by

Q log2Qx+ logQ
∑
q≤Q

1

ϕ(q)
max
y≤x

∑
χ (mod q)

∗
|Ψ′(y, χ)|

The first summand is fine. If we restrict the second to the range U < q ≤ 2U and
apply Theorem 19 we obtain∑

U<q≤2U

1

ϕ(q)
max
y≤x

∑
χ (mod q)

∗
|Ψ′(y, χ)| �

( x
U

+ x5/6 + x1/2U
)

log4 x.

Intersecting [logA x,Q] into intervals of the form [U, 2U ] we obtain∑
logA x<q≤Q

1

ϕ(q)
max
y≤x

∑
χ (mod q)

∗
|Ψ′(y, χ)| � x

logA−4 x
+ x5/6 log5 x+ x1/2Q log4 x,

which is what we need. Finally in the range q ≤ logA x we can use the Siegel-Walfisz

theorem in the form Ψ′(x, χ)� xe−c
√
log x, hence the contribution of this range is

much smaller. Hence Theorem 18 follows.

4.4. The Bobieri-Vinogradov theorem and Selberg’s sieve. Suppose we want
to bound the number of prime twins below x. Then, as we did in section 1.4, we
can consider the set of all integers n, such that n(n+ 2) 6≡ 0 (mod q) for all small
prime numbers q.However, doing so created some complication, since the sum we
are optimizing no longer consists of simple terms like 1

[d,e] , but the denominator

now contains some number theoretic function of [d, e].
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Using the Bombieri-Vinogradov theorem we can avoid this complication. Instead
of starting with all integers and sifting out two residue classes modulo all small
primes, we start with all integers of the form p + 2 and sift out one residue class
modulo all small prime numbers. We will not give the details here, since the
argument is essentially the same as in section 1.3. There are only two changes to
be made: First, we only know that primes are well distributed modulo integers
q up to x1/2, hence we must ensure that [d, e] < x1/2 log−A x. This forces us to
take z slightly smaller than x1/2. The second change is that even in that range we
have a good estimate for π(x, q,−2) only for most values of q. A common way of
dealing with this problem is to split the set of modules q into a good set, where
we can estimate π(x, q,−2), and a bad set, where we use a trivial bound (e.g. the

Brun-Titchmarsh inequality). Since the number of bad modules is < Q
logA x

, and

we usually only have to beat the trivial bound by some power of log x, this usually
suffices.


