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Abstract. This article extends classical one variable results about Euler products, defined by
integral valued polynomial or analytic functions, to several variables. We show there exists a
meromorphic continuation up to a presumed natural boundary, and give a criterion, a la
Estermann-Dahlquist, for the existence of a meromorphic extension to C”. In addition, we
precisely describe the boundaries of analyticity and meromorphy for a multivariable Euler
product determined by any toric variety (split over @). Using our method, we are also able to
calculate a precise asymptotic for the number of n-fold products of integers that equal the n'h
power of an integer, for any n > 3.

2000 Mathematics Subject Classifications: 11M41, 11N37, 14G05, 32D15.

Introduction

There are two fundamental problems in the study of Dirichlet series that admit an
Euler product expansion in a region of absolute convergence. The first problem is to
prove the existence of a meromorphic continuation into a larger region. Assuming
this is possible, the second problem is to describe precisely the boundary of the do-
main for this meromorphic function. For Dirichlet series in one variable, the first
important results are due to Estermann [6] who proved that if 4(Y) =", F(d)Y¥,
where F(d) is a “ganzwertige” polynomial and F(0) = 1, then Z(s) = [, h(p~) is
absolutely convergent for $(s) > 1 and can be meromorphically continued to the half
plane R(s) > 0. Moreover, Z(s) can be continued to the whole complex plane if and
only if 4(Y) is a cyclotomic polynomial. Dahlquist [2] extended this result to /& any
analytic function with isolated singularities within the unit circle. More than 30 years
later, Kurokawa’s deep work [9] extended that of Estermann by allowing poly-
nomials /(Y) whose coefficients were integral linear combinations of complex num-
bers that depended upon the traces of a certain class of representations of a topo-
logical group.

This paper extends these two basic properties to a general class of multivariate
Dirichlet series that have an absolutely convergent Euler product expansion in some
open domain of C”, n > 2. Thus, the object of our study is an Euler product
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Z(h;s) =ITh(p™,....p7", p)
JJ

when h(X) =143, h(X1,..., X)X,k is either a polynomial or analytic function
with integral coefficients. On pg. 28 [ibid.], Kurokawa asserted that he had proved
certain multivariate analogues of his one variable results. To our knowledge, these
have not yet been published. As a result, a multivariate extension such as that done
here appears to be new. An essential role in our analysis is played by the polyhedra in
R", determined by the exponents of monomials appearing in the expression for each
summand /A (X7, ..., Xn)X,f‘H. A variant of this polyhedron is a standard tool for
studying hypersurface singularities, so it is, perhaps, not too surprising to see it ap-

pear here as well.

We first show in Section 1 that there is a meromorphic continuation up to a presumed
natural boundary, whose geometry is that of a tube over a convex set with piecewise
linear boundary. Using the polyhedra, this is not difficult. Our second main result
applies to the case in which / depends only upon X7, ..., X),. In this event, we prove
a very precise result that is the multivariate extension of the work of Estermann-
Dahlquist. This shows that the presumed natural boundary is the natural boundary
(in the sense given to this expression in §1.2), unless / is a “cyclotomic” polynomial.
A natural problem, to which we hope to return in the future, is to extend this result to
the much larger class of multivariable Euler products of interest to Kurokawa.

An application of these results is given in Section 2 to a general problem in multi-
plicative number theory. For any n > 3, we give the explicit asymptotic for the
number of n-fold products of relatively prime positive integers that equal the n't
power of an integer. Although earlier work had found the asymptotic when n = 3,
nothing comparable for arbitrary n > 3 seems to have been published. As noted by
Batyrev-Tschinkel, see [10, pg. 253], this problem is equivalent to the asymptotic
description of a “height density function” on the maximal torus of the singular pro-
jective hypersurface x; - - - x, = x| in P"(Q).

In general terms, any ample line bundle % on a projective toric variety X(Q) de-
termines a projective embedding of a maximal split torus 1o : U(Q) — P"~'(Q), for
some n, and therefore a parametrization of the points of 1o U(®@Q). Using the stan-
dard height function H(x) = [[, max;{|x;[,} on P"~!(@), a natural problem, posed
first by Manin, is to give a precise asymptotic for the height density function
#{x e€1,U(Q) : H(x) < t} ast — oo. This problem reduces to the asymptotic in  for
the number of primitive lattice points (m, ..., m,) such that (m; : ... : m,) €12 U(Q)
and max;{|m;|} < t. Descriptions of the asymptotic have been given with increasing
levels of precision by [1], [10], and [4].

The starting point of each of these articles is with a desingularized model of the toric
variety, constructed by means of a “fan decomposition” of some R¥ into finitely
many simplicial integral cones (i.e. each cone is generated by N 1-simplex integral
vectors that generate Z"). Typically, one chooses for % the anticanonical bundle on
the desingularized model, and assumes it is ample. This was the approach taken by
Batyrev-Tschinkel for the particular cubic hypersurface xjx;x3 = xj.
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Meromorphic continuation of multivariable Euler products 3

The point of view adopted in this paper is rather different. We do not work with a
desingularized model of the toric. Rather, our starting point consists of a finite set of
simple defining equations for a toric variety X (@) that determines implicitly a pro-
jective embedding U(®Q) — P"~!(®). As a result, we avoid having to construct and
use a fan decomposition of Euclidean space N-space into simplical integral cones,
which can become rather cumbersome when N is allowed to be arbitrarily large. In
addition, it follows that we have no need for the hypothesis of ampleness of any line
bundle to begin our analysis. An advantage of our method is that we can then work
with some explicit examples in any number of variables, such as the hypersurface
{x1---x, = x}, |}, n = 3, with a certain facility and reasonable precision.

We then adapt an idea of La Breteche [4] by introducing a multivariable Dirichlet
series that encodes membership of each rational point on the embedded torus. The
multiplicative nature of the defining equations implies that this series equals an Euler
product in its domain of analyticity. Our Dirichlet series is rather different from that
used in [ibid.] since we use a different embedding of the variety. We can also say a
good deal more about this series than is done in [ibid.] (see the Remark at the end of
§2.2 for further precision on this point).

We prove three basic analytical properties of our Dirichlet series in §2.2. The first two
are given in Theorem 5, whose proof follows immediately from the discussion in
Section 1. Here we show the existence of a meromorphic extension outside the do-
main of absolute convergence. In addition, we give a precise criterion for the exis-
tence of a natural boundary. The third result, Theorem 6, requires considerably more
work to prove. This gives an intrinsic characterization of the entire boundary of the
domain of analyticity of the Dirichlet series. Combining these two theorems results
in a fairly complete description of the analytic behavior of this class of multivariable
Dirichlet series. In §2.3, Theorem 7 gives the precise asymptotic for the general
problem, described above, in multiplicative number theory. For this, an important
ingredient is the tauberian theorem, Théoréme 2, of [5].

Notations. For the reader’s convenience, notations that will be used throughout the
article are assembled here.

I. N={1,2,...} denotes the set of positive integers, Ny = N U {0} and p always
denotes a prime.

2. The expression f(4, ¥, X) <, g(x) uniformly in X € X and 1 € A means there exists
A = A(y) > 0, which depends neither on x nor 4, but could eventually depend on the
parameter vector y, such that:

VxeXandVie A |f(y,x)| < Ag(x).

3. For every x=(x,...,x,) e R", we set [|x| = /x}+ - +x2 resp. |x|=

|x1| + - - - + |x,| to denote the length resp. weight of x. We denote the canonical basis
of R"” by (ey,...,e,). For every o = (a1,...,a,) € Nj, we also set a! =a;!...o!
The standard inner product on R” is denoted {, ).
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4 G. Bhowmik, D. Essouabri, B. Lichtin
4. For every s e C, and for every non negative k, we define (f{) = w
For two complex numbers w and z, we define w” = ¢71°¢" using the principal branch
of the logarithm. We denote a vector in C" by s = (s1,...,s,), and write s = g + it,
where ¢ = (g1,...,0,) and 7 = (11,...,7,) are the real resp. imaginary components
of s (i.e. ; = R(s;) and 7; = J(s;) for each i). We also write {x,s) for >, x;s; if
x € R", s € C". The unit polydisc in C”, that is, the domain {z € C" : sup;|z;| < 1},
is denoted P(1).

5. Given « e Nj, we write X* for the monomial X" ---X. For a polynomial
h(Xy,..., X,) = Zaew a, X*, the set S(h):={o:a, #0} is called the support
of h. We set S*(h) :== S(h)\{0} and denote the boundary of the convex hull of
U{e+R":00e S*(h)} by &(h). This is called the Newton polyhedron of h. We
denote by Ext(h) the finite set of extremal points of &(h) (a point of &(h) is
extremal if it does not belong to the interior of any closed segment of &(h)).

Similarly, if 4 = Nj\{0}, we denote by &(A4) the boundary of the convex hull of
(U{v + R, |ve A} and call it the Newton polyhedron of A. Its set of extremal points
is denoted by Ext(A4).

6. Let 4 be a finite subset of R". We set 4% := {x e R, : Yve 4,{x,v) > 1} to
denote the dual of 4. Let 1(A4) be the smallest weight of the elements of 4°. We call
1(A4) the index of 4. We define

R(A) = {ae A% |o] = 1(4)}.

For every o € R(A), set E(4,0) :={ve d:{a,v)y=1}.

1 Analytic properties of multivariate Euler products

This section studies the analytic properties of an Euler product whose p" factor is
determined by a multivariate polynomial. We first show in §1.1 the existence of a
meromorphic continuation from a region of absolute convergence into a product of
halfplanes. The second result in §1.2 extends the classical Estermann criterion. This
gives a criterion that insures the existence of a meromorphic continuation to C".

1.1 Meromorphic continuation

We will first introduce some needed notations. Let A be an open subset of C”,
I=(,...,I): A — C" avector of analytic functions, and aj, ..., a, integers. Define
the Euler product

r a
Z'(s) = Z’(Sl7 .. ,Sn) = H(l + /(Z:I plklzs)
P =

and for any 0 € R, set
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Meromorphic continuation of multivariable Euler products 5
W(l0) :={seA:Vi=1,...,r R(li(s)) > o}.

It is clear that s — Z;(s) converges absolutely and defines a holomorphic function in
the domain W(I;1).

Lemma 1. The function Z;(s) can be continued into the domain W (I;0) as a mer-
omorphic function as follows:

there exists a set {y(n) : n e Nj} < Z and for each 6 > 0 a holomorphic function Gs(s)
that is expressible as an absolutely convergent and bounded Euler product on W(lI;0)
such that

P y(n)
O = I 4zww0 Go(9).
n=(ny,...,n,)eNJ \j=1

1<ln|<[67)

Proof of Lemma 1. Let 6 € (0,1) be arbitrary. To describe the continuation of Z;(s)
into W(I;9), it will be convenient to work with a somewhat larger class of Euler
products defined as follows:

@ mmm=n(+z +mm>)

p

where for all p,s+— Rs(p;s) is a holomorphic function on W(I;0) satisfying
R;(p; s) <16 p~2 uniformly in p and s € W(I;5). Evidently, Zi(s) = Z;(R,; s) when
R;5(p;s) =0.

We next fix these notations:

1. For each m € N, set
gm(l) = fm(ll,...7lr) = {I’llll +oitndin+---+n, Zm};

2.N=[20"";
3. L(s) == [Ir_, C(L(s)) ™™ for s € W(I;1).

By elementary computations, we obtain that for any s € W (I; 1):

aj (71 Uk
L(s) = HH 1+Z%+H§(p;5)

P k= k=

where, Yk = 1,...,r, s — H¥(p;s) is a holomorphic function in W(I;J) such that:

HY(p;s) <y p® V) «n p~2 uniformly in p and s € W(I;6).
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6 G. Bhowmik, D. Essouabri, B. Lichtin

It is also clear that if a; € N, then H]’{, =0 once N > ay.
Thus, there exist f1,..., fi, € %(I) and d,, ..., d, € Z such that:

B B r ay m d
Ls) =11 - 5+ 35 K (i)

where s — Ky(p;s) is a holomorphic function in W(I;d) that satisfies: Ky(p;s)
<y p~% uniformly in p and s € W(l,9).

Now an easy computation shows that for every s € W(I, 1):

Z[(R,;; S)L(S)

—H(1+Z 5 Relps ))(1— 3 T +i%+1@v(ﬁ;s)>

iph®  Hp

B m di r r a, ay, room
—1;[<1+i_zlpf,-<s> Tl X e T L ime

ak
T >>
k1:1k2:1p k=11i

ple
where s — Vi (p;s) is a holomorphic function in W(/I;J) that satisfies the bound:
Vn(p;s) <y p~? uniformly in p and s € W(I;9).

We have thus proved that there exist:

Logi,...,g9. € %(I) and integers cy, ..., ¢,

2. for each p a holomorphic function s +— Rs2(p;s) on W(I;0), that satisfies
R;2(p; s) <s p~2 uniformly in p and s € W(I;6),

such that for every s € W (I;1):

Oz Teh(E) ™ =T(1+ £+ Roams))

k=1 p
Since each gi € % (1), it is clear that R(gi(s)) > 1 for any se W(l;1) and k =
1,..., . This implies that for any 6" > max(},6):

S|—>H(1+Z 5 + Roa(p; ))

is an absolutely convergent and bounded Euler product that is holomorphic in the
domain W (I;6").

It is now evident how to proceed by induction. Let M = [log,(N + 1)] + 1 € N. Re-
peating the above process M times, we conclude that there exist:
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Meromorphic continuation of multivariable Euler products 7

1. functions Ay, ..., h, € £(I) and integers y,, ..., 7,;
2. functions uy, ..., u, € %u(l) and integers by, ..., by;

3. for each p, a holomorphic function s+ Rs y(p;s) on W(I;d), satisfying
R; 1(p; s) <s p~2 uniformly in p and s € W (I;9)

such that for every s € W (I;1):

@z o) =T1(1+ 50+ Row(ris))

p

where the right side is absolutely convergent and bounded on W(I;J) since 2= <
0/2. We now define

Gus) = Zi(Rsis) - T1 tnls) ™).

hic ¢ L

In W(I;1), it follows that

bi
p”k(s)

Gi= I c<hk<s>>"/"-n(1+§

+ Rs, m(p; 5)) .

{kihee Ly (D} 4

The preceding shows that the Euler product on the right is absolutely convergent and
is bounded in W(I;9). In addition, since /i € Ly (I) implies R/, (s)) > (N + 1)
> 2, the product over k also admits an analytic continuation into W (I;J) as an ab-
solutely convergent Euler product. Thus, Gs(s) admits an analytic continuation from
W(I;1) into W(I;0) as an absolutely convergent and bounded Euler product. This
completes the proof of Lemma 1. O

Let ho, ...,y be polynomials in Z[X7,. .., X;]. Define

d
h(X1a~--7Xn7Xn+l) = 1 + Z hk(X17"-7le1)Xnk+la
k=0

Z(h;s) =T1h(p™,...,p~", p).

Given h, hg, ..., hy, and 6 € R, we set:

d
V(ho):= N{seC":<a,0) >k +0Vae Ext(h)}.
k=0
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8 G. Bhowmik, D. Essouabri, B. Lichtin

Theorem 1. s+ Z(h;s) can be continued meromorphically from V(h;1) (where
Z(h; s) converges absolutely), into V (h;0).

Proof. Apply the proof of Lemma 1 using the map [/, defined as follows. Writing
hy = Za;ﬁo akal“‘ X set

I'=(Lk) 0y, Where L i(s) = <o, 8y —k iff e S(h).

It is clear that for any 8, s € W(I;9) if and only if s € V' (/;0). The proof then follows
from the expression (1) for the continuation of Z(/; s) into each V' (;0), 0 > 0.

1.2 The natural boundary

This subsection studies the natural boundary of an Euler product

Z(hys) =1h(p™,...,p™) whereh=1+ > a,X*eZ[X),...,X,).
P a#0

Theorem 1 has shown that Z(/;s) can be meromorphically continued to V(;0).
Of interest here are conditions satisfied by / that imply Z(/;s) can or cannot be
extended still further. We use the expression “0V (h;0) is the natural boundary of
Z(h; s)” to mean that Z(/; s) can not be continued meromorphically into V' (/;0) for
any 0 < 0.

In addition, we say that /4 is “cyclotomic” if there exists a finite set (mj);le of ele-

ments of Ng\{0}, and a finite set of integers {y; jqzl such that:

q

h(X) = T[(1—x™)" =

j=1 j=1

=

(1= X" X,

The following result extends Estermann’s well known criterion [6] to several vari-
ables.

Theorem 2. Z(h; s) can be continued to C" as a meromorphic function if and only if h
is cyclotomic. In all other cases 0V (h;0) is the natural boundary.

Proof. 1t is clear that if /1 is cyclotomic then Z(4; s) has a meromorphic extension to
C". So, it suffices to prove the converse. To do so, it suffices to assume only that
Z(h; s) admits a meromorphic extension to V' (h;J¢) for some dy < 0. The argument
to follow will then show that # must be cyclotomic, from which it follows immedi-
ately that Z(h; s) is meromorphically extendible to C".

It will first be convenient to reduce to the case in which V'(h;1) nR” = (0,0)". By a
permutation of coordinates, one can suppose that: {k € {1,...,n} : Jae N s.t. ae; €
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Meromorphic continuation of multivariable Euler products 9

S*(h)} ={1,...,r}. If the set is empty, then r=0. It is clear that if r = n, then
V(h;1) nIR" = (0, 00)".

Let us then suppose that r < n. We set

B (X1, X)) = (X1, X)) TT (1= Xp).
k=r+1

A straightforward calculation, left to the reader, now shows that for each k =
1,...,n, there exists a smallest positive integer ¢, such that c,e; € S*(h*). In partic-
ular, ¢, =1 if k > r+ 1. Moreover, it follows immediately that V' (2*;1) nR" <
(0,0)", and gy > é for each k£ > 1 implies:

n

(5) Z(h;s) T se) ™" = Z(h*;s).

k=r+1

Suppose that the theorem has been proved for #*, and that there exists dy < 0 such
that s — Z(h;s) can be meromorphically continued to V' (h;dy). We set d; = dg/2 -
(Sup,es-(n {2 k=1 o/ ck}). It is easy to check (exercise left to reader) that V' (h*;61) =
V (h;d0). This, together with (5), then implies that s — Z(/*;s) can be meromorph-
ically continued to V' (h*;01). It then follows that 4* is cyclotomic, from which it is
clear that 2 must also be cyclotomic.

Thus, we may assume that a vector ¢, e, appears in S*(/) for each k > 1. We also
denote the elements of Ext(h) by setting Ext(h) = {oy, ..., 0}

By Theorem 1, the expression for (the continuation of) Z(h;s) into each V(h;1),
r=1,2,...1s given by an equation (a priori, valid in V' (/; 1))

(6) Z(h;s>=< 11 c<<m,s>>y("'>)><Gl/,.(s)7
meN{
1<|m|<N,

where {y(m)}me]NOn = Z, {N,} is an increasing sequence of positive integers, and
G /+(s) is holomorphic in V(h; ];), on which it equals an absolutely convergent Euler
product.

Set Ex := {m e INj\{0} : y(m) # 0} and Ex_ := {m e Nj\{0} : y(m) < 0}.
There are two cases that will be treated separately.
Case 1: Ex is infinite

As above, let 6y < 0 be such that Z(/; s) has a meromorphic continuation to V' (4;dy).
Let p, be any fixed (and necessarily nonreal) zero of the Riemann zeta function sat-

isfying R(p,) = 1.

Fix = (B;,...,B,) € (0,00)" such that f8,,...,p, are Q-linearly independent, and
set Zp(t) := Z(h;tp).

(AutoPDF V7 2/6/06 14:27) WDG (170x240mm) Tmath J-1468 Forum, : PMU: S(C) 19/05/2006 pp. 1-29 1468_06-11 (p.9)



10 G. Bhowmik, D. Essouabri, B. Lichtin

For all m € Ex we set i = if y(m) <0, and tm = 707 if y(m) > 0.

<m B
In addition, choose for each m € K, r(m) € N satisfying:

2-|m| - sup, B;
inff<ocj7,8>

and r(m) > |m|.

r(m) >

It follows that N,m) >r(m) > |m|. By (6), we have for each me Ex and f e
v (hs

" r(m)

) Zﬁ<r>=z<h;zﬁ>=c<z<m,ﬁ>>y<'">( L Lm )G (1)
lg\m’\ogN,,(,,,)

From the definition of r(m), it follows that for each o; € Ext(h):

<%, 57 o5, 57 1
R mfd) > 5o > 5 s

Thus, # — Gy/,(m)(2f) is holomorphic in a neighbourhood of # = 7.
We now distinguish two subcases:
First subcase: Ex_ is infinite

Let me Ex_, so that 1, = <m 75 > 0. It follows that ¢, is not a pole of
em’ py)m ) for every m' # m'e INg. This 1s clear if y(m’) > 0 since the only
possible pole of this function occurs when =7 m YCNOR which cannot equal 7., because
tm = mps # 7w 1 7(m’) <0, then poles of {(1(m’, £>)7™) must be zeroes of

{(e<m’, B). A classical fact ([11], pg. 30) tells us that there are no positive zeroes
of {(s). Thus, ¢, cannot be a pole of {(z{m’, /3>) . On the other hand, y(m) < 0
implies that 7y, is a zero of Zy(t) since |mM| < Ny(m).

Furthermore, it is clear that the sequence {¢m} .. Of zeroes of Zg(t) converges to
0 when |m| — +o0.

Now, if Z(h; s) had a meromorphic continuation to ¥ (/;d), then Zg(¢) would have
to have a meromorphlc continuation to U(d;) := {re C: R(r) > J,}, where 5, =
SUpP; <<y <x ﬁ> < 0. Thus, Zg(t) would have to be identically zero, which is impossi-
ble because each G /+(8) is an absolutely convergent Euler product in V' (/;1/r), and
cannot therefore be identically zero. We conclude that in this subcase, Z(/; s) cannot
be meromorphically extended to any V' (4;0) when d < 0.

Second subcase: Ex_ is finite

Choose a > 0 such that {(z) # 0 for |z] < a.
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Meromorphic continuation of multivariable Euler products 11
Set

(sup; 5;) - |pol - (SuPme g M)
a - (inf; ;)

Define Ex, := Ex\Ex_, and fix m e Ex, such that |[m| > B. Then y(m) > 0 and
tm = zmps € C\R.

B:=2. > 0.

We then observe the following:

1. for all m’ € Ex, satisfying m’ # m, tp, is not a pole of C(t(m’,ﬁ))y("") (since the
only possible pole of this function is ﬁ € R and 1, ¢ R);

2. for all m’ e Ex_, t,, is not a pole of C(t<m’,/)’>)7<m,>. (if this were false, then
p:=tm{m’ > would be a zero of {(s) satisfying:

_ s pol XM By lpol - |m| - (sup;B;) _ a-B _a
lpl = ltm| - <m', B> = m S ml afg) S 2qm =2

which is impossible).

By (7) and the fact that |[m| < N,m), we conclude that for each me Ex, satisfy-
ing |[m| > B, tm is a zero of Zp(t). Since tm — 0 when |[m| — +o0, it follows that
{tm}{|m)> p) contains a sequence of zeroes of Zy(r) with accumulation point in U(d1)
if Z(h; s) could be meromorphically extended to V' (h;dp). As in the first subcase, this
is not possible.

Case 2: Ex is finite
Set G(8) := ([1,,cc C(<mM, 8>) "™ Z(h; s). We will prove that G(s) = 1.
By choosing r sufficiently large in the equation (6), we deduce that:

1. G(s) is an Euler product of the form G(s) =[], (ZMN; # , where mg = 1,

and there exist C, D > 0 such that m, < C(1 + |«|?) for all a.
2. G(s) converges absolutely in V' (/;0) = U, V (h;1).

Suppose that G(s) # 1. Then there exists o # 0 such that m, # 0. Now fix f =
(Biy---,B,) €(0,00)" as in Case 1. It follows that the Euler product

11— Ry(1) == G(1f) = H< > prr<n;ﬁ>)

P \oeeNg

converges absolutely in the halfplane {z € C : R(¢) > 0}.

Set & := {a € N : m, # 0}. Since {a, ) — +00 as |a| — +00, it is clear that there
exists v # 0 € & such that v, > = inf, .9c #<a, f> > 0. We fix this v in the sequel.

Let N = ﬁf;m + [v] + 1 € N. Then we have for R(z) > m and uniformly in p:
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12 G. Bhowmik, D. Essouabri, B. Lichtin

=Nt DI S pRO 1)
j#” 1
< Mzzljv-&-l pWO-WI/Z'(inf,ﬁ,) 'p%(t)»(N+1)/2-(inffﬁ,-)
& ! |°‘|D
pRO-(N+1)/2:(inf ;) =N 2 lofinf; §;/4<v, B
1 1

<

PO G g) < p2

From this we deduce that

my
B = 6 =TI 33 i + V(o).
la] <N

where ¢ — Vy(p;t) is a holomorphic function that satisfies the bound Vy(p;?) <y
p~2 uniformly in p and all ¢ € C such that R(z) > 2<+ﬂ> Since this Euler product
| ,

converges absolutely for 7 = 7" > 0, it follows that

mey

1‘[<1+ > M)

P 0<|e|<N P

—<v1ﬁ>. However, since |v| < N it follows that

must also converge, which is nor possible. Thus, we conclude that

also converges absolutely for 7=

my
Zp 2B ’t:1/<"7/3>
G(s) = 1.

As a result, we must have the following equation for all s € V'(h; 4):

Z(rs) = T <(<m,sy)"™ = [T T](1 = p=me)

meEx meEx p

=T IL (= p ™) 7 < [0 (),

p meEx P
where

h*(X) = h*(Xlwnan) = H (1 — Xm)iy(m) = H (1 — lel '..X’;’Vln)f‘/(m).

meEx meEx

Since the Euler product factorization is unique, we conclude that #(X) = 4*(X). This
completes the proof of Theorem 2. O
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Meromorphic continuation of multivariable Euler products 13

Remark. It is not difficult to extend the preceding discussion to analytic functions.
Since these results will not be used in the article, we will give their statements and
leave details of the straightforward proofs to the reader. Let Ay, ..., h; be analytic
functions on the unit polydisc P(1) in C", satisfying the property /;(0) = 0 for each
k. We also assume that each coefficient in the power series expansion of each /; on
P(1) is an integer. Define

d
(X, X, Xot) = 143 he( X1, X)X K
k=0

Z(h;s) =11h(p™,...,p ™, p).
P

For each 6 € IR, define
d
V#(h;6) .= N{seC":<x,0) >k +6 Vo e Ext(h), and g; > J Vi},
k=0

and for 0 > 0 define:

1.N:{@}+1;

2.%y ={(o,k) eNg x[0,d] : e S(hy) and 1 < |ot| < N}, ry :=#%¥y, and N (0) :=
{n=(n)eNy:1<|n <o}

Theorem 3. There exists A > 0 such that Z(h; s) converges absolutely in V*(h; A). In
addition, Z(h; 8) can be continued into the domain V*#(h;0) as a meromorphic function
as follows. For any 6 > 0, there exists {y(n) : ne A (0)} < Z and Gs(s), a bounded
holomorphic function on V*(h;3), such that the equation

y(m)
®  zhs)= T c(( > nx,k<<oc,s>k>) Gy(s).

n=(ny, ;) eN(0) k)eWy

a priori valid in V#(h; A), extends to V*#(h;0) outside the polar divisor of the product
over ne N'(9). Moreover Gs can be expressed as an absolutely convergent Euler
product in V#(h;0).

Now assume d =0 andlet 1 =143 _,a,X* denote the power series expansion for
hin P(1).

Theorem 4. If there exist C,D > 0 such that for all o« € IN{j, |a,| < C(1 + )2, then
Z(h; s) can be continued to C" as a meromorphic function if and only if h is the quo-
tient of cyclotomic polynomials. In all other cases the boundary 3V (h;0) is the natural
boundary.
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14 G. Bhowmik, D. Essouabri, B. Lichtin

2 An application in diophantine geometry

We study in the first two subsections the analytic properties of a multivariable
Dirichlet series whose coefficients encode membership in the maximal torus of a toric
variety X. In §2.3, we apply our discussion to the toric defined by the equation
X1+ X, = X, . We start with a given projective embedding, determined by a set of
d monomial defining equations in n variables. This is not an unreasonable starting
point since problems in multiplicative number theory, as one example, can sometimes
be formulated in terms of such equations.

The set of exponents of the pertinent monomials therefore determines a d x n matrix
A with entries in Z, whose rows a; = (4; 1,...,4d;,) each satisfy the property that
>-:a;,i = 0. The rational points of the variety resp. its maximal torus are defined as
follows:

X(A) = {(xl cox)eP @) T X =TT X Vj};
{i:a; ; >0} {i:a; <0}
UA) ={(x1:...:x,) e X(A) : x1...x, # O0}.

To each point x of U(A) there corresponds a unique primitive lattice point m =
m(x) = (my,...,m,) € N", thatis, gcd(my,...,m,) =1, and (m; : ... : m,) € U(A).

Adapting an idea of Batyrev-Tschinkel [1], which was subsequently modified by
La Breteche [4] to exploit the formalism of universal torsors, see [10], we define a
multivariable Dirichlet series with Euler product in the open set Q:={s:g; > I,
i=1,...,n} by first introducing the function Fa : N" — Z:

1. Fa(my,...,my,) = 1if ged(my,...,m,) = land [[;m"" = 1Vj <d,
2. Fa(my,...,m,) =0 if not.

It is clear that Fp is multiplicative (see [5] for the definition), Fa(my,...,m,) = 1 iff
(my :...:my,) e U(A), and that for each p and all v € IN{j,
Fa(p",....,p")=1 iff ve T(A):={veNj:A(v)=0}.

Our Dirichlet series is initially defined, if s € Q, to equal

FA(ml,...,mn) s .
Za(s) = 3 ﬁ:HhA(p‘lw--,p ",
(my,...,my) eN" mp...my »

where 71a(X) := ), 74 X" is analytic on the polydisc P(1). The three properties
of Za(s), described in the Introduction, are proved in §2.2. The remark at the end of
§2.2 compares in more detail this work with that in [4]. The reader may find this to be
of value.
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Meromorphic continuation of multivariable Euler products 15

As shown in §2.3, a tauberian theorem, combined with knowledge of the analytic
properties of Z(s), can be used to deduce the asymptotic behavior of a height den-
sity function on U(A). The reason for this is as follows. Using the preceding nota-
tion, the function x € X (A) — max,|m;|, where m = m(x), equals a height function
on X(A) that is induced from the standard height on P"~!(@Q) (see Introduction).
Defining the constant

1 noo
C(A) ZZE'#{EE {£1}": e =1forall j = 1,...7d},
=1
the equation

9)  #{xeUA) :Hx)<t)=CA)- Y Falmi,...,m)
(my,...,m,) eN"
1<m;<tVi

therefore interprets the height density function on U(A) at ¢ in terms of the sum of
those coefficients of Z4(s) contained in a box, each of whose sides has length .

2.1 A basic property of ha(X)

As noted above, the only thing that we know of for sure about the function /s4(X) is
that it is analytic on the polydisc P(1). However, we must be more precise. The cru-
cial property is the following.

Definition 1. An analytic function # on P(1) is unitary if there exist a finite set

K = Nj\{0}, positive integers {c(v)}, g, and a polynomial W e Z[X}, ..., X,], such
that for all X € P(1):

h(X) = ( Ima- X”)_‘(”)) W (X).

vekK

The data (K;<c(v)),cx; W) determines a presentation of 4 when 1 — XV does not
divide W(X) for each v € K.

The result we will need in §2.2 is the following.

Lemma 2. The function ha(X) is unitary.

Lemma 2 is a simple consequence of a more general result which analyzes the be-
havior of an analytic function, all of whose monomial exponents belong to an affine

plane

T(A,b) := {ve N!: A(v) = b}.
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16 G. Bhowmik, D. Essouabri, B. Lichtin

Lemma 3. For any integral d x n matrix A (the rows of which need not sum to 0!), and
any b € Z9, the function

hap(X):i= ¥ X
veT(A,b)

is unitary.

Proof that Lemma 3 implies Lemma 2. For all X = (X},...,X,) € P(1) we have:

ha(X)= > X'= > X'— > X'
ve T(A,0) veT(A,0) veT(A,0)
V1.V, =0 i1, >1

(1= Xi... X)haolX).

Since Lemma 3 says that /14 ¢ is unitary it follows that /14 is also unitary. O

Proof of Lemma 3. We shall prove the lemma by induction on #.
For n =1 the result is trivially true.

Let n > 2. The induction hypothesis allows us to assume that for any m < n, any
d x m integral matrix A’, and any b’ € Z“, we have that ha b (X1, ..., Xi) is uni-

tary.

Now, let A be a d x n integral matrix, and b = (by,...,b,) € Z?. 1t suffices to as-
sume that T(A, b) # 0 since the proof of Lemma 2 is trivial when T'(A, b) = 0.

It will be convenient to distinguish two cases:
Case 1: {0} < T'(A,0)
We choose and fix o # 0 € T(A,0) in the following. For any I = {1,...,n}, we
define
L(I,0):={veT(A/b):vi>0 iff iel},

and

(10)  hap(l;; X):= > X"
' ve L(I,a)

If L(I,0) =0, the value is defined to be 0. A straightforward calculation then
shows:

(11) (1=Xhap(X)= > hap(l;;X) VX eP(1).
I<={1,..,n}
I#{1,...,n}
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Meromorphic continuation of multivariable Euler products 17

So, we need to show that each /14 p(I;o; X) is unitary. By permuting coordinates, it
suffices to prove this for any 7, := {1,2,...,q} withg <n—1.

To express the necessary equation in a concise manner, we first introduce the fol-
lowing notations:

1.X=(Y,Z)with Y = (X1,...,X,) and Z = (Xy41,..., Xn);

2. x' = (x1,...,x,) and X" = (X,41,..., X,), for any n-vector x, and A’ is the d x ¢
matrix with rows a; = (@ 1,...,4a;4) for each j < d;

3.9(=2(2) = {v" = (V1,5 ) € [T, {0, 1,2, ooy — 1}
4. W' e 9,

I(V”) = (bl - <ai,7 V”> - <aia OC/>, LR >bd - <a:1,7 V”> - <acl]7 al>)’
We then observe that for all X = (Y, Z) € P(1),

hap(ly;05X) = > XV
veT(A,b)
Vi<qvi>o; and Vi>q vi<o;

SR> S ez
V=gt V) €D pi=(puy,0-, 1) ENG
(' +p,v")e T (A, b)

- 2 Yy*z" 3 Y-

VI=(Vgi 1o V) €9 1=ty 1) € T(A' 107
So the following equation is true:

(12)  hap(lgo5X) = ZJYM,ZV”hA’,I(V”)(Y)-
viey
We conclude by induction.

Case 2: T(A,0) = {0}
Since T'(A, b) # 0, there exists y € T(A, b). We begin by observing that: v e T(A, b)
is equivalent to one of the two following conditions:

l.v=y (i.e. v; = y; Viimplies v — y € T (A, 0) = {0});
2.ve T(A,b) and Ji € {1,...,n} such that v; < y,.
This observation implies that for all X € P(1):

hap(X)=X"4+ > hap(l;7;X)
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18 G. Bhowmik, D. Essouabri, B. Lichtin

where each /14 p(I;7; X) is defined as in (10), replacing « by y. We now conclude by
induction as in Case 1. This completes the proof of Lemma 3. O

Remark. The proof of Lemma 3 actually gives an explicit procedure to find a pre-
sentation of 4. This is used in §2.3.

2.2 Analytic properties of Z(s)

The essential first step needed to deduce the analytic properties of Za(s) is given by
Lemma 2, which gives a presentation of /i4(X) as a rational function:

(13)  ha(X) = HK(l - X)W ().

Note. Although K and W certainly depend upon A, the notation will not indicate this
for the sake of simplicity. The reader should not find this confusing. O

Since both /14(X) and each (1 — X")™“" equal 1 when X = 0, it is clear that W is a
polynomial with integer coefficients that satisfies W (0) = 1. Define the Euler product
ZWis) =1L, Wkp™,....p™™).

We set I = KU S*(W), and define for every 6 e R, V(I;0) :={se C": {v,a) >0
VveI}. It is then clear that Za(s) converges absolutely in V'(I;1) and for any
seV(I;1):

(14)  Za(s) = ( I << s>>f<”>) Z(W:s).

mekK

Theorems 1, 2 (whose notations are used below) can now be immediately applied to
tell us the following.

Theorem 5. 1. s — Za(s) can be meromorphically continued to V(W;0);

2. 8 — Za(s) can be meromorphically continued to C" if and only if W is cyclotomic;
3. if W is not cyclotomic, then 0V (W;0) is the natural boundary of meromorphic

continuation.

To proceed, we will need to introduce some additional notations, and prove a
preliminary result. First, we fix the expression for W by setting W(X,...,X,) =

1+ ZVES*(W) M(V)XV.

We note that 0V (I;1) = 0I° (see Notations). For any a € dV(I;1), we set E(I,a) =
{vel:<La,v) =1}

Finally, for all v € I, we define ¢’(v) as follows:
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Meromorphic continuation of multivariable Euler products 19

L. c'(v) = c(v) if ve K\S*(W);

2.c'(v) = u(v) if ve S*(W)\K;

3.0(v) =c(v) +u(v)ifve Kn S*(W).

The following lemma plays an important role in the proof of Theorem 6 below.
Lemma 4. For each o€ 0V (I; 1), and each v e E(I,a), ¢'(v) = 1.

Proof. We start with the presentation (13), and choose 7 < § min,e p £(7,q) (<2, V) — 1)
if E(I, o) # I. Otherwise, we choose # € (0,1/6).

We set 7 = {e e (0, 1)2" : 1,e1,..., &, are linearly independant over @}.

For each ¢ € # we define:

L. a(e) = (1 (), ..., 0,(e)), where a;(e) = (1 —&)oy; + &,y foralli=1,... n;

2. go(1) = ha(t»@, ... 1) for all ¢ € (0, 1).

By using the bound for 7, as above, and the fact that <a(e),v) = <a,v) + O(J¢]) as
le] — 0 (since 7 is finite), it is clear that one can choose ¢ € # with |¢| so small that the
following property is satisfied:

(15)  veE(I,0) implies

ae)vy <14y and g =1+ ¥ 0D 40,6 (1—0).

veE(l, o)

We fix any such ¢ in the following.

On the other hand, it is also clear that there exist N = N(#,¢) such that

(16) gy = X (U740, (1 0).
ve T(A)
V<N

Since € € 7, it follows that if v # v/ € N{j, then {a(¢),v) # <a(e),v'). In particular,
this insures that for any v € E(I,«), the coefficient of #*(9):*> in (15) equals ¢/(v), and
in (16) equals 1. Since the two partial asymptotic expansions must be equal up to
terms of order ¢'*7, this shows that ¢’(v) = 1 if ve E(I,a). O

We know that Z4(s) converges absolutely in ¥ (I;1). Our second basic observation
identifies the boundary of this domain as the boundary of the domain of analyticity
of ZA(S).

Theorem 6. For each point o € 0V (I; 1), the meromorphic continuation of Za(s) is not
analytic at o.
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20 G. Bhowmik, D. Essouabri, B. Lichtin

Proof. Let o.€ 0V (I;1) be arbitrary and fixed, and assume s is such that g; > o; for
each i. It is then clear that Z4(s) converges absolutely since {a,v) > <a,v) > 1 for
any vel.

We next introduce the product of linear forms Z,(s) := [[,c (. (V. $), and use

Lemma 4 to write it as follows:

Z(s)= Il sy, [T sy .
)

veKnE(I, o) veS*(W)nE(I,o

The function #,(s) := Z(Fa; o+ S) - Z,(s) is evidently analytic in V'(I;0). We first
show that it is analytic in some larger domain V(I;—d;) for some positive J;, by
grouping each factor in %,(s) with an appropriate factor of Z(Fa;a + s) obtained
from (14).

For the leftmost factor on the rightside of (14), we have:

[Ty +<rs)@ - T1 <y, s)<

veK veKnE(I, o)

= I s>+ T e+ vs)) .

veKnE(I,u) veK\E(I,o)

For dy chosen small enough, it is clear that each of the two products on the last line,
one over ve K n E(I, ), the other over ve K — E(I, ), is analytic in V' (I; —dy).
For the rightmost factor on the right side of (14), observe first that (14) and the proof
of Lemma 1 imply that there exists J € (0, 1) such that

(17)  Gis)=z(Ws;s)- I L(<nsy)™
veS*(W)nE(I,a)

is analytic and bounded in V' (W; 1 —9).

Thus,

ZWiot+s) [ sy
veS*(W)nE(I,a)

= [T [nsY+ <, s))]"Y - Gs(a + s),

veS*(W)nE(I,x)

and Gs(x + s) is analytic for s € V(I; —d,), for some &, > 0.

We conclude that J#,(s) can be written in V' (7;0) as follows:
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H(s)= I [ne> 0+ T (ay+ v, s)

veKnE(I,u) veK\E(I,o)

[T K8 L1+ s)"Y - Gs(a+s)

veS*(W)nE(I,a)

I Kvs>-c(+ v,sy)

veKnE(l,o)

T [Kvsy-C(1+ v, s)))")

veS*(W)nE(I,a)

T &v,a)+ <)) Gs(a+s).

ve K\E(I,x)

Moreover, we know that there exists d; > 0 such that the product of the two func-
tions on the last line is analytic in V' (I; —d).

Applying Lemma 4 a second time now shows that for any s € V' (7;0):

(18)  Au(s)= TI [Kv,s>-L(1+ (v, 8))]

veE(Il,x)

[T Cv,o0+ s Gs(a+ ).

veK\E(I,o)

We then deduce the existence of J; > 0, such that the product over v € E(I, ) in the
first line of (18) is analytic in V' (I; —d;). Since the product of functions on the second
line is analytic if J; is chosen sufficiently small, we have verified what we needed to
show, that is, #,(s) is analytic in some neighborhood V' (I; —d;) containing s = 0.

The second part of the argument is an immediate consequence of the following es-
sential property:
(19) H#,(0) # 0.

To prove this, we start with (18) and rewrite the product by writing

= JI c0+<s) JT 1+ <v,s)) M.

veKNE(I,x) veKnE(I, )

Multiplying  together all the terms with exponent —c(v)  with
[Les wyne@,z S(1+ <, s)) ™" (a term that equals a factor in (17) when eval-
vated at o+ s), and applying Lemma 4 again, gives a factor of #,(s) that
equals [],c g, (1 + {v,s))”". Multiplying together all the terms with exponent
c(v) with the product over ve K— E(I,0) in (18) gives a factor equal to
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1,k C(<vyo+ 85)"). Thus, we find a different expression for #(s) as a product
of functions, each of which is analytic, at least, in V(I;0):

(20)  Au(s) =TI C(roa+8) - T1 ¢+ <v,8) " - Z(W,a+s)

mekK veE(I,x)

[T [Kv,s)-L1+<v,8)).

veE(I,u)

Since there exists a neighborhood of s = 0 in which the function [T,z ,[<v, )
(1 + <{v,s))] is both analytic and never 0, it follows that the product in (20) is
actually analytic in a neighborhood of s = 0. In such a neighborhood, we therefore
have:

21 Au(s) =11H(p;s)- II [Kv,s)-L(1+ v, 8)),

where

H(p; S) — H (1 _ p7<v,a>7<v,s>)fc(v) . H (1 _ p717<v,s>) . W<p7117s1, N .’px"ﬁvn).

veK veE(I,u)

The function s — [], H(p; s) is analytic at s = 0, but we still need to understand its
value at this point. For r € (0, 1) we define the open neighborhood %(r) = V(I;0) U
{se C"|[si| <r} of 0, and write out H(p;s)|y,). For our purposes, it now suffices
to observe the existence of u > 1 such that the following holds, to which we apply
Lemma 4 for the last equation:

s = (14 5 o)

veKnE(I,a) P

1 v
’ <1 - Z p1+<‘*s> + 0(17 - ))

veE(Il,a)
: (1 T e 0(p“*’)>
veS (WnE(Lx P
1 —c(v) —u(v) s
—1- 5 LA o
veE(l,q) p1+<1‘s>
1—c'(v)
=1= Z 7,"" O<p—u+r)
veE(I,«) p1+<1,s>

=14+ 0(p™"") uniformly in s € %(r).
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Thus, by choosing r so small that —u+r < —1 for all s € %(r), we conclude that
s — [], H(p;s) also converges absolutely in %(r). We can therefore evaluate both
sides of (21) at s = 0. In this way, we find the following Euler product expansion that
converges to #,(0):

(22)  A#,(0) = H((] _ p—l)#E(I,a) W(p,. . p ) T = p—<v,x>)c(v)>.

p veK

The distinct advantage of (22) is that it easily is seen to imply that 5#,(0) > 0. Indeed,
we know that

W(p™,....p=) - TT(1—p ) = ha(p~,...,p™) >0 for each p.
veK

Thus, each factor of the Euler product in (22) is positive. This implies #,(0) is also
positive. As a result, the equation that gives the meromorphic continuation of Z4(s)
in a neighborhood of «,

Hy(S)

Za(o+s) = Z(s)’

now implies that the right side cannot be analytic at s = 0. This completes the proof
of Theorem 6. O

Remark. It may be instructive for the reader to compare the preceding discussion
with that in [4]. As noted in the Introduction, the starting point of [ibid.] is an explicit
projective embedding (defined by choosing the anticanonical line bundle and assum-
ing it is ample) of a desingularized model of the variety into P~ (@) for an appro-
priate d. The model is constructed by patching together a set of affine charts that is
bijective with a set of simplicial cones with integral 1-skeletal vectors that forms a
“fan decomposition” of IRY. Following the discussion in [10, §11], the 1-skeletal vec-
tors then determine the entries of an n x m integral matrix B (where n denotes the
number of 1-skeletal vectors and m the number of cones of maximal dimension).
To each rational point on the maximal torus of height 7, there corresponds (see
(10, (11.4), (11.5)]), a unique point (x?',..., x?"), where x = (xy,...,x,) € N", the
b; denote the column vectors of B, and max;{x?} = ¢. The point is also subject to a
certain ged condition that is important but need not be defined here. Up to an addi-
tional scalar factor, this gives the analogue of (9).

The analogue of Za(s) in [op cit., §4.2] is the series denoted F(sy, ..., sy), which also
has an Euler product expression. Note however that its coefficients are no longer
restricted to 0, 1 in value. The analogue of (14) for this product is as follows:

F(s1,....8m) = ]_'[C(<c,<7 (S15-.-y8m)>) -G, where G=]]g(p™,...,p~")
i p

is such that g¢(Y):= ZVGNSu(p"I,...,pV/)H;ZI Yj<v’bf> is a polynomial, and

Ci,..., ¢, denote the rows of B. The details of this were worked out in [10]. An
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24 G. Bhowmik, D. Essouabri, B. Lichtin

approximation to the support of ¢ is also given in [4], see §4.2. The preceding equa-
tion actually gives a meromorphic extension of F because it is shown in [ibid., Lemme
4.2 (iv)] that G is absolutely convergent in the region [,{R(¢; - (s1,...,8n)) > x} for
some k < 1.

The analogue of Theorem 6 is, however, only proved at exactly one real point
o= %(1, ..., 1). Moreover, the proof that G(x) # 0, that is, the analogue of the
nonvanishing property (19), is indirect, and actually is a consequence of the version
of Manin’s conjecture proved in [1]. As a result, this argument would not seem to
extend to find other points on the boundary of analyticity of F. It would therefore be
interesting to know if the proof of Theorem 6 can be adapted to give more complete
information about the polar locus of F(sy,...,Sy).

2.3 How often is the product of n integers an n™ power?

A natural problem in multiplicative number theory is to describe the asymptotic
density of n-fold products of positive integers that equals the n'" power of an integer.
When n = 3, several authors have given a precise asymptotic for the density [7], [8],
[3]. Our starting point was an observation of Batyrev-Tschinkel ([10], 11.50) who
noted that the problem is equivalent to finding the asymptotic of the height density
function on a certain singular cubic toric variety. This interpretation naturally ex-
tends to any n > 3. However, until now, no extension of these results to arbitrary
n seems to have been published in the literature, although we have learned from the
referee that Salberger lectured about the case n = 4 in 1998.

This subsection solves the problem for arbitrary n > 3 by combining the method in
§2.2 with a tauberian theorem of La Breteche [5].

In the following discussion, we use the notations from the preceding subsections and
the introduction to §2, with the role of the matrix A played here by the 1 x (n+ 1)
matrix A, = (1,...,1,—n). Note that the torus U(A,) of the toric X(A,) is now de-
fined to equal

UA,) ={x=(x1:...:x541) e P"(Q) : x1 -~ x, = x;/,; and x; - - - x,, # 0},
and the Dirichlet series Z4 (s) of interest becomes a function of s = (s,...,841).
Setting r = (ry,...,r,) and |r| =r; + - - - + r,, we also define

Jo={r+e,1:re{0,....n}" and |r| = n}\{(1,...,1)},
D,={re{0,....n—1}":n||r|},

£(r)=(r1,...,rn, |r|/n) for any r € Dy,

and for every d € R,

V(o) ={se@"" :(r),c) >5VreD,}.
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Theorem 7. For any n > 3 the following three assertions are satisfied.

1. s — Za,(s) converges absolutely in V(1) and satisfies:

[T, C(nsi + sut1) |
Za (8) ==& . .
A,,( ) C(Sl ot sn+l) 1;[ reZD,, p<((r)\s> )

2. s— Za,(s) can be meromorphically continued to V(0) and 0V (0) is the natural
boundary of Za,(S);

3. there exists 6 > 0 such that:
#{x e U(A,) : H(x) = max |m;(x)| < t} = 1Q,(logt) + O(t'™") ast— oo,

where Q) is a non-vanishing polynomial of degree d,, = (2”;1) — n — 1 satisfying
0,(log1) = Co(n)r™! Vol(A,(1)) + O(log™ (1)) ast— oo,

A, (1) is defined with the help of the vector ff := (1, A B dn%) to equal

(1) = {x = (), ot T < 9= Lm0,

veld,

and

Co(l/l) _ 2n71 H((l _ pfl)dn+l . Z p|r|/n> >0

P reD,
Proof. Defining
T(A,) = {xe NIty 4+ + o, = noyy and o ... 041 = 0},
we first need to construct an explicit presentation of

ha,(X)= > X... X"
oeT(A,)

To do so, we observe that for every X € P(1):

ha,(X)= > X'=(-X.. X)) X X
o+ 0 =N0 oy A Uy =100 |
Otlu.othrl:O

(1= X1 X)X XP XXt

n n+1
nloy 40ty
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= (1 - Xi. n+1) rzg Xr1 X)an‘tﬂ/ln X]I:WXIMI ch,,X’Lo:L\l
€ ueNg

— (0= %)) Pt X
i=1
We conclude that (K, {c¢(v)>,cx, Wa) is a presentation of &4, (X) where:

WXt Xo) = (1= Xi .. Xr) - S XD XX

n+1
rebD,

X, XrnX|’|/”
rEZI:)n 1 n+1
r#(1,..,1)

_ Z X11+71 ) X1+1”X1+|’|/"

n+1

K={nej+e,:i=1,...,n}

c(vy=1 Yvek.
Assertion 1 and the first part of Assertion 2 of the Theorem now follow immediately

from Theorem 5.

To prove that d1(0) is the natural boundary of Z4,(s), it suffices to show that the
polynomial W), is not cyclotomic when n > 3. We show this by contradiction.

Thus, suppose that 1, is cyclotomic. It is then clear that the polynomial

Wn*(Xl, e Xn+1) — Z Xlrl XrnX\l‘\/”

n+1
reD,

is also cyclotomic. From this it follows that the polynomial in one variable R(?) :=
Wi(t,t0,...,0,1) =1+ (n— 1)¢" is cyclotomic. But this is impossible since R(z)
has roots of modulus different from 1. This completes the proof of Assertion 2.

Proof of Assertion 3. We first note that the constant C(A,), defined at the end of the
Introduction to §2, satisfies C(A,) = 2", Thus,

#{XE U(An):H(x):mlgix|mi(x)\ 31}22”1 Z FAn(ml,...,mnH).

1<m;<tVi

Setting I, = K U S*(W,), it is elementary to check that o := (1,...,1,0) e 0V (I,; 1),
and 1(1,) = 1. We then define #,(s) := (I, c (.. <v:$7)Za, (2 + s), and apply both
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Theorem 6 (see (17) and (19) in particular) and a standard growth estimate for the
Riemann zeta function to conclude the following:

(23.1) there exists 0 > 0 such that J#,(s) is analytic in V' (I,; —9);
(23.i) #,(0) #0;
(23.1i1) there exists # > 0 such that for all s € V' (I,; —9),

H(s) <o I (14 [Kn,y])-emn(0.u0). (1 i (Z||))
i=1

ve E(IL,;0)

We now try to apply the multivariable tauberian theorem, Théoreme 2 of [5], with
pole o and exponent vector (1, ..., 1), whose components determine the exponents of
t (this vector is denoted f in [ibid.]). The first point is to identify the sets of vectors
J(a) and E(I,, ) as well as the rank of their union. To this end, it is elementary to
check the following:

o J(a):={ei|o; =0} ={ey1} and E(I;,a) = Jp;
® Rank(E(I,,0) vJ(2)) =n+ 1 and #E(I,,a) = (2”;1) —1=d,+n

The second point is more delicate since (1,...,1) need not satisfy the criterion in
part (iv) of Théoréme 2 [ibid.]. That is, there may not exist {7,},, e,.,} < (0, 0)
such that (1,...,1) =37, .} (e} V- To circumvent this difficulty, the idea is to
find an equivalent vector as follows. Setting f = (17 AU S B ﬁ) =P Pust)s

it is clear that Y(my,...,mpu.1) e N1 satisfying (my:...:myy) e UCA,) and
ged(my, ... ,myu 1) = 1, we have
maxm; <tem<th Vi=1,... n+1, V=1
; .

To finish the proof, it suffices to show that f does belong to the interior of the cone
generated by J, U {e,;1}. We first define #(n) = #{re{0,...,n—1}" : |r| = n}. Itis
well known that #(n) = d, + 1. Next, we set

! owe (Jnu{en1})\{ne; + en+1}?:1>

7y = 1(n)
Vneire,, = 1/nt(n) Vi=1,... n

We then note that the value of ), . ,—1)7; is independent of j and satisfies:

[r|=n

A straightforward computation then shows:
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£ =t e+ (S o)e
S 71}"

veJ,u{en} J=1

= (1+1(n) "ew + Zn:lej =p.
=

We can now apply Théoréme 2 of [5] with pole « and exponent vector f for ¢ to finish
the proof of Assertion 3, and complete the proof of Theorem 7.

Concluding Remark. Additional information about the distribution of primitive inte-
gral solutions to the equation x;---x, = x,,; can also be deduced. This uses two
facts. The first is that Theorem 6 characterizes all the boundary points of analyticity
as poles of Z4 (s) at which (23.i)—(23.iii) are satisfied. The second is that the tau-
berian theorem of La Bretéche gives an explicit asymptotic for the sum of coefficients
Fa,(my,...,m,1) when each m; is allowed to grow at a different rate in z. Precisely,
given a vector y = (y1,...,7,.1) € (0, 00)"™ one can also calculate a precise (and
nonzero!) asymptotic for the counts

FA”(mla cee 7mn+1)7
{l<m; <7 Vi}

provided that y is a “generic” vector, that is, y belongs to an open dense subset of
(0, 0)"*!. The expression for the dominant term is similar to that in part 3 of The-
orem 7. Working out the details in general for this multiplicative equation, as well
as any other, thatis, x{" - xf = x' | - ~x,l,"+q with )" k; = > [;, would seem to be an
interesting problem.
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