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Abstract

In this thesis we study p-adic exponential sums and integrals using ideas from
model theory and geometry. The first part of this thesis deals with families of
exponential sums in P -minimal fields. The second part discusses estimates for
the asymptotic behaviour of exponential sums over p-adic fields.

Our work on P -minimal fields starts with the proof of a cell decomposition
theorem that holds in all P -minimal fields, i.e., independently of the existence of
definable Skolem functions. For P -minimal fields that lack these functions, we
introduce the notion of regular clustered cells. This notion is close to the classical
notion of p-adic cells, that was introduced by Denef. Our cell decomposition
uses both classical cells and regular clustered cells.

Next, we extend the notion of exponential-constructible functions, already
defined in the semi-algebraic and subanalytic setting, to all P -minimal fields.
We do this by enlarging the algebras of constructible functions with families
of exponential sums. Using our cell decomposition theorem we prove that
exponential-constructible functions are stable under integration. This means
that the act of integrating an exponential-constructible function over some of its
variables produces an exponential-constructible function in the other variables.

In our work on estimates for the asymptotic behaviour of exponential sums we
prove the Igusa, Denef-Sperber and Cluckers-Veys conjectures for polynomials
with log-canonical threshold at most one half. These conjectures predict uniform
upper bounds for the absolute values of certain exponential sums that depend
on a polynomial. We give two different proofs, one using motivic integration
and cell decomposition, and the other one using the Igusa zeta functions.

iii





Beknopte samenvatting

In deze thesis bestuderen we p-adische exponentiële sommen en integralen met
behulp van modeltheorie en meetkunde. In het eerste deel van deze thesis
behandelen we families van exponentiële sommen over P -minimale velden.
Het tweede deel is gewijd aan afschattingen van het asymptotisch gedrag van
exponentiële sommen over p-adische velden.

Het deel over P -minimale velden begint met het bewijs van een celdecompositie
stelling die geldt voor alle P -minimale velden, dus onafhankelijk van de
aanwezigheid van definieerbare Skolem functies. Voor P -minimale velden waarin
deze functies ontbreken, introduceren we het begrip van reguliere geclusterde
cellen. Deze cellen lijkt op de klassieke p-adische cellen, die door Denef
gedefinieerd zijn. Onze celdecompositie maakt gebruik van zowel klassieke
cellen, als reguliere geclusterde cellen.

Vervolgens beschouwen we de notie van exponentieel-construeerbare functies,
gedefinieerd voor semi-algebraïsche en subanalytische structuren, en breiden deze
uit naar alle P -minimale velden. We doen dit door families van exponentiële
sommen toe te voegen aan de algebra’s van construeerbare functies. Met
behulp van onze celdecompositie bewijzen we dat de exponentieel-construeerbare
functies stabiel zijn onder integratie. Dit betekent dat het integreren van een
dergelijke functie over sommige van haar variabelen weer een exponentieel-
construeerbare functie oplevert in de overige variabelen.

In het deel over afschattingen van het asymptotisch gedrag van exponentiële
sommen bewijzen we de vermoedens van Igusa, Denef-Sperber en Cluckers-
Veys voor veeltermen met log-canonieke drempel hoogstens een half. Deze
vermoedens voorspellen uniforme bovengrenzen voor de absolute waardes van
bepaalde exponentiële sommen die afhangen van een veelterm. We geven twee
verschillende bewijzen; het ene bewijs maakt gebruik van motivische integratie
en celdecompositie en het andere van de Igusa zeta functies.
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Résumé

Dans cette thèse nous étudions des sommes exponentielles et des intégrales
p-adiques, en utilisant la théorie des modèles et la géométrie. La première
partie traite des familles de sommes exponentielles dans des corps P -minimaux.
La deuxième partie examine le comportement asymptotique des sommes
exponentielles sur les corps p-adiques.

Dans la première partie nous commençons par démontrer une théorème
de décomposition cellulaire pour tous les corps P -minimaux, c’est-à-dire
indépendamment de l’existence des fonctions de Skolem définissables. En
l’absence de ces fonctions nous introduisons les cellules en grappe régulières,
inspirés par la notion classique de cellule p-adique de Denef. Notre décomposition
cellulaire utilise les cellules classiques et les cellules en grappe régulières.

Ensuite nous étendons la notion de fonction constructible exponentielle, déjà
définie pour les structures semi-algébriques et sous-analytiques, à tous les corps
P -minimaux. Pour cela nous ajoutons des familles de sommes exponentielles
aux algèbres des fonctions constructibles. En utilisant notre décomposition
cellulaire, nous démontrons que les fonctions constructibles exponentielles sont
stables dans le contexte d’intégration. Cela signifie que l’intégration d’une
telle fonction sur certaines de ses variables produit une fonction constructible
exponentielle dans les autres variables.

Dans la deuxième partie nous démontrons les conjectures d’Igusa, Denef-
Sperber et Cluckers-Veys sur le comportement asymptotique des sommes
exponentielles pour les polynômes dont le seuil log-canonique ne dépasse pas
un demi. Ces conjectures prédisent des bornes supérieures uniformes pour les
valeurs absolues de certaines sommes exponentielles, dépendantes d’un polynôme.
Nous apportons deux démonstrations ; l’une utilise l’intégration motivique et
une décomposition cellulaire et l’autre les fonctions zêtas d’Igusa.
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Introduction

This thesis consists of two separate projects that are both centered around
the study of exponential sums over p-adic fields. Exponential sums are a
fundamental object in mathematics and their study dates back to Gauss, who
determined the values of the quadratic Gauss sums.

We will study sums over the p-adic numbers Qp or over a p-adic field K, i.e., a
finite field extension of Qp. We fix some additive character ψ : K → C× whose
values will be pm-roots of unity in C for some m ∈ Z. The exponential sums
that we study are of the form ∑

z∈A
ψ(z),

where A is a finite set. Depending on the context the character ψ and the set
A are of a specific form.

These exponential sums exhibit oscillatory behaviour. Certain values appearing
in the sum might cancel each other out. The simplest form of complete
cancellation is the elementary fact that the p-roots of unity in C add up
to zero. This phenomenon plays an important role in our proofs.

1

ζ5

ζ2
5

ζ3
5

ζ4
5

Figure 1: The fifth roots of unity in C
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2 INTRODUCTION

The study of exponentials sums in this thesis will be restricted to the following
two settings.

• We consider families of exponential sums over sets that are definable in
a P -minimal structure on a p-adic field. By adding such sums to the
algebras of constructible functions one obtains exponential-constructible
functions. We look at integration properties of such functions.

• A polynomial f with integer coefficients determines an exponential sum
modulo pm for a prime number p and an integer m. We study the
asymptotic behaviour of these sums, when p and m go to infinity. There
exist several conjectures that predict uniform upper bounds for the
absolute values of these sums.

In both these projects the exponential sums are strongly linked with p-adic
integrals. We use different techniques and ideas coming from model theory and
geometry. In particular cell decomposition theorems are essential in several of
the proofs.

Part I: exponential-constructible functions

The first project, which is joint work with Pablo Cubides Kovacsics and Eva
Leenknegt, is inspired by the work of Denef on families of p-adic integrals. It
starts with the following Poincaré series

P (T ) :=
∞∑
m=0

PmT
m,

where Pm := #{x ∈ (Z/pmZ)n | f(x) ≡ 0 mod pm} for some polynomial
f ∈ Z[x] in n variables x = (x1, . . . , xn). The fact that these Poincaré series are
rational functions in T was shown first by Igusa [Igu74a] and later by Denef
[Den84]. These series can be easily related to p-adic integrals by realising that
f(x) ≡ 0 mod pm if and only if the p-adic valuation of f(x) is at least m. Hence

Pm =
∫
{x∈Znp |ordp(f(x))>m}

pnm|dx|,

where we integrate with respect to the Haar measure on Qp, normalised such
that Zp has measure 1. The numbers Pm form a family of p-adic integrals,
depending on the parameter m. Understanding the way in which the integrals
depend on the parameter is important for proving the rationality of P (T ). This
has led to the study of more general families of p-adic integrals over Qp and
also over general p-adic fields K.
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Denef considered integrals where the domain of integration is a semi-algebraic
set, i.e., a set that is definable in the ring language Lring = {+,−, · , 0, 1}. Let
S ⊆ Km be a parameter set, X ⊆ S ×Kn and f : X → K a function, all of
them semi-algebraic. We denote by ord: K → Z ∪ {∞} the valuation map on
K and by qK its residue characteristic. Then∫

Xs

ord(f(x))|dx| and
∫
Xs

q
−ord(f(x))
K |dx|

are families of integrals, parametrized by the set S. Denef proved in [Den85]
that these families of integrals can be written as a Q-linear combination of
products of functions of the form

s 7→ ord(a(s)) and s 7→ q
ord(b(s))
K ,

where a, b : S → K are semi-algebraic functions. We call the Q-algebra of such
functions on S the algebra of (Lring-)constructible functions on S and denote it
by C(S).

Moreover, Denef showed that if G(s, x) is an Lring-constructible function on
X ⊆ S ×Kn, integrable over the fibers Xs, then

s 7→
∫
Xs

G(s, x)|dx|

is an Lring-constructible function on S. We say that the Lring-constructible
functions are base-stable under integration.

There are also interesting families of p-adic integrals that can only be defined by
adding more symbols to the semi-algebraic language. The best studied example
is the subanalytic language

Lan := Lring ∪ { −1,∪r>1K{x1, . . . , xr}},

where −1 denotes the multiplicative inverse with 0−1 := 0, and where
∑
aix

i ∈
K{x1, . . . , xr} denotes a restricted formal power series that converges on the
valuation ring OrK , and is set to 0 outside, i.e.,

Kr → K : x 7→
{∑

aix
i if x ∈ OrK ;

0 otherwise.

Cluckers [Clu04] showed that the Lan-constructible functions are also base-stable
under integration.

The proofs of these results are based on a good understanding of the shape of
Lring- and Lan-definable sets and functions. The interesting thing about these



4 INTRODUCTION

two languages is that the Lan-definable subsets of K are the same as the Lring-
definable subsets of K. This is not the case for the definable subsets of Kn for
n > 2, but still there exists some common description of these definable sets by
means of cell decomposition theorems. This means that an Lring/Lan-definable
set can be partitioned into finitely many ‘simple’ definable sets of a certain
form, called cells.

The idea to study a class of languages for which the one-variable definable
subsets are of a certain form, comes from real geometry. A totally ordered field
R with a language L ⊇ {<} is called o-minimal if the L-definable subsets of R
are exactly the finite unions of intervals and points. From this condition Knight,
Pillay and Steinhorn [PS86, KPS86] proved a cell decomposition theorem for
all o-minimal structures.

The successful development of o-minimal structures inspired Haskell and
Macpherson [HM97] to define an analogous concept for p-adic fields, which they
named P -minimality. A frequently used reformulation of their definition states
that a p-adically closed field K with a language L ⊇ Lring is called P -minimal
if the L-definable subsets of K are exactly the Lring-definable subsets of K and
if the same holds for any L-elementary equivalent field K ′.

Denef defined a notion of p-adic cells for semi-algebraic structures and proved
that each Lring-definable set partitions into finitely many of these cells [Den84,
Den86]. This cell decomposition theorem can be used to show the rationality of
the above Poincaré series and to study families of p-adic integrals of constructible
functions. His cell decomposition was adapted to subanalytic structures by
Cluckers [Clu04] and to all P -minimal structures that have definable sections
(also called definable Skolem function) by Mourgues [Mou09]. Moreover, she
showed that satisfying a cell decomposition with Denef-type cells is equivalent
to having definable Skolem functions.

For some time it was unknown whether there exist P -minimal structures that do
not have definable Skolem functions. Recently an example of such a structure
was provided by Cubides-Kovacsics and Nguyen [CN17b]. Therefore the notion
of cell as introduced by Denef has to be broadened if one wants to obtain a
cell decomposition theorem that is valid in all P -minimal structures. A first
version of such a decomposition was given by Cubides-Kovacsics and Leenknegt
[CL16]. In this thesis we improve this result using Denef-type cells and regular
clustered cells. A regular clustered cell is a finite disjoint union of sets that look
like they are Denef-type cells, but the lack of definable Skolem functions makes
it impossible to actually describe these sets as such cells.

This cell decomposition was developed with the idea to study families of p-adic
integrals. When the domain of integration is a definable set in some P -minimal
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structure, then we can partition this set into cells. Restricting to families of
integrals over cells can make the calculations easier. Cubides-Kovaciscs and
Leenknegt [CL16] applied this idea to prove a generalisation of the results of
Denef and Cluckers, namely that in any P -minimal structure the constructible
functions are base-stable under integration.

In [CL10] Cluckers and Loeser introduced a natural extension of the algebra
of constructible functions for the semi-algebraic and subanalytic languages by
adding exponential sums of the form

s 7→
r∑
j=1

ψ(fj(s)),

for some additive character ψ : K → C× and fj : S → K definable. They named
these functions exponential-constructible functions and showed that they are
base-stable under integration. The goal of the first part of this thesis is to
generalise this result to all P -minimal structures.

Part II: upper bounds for p-adic exponential sums

In the second project, which is joint work with Kien Nguyen, we study
exponential sums that depend on a nonconstant polynomial f ∈ Z[x] in n
variables x = (x1, . . . , xn) for which f(0) = 0. These sums depend on the values
of f modulo pm for a prime number p and an integer m > 1. There is a global
exponential sum:

Ef (m, p) := 1
pnm

∑
x∈(Z/pmZ)n

exp
(

2πif(x)
pm

)
,

and for each y ∈ Zn a local sum around y:

Eyf (m, p) := 1
pnm

∑
x∈y+(pZ/pmZ)n

exp
(

2πif(x)
pm

)
,

where y + (pZ/pmZ)n = {x ∈ (Z/pmZ)n | ∀i : xi ≡ yi mod p}. The goal is to
find good upper bounds that are uniform in p and m for the absolute value of
these sums.

These sums can be written as p-adic integrals and were introduced as such by
Weil [Wei65] in a more general context. There is a formula that relates these
exponential sums to the Igusa zeta functions, which are themselves related to
the Poincaré series mentioned in Part I. From this formula and results by Igusa,
Denef and Veys, one can easily obtain upper bounds for p fixed and m→∞.
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More precisely, for each prime number p, there exists a constant Cp > 0 such
that for all m > 1 and for all y ∈ Zn, we have

|Ef (m, p)|C 6 Cpmn−1p−ma(f); (0.0.1)

|Eyf (m, p)|C 6 Cpmn−1p−may,p(f), (0.0.2)

where a(f) and ay,p(f) are invariants that depend on geometric properties of f ,
in particular the critical points of f . There exist other versions with different
invariants, sometimes giving stronger upper bounds.

Igusa [Igu78] studied the global exponential sum Ef (m, p) for homogeneous
polynomials f , and related its asymptotic behaviour to the validity of a certain
Poisson summation formula. He conjectured that in the upper bound (0.0.1) the
constant Cp can be taken independently of p, which gives an upper bound that
is uniform in both m and p. Several cases of his conjecture have been proved by
himself [Igu74b], Denef and Sperber [DS01], Cluckers [Clu08a, Clu08b, Clu10],
Wright [Wri12], and Lichtin [Lic13, Lic16]; but the general conjecture still
remains open.

The behaviour of the local sum E0
f (m, p) around 0 can provide information

on the global sum. The first ones to study upper bounds for this local sum
were Denef and Sperber [DS01]. They conjectured that for all polynomials f ,
i.e., not necessarily homogeneous, there exists a uniform upper bound of the
form (0.0.2) with the constant Cp independent of p. They proved their own
conjecture for nondegenerate polynomials under an extra condition and later
Cluckers [Clu10] showed that this condition can be omitted.

In some of the cases where the Igusa conjecture has been proven, the proofs
were not limited to homogeneous polynomials. This motivates the investigation
of a more general version of this conjecture. Recently, Cluckers and Veys [CV16]
formulated a conjecture that generalises the Igusa conjecture to all polynomials
and the Denef-Sperber conjecture to all local sums in a uniform way, under the
condition that m > 2. In other words, they conjecture that when m > 2, the
constant Cp from (0.0.1) and (0.0.2) can be taken independently of p. They
prove this conjecture for ‘small’ values of m. The nondegenerate case is proved
by Castryk and Nguyen [CN18].

In the second part of this thesis we will prove the Cluckers-Veys conjecture for
polynomials that have log-canonical threshold at most one half, which means
that the polynomials have very ‘singular’ singularities. We will give one proof
that uses a cell decomposition theorem and some other results from the Cluckers-
Loeser theory of motivic integration [CL05, CL08], and another proof that uses
the relation between the exponential sums and the Igusa zeta functions.
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Outline

In the first chapter we give the details and background on cell decomposition
in P -minimal structures, constructible and exponential-constructible functions,
Cluckers-Loeser motivic integration, Igusa zeta functions and their connection
with exponential sums.

The second chapter is dedicated to proving our cell decomposition theorem that
holds in all P -minimal structures.

In chapter three we use this cell decomposition theorem to prove that the algebras
of exponential-constructible functions are base-stable under integration.

In the fourth chapter we present two different proofs of the Cluckers-Veys
conjecture on exponential sums for polynomials with log-canonical threshold at
most one half.





Chapter 1

Preliminaries

In this chapter we will give some background on the questions that we are
trying to answer in this thesis. All of these questions concern certain classes of
valued fields. For a general background on valued fields, see [EP05].

Definition 1.0.1. Let K be a field and let ΓK be a totally ordered, abelian
group. A valuation on K is a surjective map ord: K → ΓK ∪{∞}, that satisfies,
for all x, y ∈ K,

(i) ord(x) =∞ if and only if x = 0;

(ii) ord(xy) = ord(x) + ord(y);

(iii) ord(x+ y) > min{ord(x), ord(y)}.

A valued field (K, ord) has a value group ΓK and a valuation ring

OK := {x ∈ K | ord(x) > 0},

which has a unique maximal ideal

MK := {x ∈ K | ord(x) > 0}.

The quotient field
kK := OK/MK

is called the residue field. We denote the image of x ∈ OK under the quotient
map OK → kK by x. An angular component map moduloMK is a multiplicative
map ac: K× → k×K satisfying ac(x) = x for all x with ord(x) = 0. It can be
extended to K by putting ac(0) = 0.

9
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A valuation induces a topology on K. Let x ∈ K and γ ∈ ΓK , then the open
ball around x of valuation radius γ is

B◦γ(x) := {y ∈ K | ord(y − x) > γ},

and the closed ball around x of valuation radius γ is

Bγ(x) := {y ∈ K | ord(y − x) > γ}. (1.0.1)

The points x ∈ K are sometimes denoted as B∞(x). Let B be the set of closed
balls in K, including the (closed) points, i.e.,

B := {Bγ(x) | x ∈ K, γ ∈ ΓK ∪ {∞}},

and for a fixed γ ∈ ΓK ,

Bγ := {Bγ(x) | x ∈ K}

is the set of closed balls in K with valuation radius γ. Usually, when we will
speak of balls, we will mean closed balls.

Definition 1.0.2. Let X ⊆ K and let B ⊆ X be a ball such that for all balls
B′ ⊆ X, one has that B ⊆ B′ ⇒ B = B′. Then we call B a maximal ball of X.
This property will be denoted as B v X.

In this thesis we will often study valued fields from a model theoretic point of
view. For a general introduction to model theory, see [Mar02]. The languages
that we will encounter, are the following.

(i) Languages for the valued field:

(a) The ring language Lring := {+,−, · , 0, 1}. The Lring-definable sets
are called semi-algebraic sets.

(b) The Macintyre language LMac := Lring∪{Pn}n>2, where Pn := {x ∈
K | ∃y ∈ K : x = yn}. The LMac-definable sets are the same as
the Lring-definable sets, but the upshot of adding these predicates is
the result from [PR84] on quantifier elimination for p-adically closed
fields in the language LMac.

(c) The subanalytic language Lan := LMac ∪ { −1,∪r>1K{x1, . . . , xr}}
for a p-adic field K. Here −1 denotes the multiplicative inverse with
0−1 := 0 and

∑
aix

i ∈ K{x1, . . . , xr} denotes a restricted formal
power series that converges on OrK , and is set to 0 outside, i.e.,

Kr → K : x 7→
{∑

aix
i if x ∈ OrK ;

0 otherwise.
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The Lan-definable sets are called subanalytic sets. In [DvdD88] Denef
and Van den Dries proved that the Lan-theory of K admits quantifier
elimination.

(ii) Languages for the value group:

(d) The language Loag = {+, <} of ordered abelian groups.
(e) The Presburger language LPres = {+, <, 0, 1, {≡n}n>1} for certain

value groups, for example Z. The symbol ≡n expresses congruence
modulo n. The LPres-theory of Z admits elimination of quantifiers
in the Presburger language [Pre30].

(iii) The two-sorted language L2 = (L,LPres, ord), where L is any expansion
of the ring language used for the valued field sort VF and LPres is the
language for the value group sort VG. The symbol ord, going from the
nonzero elements of VF to VG, denotes the valuation.

(iv) The three-sorted Denef-Pas language LDP = (Lring,Lring,Loag, ord, ac).
The first sort VF is for the valued field K, the second sort RF for the
residue field kK and the third sort VG is for the value group ΓK . The
valuation map ord is the same as before and ac from VF to RF is an
angular component map moduloMK .

If K is a valued field and L is a language whose symbols have an interpretation
in K, then, informally, the L-definable sets are the subsets of Kn, for n > 1, that
can be described using symbols from the language L, elements from K and the
standard first-order symbols ∨,∧,¬,→,∀,∃,=, (, ), and variables x, y, z, . . .. We
say that a function f : Kn → Km is L-definable if its graph is an L-definable
set. The same notions are used for other mathematical structures with an
appropriate language. Whenever it is clear from the context which language L
we are working with, we will simply write definable instead of L-definable. For
us definable will always mean definable with parameters. A definable set in a
many-sorted structure can contain variables from the different sorts.

Below we list some examples of valued fields that will play a role in this thesis.

The p-adic numbers: for each prime number p, Qp denotes the field of p-adic
numbers with the p-adic valuation ordp : Qp → Z ∪ {∞}. The valuation ring is
the ring of p-adic integers, denoted by Zp, and the maximal ideal is pZp. The
residue field is the finite field Fp with p elements.

The p-adic fields: let K be a finite field extension of Qp, then the p-adic
valuation ordp extends uniquely to K → 1

eZ ∪ {∞} for some e ∈ N \ {0}. Since
it is more convenient to work with value group Z than 1

eZ, we will rescale the
valuation, i.e., ord: K → Z ∪ {∞} : x 7→ e · ordp(x), for all x 6= 0. Any element
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$ with ord($) = 1 is called a uniformizer. After fixing a uniformizer $, we
can define an angular component map

ac : K → OK : x 7→
{
x$−ord(x) if x 6= 0;
0 if x = 0,

which induces naturally an angular component map ac modulo MK . The
residue field ofK is a finite field FqK , with qK = pf elements for some f ∈ N\{0}.
The p-adic fields are sometimes also referred to as non-archimedean local fields
of characteristic zero.

The valuation induces a norm on a p-adic field K:

|x| := q
−ord(x)
K ,

which gives the same open and closed balls as we defined above. For p-adic
fields K the closed and open balls are actually the same, since B◦γ(x) = Bγ+1(x).
With the operation of addition, K can be seen as a locally compact, Hausdorff
topological group. So there exist a unique countable additive, translation
invariant measure µ on K for which µ(OK) = 1. This measure is called a Haar
measure on K. The measurable subsets of K are the sets in the σ-algebra
generated by the open subsets of K. At some point we will encounter Lebesgue
integrals of certain measurable functions from Kn to C, which are an important
object of study in this thesis.

The Henselian valued fields: when we apply the quotient map OK → kK
to the coefficients of a polynomial f ∈ OK [x], we obtain a polynomial in kK [x]
that we denote by f . When studying valued fields, it can be useful to be able
to lift polynomial roots of f to roots of f .
Definition 1.0.3. Let K be a valued field. We say that K is Henselian if each
polynomial f ∈ OK [x] satisfies the following property: if x ∈ kK is a simple
zero of f , i.e., f(x) = 0 and f ′(x) 6= 0, then there exists a unique y ∈ OK , such
that f(y) = 0 and y = x.

The p-adic numbers and p-adic fields are examples of Henselian valued fields.

The p-adically closed fields: an important class of Henselian valued fields in
this thesis is the class of p-adically closed fields. They are the p-adic analogue
of real closed fields and can be defined in a model theoretic way.
Definition 1.0.4. A valued field K is called p-adically closed if it is Lring-
elementary equivalent to a p-adic field.

It follows from this definition that the value group ΓK of a p-adically closed field
is a Z-group, i.e., LPres-elementary equivalent to Z. This implies that p-adically
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closed fields have uniformizing elements $. Furthermore, their residue field is
finite of characteristic p. Another way of defining p-adically closed fields is the
following: a valued field (K1, ord1) is p-adically closed if it is a (not necessarily
algebraic) field extension of a p-adic field (K, ord), such that ord1 extends ord,
uniformizers of K remain uniformizers of K1, the residue fields kK1 and kK are
isomorphic and there exists no proper algebraic field extension (K2, ord2) of
(K1, ord1) with these properties.

We will mostly be interested in structures (K;L), that consist of a p-adically
closed field K and a language L ⊇ Lring, that satisfy some minimality condition.

Before we introduce the context of the specific topics of this thesis, we will fix
some general notation. If S and Y are any kinds of sets, X ⊆ S × Y and s ∈ S,
then

Xs := {y ∈ Y | (s, y) ∈ X}

denotes the fiber over s and πS : X → S the projection onto S. In particular,
if X ⊂ Kn, then the projection onto the first n− 1 coordinates is denoted by
πn−1. The topological interior and closure of X, when defined, are denoted by
Int(X) and Cl(X), respectively.

1.1 P -minimal fields and cell decomposition

In a large part of this thesis we will be working with p-adically closed fields with
a P -minimal structure on them. In particular, we are interested in integrals of
certain complex valued functions over definable subsets of such fields. Hence, a
good understanding of the definable sets in P -minimals fields is necessary. Cell
decomposition theorems provide a tool to better understand the structure of
these sets.

1.1.1 o-minimality

The notion of P -minimality was inspired by the one of o-minimality. In general,
o-minimal structures do not necessarily have to be fields, but since we are
only interested in fields, we will restrict to that case. For more background on
o-minimal structures (not only fields), we refer to [vdD98].

Definition 1.1.1. Let L ⊇ {<} and letR be a totally ordered field. A structure
(R;L) is called o-minimal if every L-definable subset of R is a finite union
of intervals and points. Recall that for us ‘definable’ means ‘definable with
parameters’.
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Another way of phrasing the condition of o-minimality is saying that every
L-definable subset of R is in fact {<}-definable. In a real closed field R, i.e., a
field that is Lring-elementary equivalent to the real numbers R, it is possible to
define a total order using only the ring language Lring:

< := {(x, y) ∈ R2 | ∃z : z 6= 0 ∧ x+ z2 = y}.

One can prove that the Lring-definable subsets ofR are exactly the {<}-definable
subsets of R. This observation will be essential for the analogy between o-
minimal fields and P -minimal fields, because for p-adically closed fields we
cannot use the language {<}, but we can use Lring.

An example of an o-minimal field is (R;Lring ∪ {<, exp}) (see [Wil96]), where
exp: R→ R is the usual exponential function. Other examples can be found in
[Wil99]. The fact that there exist many examples of o-minimal structures makes
the theory of o-minimality interesting for real geometers and has provided
an important application of model theory. Moreover, o-minimal structures
share many nice geometric properties. In particular their geometry does not
exhibit any ‘wild’ behaviour and is therefore often referred to as ‘tame geometry’.
One of the results that has been crucial to the development of o-minimality,
is the cell decomposition theorem. Informally, this theorem states that from
the assumption that we have on the definable subsets of R, we can deduce a
description of the definable subsets of Rn, for all n > 1. More precisely, any
definable subset of Rn can be partitioned as a finite union of some specific
definable sets, called cells.

Definition 1.1.2. Let R be an ordered field and L ⊇ {<}. For n ∈ N \ {0}
and (i1, . . . , in) ∈ {0, 1}n we define the notion of (i1, . . . , in)-cell C ⊆ Rn by
induction on n.

• For n = 1 a (0)-cell is a point {r} ⊆ R and a (1)-cell is an open interval
(a, b) ⊆ R.

• For n > 1 and (i1, . . . , in−1) ∈ {0, 1}n−1, an (i1, . . . , in−1, 0)-cell is a set
of the form

{(s, t) ∈ C ×R | t = f(s)},

and an (i1, . . . , in−1, 1)-cell is a set of the form

{(s, t) ∈ C ×R | f(s) �1 t �2 g(s)},

where C ⊆ Rn−1 is an (i1, . . . , in−1)-cell, f, g : C → R are L-definable
functions and �1,�2 are either < or ‘no condition’, which means that
either f(s) < t (resp. t < g(s)) or there is no lower (resp. upper) bound
on t.
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The cell decomposition theorem presented here is a reformulation of some of
the results from [PS86] and [KPS86].

Theorem 1.1.3. Let (R;L) be an o-minimal field. Any L-definable set X ⊆ Rn
can be partitioned into a finite number of cells. Moreover, if f : X → Rm is an
L-definable function, then there exists a partition of X into cells Ci, such that
the restrictions f|Ci : Ci → Rm are continuous.

1.1.2 P -minimality

The promising developments in o-minimality motivated a whole bunch of
minimality concepts, including v-minimality and C-minimality. The one we
are interested in, P -minimality, was introduced by Haskell and Macpherson in
[HM97] as a p-adic analogue of o-minimality. Originally, their definition used a
sightly different language than the ring language and was not restricted to the
class of p-adically closed fields. They defined the notion of P -minimality for any
valued field of characteristic 0 with value group a Z-group and finite residue
field of characteristic p, Next, they showed that if such a field is P -minimal,
then it must be Henselian, hence p-adically closed. Therefore the following,
equivalent formulation is now often taken as the definition for P -minimality.

Definition 1.1.4. Let L ⊇ Lring and let K be a p-adically closed field. A
structure (K;L) is called P -minimal if, for every structure (K ′;L) elementary
equivalent to (K;L), the L-definable subsets of K ′ coincide with the Lring-
definable subsets of K ′.

It was proven in [KPS86] that any structure (R′;L) elementary equivalent to
an o-minimal structure (R;L), is also o-minimal. Therefore the definition of
o-minimality looks slightly simpler than the one of P -minimality.

For any p-adically closed field K the structures (K;Lring) and (K;Lan) are
P -minimal structures. As a consequence all intermediate structures (K;L),
where Lring ⊆ L ⊆ Lan, are P -minimal as well. Only some of these intermediate
structures have been studied and unfortunately, no other examples are known
yet. Therefore, finding new structures would be an important development for
P -minimality. In this thesis, however, we will focus on investigating properties
shared by all P -minimal structures, in particular a cell decomposition theorem.

As in the o-minimal setting, it is essential for the development of P -minimality to
have a (strong enough) cell decomposition theorem for definable sets. The first
person to prove such a theorem in a specific case, was Denef, whose work was
inspired by the work of Cohen [Coh69]. Before the notion of P -minimality was
introduced, Denef developed a cell decomposition theorem for semi-algebraic
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subsets of p-adic fields, i.e., definable sets in (K;Lring), or, equivalently, in
(K;LMac). He used this theorem to prove the rationality of certain Poincaré
series [Den84] and to give a new proof of the result of Prestel and Roquette that
the theory of p-adically closed fields has quantifier elimination for the language
LMac [Den86]. The cells that Denef introduced, were of the form{

(s, t) ∈ S ×K
∣∣∣∣ ord(a(s))�1 ord(t− c(s))�2 ord(b(s))∧
t− c(s) ∈ λPn

}
, (1.1.1)

where S is a definable set, a, b, c : S → K are definable functions, �1,�2 are
either < or ‘no condition’, λ ∈ K and n > 1. The function c : S → K is called
the center of the cell. If λ = 0, we call this cell a 0-cell and if λ 6= 0, a 1-cell.

When working with cells, where the set S and the functions a, b, c are definable
in the subanalytic language Lan, Cluckers obtained a cell decomposition for
subanalytic sets [Clu04]. An important generalisation of these two p-adic cell
decomposition results was given by Mourgues in [Mou09]. She gave a necessary
and sufficient condition for a P -minimal structure to satisfy a cell decomposition
result with cells of the form (1.1.1). To understand her result, we first need the
following definition.

Definition 1.1.5. A structure (K;L) has definable Skolem functions, if for
each definable set X ⊂ Kn+1, there exists a definable function f : πn(X)→ K,
such that for all x ∈ X, (πn(x), f(πn(x))) ∈ X. Such a function is sometimes
also called a definable section.

Theorem 1.1.6 ([Mou09]). Let (K;L) be a P -minimal structure. Then the
following are equivalent.

(i) Each definable set partitions as a finite union of sets of the form (1.1.1).

(ii) The structure (K;L) has definable Skolem functions.

When Mourgues proved this theorem, it was not known whether all P -minimal
fields have definable Skolem functions. An o-minimal structure where the
language contains at least the symbols < and +, always has definable Skolem
functions [vdD98, Section 6.1]. However, choosing points in a definable way may
be easier in o-minimal fields than in P -minimal fields. In R it is easy to describe
a point in an interval (a, b) by taking the midpoint a+b

2 . There is however no
natural way of picking a point from a ball in Qp, since any point in such a ball
can be seen as the center of the ball. Indeed, by now we know, by a result of
Cubides and Nguyen [CN17b], that there exist P -minimal fields that do not
admit definable Skolem functions. Hence Theorem 1.1.6 implies that there exist
P -minimal fields in which not all definable sets can be partitioned into finitely
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many cells of the form (1.1.1). Hence, we need to adapt the definition of cells
of Denef to get a cell decomposition theorem valid in all P -minimal structures.

A first adaptation was introduced by Leenknegt. She showed that one can
slightly change the notion of cells to one that is easier to work with, by choosing
a uniformizer $ ∈ K and replacing the predicate Pn by

Qn,m := {x ∈ K× | ord(x) ≡ 0 mod n ∧ acm(x) = 1},

for n,m ∈ N \ {0}, and where acm : K× → (OK/$mOK)× is the unique group
homomorphism that satisfies acm($) = 1 and acm(x) = (x mod $m) for every
unit x ∈ O×K . Such a function exists in any p-adically closed field [CL12, Lemma
1.3]. In the case that K is a p-adic field, we have acm(x) = (ac(x) mod $m).

Secondly, we will work in two-sorted structures (K,ΓK ;L2), where we also
consider a sort for the value group ΓK . As explained before the language L2
consists of a language L ⊇ Lring on K, the Presburger language LPres on ΓK
and a map ord : K× → ΓK that connects the two sorts. The definition of
P -minimality in the two-sorted context is motivated by the result below by
Cluckers, which shows that in a P -minimal structure (K;L), with the valuation
map ord one can define exactly the LPres-definable subsets of ΓK . So it is
natural to take the Presburger language for the value group sort. Furthermore
Cluckers’ result implies that the L2-definable subsets of Kn are exactly the
L-definable subsets.

Theorem 1.1.7 ([Clu03], Lemma 2 and Theorem 6). Let (K;L) be a P -minimal
field.

(i) Let X ⊆ (K×)n be an L-definable set, then

ord(X) := {(ord(x1), . . . , ord(xn)) ∈ ΓnK | (x1, . . . , xn) ∈ X}

is LPres-definable.

(ii) Let W ⊆ ΓnK be an LPres-definable set, then

ord−1(W ) := {(x1, . . . , xn) ∈ (K×)n | ord(x) ∈W}

is Lring-definable.

The definition of a P -minimal field in the two-sorted context is the following.

Definition 1.1.8. Let L ⊇ Lring and L2 = (L,LPres, ord) and let K be a
p-adically closed field with value group ΓK . A structure (K,ΓK ;L2) is called
P -minimal if the underlying structure (K;L) is P -minimal.
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Having variables from two different sorts means that we will need two kinds of
cells: K-cells where the last variable is from the VF-sort and Γ-cells where the
last variable is from the VG-sort. In [CL16] Cubides and Leenknegt introduce a
notion of Γ-cells and they prove that for a definable parameter set S ⊆ Kr1×Γr2

K ,
a definable set X ⊆ S × ΓK can be partitioned into finitely many Γ-cells. They
even prove that there exists a cell decomposition of X such that a definable
function f : X → ΓK is of a specific form on each of the Γ-cells in the partition.
This part of the result is sometimes referred to as function preparation.

Theorem 1.1.9 ([CL16], Proposition 2.4). Let f : X ⊆ S × ΓK → ΓK be
definable in a P -minimal structure (K,ΓK ;L2). Then there exists a finite
partition of X into Γ-cells of the form

C = {(s, γ) ∈ D × ΓK | α(s)�1 γ�2 β(s) ∧ γ ≡ k mod n},

where D is a definable subset of S, α, β : D → ΓK are definable functions, �1
and �2 are either < or ‘no condition’ and k, n ∈ N. Furthermore, on each cell
C, the function f has the form

f|C(s, γ) = a

(
γ − k
n

)
+ δ(s),

where a ∈ Z and δ : D → ΓK is a definable function.

Finding a good notion of K-cells is the more tricky part. The idea is to stay
close to the cells introduced by Denef, but without assuming that the structure
(K,ΓK ;L2) has definable Skolem functions. Without this assumption it is not
always possible to find a definable function c : S → K for the center of a K-cell.

A first version of a general K-cell decomposition was proposed by Cubides and
Leenknegt in [CL16]. An improvement of this result was provided in [CCL17a],
which uses simpler cells and gives a better understanding of the geometric
structure of definable sets in general P -minimal fields. The content of this paper
is presented in Chapter 2.

There are other interesting results on definable sets in P -minimal structures,
that take different approaches than the one we follow. Darnière and Halupczok
[DH17] define the class of p-optimal fields, which is a subclass of the P -minimal
fields with definable Skolem functions. For these fields they prove a function
preparation result. Cubides, Darnière and Leenknegt [CDL17] prove a cell
decomposition theorem for P -minimal structures where the cells are more
topological in nature.
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1.2 Constructible functions

The cell decomposition techniques that Denef developed for the semi-algebraic
language, were motivated by questions about the rationality of certain Poincaré
series [Den84]. In the study of these Poincaré series, p-adic integrals appear
naturally. As explained before, one can use cell decomposition techniques to
partition the domain of integration into cells. Evaluating p-adic integrals over
cells is sometimes easier to do than over general definable sets and if some
preparation theorem is available, then the integrand might simplify.

Studying certain families of p-adic integrals Denef introduced a class of functions
called (p-adic) constructible functions. These functions (and some other types
of constructible functions as well) were generalised by Cluckers and Loeser
to the motivic setting. By introducing additive characters they extended the
constructible functions to the exponential-constructible functions. This opened
the way to doing Fourier transformations in a very general setting and brought
exponential sums into the picture.

In order to do integration we have to fix some measure. Remember that there
is a unique Haar measure on a p-adic field K such that OK has measure 1. We
will integrate with respect to this measure on K and the counting measure on Z.
If S and Y are sets containing both K-variables and ΓK -variables, X ⊆ S × Y
and f : X → C, then the locus of integrability of f with respect to Y is

Int(f, Y ) := {s ∈ S | f(s, · ) is measurable and integrable over Xs}.

1.2.1 Constructible functions over p-adic fields

Let K be a p-adic field. We start with the following natural question. Let S and
X ⊆ S ×K be Lring-definable sets and f : X → K an Lring-definable function.
What do the functions

s 7→
∫
Xs

ord(f(x))|dx| and s 7→
∫
Xs

q
−ord(f(x))
K |dx|

look like?

In [Den85] Denef showed that these families of integrals are functions on S of
a specific form. He gave them the name constructible functions. Although he
formulated this notion only for the semi-algebraic language, it can easily be
extended to any P -minimal structure.

Definition 1.2.1. Let (K,Z;L2) be a P -minimal structure and X a definable
set. The algebra C(X) of L2-constructible functions on X is the Q-algebra
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generated by the constant functions and the functions of the form

α : X → Z and X → Q : x 7→ q
β(x)
K ,

where α, β : X → Z are definable.

In the same paper [Den85] Denef showed that the algebras of Lring,2-constructible
functions are base-stable under integration of K-variables. We will define this
notion and a more general notion, where integration over Z-variables (i.e.,
summation) is also allowed, for general classes of functions.

Definition 1.2.2. Let (K,Z;L2) be a P -minimal structure and H a class
of C-valued functions on definable sets. We say that H is base-stable under
integration if, for all definable sets S and X ⊆ S × Y and for every f : X → C
with f ∈ H and Int(f, Y ) = S, there exists g : S → C, such that g ∈ H and for
all s ∈ S,

g(s) =
∫
Xs

f(s, x)|dx|.

We say that H is base-stable under integration of K-variables if the above
condition holds for all definable sets X ⊆ S ×Km, for all m ∈ N.

Denef uses semi-algebraic cell decomposition and function preparation to show
the stability under integration of K-variables. In [Clu04], where Cluckers
generalises Denef’s cell decomposition to subanalytic structures, he also
shows that the algebras of Lan,2-constructible functions are base-stable under
integration of K-variables.

Cubides and Leenknegt [CL16] have generalised the results of Denef and Cluckers
to all P -minimal fields, i.e., without assuming the existence of definable Skolem
functions. They used (and proved) a cell decomposition theorem that served as
the basis for our cell decomposition.

Theorem 1.2.3 ([CL16], Theorem 4.1). Let K be a p-adic field and (K,Z;L2)
a P -minimal structure. Let S and X ⊆ S × Y be definable sets and f ∈ C(X)
with Int(f, Y ) = S. Then there exists g ∈ C(S) such that for all s ∈ S,

g(s) =
∫
Xs

f(s, x)|dx|.

1.2.2 Constructible motivic functions

Inspired by the work on p-adic constructible functions and p-adic integration,
Cluckers and Loeser transformed these ideas to the motivic setting. Their
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theory of motivic integration generalises the theory of Kontsevich by allowing
the integrals to depend on parameters. Furthermore, their constructible motivic
functions specialize to p-adic constructible functions and motivic integration
specializes to p-adic integration. In this subsection we will give some definitions
and results from the theory of motivic integration as developed by Cluckers and
Loeser. For more background we refer to [CL05] and [CL08].

We will use the Denef-Pas language

LDP = (Lring,Lring,Loag, ord, ac).

We recall that this language consists of three sorts. For the VF-sort and the
RF-sort we use the ring language Lring and for the VG-sort we use the ordered
abelian group language Loag. The map ord connects the VF-sort to the VG-sort
and the map ac connect the VF-sort to the RF-sort. Structures of the Denef-Pas
language are of the form (K, kK ,ΓK , ord, ac), where K is a valued field with
residue field kK , value group ΓK , valuation map ord: K× → ΓK and some
angular component map (moduloMK) ac : K → kK .

An important result is the elimination of valued field quantifiers in the language
LDP. Denote by Hac,0 the LDP-theory of the above described three-sorted
structures, whose valued field is Henselian and whose residue field is of
characteristic zero. Then the theory Hac,0 admits elimination of quantifiers in
the valued field sort, as stated in the following theorem. This theorem is proven
by using a cell decomposition theorem [Pas89, Theorem 3.2]. A more general
version of this cell decomposition theorem will be stated further on.

Theorem 1.2.4 ([Pas89], Theorem 4.1). The theory Hac,0 admits elimination of
quantifiers in the valued field sort. More precisely, every LDP-formula ϕ(x, ξ, α)
(without parameters), with x denoting variables in the VF-sort, ξ variables
in the RF-sort and α variables in the VG-sort, is Hac,0-equivalent to a finite
disjunction of formulas of the form

ψ
(
ac(f1(x)), . . . , ac(fr(x)), ξ

)
∧ ϑ

(
ord(f1(x)), . . . , ord(fr(x)), α

)
,

where ψ is an Lring-formula, ϑ an Loag-formula and f1, . . . , fr are polynomials
in Z[X].

This theorem implies the following, useful corollary for LDP-formulas with
parameters in the VF-sort. Let (K, kK ,ΓK) be a model of the theory Hac,0.
For a subring R of K, we denote by LDP ∪ R the language that is obtained
from LDP by adding a constant symbol for each element of R to the language
Lring for the VF-sort. Then we take TR to be the atomic diagram of R, i.e., the
set of atomic LDP ∪R-sentences and negations of atomic sentences ϕ such that
R |= ϕ, and we take HR := Hac,0 ∪ TR.
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Corollary 1.2.5 ([CL08], Corollary 2.1.2). Let (K, kK ,ΓK) be a model of the
theory Hac,0 and R a subring of K. Then Theorem 1.2.4 holds with Hac,0
replaced by HR, LDP replaced by LDP ∪R, and Z[X] replaced by R[X].

It is important to remark that by logical compactness, this theorem and its
corollary are still true for the Henselian valued fields Qp for p sufficiently large
(where the lower bound on p depends on the formulas involved).

Next we will explain rather informally the notion of constructible motivic
function. For all the details we refer to [CL08]. We will need several expansions
of the Denef-Pas language.

• If k is a field of characteristic zero, then we denote by LDP,k the language(
Lring∪k((t)),Lring∪k ,Loag, ord, ac

)
, i.e., in the VF-sort we add constant

symbols for the elements of k((t)) and in the RF-sort for the elements of
k .

• If O is the ring of integers of some number field k, then we denote by LO
the language

(
Lring ∪ O[[t]],Lring ∪ O,Loag, ord, ac

)
.

For a fixed field k of characteristic zero, we denote by Fieldk the category of
fields that contain k . For any field K ∈ Fieldk we have an LDP,k -structure
(K((t)),K,Z). There is unfortunately no first-order theory whose models are
exactly the valued fields of the form K((t)) with K a field containing k . Therefore
talk about these structures in a categorical way. For m,n, r ∈ N, we put

h[m,n, r](K) := K((t))m ×Kn × Zr,

and for an LDP,k -formula ϕ with m VF-variables, n RF-variables and r VG-
variables, we denote by hϕ(K) the definable subset of h[m,n, r](K) consisting
of points that satisfy ϕ. The category Defk has

• as objects the k-definable subassignments K 7→ hϕ(K) from Fieldk to Sets,
induced by the LDP,k -formulas ϕ;

• as morphisms f : Y → Z the k-definable subassignments hϕ that assign to
each K ∈ Fieldk , the graph hϕ(K) ⊆ Y (K)×Z(K) of a definable function
f(K) : Y (K)→ Z(K).

If Y,Z ∈ Defk , such that Y (K) ⊆ Z(K) for all K ∈ Fieldk , then we write Y ⊆ Z
and we say that Y is a k-definable subassignment of Z. For m,n, r ∈ N we put

Z[m,n, r] := Z × h[m,n, r].
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We write DefZ for the category whose objects are morphisms Y → Z in Defk
and whose morphisms f are given by commutative triangles

Y Y ′

Z

f

in Defk . We denote RDefZ for the full subcategory of DefZ on the objects
Y → Z, where Y ⊆ Z[0, n, 0] for some n ∈ N and where Y → Z is induced by
the projection Z[0, n, 0]→ Z.

The Cluckers-Loeser theory of motivic integration is not only inspired by the
p-adic constructible functions from Definition 1.2.1 with p-adic integration,
but also constructible functions over the real numbers with integration along
the Euler characteristic as in [Vir88]. That is why we introduce the following
Grothendieck ring, that is an analogue of the Grothendieck ring of varieties.

Definition 1.2.6. Let Z ∈ Defk . The Grothendieck group K0(RDefZ) is the
quotient of the free abelian group on the symbols [Y → Z], for Y → Z objects
of RDefZ , by the relations

(i) [Y → Z] = [Y ′ → Z], if Y → Z is isomorphic with Y ′ → Z,

(ii) [Y ∪ Y ′ → Z] + [Y ∩ Y ′ → Z] = [Y → Z] + [Y ′ → Z], where Y, Y ′ ⊆
Z[0, n, 0] for some n ∈ N.

The Cartesian fiber product over Z induces a natural ring structure on
K0(RDefZ) by

[Y → Z]× [Y ′ → Z] := [Y ×Z Y ′ → Z].

Informally, this Grothendieck ring will specialize, over a p-adic field K, to
counting points of fibers of projections Y (K) ⊆ Z(K)× knK → Z(K).

The next part consists of a generalisation of the constructible functions from
Definition 1.2.1. We consider a formal symbol L and the ring

A := Z
[
L,L−1,

( 1
1− L−i

)
i>0

]
.

If Z is a k-definable subassignment, then the points of Z are tuples z = (z0,K),
where z0 ∈ Z(K) and K ∈ Fieldk . We denote the set of points of Z by |Z|.

Definition 1.2.7. Let Z be in Defk . The ring P(Z) of constructible Presburger
functions on Z is defined as the subring of the ring of functions |Z| → A,
generated by
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• the constant functions |Z| → A;

• the functions α̂ : |Z| → Z that correspond to a definable morphism α : Z →
h[0, 0, 1];

• the functions Lβ̂ : |Z| → A that correspond to a definable morphism
β : Z → h[0, 0, 1].

There is some subring P0(Z) of P(Z) consisting of functions that can be
viewed as elements of K0(RDefZ) as well. We will write LZ for the class
[Z × h[0, 1, 0] → Z] and LZ − 1 for the class [Z × (h[0, 1, 0] \ {0}) → Z] in
K0(RDefZ).

Definition 1.2.8. Let Z be in Defk . We denote by P0(Z) the subring of P(Z),
generated by

• the functions 1Y , for all Y ⊆ Z, which take the value 1 on |Y | and 0 on
|Z \ Y |;

• the constant function L− 1.

Then there is a canonical ring morphism P0(Z)→ K0(RDefZ) sending 1Y to
the class of the inclusion morphism [i : Y → Z] and L− 1 to LZ − 1.

Now we are ready to define constructible motivic functions. For technical
reasons related to the purpose of integration, dimensions have to be taken
into account when developing the notion of motivic integration. That is why
Cluckers and Loeser also introduced constructible motivic Functions.

Definition 1.2.9. Let Z be in Defk . We define the ring C(Z) of constructible
motivic functions on Z as

C(Z) := K0(RDefZ)⊗P0(Z) P(Z).

Let Y be a subassignment of h[m,n, r], for some m,n, r ∈ N. We denote
by dimY the dimension of the Zariski closure of π(Y ) for π the projection
h[m,n, r]→ h[m, 0, 0]. For a natural number d, we denote by C6d(Z) the ideal
of C(Z) generated by all elements of the form 1Y , with Y ⊆ Z, such that
dimY 6 d. We set

Cd(Z) := C6d(Z)/C6d−1(Z) and C(Z) :=
⊕
d>0
Cd(Z).

The elements of C(Z) are called constructible motivic Functions.
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In [CL08] Cluckers and Loeser construct, for S in Defk and Z in DefS , a graded
subgroup ISC(Z) of C(Z) of S-integrable Functions and for each morphism
f : Y → Z in DefS a map f! : ISC(Y ) → ISC(Z), satisfying a list of axioms,
that represent natural condition for integration. When S = h[0, 0, 0] and
f : Y → h[0, 0, 0], then the map f! : ISC(Y )→ C(h[0, 0, 0]) is exactly the same
as taking the integral over Y .

An essential element in proving the above statements is the following cell
decomposition theorem, which is a generalisation of [Pas89, Theorem 3.2].

Definition 1.2.10. Let S be in Defk and C ⊆ S. Let α, ξ, c be morphisms
α : C → h[0, 0, 1], ξ : C → h[0, 1, 0] and c : C → h[1, 0, 0] in Defk . The 0-cell
ZC,c with basis C and center c, is the definable subassignment of S[1, 0, 0],
defined by the formula

y ∈ C ∧ z = c(y),
where y belongs to S and z to h[1, 0, 0]. Similarly, the 1-cell ZC,α,ξ,c with basis
C, order α, angular component ξ and center c, is the definable subassignment
of S[1, 0, 0], defined by the formula

y ∈ C ∧ ord(z − c(y)) = α(y) ∧ ac(z − c(y)) = ξ(y),

A definable subassignment Z of S[1, 0, 0] will be called a 0-cell, resp. 1-cell, if
there exists a definable isomorphism

λ : Z → ZC = ZC,c ⊆ S[1, s, 0],

resp. a definable isomorphism

λ : Z → ZC = ZC,α,ξ,c ⊆ S[1, s, r],

for some r, s > 0, some basis C ⊆ S[0, s, 0], resp. S[0, s, r], and some 0-cell
ZC,c, resp. 1-cell ZC,α,ξ,c, such that the morphism π ◦ λ, with π the projection
ZC → S[1, 0, 0], is the identity on Z. The data (λ, ZC,c), resp. (λ, ZC,α,ξ,c), will
be called a presentation of the cell Z and denoted for short by (λ, ZC).

Theorem 1.2.11 ([CL08], Theorem 7.2.1). Suppose that k is a field of
characteristic 0. Let X be a definable subassignment of S[1, 0, 0] with S in
Defk . Then the following statements hold.

(i) The subassignment X can be written as a finite disjoint union of cells.

(ii) For every ϕ ∈ C(X), there exists a finite partition of X into cells Zi with
presentation (λi, ZCi), such that ϕ|Zi = λ∗i p

∗
i (ψi), with ψi ∈ C(Ci) and

pi : ZCi → Ci the projection. Similar statements hold for ϕ in P(X) and
in K0(RDefX).
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Corollary 1.2.12. Let O be the ring of integers of a number field k. Then
Theorem 1.2.11 still holds, if we work with the language LO instead of LDP,k.

Proof. The proof is the same as for Theorem 1.2.11, but we replace LDP,k by
LO ⊆ LDP,k.

1.2.3 Specialization

We have already informally explained the similarities between constructible
motivic functions and p-adic constructible functions. Now we will make this
more precise. Essentially it comes down to choosing a uniformizer $ for a p-adic
field and ‘replacing t by $’.

Let k be a number field with O its ring of integers. We denote by FO the set of
all p-adic completions of k and of finite field extensions of k. All the fields in
FO can be equipped with the structure of an O-algebra. For N ∈ N we denote
by FO,N the set of all fields K ∈ FO whose residue field kK has characteristic
at least N .

We will work with the language LO. The category DefLO consists of the definable
subassignments that can be defined in the language LO. If S ∈ DefLO , then the
ring of constructible motivic functions C(S,LO) consists of the constructible
motivic functions on S that can be formed with formulas in the language LO.

Let K ∈ FO. For each choice of a uniformizing element $K of OK , there
is a unique angular component map (modulo MK) ac$K : K× → k×K , which
extends the map ‘reduction modulo MK ’: O×K → k×K and sends $K to 1.
Then (K, kK ,Z) is an LDP-structure with respect to $K . Moreover K can be
equipped with the structure of an O[[t]]-algebra via the morphism

λ$K : O[[t]]→ K :
∑
i>0

ait
i 7→

∑
i>0

ai$
i
K .

By interpreting a ∈ O[[t]] as λ$K (a), the structure (K, kK ,Z) becomes an
LO-structure. An LO-formula ϕ defines, for each K ∈ FO (and a choice of
uniformizer $K) a definable subset ϕ(K) of Km×knK×Zr, for some m,n, r ∈ N.
If we have two LO-formulas ϕ1 and ϕ2, which define the same subassignment of
h[m,n, r] from Fieldk to Sets, then, by logical compactness, there exists N0 ∈ N,
such that for all N > N0, we have ϕ1(K) = ϕ2(K), for all K ∈ FO,N (and for
any choice of $K).

Let Y ∈ DefLO be defined by a formula ϕ in the language LO. Even though
there could be other LO-formulas defining the same subassignment Y , we will
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usually just choose one. For any K ∈ FO and uniformizer $K , we denote
the interpretation of Y in K by YK,$K := ϕ(K). We will often simplify the
notation to YK and use the notation YK,$K (or Y$K ) only when the dependence
on $K is important. Similarly, each morphism f : Y → Z in DefLO has an
interpretation fK : YK → ZK .

Now we will explain how a constructible motivic function θ ∈ C(S,LO) specializes
to a constructible function θK ∈ C(SK) (as in Definition 1.2.1) over a field
K ∈ FO.

• For the elements of P(S), we replace L by qK and definable functions
α : S → h[0, 0, 1] by their interpretations αK : SK → Z.

• The elements θ = [Y f→ S] in K0(RDefS,LO ), with f : Y → S a morphism
in DefLO , are interpreted in K by putting

θK(s) := #(f−1(s)),

for all s ∈ SK .

Of course these interpretations can depend on the choice of formulas needed to
define θ.

In [CL05, Theorem 6.9] Cluckers and Loeser show that specialization commutes
with integration, in the sense that for an integrable motivic function, the
specialization of its motivic integral equals the p-adic integral of its specialization
for almost all prime numbers p.

1.2.4 Exponential-constructible functions

Exponential-constructible functions were first introduced in the motivic setting
by Cluckers and Loeser in [CL10]. They are obtained by adding additive
characters on the VF- and RF-variables to the constructible motivic functions.
This is done by extending the category RDefZ to the category RDefexp

Z . The
Grothendieck ringK0(RDefexp

Z ) is obtained by quotienting the free abelian group
on the elements of RDefexp

Z by some relations. The rest of the construction is
similar to the construction of the constructible motivic functions.

Cluckers-Loeser also give the definition of the p-adic analogue of the exponential-
constructible functions for the semi-algebraic and subanalytic languages and
show that they can be obtained from the motivic ones by specialization.
Furthermore, they show that the p-adic exponential-constructible functions
are base-stable under integration over K-variables (see Definition 1.2.2) under
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an extra condition. We will formulate their definition and result for two sorted
languages and put it in the context of general P -minimal structures on p-adic
fields.

Let K be a p-adic field and ψ : K → C× an additive character, such that
ψ|MK

= 1 and ψ|OK 6= 1. An example of such a function on Qp is

ψ(x) = exp
(

2πix′
p

)
,

where x′ ∈ Z
[ 1
p

]
∩ (x+MK).

Definition 1.2.13. Let (K,Z;L2) be a P -minimal structure and X a definable
set. The algebra Cexp,ψ(X) of L2-exponential-constructible functions on X is
the Q-algebra generated by the functions in C(X) and the functions of the form
ψ ◦ f , where f : X → K is definable.

We will write Cexp(X) rather than Cexp,ψ(X) when no confusion is possible.

Theorem 1.2.14 ([CL10], Proposition 8.6.1). Let L be either Lring or Lan, S
and X ⊆ S ×Kn definable sets and f ∈ Cexp(X) with

f(s, x) =
m∑
i=1

hi(s, x)ψ(fi(s, x)), (1.2.1)

where, for each i ∈ {1, . . . ,m}, hi ∈ C(X) with Int(hi,Kn) = S and fi is a
definable function. Then there exists g ∈ Cexp(S) such that for all s ∈ S,

g(s) =
∫
Xs

f(s, x)|dx|.

In a subsequent paper, Cluckers, Gordon and Halupczok managed to remove
the condition (1.2.1) on the form of f , thereby showing that for Lring and
Lan, the algebras of exponential-constructible functions are always base-stable
under integration over K-variables [CGH14, Theorem 3.2.1]. Moreover, they
also managed to remove the condition on the locus of integrability, for both
constructible and exponential-constructible functions.

It is natural to ask whether the result of Cubides and Leenknegt for constructible
functions in general P -minimal structures (Theorem 1.2.3) can be extended to
exponential-constructible functions and under what conditions. In Chapter 3
we will discuss [CCL18] in which such an extension is proposed.



IGUSA ZETA FUNCTIONS AND EXPONENTIAL SUMS 29

1.3 Igusa zeta functions and exponential sums

In this section we will discuss the relation between certain exponential sums
over p-adic fields and the Igusa zeta functions. Furthermore, we will study the
asymptotic behaviour of these sums, when the residue field characteristic goes
to infinity.

We fix a number field k and a nonconstant polynomial f ∈ k[x] in n variables
x = (x1, . . . , xn). Let p be a prime ideal of the ring of integers O of k. We
denote the completions of O and k with respect to p by Op and Kp respectively.
The field Kp is a p-adic field for some prime number p ∈ p, with valuation ring
Op, maximal ideal pOp, value group Z, residue field kp (with q = pf elements)
and a choice of uniformizer $ induces an angular component map ac: Kp → Op.
Furthermore we will encounter the following functions.

• Φ: Kn
p → C denotes a Schwartz-Bruhat function, that is, a locally constant

function with compact support, denoted by Supp(Φ). We say that Φ is
residual if Supp(Φ) ⊆ Onp and if Φ(x) only depends on (x mod pOnp ). In
this case Φ induces a function Φ: knp → C.

• χ : O×p → C× denotes a multiplicative character, i.e., a multiplicative
group homomorphism with finite image. We denote d(χ) for #(Im(χ))
and c(χ) for the conductor of χ, that is, the smallest c > 1 such that χ is
constant on pcOp. Moreover, we put χ(0) = 0.

• Ψ: Kp → C× denotes the standard additive character on Kp, i.e.,
Ψ(x) = exp(2πiTrKp/Qp(x)), where TrKp/Qp(x) is the trace of the map
‘multiplication by x’, seen as a Qp-linear map on Kp.

1.3.1 Igusa zeta functions

The Igusa zeta functions are closely related to the Poincaré series that we saw
in the introduction and whose coefficients count the number of solutions of
congruences modulo pm. We consider these zeta functions for their relation to
certain exponential sums.

Definition 1.3.1. To a nonconstant polynomial f ∈ k[x1, . . . , xn], a prime
ideal p, a multiplicative character χ and a Schwartz-Bruhat function Φ we
can associate the Igusa local zeta function, which is a function in the complex
variable s ∈ C, with Re(s) > 0:

ZΦ
f (s, p, χ) :=

∫
Kn

p

Φ(x)χ
(
ac(f(x))

)
|f(x)|s|dx|,
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where ac(f(x)) ∈ O×p ∪ {0}, thus χ
(
ac(f(x))

)
is well-defined.

When the polynomial f is clear from the context, we will write simply ZΦ(s, p, χ).
If we see ZΦ(s, p, χ) as a function in the variable t = q−s, then it is a rational
function in t, which was shown by both Igusa [Igu75] and Denef [Den84]. As a
consequence there exists a meromorphic continuation of ZΦ(s, p, χ) to all of C.

In what follows, we will mention some results of Denef that give more explicit
formulas for the Igusa zeta functions, expressed in terms of the numerical data
associated to a resolution of the singularities of f−1(0). A nice overview of
these results can be found in [Den91b]. Let us fix some notation. Let kalg be an
algebraic closure of k. Fix any embedded resolution h : Y → (kalg)n of f−1(0).
Let E be a prime divisor on Y , then we denote the multiplicities of E in the
divisors f ◦h and h∗(dx1∧ . . .∧dxn) by N and ν−1 respectively. We denote by
{Ei | i ∈ T} the set of prime divisors from (f ◦ h)−1(0) and the corresponding
multiplicities {(Ni, νi) | i ∈ T} are called the numerical data of the resolution
(Y, h).

We will use the following notation. For any I ⊆ T we denote EI := ∩i∈IEi.
So in particular, E∅ = Y . Moreover, we will use Cf ⊆ (kalg)n to denote the
critical locus of f , i.e., the points where all partial derivatives of f vanish, and
Vf ⊆ kalg to denote the set of critical values of f , i.e., Vf := f(Cf ). The set Vf
is a finite set.

For a closed subscheme Z of Y there exists the notion of the reduction modulo
p of Z, denoted by Z. For a precise definition see [Shi55]. In what follows it
is necessary that the resolution (Y, h) behaves well under reduction modulo p.
What we mean by this is explained in the following definition.
Definition 1.3.2. We say that an embedded resolution (Y, h) of f−1(0) has
good reduction modulo p if Y and Ei are smooth for all i ∈ T , ∪i∈TEi has only
normal crossings and Ei and Ej have no common components for all i, j ∈ T
with i 6= j.

We say that a resolution (Y, h) has tame good reduction modulo p if it has good
reduction modulo p and furthermore Ni /∈ p, for all i ∈ T .

If (Y, h) has good reduction modulo p, then EI = ∩i∈IEi, for any I ⊆ T . We
will write

EI
◦ := EI \

⋃
j∈T\I

Ej .

Furthermore, in the local ring of Y at a ∈ EI
◦ we can write

f ◦ h = u
∏
i∈I

yi
Ni ,
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where u is a unit and {yi}i∈I is part of a regular system of parameters of the
local ring.

A resolution (Y, h) has (tame) good reduction modulo p for all but finitely
many prime ideals p [Den87, Theorem 2.4]. Also f ∈ Op[x] and f 6= 0 for all
but finitely many prime ideals p. When we exclude these finitely many prime
ideals, we can give more explicit formulas for the Igusa zeta functions. There
are two cases to be distinguished. In the first case we consider a character χ
with conductor c(χ) = 1. Such a character induces a character χ on k×p .

Theorem 1.3.3 ([Den91a], Theorem 2.2). Let f ∈ k[x1, . . . , xn] be nonconstant
and let p be a prime ideal of O, such that f ∈ Op[x], f 6= 0 and the resolution
(Y, h) has good reduction modulo p. Take Φ a residual Schwartz-Bruhat function
and χ a multiplicative character with conductor c(χ) = 1. Then

ZΦ(s, p, χ) = q−n
∑
I⊆T,

∀i∈I:d(χ)|Ni

cI,χ,Φ
∏
i∈I

q − 1
qNis+νi − 1 ,

where
cI,χ,Φ =

∑
a∈EI

◦(kp)

Φ(h(a))Ωχ(a).

If d(χ) | Ni for all i ∈ I and a ∈ EI
◦(kp), then we define Ωχ(a) := χ(u(a)) and

if not, then Ωχ(a) := 0.

Remark 1.3.4. For characters χ with conductor c(χ) = 1 and such that for all
i ∈ T , d(χ) - Ni, we have ZΦ(s, p, χ) = 0. In particular this is the case when
d(χ) > max{Ni | i ∈ T}. It is important to note that there are only finitely
many characters χ with c(χ) = 1 and d(χ) 6 max{Ni | i ∈ T}.

The second case in which we know an explicit formula for ZΦ(s, p, χ) concerns
characters χ with conductor c(χ) > 1.

Theorem 1.3.5 ([Den91a], Theorem 2.1). Let f ∈ k[x1, . . . , xn] be nonconstant
and let p be a prime ideal of O, such that f ∈ Op[x], f 6= 0 and the resolution
(Y, h) has tame good reduction modulo p. Take Φ a residual Schwartz-Bruhat
function for which Cf ∩ Supp(Φ) ⊆ f

−1(0), and χ a multiplicative character
with conductor c(χ) > 1. Then ZΦ(s, p, χ) = 0.
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1.3.2 Exponential sums

The exponential sums that we are interested in were introduced by Weil [Wei48]
and can be written as p-adic integrals:

EΦ
f (z, p) :=

∫
Kn

p

Φ(x)Ψ(zf(x))|dx|,

where z ∈ Kp. The case z = 0 is not so interesting, so we will usually write z
as z0$

−m, where m = −ord(z) ∈ Z and z0 = ac(z) ∈ O×p . Also for any m > 2
and any y ∈ Op, we will denote by y(m) the image of y under the quotient map
Op → Op/p

mOp and if no confusion is possible we will simply write y.

For prime ideals p such that f ∈ Op[x], we will consider two special cases of these
sums, namely the global sum Ef , where we take Φ = 1Onp (the characteristic
function on Onp ),

Ef (z0$
−m, p) :=

∫
Onp

Ψ
(
z0f(x)
$m

)
|dx|

= 1
qmn

∑
x∈(Op/pmOp)n

Ψ
(
z0f(x)
$m

)
,

and the local sums Eyf around a point y ∈ Onp , where Φ = 1y+pOnp ,

Eyf (z0$
−m, p) :=

∫
y+pOnp

Ψ
(
z0f(x)
$m

)
|dx|

= 1
qmn

∑
x∈y+(pOp/pmOp)n

Ψ
(
z0f(x)
$m

)
,

where y + (pOp/p
mOp)n = {x ∈ (Op/p

mOp)n | ∀1 6 i 6 n : xi − yi ∈ pOp}.

The relation between these exponential sums and the Igusa zeta functions is
given in the following proposition.

Proposition 1.3.6 ([Den91b], Proposition 1.4.4). Let f ∈ k[x1, . . . , xn] be a
nonconstant polynomial, p a prime ideal of O, Φ a Schwartz-Bruhat function,
m ∈ Z and z0 ∈ O×p , then

EΦ
f (z0$

−m, p) = ZΦ(0, p, χtriv) + Coefftm−1
(t− q)ZΦ(s, p, χtriv)

(q − 1)(1− t)

+
∑

χ 6=χtriv

gχ−1χ(z0)Coefftm−c(χ)ZΦ(s, p, χ),
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where gχ denotes the Gaussian sum

gχ := q1−c(χ)

q − 1
∑

v∈(Op/pc(χ)Op)×
χ(v)Ψ

( v

$c(χ)

)
.

Using this proposition we can express the sums EΦ
f in terms of the poles of ZΦ.

The corollary below is similar to Corollary 1.4.5 from [Den91b] (see also [Igu75,
Theorem 2]), but under slightly different assumptions.

Corollary 1.3.7. Let f ∈ k[x1, . . . , xn] be a nonconstant polynomial, p a
prime ideal of O and Φ a Schwartz-Bruhat function, such that f ∈ Op[x],
f 6= 0, the resolution (Y, h) has tame good reduction modulo p, Φ is residual
and Cf ∩ Supp(Φ) ⊆ f

−1(0). Then, for m ∈ Z big enough and z0 ∈ O×p ,
EΦ
f (z0$

−m, p) is a finite C-linear combination of expressions of the form

χ(z0)mβqmλ,

where λ is a pole of either (qs+1 − 1)ZΦ(s, p, χtriv) or ZΦ(s, p, χ), for some
χ 6= χtriv such that d(χ) | Ni for some i ∈ T , and where β ∈ N with β 6
(multiplicity of pole λ)− 1.

Proof. We analyse the different components of the formula given in Proposition
1.3.6. We know that ZΦ(s, p, χ) = 0 if c(χ) > 1 by Theorem 1.3.5, or if c(χ) = 1
and d(χ) - Ni for all i ∈ T , by Theorem 1.3.3. So there are only finitely many
characters that contribute to EΦ

f (z0$
−m, p).

Take such a nontrivial character χ 6= χtriv and let {λj | j ∈ J} be the set of poles
of ZΦ(s, p, χ) with multiplicities m(λj). Then we can decompose ZΦ(s, p, χ)
into a constant term plus a sum of partial fractions over C and we can write
each of these partial fractions as a product of power series:

ZΦ(s, p, χ) = C +
∑
j∈J

m(λj)∑
b=1

cj,b(q)
(1− qλj t)b = C +

∑
j∈J

m(λj)∑
b=1

cj,b(q)
(∑
`>0

qλj`t`
)b
.

Hence

Coefftm−1ZΦ(s, p, χ) =

∑
j∈J

m(λj)∑
b=1

cj,b(q)qλj(m−1)#{(`1, . . . , `b) ∈ Nb | `1 + . . .+ `b = m− 1} =
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∑
j∈J

qλjm
m(λj)∑
b=1

cj,b(q)q−λj
(
m+ b− 2
b− 1

)
.

Because cj,m(λj)(q) 6= 0, the expression
∑m(λj)
b=1 cj,b(q)q−λj

(
m+b−2
b−1

)
can be seen

as some polynomial in m of degree m(λj)− 1 with complex coefficients, that
can depend on q. Hence gχ−1χ(z0)Coefftm−1ZΦ(s, p, χ) is a sum of expressions
of the form χ(z0)aj,β(q)mβqmλj , where β 6 m(λj)− 1 and aj,β(q) are complex
coefficients that depend on q, but not on m.

For the trivial character one can reason similarly by writing the expression

(t− q)ZΦ(s, p, χtriv)
(q − 1)(1− t) = (qs+1 − 1)ZΦ(s, p, χtriv)

(q − 1)(1− qs)

in partial fractions.

This corollary and [Den91b, Corollary 1.4.5] tell us something about the growth
of |EΦ

f (z0$
−m, p)|C when m→∞ and p is fixed. There are several invariants

that can be used to describe this growth. From the corollaries one observes
that the real parts of the poles of the zeta functions play a role. From Theorem
1.3.3 it follows that these real parts are of the form − νi

Ni
for some i ∈ T . Thus

the real part of any of the poles λ will be at most −mini∈T { νiNi }, a constant
that is the opposite of the well-known log-canonical threshold.

Definition 1.3.8. Let k be a field of characteristic 0 and f ∈ k [x1, . . . , xn] \ k .
Fix an embedded resolution (Y, h) of f−1(0) and let y ∈ (kalg)n such that
f(y) = 0. We call

cy(f) := min
i∈T :y∈h(Ei)

{ νi
Ni

}
the log-canonical threshold of f at y and

c(f) := inf
y∈f−1(0)

cy(f) = min
i∈T

{ νi
Ni

}
the log-canonical threshold of f .

Remark 1.3.9. Since the prime divisors of the strict transform of f−1(0) have
numerical data (N, 1), we have cy(f) 6 1, for all y ∈ f−1(0), and c(f) 6 1.
Even though the set of numerical data depends on the choice of the resolution
(Y, h), the log-canonical thresholds do not depend on this choice.

Igusa observed that not all the numerical data play a role in the asymptotic
behaviour of |EΦ

f (z0$
−m, p)|C. Therefore he introduced the essential numerical

data of a resolution (Y, h) in [Igu78]. These data are a subset of the set
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{(Ni, νi) | i ∈ T} of numerical data, namely, let J ⊆ T be the set of indices
j such that (Nj , νj) = (1, 1) and Ej does not intersect any other Ei with
(Ni, νi) = (1, 1). Now put T̃ := T\J , then the set of essential numerical data is
the set {(Ni, νi) | i ∈ T̃}. Similarly as for the log-canonical threshold, we take
the minimum:

c̃(h) := min
i∈T̃

{ νi
Ni

}
.

The notation c̃(h) indicates that this invariant does depend on the choice
of the resolution (Y, h) of f , contrary to the log-canonical threshold c(f). If
c̃(h) 6 1, then c̃(h) = c(f), but c̃(h) could also be bigger than 1, in which case
c(f) = 1. In this case one can obtain another resolution (Y ′, h′) by adding more
blow-ups to (Y, h) in a well chosen manner, such that 1 < c̃(h′) < c̃(h) and c̃(h′)
is arbitrarily close to 1 (see [Clu08b, Remark 2.1]).

The asymptotic behaviour of these exponential sums when both m→∞ and
q →∞ has been the subject of several conjectures and results. In what follows
we will give an overview of these result. For convenience we will formulate the
results for k = Q, $ = p a prime number, z0 = 1 and f ∈ Z[x1, . . . , xn], but
they also have a variant for other number fields. In particular we will denote
the exponential sums from now on by EΦ

f (m, p).

Note that for any b ∈ Q we have∣∣EΦ
f+b(m, p)

∣∣
C =

∣∣∣∣ ∫
Qnp

Φ(x) exp
(

2πi(f(x) + b)
pm

)
|dx|

∣∣∣∣
C

=
∣∣∣∣ exp

(
2πib
pm

) ∣∣∣∣
C

∣∣∣∣ ∫
Qnp

Φ(x) exp
(

2πif(x)
pm

)
|dx|

∣∣∣∣
C

= |EΦ
f (m, p)|C.

This implies that we can assume that f does not have a constant term, i.e.,
f(0) = 0. Furthermore we have assumed f to be nonconstant (since constant
polynomials do not give interesting exponential sums), hence f 6≡ 0.

In [Igu78] Igusa only studied the behaviour of the global exponential sum Ef for
homogeneous polynomials f . Note that a homogeneous polynomial never has
any other critical values than 0. Hence the condition Cf ∩ Supp(Φ) ⊆ f−1(0)
from [Den91b, Corollary 1.4.5] is satisfied automatically. Therefore, for each
prime number p, there exists a constant Cp > 0, such that for all m > 1, we
have

|Ef (m, p)|C 6 Cpmn−1p−mc̃(h).

In studying certain criteria for the validity of a Poisson summation formula,
Igusa conjectured that the constants Cp could be chosen independently of p.
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Conjecture 1.3.10 (Igusa, [Igu78]). Let f ∈ Z[x1, . . . , xn]\Z be a homogeneous
polynomial. Then there exists a constant C > 0, such that for all primes p and
for all m > 1, we have

|Ef (m, p)|C 6 Cmn−1p−mc̃(h).

This conjecture has been proven in several cases. Igusa showed it for homo-
geneous polynomials with an isolated singularity [Igu74b]. For homogeneous
polynomials that are nondegenerate with respect to their Newton polyhedron,
the conjecture has been proved under an extra assumption, by Denef and Sperber
[DS01] and in general by Cluckers [Clu08a]. In [Clu10] Cluckers generalised this
result to weighted homogeneous polynomials. Results have also been obtained
by fixing the number of variables n. For n = 2 different proofs of the conjecture,
for both homogeneous and weighted homogeneous polynomials, have been given
by Wright [Wri12] and Lichtin [Lic13]. For n = 3 Lichtin [Lic16] proved the
conjecture for homogeneous polynomials with singular locus of dimension at
most 1.

In [Clu08b] Cluckers introduced an invariant α(f), called the motivic oscillation
index of f , which sometimes gives even stronger upper bounds when replacing
c̃(h) by −α(f). Cluckers proved this version of Igusa’s conjecture when m = 1
for all quasi-homogeneous polynomials [Clu08b, Clu10], and when m = 2 for all
polynomials [Clu08b].

Another one of the exponential sums has been studied by Denef and
Sperber [DS01], namely the local sum around zero E0

f (m, p), in particular
for nondegenerate polynomials. Under an extra assumption they proved that
these local sums are uniformly bounded by an upper bound that uses c̃(h) for a
toric resolution h. Cluckers showed in [Clu10] that the extra assumption
can be omitted. Denef and Sperber conjectured that the assumption of
nondegenerateness could be removed, when replacing the invariant c̃(h) by the
complex oscillation index β0(f) of f around 0 (see [AVGZ86] for a definition).

Conjecture 1.3.11 (Denef-Sperber, [DS01]). Let f ∈ Z[x1, . . . , xn] \ Z. Then
there exists a constant C > 0, such that for all primes p and for all m > 1, we
have

|E0
f (m, p)|C 6 Cmn−1pmβ0(f).

Since the assumption of (weighted) homogeneousness does not seem to be
necessary for the local sum around 0, it is natural to wonder whether this
assumption can also be omitted for the global sum. It is important to note
that without this assumption f can have more critical values than only 0.
Thus the conditions from Corollary 1.3.7 and [Den91b, Corollary 1.4.5] are
not automatically satisfied. Proposition 2.7 from [DV95] indicates that all the
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critical values of f have to be taken into account to give a good estimate for the
global exponential sum |Ef (m, p)|C. That is why the following two invariants
were introduced.

Definition 1.3.12. Let k be a number field and f ∈ k[x1, . . . , xn] \ k. For any
b ∈ Vf ∪ {0} we fix a resolution hb : Yb → (kalg)n of f−1(b) = (f − b)−1(0) and
we denote by h the tuple (hb)b∈Vf∪{0} of resolutions. We define the following
two invariants:

a(f) := min
b∈Vf∪{0}

c(f − b);

ã(h) := min
b∈Vf∪{0}

c̃(hb).

Clearly a(f) 6 1, ã(h) 6 1 implies ã(h) = a(f), and else a(f) = 1 < ã(h).

It follows from [DV95, Proposition 2.7] that for each prime number p, there
exists a constant Cp > 0, such that for all m > 1, we have

|Ef (m, p)|C 6 Cpmn−1p−mã(h). (1.3.1)

A generalisation of Igusa’s conjecture for all polynomials has been formulated
by Cluckers and Veys. The case m = 1 does not generalise, hence they assume
that m > 2. Note that they formulate the conjecture using the invariant a(f),
but they conjecture that stronger formulations with ã(h) or −α(f) will also
hold. Moreover, they generalise the Denef-Sperber conjecture to all local sums
Eyf (m, p), uniformly in y ∈ Zn. The invariant that they use in these upper
bounds is

ay,p(f) := inf
y′∈y+pZnp

cy′(f − f(y′)), (1.3.2)

where y ∈ Zn and p is a prime number. Resolutions are taken over an algebraic
closure (Qp)alg of the p-adic numbers. From Corollary 1.3.7 we can deduce that
for each prime number p, there exists a constant Cp > 0, such that for all m > 1
and for all y ∈ Zn, we have

|Eyf (m, p)|C 6 Cpmn−1p−may,p(f). (1.3.3)

Conjecture 1.3.13 (Cluckers-Veys, [CV16]). Let f ∈ Z[x1, . . . , xn] \ Z. Then
there exists a constant C > 0, such that for all primes p, for all m > 2 and for
all y ∈ Zn, we have

|Ef (m, p)|C 6 Cmn−1p−ma(f); (1.3.4)

|Eyf (m, p)|C 6 Cmn−1p−may,p(f). (1.3.5)
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In [CV16] Cluckers and Veys prove that their conjecture holds for all m 6 4
and, depending on some orders of vanishing of f , for some more small values
of m. Castryk and Nguyen [CN18] prove this conjecture for nondegenerate
polynomials. In Chapter 4 we will discuss two different proofs of this conjecture
for polynomials that have log-canonical threshold at most one half. The Igusa
and Denef-Sperber conjectures for the same class of polynomials follow from
this (see [CN17a]).



Chapter 2

Clustered cell decomposition
in P -minimal structures

This chapter consists of the paper [CCL17a] and some parts of the additional
note [CCL17b]. Both are joint work with Pablo Cubides Kovacsics and Eva
Leenknegt.

The goal of this chapter is to obtain a cell decomposition that is valid in all
P -minimal fields. As discussed in Section 1.1, the classical cell decomposition
results of Denef [Den84, Den86] and Cluckers [Clu04] cannot be extended to all
P -minimal fields, as follows from the work of Mourges [Mou09] and Cubides-
Nguyen [CN17b]. In particular, the absence of definable Skolem functions
makes it impossible to obtain a decomposition in which the cells have a definable
function as their center. Therefore, a less restrictive definition of ‘cells’ is
necessary. The decomposition result of Cubides-Leenknegt [CL16] serves as a
starting point, to which step-by-step improvements are added, leading up to
Theorem 2.7.1. Informally, this theorem states that in any P -minimal field,
any definable set can be partitioned as a finite union of classical cells (cells
with a definable center) and regular clustered cells. These clustered cells look
geometrically like a finite union of the usual cells, but instead of having definable
functions as centers, there is a definable set of potential centers.

Throughout this chapter we will always work with a p-adically closed field
K with value group ΓK , valuation map ord: K → ΓK ∪ {∞}, valuation ring
OK , maximal ideal MK , and quotient field kK with qK elements. After
fixing a uniformizer $ there exists, for each m ∈ N \ {0}, a unique group
homomorphism acm : K× → (OK/$mOK)× that satisfies acm($) = 1 and

39
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acm(x) = (x mod $m) for every unit x ∈ O×K . In this chapter we will study two
sorted P -minimal structures (K,ΓK ;L2) on p-adically closed fields (Definitions
1.1.8 and 1.1.4). Since there already exist a decomposition of definable sets
X ⊆ S × ΓK into Γ-cells (Theorem 1.1.9), we will only work with definable sets
X ⊆ S ×K.

This chapter is structured as follows. In Section 2.1 we will introduce a different
way of looking at cells. Furthermore we will fix some notation and introduce
vocabulary to describe cells and their centers.

In Section 2.2, we will revisit semi-algebraic cell decomposition for subsets of
P -minimal fields K, and show that every definable set X ⊆ K admits a so-called
admissible cell decomposition. Such a decomposition imposes some technical
restrictions on the way centers can appear as elements of a cell, and controlling
this will be crucial in later proofs.

A first strengthening of the decomposition result from [CL16] is proven in
Section 2.3. This intermediate result allows us to decompose a definable set into
finitely many classical cells and objects called cell arrays. Roughly speaking,
a cell array is a definable set which geometrically has the structure of a finite
union of cells (which may not be definable individually), possibly involving
multiple cell conditions.

In Section 2.4, we prove a finiteness result for centers. We will use this in Section
2.6 to partition cell arrays into classical and regular clustered cells (where only
a single cell condition is involved). The regularity condition, which is explored
in Section 2.5, imposes further restrictions on the set of centers.

The full cell decomposition theorem (Theorem 2.7.1) will be presented in Section
2.7. This last section also includes some additional remarks and open questions.

2.1 Cells

In order to broaden the notion of cells to the non-Skolem setting, we have
adopted a different way of looking at cells. In our view, a cell has two major
ingredients: its center (which we will discuss further on), and the formula C
defining the cell.

Definition 2.1.1 (K-cell condition). A K-cell condition over S ⊆ Kd1 × Γd2
K

is a formula of the form

C(s, c, t) := s ∈ S ∧ α(s) �1 ord(t− c) �2 β(s) ∧ t− c ∈ λQn,m,
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where t and c are variables over K, α, β : S → ΓK are definable functions, �1
and �2 may denote either < or ∅ (i.e., ‘no condition’), λ ∈ K and n,m ∈ N\{0}.
The variable c is called the center of the K-cell condition. Recall the definition
of the sets Qn,m:

Qn,m := {x ∈ K× | ord(x) ≡ 0 mod n ∧ acm(x) = 1}.

A K-cell condition C is called a 0-cell condition, resp. a 1-cell condition if λ = 0,
resp. λ 6= 0.

Since this chapter does not discuss Γ-cell conditions, we will often omit the K
and simply speak of cell conditions.
Remark 2.1.2. We will use the following notational convention. Capital C will
always denote a cell condition over some set of parameters S for which the
symbols α, β, λ,�1,�2, n,m are fixed as in the previous definition. In particular,
the letters α and β will only be used to denote the functions picking the lower
and upper bounds in a cell condition C. If multiple cell conditions are discussed
at the same time, say C1, . . . , Cr, the same index will be applied to the symbols
in the associated formula. Thus, αi and βi denote the functions picking the
lower and upper bounds of a cell condition Ci, and the use of �i1,�i2, λi, ni,mi

follows similar conventions.

Let C be a cell condition over S and σ : S → K a function (not necessarily
definable). Using this function as the center for C, we get the induced set

Cσ := {(s, t) ∈ S ×K | C(s, σ(s), t)}.

When there is no dependence on parameters (i.e., if C is a cell condition over
S = Γ0×K0), a function σ : S → K will be identified with a point σ ∈ K. Sets
of the form Cσ will be informally called cells over S (or simply cells, when the
parameter set S is clear from the context). The reader will probably be most
familiar with classical cells, that is, cells Cσ for which the function σ is definable.
For instance, one may think of semi-algebraic or subanalytic cells, where the
center σ is a semi-algebraic, resp. a subanalytic function (see [Den86, Clu03]).

We will denote the fiber of a cell Cσ over s ∈ S by

Cσ(s) := {t ∈ K | C(s, σ(s), t)}.

When C is a 0-, resp. a 1-cell condition, we will call Cσ a 0-cell, resp. a 1-cell.

Definition 2.1.3. Let C be a K-cell condition over S and σ : S → K a function.
The leaf of Cσ(s) at height γ corresponds to the ball

Cσ(s),γ := {t ∈ Cσ(s) | ord(t− σ(s)) = γ}.
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The fibers Cσ(s) of a cell Cσ can be visualised in the following way. Here we
adopt the perspective used also in [HM94, HM97], representing elements and
basic subsets of valued fields by trees (see more in Section 6).

σ(s)

0-cell

β(s)

α(s)

σ(s)

ρmax(s)

n
m

Bρmax(s)+m(σ(s))

leaves

1-cell
�1 = �2 =<

α(s)

σ(s)

Cσ(s),γ

γ

1-cell
�1 =<,�2 = ∅

Figure 2.1: Different configurations of cells

When C is a 0-cell condition, fibers correspond to points: Cσ(s) = {σ(s)}. When
C is a 1-cell condition, the fiber Cσ(s) is the disjoint union of its leaves Cσ(s),γ .
One can check that a leaf at height γ corresponds to a ball of radius γ + m.
Note that σ(s) /∈ Cσ(s), and that σ(s) ∈ Cl(Cσ(s)) if and only if �2 = ∅.

When �2 denotes <, the center of a cell Cσ is not unique. Indeed, write ρmax(s)
for the height of the top leaf of Cσ(s) (so β(s)− n 6 ρmax(s) 6 β(s)− 1). Note
that ρmax : S → ΓK is a definable function which only depends on the cell
condition, and not on the choice of the center. It is easy to see that one still gets
the exact same fiber Cσ(s), if σ(s) is replaced by any other element of the ball
Bρmax(s)+m(σ(s)) (see (1.0.1) for notation). Hence, it is reasonable to consider
the set

Σ = {(s, c) ∈ S ×K | c ∈ Bρmax(s)+m(σ(s))}
as the set of centers for Cσ. In P -minimal structures without definable Skolem
functions, it might happen that Σ itself is a definable set, yet no section of Σ is
definable. Nevertheless, even when σ is a non-definable section of Σ, the cell
Cσ will still be definable (as a set), since we have the equality

Cσ = {(s, t) ∈ S ×K | ∃c : c ∈ Σs ∧ C(s, c, t)}.
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It is therefore natural to consider the following notion.

Definition 2.1.4. Let C be a cell condition and Σ ⊆ S ×K be a definable set.
The set CΣ ⊆ S ×K is defined as

CΣ := {(s, t) ∈ S ×K | ∃c : c ∈ Σs ∧ C(s, c, t)}.

Every (not necessarily definable) section σ : S → K of Σ is called a potential
center of CΣ. We call the induced sets Cσ a potential cells.

Let us stress that, given two different sections σ and σ′ of Σ, the induced cells
Cσ and Cσ′ may be very different (possibly even disjoint) subsets of CΣ, since
we have not yet imposed any conditions on Σ. If we want sets CΣ to be useful
building blocks in our cell decomposition, we will have to significantly restrict
the type of set that can occur for Σ. Indeed, every definable set X ⊆ S ×K is
already of the form CΣ if we were to take Σ = X, and C a 0-cell condition over
S.

We will show that it is sufficient to consider certain definable sets Σ ⊆ S ×K
for which there is k ∈ N such that every fiber Σs is the disjoint union of k balls.
For such a Σ, the corresponding set CΣ will have the following structure.

Let σ1, . . . , σk be sections of Σ such that for every s ∈ S, the set
{σ1(s), . . . , σk(s)} contains representatives of each of the k disjoint balls covering
Σs. For any such choice, CΣ partitions as

CΣ = Cσ1 ∪ . . . ∪ Cσk .

Note that CΣ is definable even when no section σi is definable. Such sets CΣ

are what we will call clustered cells (for a formal definition, see Definitions
2.3.4 and 2.6.2). The main theorem of this chapter essentially states that any
definable set can be partitioned as a finite union of classical and clustered cells.

2.2 Semi-algebraic cell decomposition revisited

Since every ball is the disjoint union of qK smaller balls, semi-algebraic sets
X ⊆ K admit infinitely many different cell decompositions. A decomposition C
consists of the following data: a finite set I and, for each i ∈ I, a cell condition
Ci and a center σi ∈ K. We denote this as C = {Cσii | i ∈ I}. Note that since
all cells are subsets of K, the center σ of every cell Cσ is an element of K rather
than a function. We will also use the notation

C(K) :=
⋃
i∈I

Cσii and Centers(C) := {σi | i ∈ I}.



44 CLUSTERED CELL DECOMPOSITION IN P -MINIMAL STRUCTURES

Two decompositions C and D are equivalent if they define the same set, that is,
if C(K) = D(K).

In this section we will define a collection of so-called admissible decompositions
and show that every semi-algebraic set X ⊆ K admits a decomposition from
this collection. First we need to introduce some further notation. See Definition
1.0.2 for a recall of the notation v.

Definition 2.2.1. Let C = {Cσii | i ∈ I} be a decomposition. Define the subset
of cells C∗ ⊆ C as

C∗ := {Cσii | σi 6= 0 ∧ �i1 = �i2 = <}.

We define the set W (C) as the following subset of centers in C∗:

W (C) :=
{
σ ∈ Centers(C∗) | ∃γ ∈ ΓK : Bγ(σ) v C∗(K)∧

∧
C
σi
i
∈C∗

Bγ(σ) 6⊆ Cσii
}
.

In words, W (C) consists of those centers in Centers(C∗) which are in C∗(K),
but where the biggest ball in C∗(K) around this center is not contained within
a single cell of C∗. We are now able to define what admissible decompositions
are.

Definition 2.2.2. A decomposition C = {Cσii | i ∈ I} is called pre-admissible
if it satisfies the following properties:

(a) For every 0-cell Cσii , if σi 6= 0, then σi ∈ X \ Int(X).

(b) For every 1-cell Cσii , if σi 6= 0 and �i1 = <, then ord(σi) 6 αi.

(c) For every 1-cell Cσii in which �i1 = ∅, it holds that σi = 0.

It is called admissible, if it moreover satisfies

(d) W (C) = ∅.

Condition (a) ensures that elements defined by 0-cells different from {0}, are
isolated points. Condition (c) will later imply that cells for which �1 = ∅, will
always be centered at 0. Conditions (b) and (d), which might seem arbitrary at
this point, will be needed for technical reasons in later proofs.

The goal of this section is to prove the following theorem.

Theorem 2.2.3. Every semi-algebraic set X ⊆ K has an admissible cell
decomposition.
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We split the proof of Theorem 2.2.3 into two steps: we first show (in the next
lemma) that semi-algebraic sets always have a pre-admissible decomposition.
The second step will then be to prove that every pre-admissible decomposition
can be modified into an admissible one.

Lemma 2.2.4. Every semi-algebraic set X ⊆ K has a pre-admissible
decomposition.

Proof. Let C = {Cσii | i ∈ I} be a cell decomposition of X. Let a(C) (resp. b(C)
and c(C)) be the number of cells in C which are counterexamples of part (a) of
Definition 2.2.2 (resp. of (b) and (c)). If a(C) > 0 (resp. b(C) > 0, c(C) > 0), we
will show how to produce a cell decomposition Ĉ of X such that a(Ĉ) 6 a(C)− 1
(and similarly for b(C) and c(C)). By iterating this process a finite number of
times, one can then obtain a cell decomposition satisfying (a) (resp. (b) and
(c)).

Fix an index j ∈ I such that σj 6= 0, Cσjj is the 0-cell Cσjj = {σj} and
σj ∈ Int(X). Write C = {Cσjj } ∪ C1 ∪ C2, where

C1 := {Cσii ∈ C | i 6= j ∧ σj ∈ Cl(Cσii )},

and C2 := C \ ({Cσjj } ∪ C1). Let X ′ be the set X ′ := C
σj
j ∪ C1(K). Let γ ∈ ΓK

be minimal such that Bγ(σj) is contained in X ′. If no minimal γ exists, set
γ := ord(σj). Note that this case only occurs when X ′ = K. Indeed, by
Theorem 1.1.7, P -minimal definable subsets of ΓK are Presburger-definable.
From this it follows that every definable subset of ΓK without a minimal element
must be unbounded from below, hence X ′ contains arbitrarily large balls. Let
ζ ∈ K be such that ord(σj − ζ) = γ − 1 and let Dζ be the cell

Dζ := {t ∈ K | ord(t− ζ) = γ − 1 ∧ t− ζ ∈ λQ1,1},

where we have chosen λ ∈ K such that Dζ = Bγ(σj). For every 1-cell Cσii ∈ C1,
let Dσi

i be the 1-cell obtained from Cσii by replacing �i2 by < and making γ
the upper bound. Then the set of cells Ĉ formed by

{Dζ} ∪ {Dσi
i | C

σi
i ∈ C1} ∪ C2

is a cell decomposition of X. Clearly, a(Ĉ) 6 a(C)− 1.

Suppose that C satisfies (a). Let Cσjj ∈ C be a 1-cell centered at σj 6= 0 for which
either αj < ord(σj), or �j1 = ∅. We need to consider two cases, depending on
whether ord(σj) < βj or βj 6 ord(σj). We will only discuss the first case in
detail, as the second one is completely similar. If ord(σj) < βj , first partition
the cell Cσjj further as

Dσj := {t ∈ K | ord(σj) < ord(t− σj) �j2 βj ∧ t− σj ∈ λjQnj ,mj},
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E := {t ∈ K | αj �j1 ord(t− σj) < ord(σj) + 1 ∧ t− σj ∈ λjQnj ,mj}.

To prove our claim, we need to show how the cell E can be partitioned as a
finite union of 1-cells centered at 0. Put Mj := min{mj , ord(σj)− αj} (or just
Mj = mj if �j1 = ∅). We will first partition E further as E′∪E0∪ . . .∪EMj−1,
where

E′ := {t ∈ K | αj �j1 ord(t− σj) < ord(σj)−mj + 1 ∧ t− σj ∈ λjQnj ,mj},

Ei := {t ∈ K | ord(t− σj) = ord(σj)− i ∧ t− σj ∈ λjQnj ,mj},

Note that most of these sets are actually already cells centered at zero (and
some might be empty). Indeed, for E′ we can rewrite the description of the set
as

E′ = {t ∈ K | αj �j1 ord(t) < ord(σj)−mj + 1 ∧ t ∈ λjQnj ,mj}.

Similarly, for 1 6 i 6Mj − 1, we have that

Ei = {t ∈ K | ord(t) = ord(σj)− i ∧ t ∈ µiQnj ,mj},

where µi ∈ K is chosen in such a way as to assure that t− σj ∈ λjQnj ,mj .

When i = 0, we need to do a bit more work. A further partitioning will be
necessary. For 0 6 k < mj , let E0,k be the set

E0,k := {t ∈ E0 | ord(t) = ord(σj) + k},

and we write E0,> for the set

E0,> := {t ∈ E0 | ord(t) > ord(σj) +mj}.

Then clearly, if they are non-empty, the sets E0,k are cells centered at zero,
since for a suitably chosen value µ0,k ∈ K, they can be rewritten as

E0,k = {t ∈ K | ord(t) = ord(σj) + k ∧ t ∈ µ0,kQnj ,mj−k}.

Finally, consider the set E0,>. First note that this set is empty unless −σj ∈
λjQnj ,mj , as for elements of this set it holds that

t− σj ∈ λjQnj ,mj ⇔ −σj ∈ λjQnj ,mj .

Moreover, if E0,> is non-empty, it equals the ball Bord(σj)+mj (0). In this case,
we will partition E0,> into cells {F0, . . . , FqK−1} as follows. Put F0 := {0} and
for 1 6 r 6 qK − 1, define

Fr := {t ∈ K | ord(σj) +mj − 1 < ord(t) ∧ t ∈ µ̂rQ1,1, }
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where µ̂1, . . . , µ̂qK−1 ∈ K are representatives such that ac1({µ̂1, . . . , µ̂qK−1}) =
ac1(K×). To summarize, we obtain the following decomposition of E0, which
we will denote as E0. Put

E0 :=
{
{E0,k | 0 6 k < mj} ∪ {Fr | 0 6 r 6 qK − 1} if − σj ∈ λjQnj ,mj ,
{E0,k | 0 6 k < mj} otherwise.

Now let Ĉ be the decomposition obtained by replacing C
σj
j by the cells in

{Dσj , E′} ∪ {Ei | 1 6 i 6 Mj−1} ∪ E0. If Cσjj was a cell contradicting (b),
(resp. (c)), then Ĉ is a cell decomposition of X for which b(Ĉ) = b(C)− 1 and
c(Ĉ) 6 c(C) (resp. c(Ĉ) = c(C)− 1 and b(Ĉ) 6 b(C)). Moreover, no new 0-cells
that are not centered at 0, were added during this process, so Ĉ still satisfies
property (a). Repeating this partitioning process for a finite number of cells
then yields the lemma.

It remains to show that every pre-admissible decomposition allows an equivalent
admissible decomposition. We need to introduce some additional notations first.
Given a cell Cσ with �1 = �2 =<, and an interval (α′, β′), we put

Cσ|(α′,β′) := {t ∈ K | α̃ < ord(t− σ) < β̃ ∧ t− σ ∈ λQn,m}, (2.2.1)

where (α̃, β̃) = (α, β) ∩ (α′, β′).
Lemma 2.2.5. Let C be a pre-admissible decomposition. Then there exists an
equivalent decomposition D which is admissible.

Proof. We use induction on l, for 0 6 l 6 L = |W (C)|, to show that there exist
equivalent pre-admissible decompositions Dl such that

1. D0 = C;

2. if W (Dl) 6= ∅ then |W (Dl+1)| 6 |W (Dl)| − 1.

The result will then follow by putting D := DL. For l = 0, there is nothing
to prove. Suppose that Dl := {Cσjj | j ∈ J} has already been constructed. If
W (Dl) = ∅, we set Dl+1 = Dl and there is again nothing to prove.

Otherwise, let J∗ ⊆ J be the set J∗ := {j ∈ J | Cσjj ∈ D∗l }. Choose an element
j0 ∈ J∗ such that σj0 ∈W (Dl). By the definition of W (Dl), σj0 6= 0 and there
is ρ ∈ ΓK such that Bρ(σj0) v D∗l (K) and Bρ(σj0) is not contained in a single
cell Cσjj of D∗l . Let J ′ ⊂ J∗ be minimal such that

Bρ(σj0) ⊆
⋃
j∈J′

C
σj
j .
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Note that |J ′| > 2. For each j ∈ J ′, let Yj be the subset of ΓK defined by

Yj := {γ ∈ ΓK | Bρ(σj0) ∩ Cσj ,γj 6= ∅}.

Then we have that
Bρ(σj0) =

⋃
j∈J′

⋃
γ∈Yj

C
σj ,γ
j .

Let γj,1 := min{γ | γ ∈ Yj} and γj,2 := max{γ | γ ∈ Yj}.

Claim 2.2.6. The following equality holds

Yj = {γ ∈ ΓK | γj,1 6 γ 6 γj,2 ∧ γ ≡ ord(λj) mod nj}.

The inclusion from left to right is trivial. For the remaining inclusion let γ ∈ ΓK
be an element of the right-hand set. Since for k = 1, 2 the leaves Cσj ,γj,kj are
subsets of Bρ(σj0), the ball Bρ(σj0) must contain the smallest ball containing
both leaves. Clearly such a ball contains Cσj ,γj , which proves the claim.

By Claim 2.2.6, we have that⋃
j∈J′

C
σj
j = Bρ(σj0) ∪

⋃
j∈J′

C
σj
j|(αj ,γj,1) ∪ C

σj
j|(γj,2,βj). (2.2.2)

Note that some of these cells might be empty. We will now need to distinguish
between three cases, indexed as d = 1, 2, 3. For each case, one can define a
decomposition Ed such that Ed(K) = Bρ(σj0) as follows:

Case d = 1: Suppose that 0 ∈ Bρ(σj0). We will partition this ball as a
union of cells D0

i which are centered at 0. Let D0
0 be the 0-cell {0}. Choose

representatives µ1, . . . , µqK−1 ∈ K such that ac1(K×) = ac1({µ1, . . . , µqK−1}).
For 1 6 i 6 qK − 1, we define the cells D0

i as follows:

D0
i := {t ∈ K | ρ− 1 < ord(t) ∧ t ∈ µiQ1,1}.

Now put E1 := {D0
i | i ∈ {0, . . . , qK−1}}. One can check that E1(K) = Bρ(σj0).

Case d = 2: Suppose that 0 /∈ Bρ(σj0), and that there exists m ∈ N \ {0} such
that ord(σj0) = ρ −m. Let λ ∈ K be such that Bρ(σj0) is equal to the cell
centered at zero

E0 := {t ∈ K | ord(t) = ρ−m ∧ t ∈ λQ1,m}.

If we put E2 = {E0}, then clearly it holds that E2(K) = Bρ(σj0).

Case d = 3: Suppose that 0 6∈ Bρ(σj0) and ρ − ord(σj0) > m for all m ∈ N.
Since Bρ(σj0) v D∗l (K), there exists ζ ∈ Bρ−1(σj0) \ D∗l (K). In this case we
have that

ord(ζ) = ord(σj0) < ρ−m, (2.2.3)
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for every m ∈ N, so in particular ζ 6= 0. Let λ ∈ K be such that Bρ(σj0) is
equal to the cell

Dζ := {t ∈ K | ord(t− ζ) = ρ− 1 ∧ t− ζ ∈ λQ1,1}.

Define E3 = {Dζ}, which again clearly satisfies E3(K) = Bρ(σj0).

Finally define Dl+1 as

Dl+1 :=
⋃

j∈J\J′
{Cσjj } ∪

⋃
j∈J′
{Cσjj|(αj ,γj,1), C

σj
j|(γj,2,βj)} ∪ Ed,

where d = 1, 2, 3 depending on the previous case distinction.

The identity (2.2.2) shows that in all three cases, Dl+1 is equivalent to Dl. Let
us now discuss why Dl+1 is pre-admissible. First note that, if a cell Cσjj satisfies
conditions (a)-(c) from Definition 2.2.2, then any restriction Cσjj|(α′

j
,β′
j
) will also

satisfy these conditions. Therefore, since Dl is pre-admissible, by the definition
of Dl+1 it suffices to check that the cells in Ed also satisfy conditions (a)-(c).
Suppose first that d = 1 or d = 2. In both cases, all cells in Ed are centered
at 0, so they satisfy these conditions by default. Now consider the remaining
case, E3 = {Dζ}. Since Dζ is not a 0-cell and �1 6= ∅, conditions (a) and (c)
are trivially satisfied. For condition (b) one needs to check that ord(ζ) 6 ρ− 2,
but this follows immediately from (2.2.3). Hence, Dl+1 is pre-admissible.

It remains to show that |W (Dl+1)| 6 |W (Dl)| − 1.

Claim 2.2.7. W (Dl+1) ⊆W (Dl).

Let σ ∈W (Dl+1), and let δ ∈ ΓK be such that Bδ(σ) v D∗l+1(K) and Bδ(σ) is
not contained in a single cell of D∗l+1. We split in cases:

Case d = 1 and d = 2: In both cases, Ed only consists of cells centered at 0.
Therefore, D∗l+1 = (Dl+1 \ Ed)∗, which implies that

Bδ(σ) ⊆
⋃

j∈J∗\J′
C
σj
j ∪

⋃
j∈J′

C
σj
j|(αj ,γj,1) ∪

⋃
j∈J′

C
σj
j|(γj,2,βj). (2.2.4)

Suppose first that there exists a single j ∈ J ′ such that

Bδ(σ) ⊆ Cσjj|(αj ,γj,1) ∪ C
σj
j|(γj,2,βj). (2.2.5)

Our assumption on Bδ(σ) implies that Bδ(σ) intersects both cells on the right
hand-side of (2.2.5). This situation cannot occur, since Bδ(σ) would then
necessarily intersect leaves Cσj ,γj with γj,1 6 γ 6 γj,2 as well, but these are not
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part of the union on the right hand-side of (2.2.5). Hence, the ball Bδ(σ) must
have non-zero intersection with at least two cells that already occurred in the
decomposition D∗l , which means that σ ∈W (Dl). This completes this case.

Case d = 3: By construction, we have that

Centers(D∗l+1) ⊆ Centers(D∗l ) ∪ {ζ}.

Note that ζ /∈ D∗l (K) = D∗l+1(K), where the equality holds since we only
added or altered cells with non-zero centers, for which �1 = �2 =<. Therefore
we must have that σ 6= ζ, hence σ ∈ Centers(D∗l ). It suffices to show that
Bδ(σ) ∩Dζ = ∅. Indeed, if this intersection is empty, then the inclusion (2.2.4)
will hold since Bδ(σ) v D∗l+1(K), and we can conclude as in case 1. Suppose for
a contradiction that Bδ(σ)∩Dζ 6= ∅. Recall that by construction, Dζ = Bρ(σj0)
is a ball. Therefore, since no cell in D∗l+1 contains Bδ(σ) as a subset, we must
have that Dζ ( Bδ(σ). This in turn implies that Bρ−1(σj0) ⊆ Bδ(σ). Now
since ζ ∈ Bρ−1(σj0), the previous inclusion contradicts that ζ /∈ D∗l+1(K). This
completes the claim.

It follows from Claim 2.2.7 that |W (Dl+1)| 6 |W (Dl)|. We show that σj0 /∈
W (Dl+1), which will imply that |W (Dl+1)| 6 |W (Dl)| − 1, since by assumption
σj0 ∈ W (Dl). Again we split in cases. Suppose first that d = 1 or d = 2. In
both cases, σj0 is contained in a cell of Ed, and hence cannot be contained in a
cell of D∗l+1. For case d = 3, suppose towards a contradiction that there is some
δ ∈ ΓK witnessing that σj0 ∈W (Dl+1). If δ > ρ, then the ball Bδ(σj0) would
be contained in Dζ , and since Dζ ∈ D∗l+1, this contradicts the assumption that
σj0 ∈W (Dl+1). If δ < ρ, then ζ ∈ Bδ(σj0) v D∗l+1(K), which contradicts that
ζ /∈ D∗l+1(K).

Proof of Theorem 2.2.3. This is an immediate consequence of Lemmas 2.2.4
and 2.2.5.

2.3 Refinement of the decomposition

In [CL16], Cubides and Leenknegt proved a weak, but unconditional version
of cell decomposition for P -minimal fields. The building blocks used in that
theorem are closely related to (classical) cells, but have a far more complex
structure. As a first step towards the main result of this chapter, we will restate
this version (using slightly different terminology) and consider some refinements
of it, which will lead to Theorem 2.3.7. This theorem will be used as a basis
for further improvements in later sections, where we will step by step reduce
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the complexity of the sets involved. We first need the following notation and
definitions.

Let S be a parameter set and Σ ⊆ S × Kr be a definable set. For each
i = 1, . . . , r, we write Σ(i) for the projection

Σ(i) := {(s, c) ∈ S ×K | ∃ζk : (s, ζ1, . . . , ζi−1, c, ζi+1, . . . , ζr) ∈ Σ},

and Σ(i)
s for its fibers

(
Σ(i))

s
.

Definition 2.3.1. Let C1, . . . , Cr be cell conditions, {C1, . . . , Cr} a set with
a prescribed ordering, and Σ ⊆ S × Kr be a definable set. The pair A =
({Ci}16i6r,Σ) is called a multi-cell if the following conditions hold:

(i) Every section σ : s 7→ (σ1(s), . . . , σr(s)) of Σ induces the same set X,
where

X = Cσ1
1 ∪ . . . ∪ Cσrr .

We say that X is the set defined or induced by A, and we also denote it
by A(K).

(ii) For every section σ of Σ, the induced potential cells Cσ1
1 , . . . , Cσrr are all

disjoint.

The multi-cell A is called admissible, if for every section σ of Σ and every s ∈ S,
the fibers Cσi(s)i form an admissible decomposition of Xs.

We want to stress that the partition in part (i) of the above definition depends
on the choice of section, and that different sections of Σ will in general induce
different partitions of X. If A is a multi-cell and X = A(K), then clearly X is
a definable subset of S ×K. As is common practice in model theory, we will
also refer to the set X itself as a multi-cell, by which we mean that there exists
some multi-cell A such that X = A(K).

The cell decomposition theorem from [CL16] can then be stated in the following
way:

Theorem 2.3.2. Let X ⊆ S × K be a definable set. There exists a finite
partition of X into multi-cells.

We can now state a first refinement of Theorem 2.3.2. Its proof is a word-for-word
analogue of the proof of Theorem 2.3.2, in which we replace each semi-algebraic
cell decomposition by an admissible decomposition using Theorem 2.2.3.

Theorem 2.3.3. Let X ⊆ S × K be a definable set. There exists a finite
partition of X into admissible multi-cells.
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Theorem 2.3.7 will be a refinement of the above theorem. In order to state it,
we need the following definitions first.

Definition 2.3.4. A set X ⊆ S × K is a classical cell, if there exist a cell
condition C over S, and a definable function σ : S → K such that X = Cσ.

The set X is a clustered cell if there exist a cell condition C over S, and a
definable set Σ ⊆ S × K such that X = CΣ (see Definition 2.1.4) and the
following holds:

(i) C is a 1-cell condition over S, and both �1 and �2 denote <.

(ii) For any potential center σ : S → K, the condition ord(σ(s)) 6 α(s) holds
for all s ∈ S.

(iii) If σ, σ′ : S → K are potential centers, then ord(σ(s)) = ord(σ′(s)).

(iv) Whenever c ∈ Σs, the set Σs also contains all c′ ∈ K such that

∀t : C(s, c, t)↔ C(s, c′, t).

Note that a clustered cell X = CΣ may also be a classical cell, provided that
Σ has a definable section. Further, remark that conditions (i) and (ii) imply
that the potential cells Cσ induced by CΣ satisfy the conditions outlined in the
definition of pre-admissibility.

Another remark is that, even though the above definition includes some
conditions on Σ, it still leaves the structure of the set Σ quite unspecified.
Condition (iv) imposes that each Σs is a union of balls, but at this point we do
not yet require this to be a finite union. In Section 2.4, the structure of this set
will be discussed in more detail.
Remark 2.3.5. Let X = CΣ be a clustered cell and σ : S → K a section
of Σ. The condition that ord(σ(s)) 6 α(s) enforces that ord(t − σ(s)) >
min{ord(t), ord(σ(s))}, and hence that

ord(t) = ord(σ(s))

for all t ∈ Cσ(s).

Definition 2.3.6. Let A = ({Ci}16i6r,Σ) be a multi-cell with induced set
X = A(K). We say that A is a cell array if the following additional properties
hold:

(i) For every i = 1, . . . , r, the set CΣ(i)

i is a clustered cell.
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(ii) For every section σ = (σ1, . . . , σr) of Σ and all s ∈ S, we have that
ord(σi(s)) = ord(σj(s)) for 1 6 i 6 j 6 r.

(iii) All centers are non-zero, i.e., 0 6∈ Σ(i)
s for any 1 6 i 6 r and s ∈ S.

(iv) For every i = 1, . . . , r, let ρi,max(s) denote the height of the top leaf of
Ci. For any section σi of Σ(i), any s ∈ S and any ball B ⊆ Xs such that
σi(s) ∈ B, it holds that B ⊆ Bρi,max(s)+1(σi(s)).

The last condition in this definition is a slight weakening of the admissibility
condition (d) from Definition 2.2.2 in the previous section. This condition will
play an important role in our proofs in later sections. The connection between
both notions will be explained further in the proof of Theorem 2.3.7.

Similar to the case of multi-cells, we will refer to both A and its induced set
X = A(K) as cell arrays.

The following notation will be used for both multi-cells and arrays. Let A =
({Ci}i∈I ,Σ) be a multi-cell over S and S1, . . . , Sl a partition of S. For each
1 6 j 6 l, we define A|Sj to be the multi-cell over Sj defined by A|Sj :=
({Ci, }i∈I ,Σ|Sj ), where Σ|Sj := {(s, c) ∈ Σ | s ∈ Sj}. It is not hard to check
that each A|Sj is still a multi-cell, and that admissibility is preserved as well.
Similarly, if A is a cell array, then so is A|Sj .

Note that the cell conditions of A|Sj are the same as the ones in the original
array A, and that no new potential centers were introduced in this procedure.
Moreover, the sets A|Sj (K) form a partition of A(K), and if A(K) = X, then
A|Sj (K) = X|Sj .

We will now state the main theorem of this section.

Theorem 2.3.7. Let X ⊆ S ×K be a definable set. There exists a partition
of X into sets X1, . . . , Xn such that each Xi is either a classical cell or a cell
array.

2.3.1 Splitting multi-cells

For the remainder of the chapter we will write ({Ci}i,Σ) as shorthand for
({Ci}16i6r,Σ) whenever r is clear from the context. Multi-cells will be assumed
to be admissible unless otherwise stated.

Definition 2.3.8. Let Σ be a definable subset of S ×Kr, and let 1 6 k < r.
Define the following coordinate projections of Σ:

Σ(1,...,k) := {(s, c) ∈ S ×Kk | ∃ζi ∈ K : (s, c, ζk+1, . . . , ζr) ∈ Σ};
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Σ(k+1,...,r) := {(s, c) ∈ S ×Kr−k | ∃ζi ∈ K : (s, ζ1, . . . , ζk, c) ∈ Σ}.

Let A = ({Ci}i,Σ) be a multi-cell with A(K) = X. If the sets

X(1,...,k) :=
⋃

σ section
of Σ(1,...,k)

Cσ1
1 ∪ . . . ∪ C

σk
k and

X(k+1,...,r) :=
⋃

σ′ section
of Σ(k+1,...,r)

C
σ′k+1
k+1 ∪ . . . ∪ C

σ′r
r are disjoint, (2.3.1)

then we say that A can be split at k (by projection); if we consider the multi-cells

A(1,...,k) := ({C1, . . . , Ck},Σ(1,...,k)),

A(k+1,...r) := ({Ck+1, . . . , Cr},Σ(k+1,...,r)),

then the sets A(1,...,k)(K) and A(k+1,...,r)(K) form a partition of A(K).

Note that in the above definition, condition (2.3.1) ensures that A(1,...,k) and
A(k+1,...,r) are multi-cells. Further, remark that A(1,...,k)(K) = X(1,...,k) and
A(k+1,...,r)(K) = X(k+1,...,r).

For example, if for every section σ of Σ(1), Cσ1 defines the same set, then A
splits at 1.

Definition 2.3.9. We say that a multi-cell A = ({Ci}i,Σ) splits at k by
definable choice, if there exists a definable section σk : S → K of Σ(k). Then
A(K) partitions as the union of the classical cell Cσkk and the multi-cell
({C1, . . . , Ck−1, Ck+1, . . . , Cr},Σ′), where Σ′ equals the set

{(s, ζ1, . . . , ζk−1, ζk+1, . . . , ζr) ∈ S ×Kr−1 | (s, ζ1, . . . , ζk−1, σk(s), ζk+1, . . . , ζr) ∈ Σ}.

Note that both these splitting procedures preserve admissibility for multi-cells.
The same procedures can also be applied to cell arrays, to obtain a partitioning
in smaller cell arrays (and classical cells).

The following lemma, which has exactly the same proof as the original lemma
by Denef for semi-algebraic sets, will be used in later proofs.

Lemma 2.3.10 ([Den84], Lemma 7.1). Let (K;L2) be a P -minimal structure.
Let X ⊆ S ×Kl be a definable set and k a positive integer, such that for every
s ∈ S, the fiber Xs has less than k elements. Then there exists a definable
section g : S → Kl of X, that is, g(s) ∈ Xs for all s ∈ S.
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We will now show how a multi-cell can be split into smaller parts where the cell
conditions involved satisfy further properties.

Lemma 2.3.11. Let A = ({Ci}16i6r,Σ) be a multi-cell over S. There exists
a partition of A(K) as Y1 ∪ Y2, such that

(i) Y1 can be partitioned as a finite union of classical cells;

(ii) there exist multi-cells A′ = ({C ′i}i∈I ,Σ′) over definable sets S′ ⊆ S, such
that the sets A′(K) form a finite partition of Y2, and

(a) all cell conditions C ′i are 1-cell conditions and have �1 = �2 =<;
(b) for all s ∈ S′ and i ∈ I, we have that 0 6∈ (Σ′)(i)

s .

Proof. Let X := A(K). We will prove the lemma by sequentially partitioning
off parts of X. We begin by isolating those cell fibers for which 0 is a potential
center. Consider the following inductive procedure. First, put

S0 := {s ∈ S | 0 ∈ Σ(1)
s },

and S1 := S \ S0. This induces a partition of X with respect to the multi-cells
A|Sl for l = 0, 1.

Now, A|S0 admits a split at 1 by definable choice, using the constant function
σ1 : S0 → K : s 7→ 0. Write A′|S0

= ({Ci}26i6r,Σ′) for the multi-cell that
remains after the split. The multi-cell A|S1 already has the property that
0 6∈

(
Σ(1)
|S1

)
s
for any s ∈ S1. Repeating a similar procedure for all components

of A′|S0
and A|S1 will yield a finite number of classical cells, and a finite number

of multi-cells for which 0 is not in any of the sets Σ(i)
s . Hence, we may as well

assume from now on that A itself is a multi-cell satisfying this property.

As a next step, we will consider the 0-cell conditions. Without loss of generality,
we may assume that there exists a k ∈ {1, . . . , r} such that all cell conditions
Ci with 1 6 i 6 k are 0-cell conditions and all cell conditions Ci with i > k
are 1-cell conditions. We need to show that X splits at k (by projection), i.e.,
that X1 := X(1...,k) and X(k+1,...,r) are disjoint sets. Recall that ({Ci}i,Σ) is
assumed to be an admissible multi-cell. Now part (a) of Definition 2.2.2 implies
the following. If (s, t) ∈ X1∩X(k+1,...,r), then t ∈ Xs\Int(Xs), since (s, t) ∈ X1.
However, t ∈ Int(Xs) since (s, t) ∈ X(k+1,...,r), which is a contradiction. Using
Lemma 2.3.10, the set X1 can be partitioned into a finite number of classical
cells.

For the next part we work with X \X1 (which we will still call X, since we may
as well assume that X1 is empty). After reordering if necessary, there exists
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k ∈ {0, 1, . . . , r} such that all cell conditions Ci with 1 6 i 6 k are precisely
those cell conditions for which �1 = ∅. Note that part (c) of Definition 2.2.2
implies that Σ(1,...,k) = S×{(0, . . . , 0)}, which actually implies that k = 0, since
we had assumed that all potential centers for X were non-zero.

After reordering if necessary, we can find k ∈ {1, . . . , r} such that all cell
conditions Ci with 1 6 i 6 k are precisely those cell conditions for which
�2 = ∅. Let σ = (σ1, . . . , σr) and θ = (θ1, . . . , θr) be two sections of Σ.

First note that for any 1 6 j 6 k, we have that θj(s) 6∈ Xs. Indeed, suppose for
a contradiction that θj(s) ∈ Xs. Because the multi-cell for X does not contain
any 0-cell conditions, Xs can be written as a finite disjoint union of open cell
fibers Cθi(s)i . Note that θj(s) ∈ Cl

(
C
θj(s)
j

)
\ Cθj(s)j , and hence there must be

some i 6= j such that θj(s) ∈ Cθi(s)i . Since this cell fiber Cθi(s)i is open, it must
contain a ball Bγ(θj(s)). But this implies that Cθi(s)i ∩ Cθj(s)j 6= ∅, which is a
contradiction, so we conclude that θj(s) 6∈ Xs.

We will show that for every s, the sets {θ1(s), . . . , θk(s)} and {σ1(s), . . . , σk(s)}
contain the same elements. If this were not the case, there would exist s ∈ S
and 1 6 j 6 k such that θj(s) 6= σi(s) for all 1 6 i 6 k.

Since θj(s) ∈ Cl(Xs) \ Xs, the set Xs contains elements t ∈ K which are
arbitrarily close to θj(s). But since θj(s) 6= σi(s) for all 1 6 i 6 k, such a t
cannot belong to

⋃k
i=1 C

σi(s)
i . Hence, for any such element t, there must exist

some i0 > k such that t ∈ Cσi0 (s)
i0

. But since t is arbitrarily close to θj(s), and
the cell condition Ci0 has �2 =<, this implies that θj(s) ∈ Cσi0 (s), which is a
contradiction.

We have now shown that for 1 6 i 6 k, the sets Σ(i)
s contain at most k elements.

By Lemma 2.3.10, there is a definable way to choose an element from these
sets uniformly in s. In particular, there exists a function σ1 : S → K such that
X splits by definable choice into Cσ1

1 and ({C2, . . . , Cr},Σ′), where Σ′ is as in
Definition 2.3.9. Applying this procedure k times shows that we can split off k
classical cells and be left with a multi-cell satisfying the conditions of (ii).

In the next lemma, we will show that one can definably fix the order of the
potential centers for every component.

Lemma 2.3.12. Let A = ({Ci}i,Σ) be a multi-cell satisfying the conditions
in part (ii) of Lemma 2.3.11. There exists a multicell A′ = ({Ci}i,Σ′) with
Σ′ ⊆ Σ, such that

(i) A(K) = A′(K);
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(ii) for all s ∈ S, all σ(s) = (σ1(s), . . . , σr(s)), θ(s) = (θ1(s), . . . , θr(s)) ∈ Σ′s,
and all 1 6 j 6 r, it holds that

ord(σj(s)) = ord(θj(s)).

Proof. Use induction to define a chain of sets Σl ⊆ S ×Kr for 0 6 l 6 r, with
Σ0 := Σ. Write (s, σ) = (s, σ1(s), . . . , σr(s)) for elements of Σ. Assuming Σl−1
has been defined, set

Σl := {(s, σ) ∈ Σl−1 | ∀(s, σ′) ∈ Σl−1 : ord(σ′l(s)) 6 ord(σl(s))}.

Note that this is well-defined, as by condition (b) of pre-admissibility, αl(s) is
an upper bound for ord(σl(s)), since σl(s) 6= 0 for the multi-cells we consider
in this lemma. Moreover, by Theorem 1.1.7, P -minimal definable subsets of
ΓK are Presburger-definable, and every such set has a maximal element if it is
bounded.

We leave it to the reader to check that for each l, Al := ({Ci}i,Σl) is indeed
a multi-cell. Also, for each l, Al(K) = A(K) since the only thing we do in
every step is to put restrictions on which centers we allow for each of the
components: Σ1 will fix the order of σ1(s), then Σ2 will pick a subset from Σ1
where ord(σ2(s)) is fixed, and so on. Note that at no point in the induction, Σl
will be empty. Setting A′ := Ar completes the proof.

Lemma 2.3.13. Let A = ({Ci}i,Σ) be a multi-cell as obtained in Lemma 2.3.12
with X = A(K). There exists a finite partitioning of X into sets Xj ⊆ Sj ×K
(where the Sj are definable subsets of S), such that each part Xj can be written
as a finite disjoint union of multi-cells Ajk = ({Cjk,i}i,Σjk) over Sj, and

ord(σ1(s)) = . . . = ord(σrjk(s))

for all (s, σ1(s), . . . , σrjk(s)) ∈ Σjk.

Proof. Assume that the refinements of Lemma 2.3.12 have been applied. Let
Perm be the set consisting of all tuples ∆ = (4k)k of length

(
r
2
)
, where each

4k is an element of the set {<,>,=}, and k ∈ {(k1, k2) | 1 6 k1 < k2 6 r}.
Now partition S into sets

S∆ := {s ∈ S | ∀(s, σ) ∈ Σ : ord(σk1) 4k ord(σk2)}.

Since Perm is a finite set, this gives us a finite partitioning of S, which in
turn induces a partitioning of X into multi-cells ({Cδ(i)}i,Σ∆). Here δ is a
permutation of {1, . . . , r} and Σ∆ is obtained from Σ ⊆ S×Kr by restricting S
to S∆, and reordering the components, such that they are ordered by valuation.
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That is, for each multi-cell there is a tuple (�k)k<r where each �k is either <
or = such that, for every section σ of Σ∆,

ord(σk(s)) �k ord(σk+1(s)), for all s ∈ S∆ and all 1 6 k < r.

We will now focus on one such multi-cell over a set S∆ (which we will denote
again as ({Ci}i,Σ) for simplicity), and show how it can be split by projection to
obtain the lemma. Let k ∈ {1, . . . , r− 1} be such that for all (s, σ1, . . . , σr) ∈ Σ,
we have that

ord(σ1) = . . . = ord(σk) < ord(σk+1).

If no such k exists, we are done. Otherwise, it suffices to show that ({Ci}i,Σ)
splits at k. For if it does, X(1,...,k) is a multi-cell satisfying the condition stated
in the lemma, and we can iterate the process for X(k+1,...,r). This process
must stop because we are decreasing the ambient dimension of Σ (indeed,
Σ(k+1,...,r) ⊆ S ×Kr−k).

Let us now show that one can indeed splitX at k: if (s, t) ∈ X(1,...,k)∩X(k+1,...,r),
there are (s, σ1, . . . , σk) ∈ Σ(1,...,k), (s, θ1, . . . , θr−k) ∈ Σ(k+1,...,r) and some
1 6 j 6 r − k such that by Remark 2.3.5,

ord(t) = ord(σ1) < ord(θj) = ord(t),

which is a contradiction.

We have now done all the preparatory work to prove Theorem 2.3.7.

Proof of Theorem 2.3.7. By Theorem 2.3.3, we may suppose that X is an
admissible multi-cell. Using Lemmas 2.3.11, 2.3.12 and 2.3.13, X can be
partitioned as a finite union of classical cells and multi-cells ({Ci}i,Σ) satisfying
conditions (ii) and (iii) of Definition 2.3.6. Moreover, each CΣ(i)

i satisfies
condition (i)-(iii) of Definition 2.3.4.

All operations used in the previous lemmas preserve admissibility, so it can
assumed that each multi-cell ({Ci}i,Σ) is admissible. Without loss of generality,
we may suppose that X is defined by one such multi-cell ({Ci}16i6r Σ).

To ensure condition (i) from Definition 2.3.6, it remains to show that each CΣ(i)

i

satisfies condition (iv) of Definition 2.3.4. To obtain this condition, it may be
that we have to add extra elements to Σ. Consider the set Σ′ defined as{

(s, x1, . . . , xr) ∈ S ×Kr

∣∣∣∣ r∧
i=1

[
∃c : (s, c) ∈ Σ(i) ∧ xi ∈ Bρi,max(s)+mi(c)

]}
.
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The set Σ′ is obtained from the original set Σ by adding, for every c ∈ Σ(i)
s , all

elements in the ball Bρi,max(s)+mi(c). This ensures that each CΣ′(i)
i now satisfies

condition (iv) of Definition 2.3.4. It is easy to check that ({Ci}i,Σ′) still defines
the same set X, and still satisfies conditions (i)-(iii) of Definition 2.3.6.

Before we can discuss condition (iv) of Definition 2.3.6, we need to introduce
the following notion. Let σi be a potential center contained in Σ(i). We say that
σi(s) is an admissible center (for some s ∈ S), if it does not violate condition
(d) of the definition of admissibility (Definition 2.2.2). More precisely, we mean
the following. Let B be the maximal ball in Xs that contains σi(s). Then σi(s)
is an admissible center if, for any section σ of Σ that has σi as a component,
the ball B is contained within a single cell of the decomposition of Xs induced
by σ(s).

When replacing the original set Σ by Σ′, we may have added centers which are
not admissible (the reader can check that the conditions of pre-admissibility
will never be violated). Yet, note that by construction, any ball in Σ′(i)s of size
ρi,max(s) +mi still contains at least one admissible center.

Let us now show that this implies condition (iv) from Definition 2.3.6. Without
loss of generality, we can take i = 1. Consider all possible sections of Σ′ which
are of the form (σ1(s), ζ2(s), . . . , ζr(s)). Each such section induces a partition

Xs = C
σ1(s)
1 ∪ Cζ2(s)

2 ∪ . . . ∪ Cζr(s)
r .

Now consider the maximal ball B around σ1(s). We need to distinguish between
two cases. It may be that this ball does not contain any admissible centers.
However, in that case the ball must have a valuation radius strictly bigger than
ρ1,max(s) +m1, in which case condition (iv) holds. If the ball does contain an
admissible center, we may as well assume that σ1(s) itself is admissible. Hence,
there should be a single cell in the decomposition that contains the maximal ball
B around σ1(s). This has to be one of the cells Cζj(s)j (since σ1(s) 6∈ Cσ1(s)).

Let us assume that B ⊂ C
ζ2(s)
2 . Note that, if the ball B were strictly bigger

than the ball Bρ1,max(s)+1(σ1(s)), then the cells Cσ1(s)
1 and Cζ2(s)

2 would have
non-empty intersection, which is a contradiction.

2.4 On the structure of the trees of potential
centers

Let CΣ be a clustered cell. As we have observed before, there may exist different
sections σ, σ′ of Σ such that the potential cells Cσ and Cσ

′ do not define
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the same set. To formalize this observation, let us introduce the following
equivalence relation.

Definition 2.4.1. Let CΣ be a clustered cell. For s ∈ S, elements c, c′ ∈ Σs

are said to be (C,Σs)-equivalent if they define the same cell fiber over s, that
is, if

∀t : (C(s, c, t)↔ C(s, c′, t)).

Given sections σ, σ′ : S → K of Σ, then σ and σ′ are (C,Σs)-equivalent if σ(s)
and σ′(s) are (C,Σs)-equivalent, that is, if Cσ(s) = Cσ

′(s).

We will sometimes write equivalent rather than (C,Σs)-equivalent, when the
meaning is clear from the context.

The main goal of this section is to prove the following proposition.

Proposition 2.4.2. Let ({Ci}i,Σ) be a cell array. There exists a uniform
bound N ∈ N, such that for all s ∈ S and all 1 6 i 6 r, the number of(
Ci,Σ(i)

s

)
-equivalence classes is at most N .

The proof of Proposition 2.4.2 will rely on the combinatorial structure of the
set Σ. Let us first introduce some notions which will be used in the proof.

We start by noting that, given a clustered cell CΣ, a section σ of Σ and s ∈ S,
the (C,Σs)-equivalence class of σ corresponds to the ball of radius ρmax(s) +m
centered at σ(s) (recall that ρmax and m only depend on the cell condition C).
This follows from the definition of clustered cell (condition (iv) of Definition
2.3.4). If no confusion arises, we will use the abbreviated notation B(σ(s)) for
such balls of equivalent centers, i.e.,

B(σ(s)) := Bρmax(s)+m(σ(s)).

Figure 2.2 further illustrates this concept. Here we have drawn the leaves of
the cell fiber Cσ3(s), and the leaves for the fibers Cσ1(s) and Cσ2(s) could be
depicted similarly.

Note that the cell fibers Cσ2(s) and Cσ3(s) are disjoint, whereas Cσ1(s) and
Cσ2(s) are not. To study possible intersection between potential cell fibers, it
will be important to consider branching heights (γ1(s) and γ2(s)) in the picture),
as they determine whether an intersection could possibly be nonempty.

Definition 2.4.3. Let CΣ be a clustered cell. For s ∈ S, we call γ ∈ ΓK a
branching height of Σs, if there exist sections σ, σ′ of Σ which are not (C,Σs)-
equivalent, and for which ord(σ(s)− σ′(s)) = γ.
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β(s)

α(s)

B(σ1(s)) B(σ2(s)) Bσ3(s))

γ2(s)

γ1(s)

Figure 2.2: Equivalence classes and branching heights of a cell fiber

Recall that B denotes the set of balls of K, that is

B := {Bγ(a) | a ∈ K, γ ∈ ΓK ∪ {∞}}.

The set B, equipped with the reversed inclusion relation ⊇, forms a meet
semi-lattice tree. The meet of two balls B1 and B2, denoted by inf(B1, B2),
corresponds to the smallest ball B ∈ B containing both B1 and B2. This
structure is interpretable in K. Note that K can be identified with the set of
maximal elements of B: elements of K are in definable bijection with balls of
radius ∞ in B, which are maximal balls with respect to reverse inclusion.

Let CΣ be a clustered cell. To each Σs we associate a subtree T (Σs) of B (the
set of all balls) generated by the (C,Σs)-equivalence classes, i.e.,

T (Σs) := {B ∈ B | B = inf(B(σ(s)), B(σ′(s))),where σ, σ′ are sections of Σ}.

Let Y ⊆ S×ΓK be such that for each s ∈ S, Ys denotes the set of all branching
heights of Σs. Each set Ys is bounded above by β(s) + m and is uniformly
definable in s. For each non-zero l ∈ N, we can inductively define a function
γl : S → ΓK ∪ {−∞} as follows: let γ1(s) denote the biggest element of Ys and
put

γl+1(s) :=
{

sup(Ys \ {γ1(s), . . . , γl(s)}) if Ys \ {γ1(s), . . . , γl(s)} 6= ∅,
−∞ otherwise.

Both Ys and the functions γl depend on the ambient clustered cell CΣ we are
working in.
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Let γ ∈ Ys be a branching height, and σ a section of Σ such that Bγ(σ(s)) is
a node of T (Σs). By the successors of Bγ(σ(s)) in T (Σs), we will mean those
balls B ∈ T (Σs) with B ( Bγ(σ(s)), for which there does not exist any ball
B′ ∈ T (Σs) with B ( B′ ( Bγ(σ(s)). If Bγ(σ(s)) is a node of T (Σs), then
the number of successors of Bγ(σ(s)) must be an integer k between 2 and qK .
We denote the following first order formula, which expresses that Bγ(σ(s)) has
exactly k successors by, φk(σ(s), γ):

∃c1, . . . , ck ∈ Σs ∀ζ ∈ Σs :

 σ(s) = c1 ∧
∧
i6=j ord(ci − cj) = γ ∧∧

i 6=j [ci and cj are not (C,Σs)-equivalent]∧[
ord(ζ − c1) = γ →

∨
i 6=1 ord(ζ − ci) > γ

]
 .

One should be aware that for some γ ∈ Ys and some sections σ of Σ, the ball
Bγ(σ(s)) may not necessarily be a node of T (Σs). We express this situation by
the following first-order formula φ1(σ(s), γ):

φ1(σ(s), γ) := σ(s) ∈ Σs ∧ (∀ζ ∈ Σs : ord(σ(s)− ζ) 6= γ).

The previous discussion implies that given any γ ∈ Ys and any section σ of Σ,
there exists a unique k ∈ {1, . . . , qk} such that φk(σ(s), γ) holds.
Definition 2.4.4. Let d ∈ N \ {0}, CΣ a clustered cell and σ a section of Σ.
For s ∈ S, the d-signature of σ(s) is the tuple (k1, . . . , kd) ∈ {1, . . . , qK ,−∞}d,
where for i ∈ {1, . . . , d},

ki =
{
k if γi(s) 6= −∞ and φk(σ(s), γi(s)) holds,
−∞ if γi(s) = −∞.

Hence, if some ki > 1, then the ball Bγi(s)(σ(s)) is a node of the tree T (Σs)
with ki successors. On the other hand, if ki = 1, then Bγi(s)(σ(s)) is not a

γ3

γ2

γ1

σ1 σ2

Figure 2.3: In this tree σ1 has 3-signature (3, 1, 2) and σ2 has 3-signature (2, 3, 2).
The 4-signature of σ1 is (3, 1, 2,−∞).
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node of T (Σs). The d-signature (k1, . . . , kd) of σ(s) also encodes information
about the number of branching heights: if ki 6= −∞ for all 1 6 i 6 d, then Σs
has at least d branching heights. If the tree T (Σs) has depth i0 < d (that is,
the tree has i0 branching heights), then i0 + 1 will be the least index such that
ki0+1 = −∞.

We will now show that, if the tree associated to some Σ(i)
s is infinite, then it

can be assumed to be dense, in the following sense.

Lemma 2.4.5. Let ({Ci}16i6r,Σ) be a cell array defining a set X. Assume
that there exists s0 ∈ S for which there are infinitely many

(
C1,Σ(1)

s0

)
-equivalence

classes. Let R > r be an integer. Then there exists a definable set Σ′ ⊆ Σ,
such that ({Ci}16i6r,Σ′) is a cell array defining the same set X, such that all
elements of (Σ′)(1)

s0 have R-signature (qK , . . . , qK).

Proof. Let s0 ∈ S be such that there are infinitely many
(
C1,Σ(1)

s0

)
-equivalence

classes. For κ an infinite cardinal number, let {σj | j < κ} be a set of sections
of Σ(1) such that

(i) each
(
C1,Σ(1)

s0

)
-equivalence class is represented by some σj(s0);

(ii) for j < j′ < κ, σj and σj′ are not
(
C1,Σ(1)

s0

)
-equivalent.

Let γl(s0) be the lth-branching height of Σ(1)
s0 .

Claim 2.4.6. For any d ∈ N \ {0}, there exists a finite set of ordinals Wd such
that for all j < κ with j /∈Wd, the d-signature of σj(s0) equals (qK , . . . , qK).

Suppose that the claim is false, and let d ∈ N \ {0} be the smallest integer
witnessing this. Let (qK , . . . , qk, kd) be a d-signature with kd < qK such that
the set

J := {j < κ | σj(s0) has signature (qK , . . . , qk, kd)},

is infinite in κ. The set

Z :=
⋃
j∈J

Bγd−1(s)(σj(s0))

is a definable subset of K which is the union of infinitely many balls of radius
γd−1(s0) (here we put γ0(s0) equal to the radius of the equivalence classes of
Σ(1)
s0 , i.e., γ0(s0) := ρmax(s0)+m1, where ρmax(s0) is the height of the top leaves

for C1), which are maximal with respect to inclusion in Z. By semi-algebraic



64 CLUSTERED CELL DECOMPOSITION IN P -MINIMAL STRUCTURES

cell decomposition, this situation cannot occur in a P -minimal field, which
shows the claim.

Let r be the number of cell conditions in the cell array (counted with multiplicity).
By our claim, we know that, whenever we fix an integer R > r, we can assume
that the R-signature of σj(s0) will be (qK , qK , . . . , qK) for all j < κ, except for
a finite set of indices WR. Now define a set W̃R as follows:

W̃R :=
{
c ∈ Σ(1)

s0

∣∣∣ ∨
j∈WR

ord(c− σj(s0)) > γR(s0)
}
.

Let Σ′ ⊆ Σ be the set obtained by removing the following fibers from Σs0 :

{(c, ζ2, . . . , ζr) ∈ Σs0 | c ∈ W̃R}.

The array ({Ci}i,Σ′) still defines X and moreover, all elements of (Σ′)(1)
s0 have

the same R-signature (qK , . . . , qK).

We are now ready to prove Proposition 2.4.2.

Proof of Proposition 2.4.2. Permuting the cell conditions if necessary, it suffices
to show the result for Σ(1). Suppose towards a contradiction that such a
uniform bound does not exist. By logical compactness, possibly working over
an elementary extension, let s ∈ S be such that there are infinitely many(
C1,Σ(1)

s

)
-equivalence classes. Fix some sufficiently large value of R, such that

at least R > max{r,m1}. Applying Lemma 2.4.5, we may assume that all
elements of Σ(1)

s have the same R-signature (qK , . . . , qK).

We need to fix some notations first. We write σj for potential centers in Σ(1).
The top leaf of a potential cell fiber Cσj(s)1 will be denoted by Θσj(s). Note
that for j 6= j′, the leaves Θσj(s) and Θσj′ (s) are disjoint (this follows from the
assumption that σj and σj′ are non-equivalent at s) and all of these leaves are
subsets of the set X that is defined by the cell array ({Ci}i,Σ).

Fix a cell condition Ci from the description of the array, together with a center
ζ from Σ(i). Write ρ(s) for the height where ζ(s) branches off from the tree of
Σ(1)
s , i.e., put

ρ(s) := max
c∈Σ(1)

s

{ord(ζ(s)− c)}.

Note that ρ(s) ∈ ΓK ∪ {∞}. We want to know in what ways leaves of Cζ(s)i

can intersect with balls Θσj(s). Note that the following always holds if t ∈



ON THE STRUCTURE OF THE TREES OF POTENTIAL CENTERS 65

C
ζ(s),γ
i ∩ Θσj(s) (see Definition 2.1.3 for the notation C

ζ(s),γ
i ). For such a t,

ord(t− ζ(s)) = γ and ord(t− σj(s)) = ρ1,max(s). Hence, one has that

ord(ζ(s)− σj(s)) = ord
(
(ζ(s)− t) + (t− σj(s))

)
> min

{
ord(ζ(s)− t), ord(t− σj(s))

}
= min{γ, ρ1,max(s)}.

We will now first consider the leaves Cζ(s),γi for which γ > ρ1,max(s). For these
leaves we have the following claim.

Claim 2.4.7. There exist at most qm1
K leaves Θσj(s) (with σj(s) ∈ Σ(1)

s ), for
which ( ⋃

γ>ρ1,max(s)

C
ζ(s),γ
i

)
∩Θσj(s) 6= ∅.

Note that the above intersection will be empty unless ρ(s) > ρ1,max(s). Now,
if Cζ(s),γi ∩Θσj(s) is nonempty for some center σj(s) and some γ > ρ1,max(s),
then it must hold that

ord(ζ(s)− σj(s)) > ρ1,max(s).

Moreover, there can at most be qm1
K non-equivalent centers with this property.

Our claim follows immediately from this observation.

For the remaining leaves of Cζ(s)i , one has the following.

Claim 2.4.8. Let γ < ρ1,max(s). If there exists σj ∈ Σ(1) such that Cζ(s),γi ∩
Θσj(s) is nonempty, then either γ is a branching height of Σ(1)

s , or γ = ρ(s).

γj(s)

γi(s)

ρ(s)

ζ(s) σ1(s) σ3(s)

Since γ < ρ1,max(s), we must have that

ord(ζ(s)− σj(s)) = γ.
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Note that by the definition of ρ(s), we have that ρ(s) > γ. Now if ρ(s) > γ,
there exists c ∈ Σ(1)

s such that ord(ζ(s)− c) > γ. We have to show that in this
case γ is a branching point. This holds since

ord(c− σj(s)) = ord
(
(c− ζ(s)) + (ζ(s)− σj(s))

)
> min

(
ord(c− ζ(s)), ord(ζ(s)− σj(s)

)
= γ.

Again, since ord(c − ζ(s)) > γ = ord(ζ(s) − σj(s)), this must be an equality.
Therefore, c and σj(s) are nonequivalent centers of Σ(1)

s that branch at height
γ. This proves the claim.

We will also need to use the following.

Claim 2.4.9. Let γ < ρ1,max(s). Then a leaf Cζ(s),γi can intersect at most qm1
K

balls Θσj(s).

Fix some γ < ρ1,max(s) for which there are at least two non-equivalent centers
σj(s), σj′(s) such that

C
ζ(s),γ
i ∩Θσj(s) 6= ∅ and C

ζ(s),γ
i ∩Θσj′ (s) 6= ∅ (2.4.1)

(for other values of γ there is nothing to prove). Let Bj,j′ denote the smallest
ball containing both Θσj(s) and Θσj′ (s). Since Θσj(s) and Θσj′ (s) are disjoint,
(2.4.1) implies that Bj,j′ ⊆ Cζ(s),γi .

Put γj,j′ := ord(σj(s)−σj′(s)), and note that γj,j′ is a branching height of Σ(1)
s .

We need to consider the location of this branching height γj,j′ versus ρ1,max(s).

γj,j′

ρ1,max(s)

σj(s) σj′ (s)
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First suppose that γj,j′ 6 ρ1,max(s). In this situation, we find that Bj,j′ =
Bγj,j′ (σj(s)). Since Bj,j′ contains centers and Bj,j′ ⊆ C

ζ(s),γ
i ⊆ Xs, but

γj,j′ 6 ρ1,max(s), we obtain a contradiction to condition (iv) from the definition
of cell array (Definition 2.3.6). Hence, condition (2.4.1) can never be satisfied
in this case.

Now consider the case where γj,j′ > ρ1,max(s). This condition expresses that
σj(s) and σj′(s) branch above ρ1,max(s). There can be at most m1 such
branching heights, and hence the leaf Cζ(s),γi can intersect at most qm1

K balls
Θσj (s). This proves the claim.

After a possible reordering, we can assume that the elements σj(s) ∈ Σ(1)
s are

ordered in such a way that for each l 6 R, the potential centers σ1(s), . . . , σql
k
(s)

generate a finite tree of depth l.

The picture shows an example for qK = 3 and l = 2.

γ3

γ2

γ1

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9

Now consider, for m1 < l < R, the depth l subtree of T (Σ(1)
s ) defined above.

Combining the claims above, we can conclude that a single cell Cζ(s)i can never
intersect more than qm1

K + (l + 1)qm1
K = (l + 2)qm1

K top leaves Θσj(s) from this
subtree (and a more careful count would probably show that this upper bound
is too high). Since, for the given tree of depth l < R, there exist qlK disjoint
leaves Θσj(s), we can conclude that at least q

l−m1
K

l+2 cell conditions are required to
account for all top leaves. Hence, we obtain a contradiction when l is sufficiently
big, given that there is only a fixed number of cell conditions. We conclude
that there cannot exist s ∈ S for which the number of non-equivalent centers
for Σ(1)

s is not bounded.
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2.5 Regularity

The main purpose of this section is to prove Proposition 2.5.8, which establishes
that a cell array can be partitioned into finitely many regular cell arrays. A
formal definition will be given in Subsection 2.5.2 (see Definition 2.5.4). We
start with some preliminaries needed to prove Proposition 2.5.8.

2.5.1 Repartitionings

Let ({Ci}i∈I ,Σ) be a cell array defining a set X. In this subsection we describe
three procedures to obtain a new cell array ({C ′i}i∈I′ ,Σ′) that defines the same
set X. These procedures are called repartitionings of ({Ci}i∈I ,Σ) and will be
used often in what follows. Some care is needed to make sure that the new
pair ({C ′i}i∈I′ ,Σ′) still satisfies all conditions from the definition of a cell array
(Definition 2.3.6). The details are given in the following lemma-definition.
Lemma-Definition 2.5.1. Let A = ({Ci}16i6r,Σ) be a cell array over S
defining a set X.

(a) Let δ : S → ΓK be a definable function. Given a cell condition Ci, there
exists a definable set Σ′ ⊆ S ×Kr+1 such that

A′ := ({C1, . . . , Ci−1, Ci|(αi,δ), Ci|(δ−1,βi), Ci+1, . . . , Cr},Σ′)

is a cell array defining the same setX. For the notation Ci|(αi,δ), Ci|(δ−1,βi)
see (2.2.1).

(b) Given a cell condition Ci, and ` ∈ N \ {0}, let Ci,j , for 0 6 j < `, be the
cell condition

Ci,j(s, c, t) := αi(s) < ord(t− c) < βi(s) ∧ t− c ∈ $jniλQ`ni,mi .

There exists a definable set Σ′ ⊆ S ×Kr+`−1 such that

A′ := ({C1, . . . , Ci−1, Ci,0, . . . , Ci,`−1, Ci+1, . . . , Cr},Σ′)

is a cell array defining the same set X.

(c) Given a cell condition Ci, and `′ ∈ N, let Ci,j denote the cell condition

Ci,j(s, c, t) := αi(s) < ord(t− c) < βi(s) ∧ t− c ∈ λjQni,mi+`′ ,

where the elements λj are representatives of each of the q`′K disjoint subballs
of size (ord(λ) + m+ `′) of Bord(λ)+m(λ). Put r′ := q`

′

K . There exists a
definable set Σ′ ⊆ S ×Kr+r′−1 such that the repartitioning

A′ := ({C1, . . . , Ci−1, Ci,1, . . . , Ci,r′ , Ci+1, . . . , Cr},Σ′)
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is a cell array defining the same set X.

Proof. First consider part (a). We will show how to define a set Σ′ such that
conditions (i) and (iv) from the definition of cell array are still satisfied for the
repartitioning. Conditions (ii) and (iii) are left to the reader (but they should
be rather obvious). Write ρ(αi,δ),max(s) for the height of the top leaf for fibers
of Ci|(αi,δ). First put

Di,s := {c ∈ K | ∃c′ ∈ Σ(i)
s : ord(c− c′) > ρ(αi,δ),max(s) +mi}.

Now, put ζ := (ζ1, . . . , ζi−1, ζ
′, ζi, . . . , ζr), and let Σ′ be the set

Σ′ :=
{

(s, ζ) ∈ S ×Kr+1
∣∣∣∣ r∧
j=1

ζj ∈ Σ(j)
s ∧ ζ ′ ∈ Di,s ∧ φ(s, ζ) = Xs

}
,

where φ(s, ζ) is the formula expressing that the centers ζ induce a partition of
Xs:

φ(s, ζ) :=
[ ⋃
j 6=i

C
ζj
j ∪ Cζ

′

i|(αi,δ) ∪ C
ζi
i|(δ−1,βi) = Xs

]
.

It should be clear that with this set Σ′, the repartitioning still defines the same
set X, and that condition (i) still holds.

It remains to check condition (iv). Note that there is only something to prove for
the cell condition Ci|(αi,δ). Fix an s ∈ S. The set of centers for the clustered cell
fiber associated to s and Ci|(αi,δ) is then Di,s. Suppose towards a contradiction
that (iv) is not satisfied for some c ∈ Di,s, i.e., that Xs contains a ball Bγ(c),
for some γ 6 ρ(αi,δ),max(s). By construction, there exists ζi ∈ Σ(i)

s such that
ord(c − ζi) > ρ(αi,δ),max(s) + mi. However, this implies that ζi ∈ Bγ(c). But
since ζi was already a potential center for the clustered cell CΣ(i)

i , induced by
the original cell array, this contradicts condition (iv) for the original cell array.

For case (b), we will assume that i = 1 to ease the notation, but the same idea
can obviously be applied for other components. For 0 6 j < `, let ρ1j,max(s)
denote the height of the top leaf for fibers of C1,j . Let Dj,s be the set

Dj,s := {cj ∈ K | ∃c′ ∈ Σ(1)
s : ord(cj − c′) > ρ1j,max(s) +m1},

and put ζ := (c0, . . . , c`−1, ζ2, . . . , ζr). Now, let Σ′ be the set

Σ′ :=
{

(s, ζ) ∈ S ×Kr+`−1
∣∣∣∣ `−1∧
j=0

cj ∈ Dj,s ∧
r∧
i=2

ζi ∈ Σ(i)
s ∧ φ(s, ζ)

}
,
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where φ(s, ζ) is the formula

φ(s, ζ) :=

`−1⋃
j=0

C
cj
1,j ∪

r⋃
i=2

Cζii = Xs

 .
We leave it to the reader to check that all conditions are satisfied in this case.

For (c), the set Σ′ can be defined in a similar way. Note that in this case, the
potential centers for the new cells Ci,j are the same ones as for the old Ci, but
each equivalence class splits in q`′K smaller equivalence classes. Since there are
no ‘new’ centers, and the value of ρi,max does not change, condition (iv) from
the definition of cell array will be preserved.

2.5.2 Regular cell arrays

In order to give the formal definition of regularity we need the following
definitions first.

Definition 2.5.2. A clustered cell CΣ over S is said to have uniform tree
structure if for all s, s′ ∈ S, the trees T (Σs) and T (Σs′) are isomorphic.

Here, a function f : T1 → T2 between trees T1 and T2 is a tree isomorphism if f
is a bijection and both f and f−1 are order preserving. We will also need the
following additional definitions for types of clustered cells.

Definition 2.5.3. Let CΣ be a clustered cell. Then CΣ is said to be

• large (M-large), if there exists M ∈ N with M > 1, such that |α(s) −
β(s)| > M for all s ∈ S;

• uniformly bounded (M -bounded), if there exists M ∈ N with M > 1, such
that |α(s)− β(s)| 6M for all s ∈ S;

• small, if there exists a definable function γ : S → ΓK , such that for any
potential center σ : S → K, Cσ is of the form

Cσ = {(s, t) ∈ S ×K | ord(t− σ(s)) = γ(s) ∧ t− σ(s) ∈ λQn,m}.

We are now ready to define regular cell arrays.

Definition 2.5.4. A cell array ({Ci}i∈I ,Σ) is said to be regular if it satisfies
the following conditions:
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(R1) There exists n,m ∈ N \ {0} such that all cell conditions are described
using the same set Qn,m.

(R2) For i, i′ ∈ I, either (αi(s), βi(s)) ∩ (αi′(s), βi′(s)) = ∅ for all s ∈ S , or
(αi(s), βi(s)) = (αi′(s), βi′(s)) for all s ∈ S; cell conditions Ci, Ci′ that
share the same interval will be called parallel.

(R3) There is a natural ordering on the cell conditions, that is, either two cells
are parallel, or, for any two non-parallel cells Ci and Ci′ , we have that
either Ci lies on top of Ci′ (if βi′(s) 6 αi(s) + 1) or Ci lies below Ci′ (if
βi(s) 6 αi′(s) + 1).

(R4) If Ci and Ci′ are copies of the same cell condition, then Σ(i) = Σ(i′).

(R5) For each i ∈ I, the clustered cell CΣ(i)

i has uniform tree structure.

(R6) If Ci is large and γ(s) is a branching height of Σ(i)
s , then γ(s) 6 αi(s).

Remark 2.5.5. For x = {1, . . . , 6}, let A = ({Ci}i∈I ,Σ) be a cell array satisfying
condition (Rx) from Definition 2.5.4. If S is partitioned into sets S1, . . . , Sl,
then each cell array A|Sj also satisfies condition (Rx). In particular, if A is a
regular cell array, then so are the arrays A|Sj .

Lemma 2.5.6. Let A = ({Ci}i,Σ) be a cell array. There is a definable partition
of S into sets S1, . . . , Sl such that for each j ∈ {1, . . . , l}, each clustered cell in
A|Sj has uniform tree structure.

Proof. By Proposition 2.4.2, there exist only finitely many tree isomorphism
types for the trees T

(
Σ(i)
s

)
, for all s ∈ S and all 1 6 i 6 r. Since the tree

isomorphism type of the finite tree T
(
Σ(i)
s

)
is a definable condition, the result

follows by a straightforward partitioning of S.

Lemma 2.5.7. Let X ⊆ S ×K be a set defined by a cell array A = ({Ci}i,Σ).
There exist cell arrays Aj, satisfying conditions (R1) - (R5), such that the
induced sets Aj(K) form a finite partition of X.

Proof. Condition (R1) is obtained through a repartitioning of the original array
({Ci}i,Σ). Put n := lcmi{ni} and m := maxi{mi}. By applying procedures
(b) and (c) outlined in Lemma-Definition 2.5.1 to each cell Ci with respect to
`i := n

ni
(for procedure (b)) and `′i := m−mi (for procedure (c)), one obtains a

repartitioning where all cell conditions are defined using the same set Qn,m. We
may therefore assume without loss of generality that X = ({Ci}i,Σ) already
satisfies condition (R1).
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Let us now first give the main ideas for a procedure to achieve conditions (R2)
and (R3). We want to cut up the intervals in pieces such that there is never
any overlap between them. If there were no parameter s involved, one could
simply do the following. If C1, C2 were cell conditions for which, say

α2 < α1 < β2 < β1,

we would split both conditions: replace C1 by a condition C1,1 with interval
(α1, β2) and a condition C1,2 with interval (β2 − 1, β1). Similarly, split C2 in
a condition C2,1 with interval (α2, α1 + 1) and a condition C2,2 with interval
(α1, β2). Each split will induce a new array representation of the set. Repeating
this until there is no more overlap between intervals would achieve the first
condition of the lemma.

In order to do this uniformly in s, one needs to make sure that the interval
structure is the same for all s ∈ S. This means that we need to first do a
partitioning of S to ensure that all the boundary points αi(s), βi(s) are ordered
in the same way for all s ∈ S. Since this is a finite set, this can be done by a
finite partition, so let S1, . . . , Sl be such a partition. By Remark 2.5.5, each
cell array A|Sj still satisfies condition (R1). Finally, we apply the above idea
to cut the intervals of each cell array A|Sj using a repartitioning as in (a) of
Lemma-Definition 2.5.1. Note that this new cell array satisfies both conditions
(R2) and (R3). Moreover, the repartitioning (a) does not change the values of
n or m used in Qn,m for any of the cell conditions, so the new cell arrays still
satisfy condition (R1). Hence, without loss of generality we may suppose that
X = ({Ci}i,Σ) already satisfies conditions (R1)-(R3).

For condition (R4), suppose that Ci and Cj are the same cell condition for
i 6= j. At this point, there need not be any connection between the sets Σ(i)

and Σ(j). However, we can replace both Σ(i) and Σ(j) by Σ(i) ∪ Σ(j), and
propagate this to Σ itself in the obvious way: if σi ∈ Σ(i), σj ∈ Σ(j), and
(s, . . . , σi, . . . , σj , . . .) is contained in Σ, then add (s, . . . , σj , . . . , σi, . . .) to Σ if
necessary. This ensures condition (R4). In addition, since we did not change
any cell condition, conditions (R1)-(R3) are still satisfied.

Finally, by Lemma 2.5.6 and Remark 2.5.5 each cell array satisfying (R1)-(R4)
can be partitioned into finitely many cell arrays satisfying (R1)-(R5).

Proposition 2.5.8. Let A = ({Ci}i∈I ,Σ) be a cell array with A(K) = X.
There exist regular cell arrays Aj, such that the induced sets Aj(K) form a
finite partition of X.

Proof. By Lemma 2.5.7, we can assume that A already satisfies conditions
(R1)-(R5), so it remains to show how to obtain condition (R6).
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For i ∈ I we can assume, after a finite partitioning of S, that there exists
N ∈ N such that CΣ(i)

i is a large clustered cell for which each fiber
(
CΣ(i)

i

)
s

has exactly N branching heights γ1(s) > · · · > γN (s). Put I ′ := {i ∈ I |
Ci′ is parallel to Ci}. In the next steps of the proof, we will always apply the
same repartitionings to each of the cell conditions in {Ci}i∈I′ , simultaneously.
By condition (R5), the partitioning process described below can be carried out
in a definable way, uniformly in s.

Consider the set

∆(s) := {γj(s) + k | 1 6 j 6 N,−m 6 k 6 m},

where m is the integer value in the set Qn,m used to describe all cell conditions
(such an m exists by (R1)). Partitioning S into finitely many parts if necessary
(which is allowed by Remark 2.5.5), we may assume that the set {α1(s), β1(s)}∪
∆(s) is ordered in the same way for all s ∈ S (with respect to the ordering <).
Write δ1(s) < δ2(s) < . . . < δL(s) for the elements of ∆(s) ∩ (α1(s), β1(s)), and
put δ0(s) := α1(s) + 1, δL+1(s) := β1(s). We now apply a repartitioning as in
(a) of Lemma-Definition 2.5.1, with respect to each function δj(s) and each cell
Ci for i ∈ I ′. That is, we replace each cell condition Ci by cell conditions

Ci,j := Ci|(δj−1,δj+1),

for each 1 6 j 6 L. Note that some of these conditions may induce empty sets
(in which case we will drop the corresponding cell condition).

The value of m and n does not change in these new cell conditions, so (R1)
is preserved. The fact that the repartitioning is applied for all parallel cells
simultaneously preserves both (R2) and (R3). The same is true for (R4). Indeed,
if C1 and C2 are copies of the same cell condition (in the original array), then
the above procedure produces cell conditions C1,j , resp. C2,j such that for each
j, C1,j = C2,j . Because condition (R4) holds for the original array, one has
that Σ(1) = Σ(2). This equality is preserved when applying repartitioning (a)
of Lemma-Definition 2.5.1 to both cell conditions. Since this is the only way
to obtain multiple copies of the same cell condition, condition (R4) must be
preserved. By Lemma 2.5.6 and Remark 2.5.5, we can assume (R5) is also
satisfied.

Let us now explain how this partitioning will ensure (R6). Consider again the
large cell condition Ci from the original array, and its set of potential centers
Σ(i). By the repartitioning, this cell condition was replaced by smaller cell
conditions Ci,j . The set of potential centers for each part Ci|(δj−1,δj+1) (which
we will denote as Σ(i,j)), is defined from the set of potential centers for Ci, by
procedure (a) outlined in Lemma-Definition 2.5.1. In that procedure, either
equivalence classes are preserved, or it may be that some equivalence classes
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merge, and are replaced by a ball containing both original classes: indeed, any
two centers in Σ(i)

s whose branching height is above δj+1 +m, are equivalent
with respect to Ci|(δj−1,δj+1). So the tree T

(
Σ(i,j)
s

)
associated to any of the cell

conditions Ci,j can have at most the same number of branching heights as the
tree of Ci (and will probably have less).

Moreover, for large cell conditions Ci,j (deduced from Ci or a copy of Ci), our
construction assures there are no branching heights between δj and δj+1 +m,
which indeed leaves us with a cell condition for which no branching heights are
bigger than the lower bound of the cell.

A similar procedure should be repeated for the remaining parallel, large cell
conditions. Note that this indeed ends after a finite number of steps, since the
number of branching heights possibly contradicting (R6) only decreases at each
step.

The following lemma gives a property of regular cell arrays that will be used
often.

Lemma 2.5.9. Let ({Ci}i∈I ,Σ) be a regular cell array and i ∈ I. If
σ1(s), σ2(s) ∈ Σ(i)

s are non-equivalent centers, then Cσ1(s)
i ∩ Cσ2(s)

i = ∅.

Proof. Assume that Ci is a large cell condition, as otherwise there is nothing
to prove. If σ1(s), σ2(s) ∈ Σ(i)

s are non-equivalent centers, then condition (R6)
implies that ord(σ1(s)− σ2(s)) 6 αi(s). Hence, for (s, t) ∈ Cσ1

i we have that

ord(t− σ2(s)) = ord
(
(t− σ1(s)) + (σ1(s)− σ2(s))

)
6 αi(s),

which means that (s, t) 6∈ Cσ2
i .

2.6 Separating cell arrays

In this section, we will need to keep track of the multiplicity with which a given
cell condition occurs in a cell array. Since in a regular array, the associated set
of potential centers is the same for each copy of a given cell condition, we will
regroup this information, and, in the proofs that follow, whenever convenient
adopt the following notation for regular cell arrays. The notation(

{C〈ki〉i }16i6l, 〈Σ〉
)
,

with 〈Σ〉 ∈ S×Kl, will denote an array where the cell condition Ci occurs with
multiplicity ki. The associated set of potential centers for Ci will be denoted
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as 〈Σ〉(i), and corresponds to the projection of the fibers of 〈Σ〉 onto the i-th
coordinate. Given a set 〈Σ〉, it should be clear to the reader how this set can
be expanded to the set Σ ⊆ S ×Kk1+...+kl used in the standard notation. We
will only use this condensed notation for regular arrays.

Our goal in this section is to show that, possibly after further partitioning
or applying certain transformations, one can definably split a cell array into
clustered cells C〈Σ〉

(i)

i . Since these clustered cells are derived from regular
cell arrays, they will inherit certain properties of regularity. The following
terminology will be useful.

Definition 2.6.1. Let k > 0 be an integer. A set H ⊆ S × K is called a
multi-ball of order k over S, if every fiber Hs (for s ∈ S) is a union of k disjoint
balls of the same radius.

Definition 2.6.2. A clustered cell CΣ is called regular of order k if it is regular
(when considered as a cell array) and Σ is a multi-ball of order k, where the k
balls coincide with the k different (C,Σs)-equivalence classes.

In particular, the regularity condition (R6) implies that if two sections σ, σ′
of Σ are not (C,Σs)-equivalent, then Cσ(s) ∩ Cσ′(s) = ∅, and hence for every
s ∈ S, we have that, if σ1, . . . , σk are sections of Σ for which {σ1(s), . . . , σk(s)}
are representatives of the k equivalence classes in Σs, then

Cσ1(s) ∪ Cσ2(s) ∪ . . . ∪ Cσk(s)

is a partition of (CΣ)s.
Remark 2.6.3. The splitting procedures outlined in Definitions 2.3.8 and 2.3.9
can also be used for regular cell arrays, and the regularity condition is preserved
under splits by projection. We leave it to the reader to check that, in particular,
condition (R5) about uniformity in the tree structure is preserved. When
applying a split by definable choice, condition (R5) might get lost initially, but
this can always be restored by a further finite partitioning (as described in
Lemma 2.5.6) if necessary.

Let us start by considering the cases where a clustered cell can be split off
without modifying the array first. Here we use the terminology and notations
of Definition 2.3.8.

Lemma 2.6.4. Let A =
(
{C〈ki〉i }16i6l, 〈Σ〉

)
be a regular cell array, with

A(K) = X and l > 1, for which C〈Σ〉
(1)

1 is a regular clustered cell of order k1.
Then A can be partitioned as the union of C〈Σ〉

(1)

1 and the regular cell array(
{C〈ki〉i }26i6l, 〈Σ〉(2,...,l)

)
.
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Proof. The suggested split is a split at k1 (by projection). The regularity claim
follows from Remark 2.6.3. Note that C〈Σ〉

(1)

1 = X(1,...,k1). What needs to be
checked is whether

C
〈Σ〉(1)

1 ∩X(k1+1,...,
∑

ki) = ∅.

The reason that this intersection is empty is as follows. For any section
σ = (σ1,1, . . . , σ1,k1 , σ2,1, . . . , σl,kl) of Σ, we get a partition

Xs =
k1⋃
i=1

C
σ1,i(s)
1 ∪

[
k2⋃
i=1

C
σ2,i(s)
2 ∪ . . . ∪

kl⋃
i=1

C
σl,i(s)
l

]
, (2.6.1)

where the elements σ1,i(s) are k1 distinct (i.e., non-equivalent) elements of
〈Σ〉(1)

s . However, by our assumption, this set only consists of k1 equivalence
classes. Hence, for any possible choice of σ,

⋃k1
i=1 C

σ1,i(s)
1 is the same set, so a

nonempty intersection would imply the existence of a σ that contradicts the
fact that (2.6.1) gives a partition of Xs.

Given a regular cell array
(
{C〈ki〉i }16i6l, 〈Σ〉

)
, let us now consider a cell condition

C1 for which 〈Σ〉(1) is a multi-ball of order strictly bigger than k1. In this case,
the reasoning in the previous proof implies that there exists some center σ̂
in 〈Σ〉(1), and a section σ′ = (σ′1,1, . . . , σ′1,k1

, σ′2,1, . . . , σ
′
l,kl

) of Σ such that for
every s,

C
σ̂(s)
1 ∩

[
k2⋃
i=1

C
σ′2,i(s)
2 ∪ . . . ∪

kl⋃
i=1

C
σ′l,i(s)
l

]
6= ∅

(and hence obviously σ̂(s) is not equivalent to any of the elements of
{σ′1,1(s), . . . , σ′1,k1

(s)}). We will refer to this situation by saying that σ̂(s)
admits external exchange. The following lemma shows that the property of
external exchange has consequences for the size of a large cell.

Lemma 2.6.5. Let A =
(
{C〈ki〉i }i, 〈Σ〉

)
be a regular cell array with A(K) = X,

and Cj a large cell condition for which 〈Σ〉(j) is a multi-ball with order k > kj.
Then there exists M ∈ N such that Cj is M -bounded.

Proof. Fix a large cell condition from the cell array, which will be denoted as
Cλ:

Cλ(s, c, t) = α(s) < ord(t− c) < β(s) ∧ t− c ∈ λQn,m.

We write kλ for its multiplicity and 〈Σ〉(λ) for its set of potential centers.
By assumption, 〈Σ〉(λ) is a multiball of order k > kλ. Let σ̂ be as in
the discussion preceding this lemma. Hence, there exists a section σ =
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(σ1, . . . , σkλ , ζ1, . . . , ζr1+r2), such that, for all s ∈ S, σ̂(s) is not
(
Cλ, 〈Σ〉(λ)

s

)
-

equivalent to any of the elements of {σ1(s), . . . , σkλ(s)}. We write the
corresponding decomposition of Xs as

Xs =
[
C
σ1(s)
λ ∪ . . . ∪ Cσkλ (s)

λ

]
∪

[
r1⋃
i=1

C
ζi(s)
i ∪

r2⋃
i=1

D
ζr1+i(s)
i

]
,

where the cells Ci are parallel to Cλ and the cells Di are non-parallel to Cλ.
We allow that Ci = Cj for i 6= j and similarly for Di. Note that by Lemma
2.5.9, the intersections C σ̂(s)

λ ∩ Cσi(s)λ are all empty, and hence

C
σ̂(s)
λ ⊂

[
r1⋃
i=1

C
ζi(s)
i ∪

r2⋃
i=1

D
ζr1+i(s)
i

]
.

We will show that there exists a fixed bound N ∈ N such that, for any s ∈ S,
each of the intersections C σ̂(s)

λ ∩ Cζi(s)i , resp. C σ̂(s)
λ ∩ Dζr1+i(s)

i can contain
points of at most N leaves of C σ̂(s)

λ . The statement of the lemma follows from
this, since clearly this implies that the larger the interval (α(s), β(s)) in the
description of Cλ gets, the more cells will be involved in this exchange process,
yet the decomposition is finite.

Let us first consider the non-parallel cells Di.

Claim 2.6.6. For every s ∈ S, and any 1 6 i 6 r2, at most one leaf of C σ̂(s)
λ

can intersect the cell fiber Dζr1+i(s)
i .

Write (α(s), β(s)) for the interval associated to Cλ, and (αi(s), βi(s)) for the
interval associated toDi. By assumption, these intervals have empty intersection.
First consider the case where Di lies above Cλ (i.e., β(s) 6 αi(s) + 1). Suppose
that Dζr1+i(s)

i contains a point t from a leaf C σ̂(s),γ
λ . Then ord(t− ζr1+i(s)) >

αi(s), and hence ord(ζr1+i(s)− σ̂(s)) = γ. But this implies that the cell fiber
D
ζr1+i(s)
i cannot possibly contain points from other leaves of C σ̂(s)

λ . Hence, at
most one leaf of C σ̂(s)

λ can intersect with Dζr1+i(s)
i .

On the other hand, when Di lies below Cλ (i.e., βi(s) 6 α(s) + 1), a cell
fiber Dζr1+i(s)

i can contain at most a single leaf of C σ̂(s)
λ (or no leaf at all).

Indeed, if Dζr1+i(s)
i contained points from more than one leaf of C σ̂(s)

λ , then
D
ζr1+i(s)
i would contain a ball Br(σ̂(s)) which contains those leaves. It is easy to

check that this ball Br(σ̂(s)) would have radius r < ρmax(s), which contradicts
condition (iv) of the definition of cell array (Definition 2.3.6).
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Claim 2.6.7. For every s ∈ S, and any 1 6 i 6 r1, at most 2m leaves of C σ̂(s)
λ

can intersect the cell fiber Cζi(s)i .

Consider a cell fiber Cζi(s)i for which Cζi(s)i ∩C σ̂(s)
λ 6= ∅. Put γ0(s) := ord(σ̂(s)−

ζi(s)). It is sufficient to show that Cζi(s)i ∩C σ̂(s)
λ ⊆ C σ̂(s)

λ|(γ0(s)−m,γ0(s)+m), as this
set cannot contain more than 2m leaves.

Suppose that the intersection contains some t ∈ K for which ord(t− σ̂(s)) >
γ0(s) + m. Note that this implies that γ0(s) + m 6 ρmax(s). One can check
that for such a t to exist, Cζi(s)i needs to contain the whole ball Bγ0(s)+m(σ̂(s)),
which would again contradict condition (iv) of Definition 2.3.6, since it would
mean that Xs contains a ball Br(σ̂(s)) with radius r < ρmax(s) + 1.

Finally, suppose the intersection contains some t ∈ K for which ord(t− σ̂(s)) 6
γ0(s) −m. In this case, we would have that ord(t − σ̂(s)) = ord(t − ζi(s)) 6
γ0(s) − m, and hence the fact that (t − σ̂(s)) ∈ λQn,m would imply that
also (t − ζi(s)) ∈ λQn,m. However, this contradicts the assumption that
t ∈ Cζi(s)i , since Ci is a parallel cell condition different from Cλ (and hence
acm(λi) 6= acm(λ).)

A consequence of this lemma is the following.

Proposition 2.6.8. Let A =
(
{C〈ki〉i }16i6l, 〈Σ〉

)
be a regular cell array defining

a set X. There exists a finite partition of A into arrays (Aj)j∈J , such that for
each j ∈ J , Aj is either a regular clustered cell, or a regular cell array only
containing small cell conditions.

Proof. Let Ci be a large cell condition and assume that 〈Σ〉(i) is a multi-ball of
order li. If ki = li, then by Lemma 2.6.4, the clustered cell C〈Σ〉

(i)

i can be split
off. Moreover, since A is regular, so is C〈Σ〉

(i)

i .

Now if li > ki, by Lemma 2.6.5 there exists M ∈ N such that C〈Σ〉
(i)

i is M -
bounded. Partitioning S if necessary (and using Remark 2.5.5), we may assume
that for all s ∈ S, the interval (αi(s), βi(s)) contains exactly M ′ elements for
some M ′ 6 M . Define functions δ1 < . . . < δM ′ , such that for each s ∈ S,
(αi(s), βi(s)) = {δ1(s), . . . , δM ′(s)}. Let A′ be the cell array one obtains by
applying repartitioning (a) of Lemma-Definition 2.5.1 simultaneously to all
cell conditions parallel to Ci, with respect to the functions δi. That is, A′ is
obtained from A by replacing the cell condition Ci (and each cell condition
parallel to Ci) by M ′ small cell conditions (and adjusting Σ accordingly).
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Note that A′ still satisfies all properties of regularity except possibly (R5), but
by Lemma 2.5.6 and Remark 2.5.5, there exists a definable partition of S into
sets Sj such that each array A′|Sj is regular. Moreover, each such array has
at least one large cell condition less than the original cell array A. Iterating
the process for the remaining large cell conditions on each A′|Sj completes the
proof.

2.6.1 Dealing with the remaining small cell arrays

Let us now have a closer look at the remaining small cell arrays, and how their
structure can be simplified.

We will do some normalizations first, to ensure that small cell conditions only
differ in their height functions γ(s). These normalizations will not change the
actual cells that partition A(K), in the sense that, if C was a cell condition from
A, and σ a corresponding potential center, then, if the normalization replaces
C by C ′, there will exist a corresponding center σ′ such that Cσ = (C ′)σ′ . In
particular, the original cell condition C will be replaced by a condition C ′ in
which acm(t− σ′(s)) will always be equal to 1.

Unfortunately, it is not obvious whether the normalization procedure described
in Lemma 2.6.10 does preserve all properties of regular cell arrays. The definition
below (of small regular multi-cells) lists those properties that will still be relevant
for subsequent proofs. Other properties may or may not be preserved, but we
will pay no further attention to them.

Definition 2.6.9. A multi-cell A = ({Cγj}16j6r,Σ) is called a small regular
multi-cell if the following properties hold:

(S1) All cell conditions Cγj are small cell conditions of the form

ord(t− σ(s)) = γj(s) ∧ acm(t− σ(s)) ≡ 1 mod $m,

for some m ∈ N independent of j. Also, for all s ∈ S it holds that

γ1(s) < . . . < γr(s).

(S2) Each CΣ(j)

γj is a clustered cell.

(S3) For any 1 6 i, j 6 r, and any σi ∈ Σ(i), σj ∈ Σ(j), it holds that
ord(σi(s)) = ord(σj(s)) for all s ∈ S.

(S4) If Cγi and Cγj are copies of the same cell condition, then Σ(i) = Σ(j).
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(S5) Each clustered cell CΣ(j)

γj has uniform tree structure.

The listed conditions correspond to condition (i) and (ii) in the definition of cell
array, and conditions (R1)-(R5) in the definition of regularity, specialized to the
case where all cell conditions have the form specified in the above definition.
Condition (R6) is no longer relevant since all cell conditions are assumed to be
small. Note that by condition (S4) we can use the condensed notation that we
introduced at the beginning of the section and write small regular multi-cells in
the form

(
{C〈kj〉γj }16j6r, 〈Σ〉

)
.

In the proof of Lemma 2.6.10 below, we will show how to transform regular cell
arrays with only small cell conditions into small regular multi-cells.

Lemma 2.6.10. Let A be a regular cell array, where all cell conditions are
small. There exists a finite partition of A into small regular multi-cells Bi.

Proof. Given a small cell condition, we may as well assume that it has the form
Cγ,λ, where

Cσγ,λ := {(s, t) ∈ S ×K | ord(t− σ(s)) = γ(s) ∧ acm(t− σ(s)) = acm(λ)},

and λ ∈ K with ord(λ) = 0. Indeed, the condition that ord(t−σ(s)) ≡ k mod n
can in this case be expressed as a condition on γ(s), and thus on S. Hence,
after a finite partitioning of S, this last condition is either obvious, or the set is
empty.

Now let A = ({Cγ,λ}γ,λ,Σ) be a regular cell array where each cell condition has
the form described above. We will show how to define small regular multicells
Bk =

(
{C〈ki〉γi }i, 〈Σk〉

)
such that the sets Bk(K) form a partition of A(K) =: X.

Fix a cell condition Cγ,λ from the description of the array, and write Σ(γ,λ) for
its set of potential centers. Put r := ord(λ− 1), and note that we may suppose
that r < m, since otherwise we would have that acm(λ) = 1, in which case there
is nothing to prove. Now let δλ : ΓK → ΓK be the function defined by

δλ(γ) := γ + r.

Hence, δλ is simply the constant function γ 7→ γ when ac1(λ) 6= 1. When
ac1(λ) = 1, we write λ1 for the element of OK \MK satisfying λ = 1 +$rλ1.
Define a function Λ: K → K by putting

Λ(λ) :=
{
λ− 1 if ac1(λ) 6= 1;
λ1 otherwise.
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Let T (γ,λ) be the following set:

T (γ,λ) := {(s, b) ∈ S ×K | ord(b) = δλ(γ(s)) ∧ acm(b) = acm(Λ(λ))}.

We will write Σ(γ,λ) + T (γ,λ) for the set {(s, b1 + b2) | (s, b1) ∈ Σ(γ,λ) ∧ (s, b2) ∈
T (γ,λ)}, and for any section σ of Σ(γ,λ), the set σ + T (γ,λ) is defined similarly.
Our claim is now that

Claim 2.6.11. CΣ(γ,λ)

γ,λ = CΣ(γ,λ)+T (γ,λ)

γ,1 .

For this it is sufficient to show that, for any section σ of Σ(γ,λ), it holds that

Cσγ,λ = Cσ+T (γ,λ)

γ,1 . (2.6.2)

Fix a section σ, and some s ∈ S. Choose b ∈ K such that (s, b) ∈ T (γ,λ), and
put ζ(s) := σ(s) + b. We will prove the inclusion ⊆ in (2.6.2), by checking that
C
σ(s)
γ,λ ⊆ C

ζ(s)
γ,1 . Take t ∈ Cσ(s)

γ,λ . Then we have that

ord(t− ζ(s)) = ord(t− (σ(s) + b)) = ord((t− σ(s))− b) = ord(t− σ(s)),

since either ord(t− σ(s)) = ord(b) and ac1(t− σ(s)) 6= ac1(b), or else ord(t−
σ(s)) < ord(b) (when ac1(λ) = 1). We also find that, if ac1(λ) 6= 1, then

acm(t− ζ(s)) = acm(t− σ(s))− acm(b) = acm(λ)− acm(Λ(λ)) = 1,

and

acm(t− ζ(s)) ≡ acm(t− σ(s))−$racm(b) ≡ λ−$rλ1 ≡ 1 mod $m

if ac1(λ) = 1. This proves the inclusion ⊆. The other inclusion can be proven
in a similar way.

In order to show that this procedure will give us a multi-cell with the desired
properties, we need the following further observation.

Claim 2.6.12. Every equivalence class-ball in the multi-ball Σ(γi,λij) is
translated to a ball with the same radius and with the same valuation.

Indeed, Σ(γi,λij) is a multi-ball where all the balls have radius γi(s) +m. The
set T (γi,λij) is a multi-ball of order 1 for which the radius of the balls is at least
γi(s) +m. This means that, if B is one of the balls of radius γi(s) +m from
Σ(γi,λij), then B + T

(γi,λij)
s will again be a ball of radius γi(s) +m. Hence, we

are just translating Σ(γi,λij)
s without changing the tree structure. Furthermore,

the elements of T (γi,λij) have valuation at least γi(s), while the elements of
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B have valuation at most γi(s) − 1 (by condition (ii) from Definition 2.3.4).
Therefore, the translation will preserve the valuation of the elements of Σ(γi,λij)

s .

The multi-cells Bk can now be defined as follows. For any fixed height function
γi, we replace all cell conditions Cγi,λij by Cγi := Cγi,1, so the multiplicity ki
is given by the number of cell conditions of the form Cγi,λij occurring in the
description of A.

A set Σ̂ can then be defined in the following way. Let γ1, . . . , γl be the
height functions occurring in the cell conditions Cγi,λij from A. Put c :=
(c1,1, . . . , c1,k1 , . . . , cl,1, . . . , cl,kl), and write φ(s, c) for the formula expressing
that the cell fibers Cci,jγi form a partition of Xs. Then put

Σ̂ := {(s, c) ∈ S ×Kk1+...+kl | ci,j ∈ Σ(γi,λij) + T (γi,λij) ∧ φ(s, c)}.

Now, the pair
(
{C〈ki〉γi }i, 〈Σ̂〉

)
is a multi-cell defining the set A(K) = X. We

leave it to the reader to check that conditions (S1)-(S3) from Definition 2.6.9
follow from the above claim.

However, note that projections Σ̂(i,j1) and Σ̂(i,j2) need not be equal in general,
even though the corresponding cell condition is Cγi in both cases. Hence, we
will need to repeat the procedure described in the proof of Lemma 2.5.7 to
obtain condition (S4). Applying this procedure to Σ̂ will yield a set Σ′, and
the reader can check that the multi-cell

(
{C〈ki〉γi }i, 〈Σ′〉

)
still satisfies conditions

(S1)-(S3). A further partitioning of S into sets Sk, like in Lemma 2.5.6, will
then yield small regular multi-cells Bk :=

(
{C〈ki〉γi }i, 〈Σ′|Sk〉

)
, such that the sets

Bk(K) partition A(K).

Lemma 2.6.13. Let A =
(
{C〈ki〉γi }16i6l, 〈Σ〉

)
be a regular array consisting only

of small cells Cγi . There exists a definable, finite partition of S into sets Sj,
and, for each A|Sj (K), a finite partition into regular clustered cells.

Proof. Applying Lemma 2.6.10, we may as well assume that A is a small
regular multi-cell. Let γ1(s) < . . . < γl(s) be the height functions for the cell
conditions in A, and write Σ(γi) for the set of potential centers of the clustered
cell associated to Cγi . Put A(K) := X. We will first focus on the cells with
the smallest leaves, i.e., the cells at height γl(s). As discussed before, we may
assume that Σ(γl) contains centers that admit external exchange.

For a center σ in Σ(γl) to admit external exchange, there must exist a center
ζ for a lower level γj (with j < l), such that Cσ(s)

γl ⊆ C
ζ(s)
γj . Now consider

a decomposition of Xs that contains the potential cell Cσ(s)
γl as one of its

components. This decomposition cannot contain the ball B := C
ζ(s)
γj as a single



SEPARATING CELL ARRAYS 83

leaf at height γj(s), nor as a subset of a leaf at a lower height γj′ (for j′ < j).
Indeed, the presence of the ball Cσ(s)

γl means that such a decomposition could
never be a partition.

Hence, in order to represent the points of the ball B, we will need a union of
smaller balls (small potential cell fibers of heights strictly bigger that γj(s)),
where clearly the number of balls one can use is bounded by the sum of the
multiplicities of the cell conditions Cγj+1 , . . . , Cγl . Note that this implies that, if
there is exchange possible between two heights γi(s) and γj(s), then necessarily
the distance |γj(s) − γi(s)| is finite (as otherwise one would need infinitely
many balls). Moreover, there exists a uniform upper bound for this distance
(depending on the respective multiplicities of Cγi and Cγj ).

Since we are working with a small regular multi-cell, the tree structure for each
Σ(γi)
s is independent of s and therefore the number of nonequivalent potential

centers at each height is independent of s as well. However, as the tree structure
does not fix the distance between the height functions γi(s), we still need to be
a bit careful.

What the above discussion shows is that, if a center σ(s) in Σ(γl)
s admits external

exchange, then this implies that Xs must contain a ball B′ of radius γl−1(s)+m,
such that Cσ(s)

γl ⊆ B′. We will now rewrite the array so that such balls B′ can
be represented as small cells at height γl−1(s).

Note that the number of potential centers of Σ(γl)
s that are involved in this, will

depend on the distance between γl(s) and γl−1(s), a number which may vary
with s. Hence, in order to work uniformly, we will need to partition the set S.
Put nk := qkK and let φk(s) be the definable condition stating that

nk < kl ∧ ∃c1, . . . , cnk ∈ Σ(γl)
s : ∪nki=1C

ci
γl

is a ball of radius γl−1(s) +m.

Now partition S into sets Sk defined as

Sk := {s ∈ S | |γl(s)− γl−1(s)| = k and φk(s) holds}.

Clearly, this gives a partition of S, since by assumption there is exchange
between Cγl and lower heights. Also, the partition must be finite, since we had
already remarked that there exists a uniform upper bound for k.

Each such set can then be further partitioned as a finite union of sets Sk,r,
where r is the number of disjoint balls of radius γl−1(s) +m that can be formed
for a given s using leaves Cσi(s)γl . This number r is finite since the number of
non-equivalent potential centers is finite.

Now fix one such set Sk,r. The given partition of S naturally induces a partition
of A into small regular multi-cells Ak,r := A|Sk,r , with Xk,r := Ak,r(K) (where
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all properties are preserved by Remark 2.5.5). To unburden notation below, we
will simply denote Ak,r as

(
{C〈ki〉γi }i, 〈Σ〉

)
.

Because of the way Ak,r was defined, we know that there must exist r disjoint
sets, each consisting of nk non-equivalent centers {σ1, . . . , σnk} in 〈Σ〉(γl), such
that for each s, the union

nk⋃
i=1

Cσi(s)γl
(2.6.3)

equals a single ball B′(s) of radius γl−1(s) +m. Note that it is possible that
〈Σ〉(γl−1) currently does not contain a center ζ ′(s) such that B′(s) = C

ζ′(s)
γl−1 .

However, it is possible to definably extend 〈Σ〉(γl−1) to include such a center.
Indeed, put

Σ̃l−1 :=
{

(s, ζ(s)) ∈ S ×K | ∃c1, . . . , cnk ∈ Σ(γk)
s : Cζ(s)γl−1

=
⋃
i

Cciγl

}
.

This gives us a set whose fibers consist of centers ζ(s) such that Cζ(s)γl−1 is equal
to one of the balls B′(s). We will now replace Ak,r by A′k,r :=

(
{C〈k

′
i〉

γi }, 〈Σ′〉
)
,

where

k′i :=


ki if i < l − 1;
ki + r if i = l − 1;
ki − rnk if i = l,

replacing cell conditions at height γl by a concurrent number of cell conditions
at height γl−1. The potential centers can be adjusted accordingly: if we put

c := (c11, . . . , c1k′1 , . . . , cl1, . . . , clk′l),

then Σ′ can be defined as Σ′ := {(s, c) ∈ Sk,r × K
∑

k′i | ψk,r(s, c)}, where
ψk,r(s, c) is the formula∧

i 6=l−1,j
cij ∈ 〈Σ〉(i)s ∧

∧
j

cl−1,j ∈ 〈Σ〉(l−1)
s ∪ (Σ̃l−1)s ∧

⋃
i,j

Ccijγi = (Xk,r)s.

It should be clear that A′k,r still satisfies conditions (S1)-(S4), and that
Ak,r(K) = A′k,r(K). It may be that (S5) no longer holds, but this can be
remedied by a further partitioning of S if necessary. Moreover, we claim that
after this transformation, there is no further exchange possible between cells Cγl
and cells at lower heights. The reason is simply that the condition for exchange
is no longer satisfied, as the original leaves Cσγl that were part of a bigger ball
are now represented inside a bigger leaf at height γl−1. Hence, since there is no
more exchange, the remaining cell conditions Cγl can now be split off definably.

Repeating the same procedure l − 2 more times for the remaining small regular
multi-cells will result in a union of regular clustered cells.
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2.7 A decomposition into regular clustered cells

We are now ready to state a full, detailed version of our cell decomposition
theorem.

Theorem 2.7.1 (Clustered cell decomposition). Let X ⊆ S × K be a set
definable in a P -minimal structure (K,ΓK ;L2). Then there exist n,m ∈ N\{0}
and a finite partition of X into definable sets Xi ⊆ Si×K of one of the following
forms:

(i) Classical cells

Xi =
{

(s, t) ∈ Si ×K
∣∣∣∣ αi(s) �1 ord(t− ci(s)) �2 βi(s)∧
t− ci(s) ∈ λiQn,m

}
,

where αi, βi are definable functions Si → ΓK , the squares �1,�2 may
denote either < or ∅ (i.e., ‘no condition’), and λi ∈ K. The center
ci : Si → K is a definable function (which may not be unique).

(ii) Regular clustered cells Xi = CΣi
i of order ki.

Let σ1, . . . , σki be (non-definable) sections of the definable multi-ball Σi ⊆
Si × K, such that for each s ∈ Si, the set {σ1(s), . . . , σki(s)} contains
representatives of all ki disjoint balls covering (Σi)s. Then Xi partitions
as

Xi = Cσ1
i ∪ . . . ∪ C

σki
i ,

where each set Cσli is of the form

Cσli =
{

(s, t) ∈ Si ×K
∣∣∣∣ αi(s) < ord(t− σl(s)) < βi(s)∧
t− σl(s) ∈ λiQn,m

}
.

Here αi, βi are definable functions Si → ΓK , λi ∈ K \ {0}, and
ord(αi(s)) > ord(σl(s)) for all s ∈ Si. Finally, we may suppose that
CΣi
i satisfies the following two conditions.

(a) The set Σi does not admit any definable sections.
(b) There exists di ∈ N, such that for every s ∈ Si, (Σi)s had exactly di

branching heights and when di > 1, there exist k1, . . . , kdi ∈ N, such
that all elements of Σi have di-signature (k1, . . . , kdi).

Proof. By Theorem 2.3.7, there is a partition of X into classical cells and cell
arrays ({Cj}j ,Σ). If different values of mi, ni occur for different cell conditions
in the partition, put m := maxi{mi} and n := lcmi{ni}. The classical cells in
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the decomposition can be partitioned in a straightforward way to obtain cells
described using the set Qn,m.

By Proposition 2.4.2, we know that there exists a uniform upper bound N for the
number of

(
Cj ,Σ(j)

s

)
-equivalence classes. This allows us to obtain Proposition

2.5.8, where we show that any cell array can be partitioned as a finite union of
regular cell arrays. Moreover, recall that the first step in this proof uniformises
the value of n and m within an array, and we can use the procedure described
there to make sure that the same n and m are used uniformly for all cell arrays
in the partition of X. Later steps in the proof will never need to modify the
values of n and m again.

In Proposition 2.6.8 and Lemma 2.6.13, we show how to split a regular cell
array into a finite union of regular clustered cells of finite order. If for one of
the clustered cells in our partition, the corresponding set Σi admits a definable
section, then the splitting procedure from Definition 2.3.9 can be used to
partition off one or more classical cells, until no more definable sections remain.
So we can indeed suppose that all regular clustered cells appearing in the
partition, satisfy condition (a).

Now let CΣi
i be a regular clustered cell appearing in the partition. By regularity

the tree structures of all the fibers of Σi are isomorphic, hence we can, after a
finite partitioning of S, assume that for each s, s′ ∈ S, (Σi)s and (Σi)s′ essentially
look the same. What we mean by this is that the number of branching heights
is the same, say di, and if we were to pick representatives for equivalence classes
of (Σi)s and (Σi)s′ , then there would exist a bijection between these sets of
representatives that preserves all di-signatures. This already establishes the
existence of di from condition (b).

Now if ki = 1, then condition (b) is automatically satisfied, so we may assume
that ki > 1, which in turn implies that di > 1. For each l ∈ N, write
(k1(c), . . . , kl(c)) for the l-signature of c ∈ (Σi)s. If CΣi

i does not yet satisfy
condition (b), then there exists some s ∈ S for which the di-signature is not
fixed on (Σi)s, hence for every s ∈ S, (Σi)s will contain elements with at least
two different signatures. In this case we will give an explicit decomposition of
CΣi
i into regular clustered cells that satisfy both conditions.

First, partition (Σi) in sets Σi,(l1), for l1 ∈ {1, . . . , qK}, which are defined as

Σi,(l1) := {(s, c) ∈ Σi | k1(c) = l1}.

Note that some of these sets may be empty. This induces a partition of CΣi
i

as the union of the regular clustered cells CΣi,(l1)
i . (It should be clear that the

uniformity of the tree structure is preserved. Further, since the tree of
(
Σi,(l1)

)
s



A DECOMPOSITION INTO REGULAR CLUSTERED CELLS 87

is a pruning of the original tree of (Σi)s, and no new branching heights are
introduced, we still have that all branching happens below αi(s).)

This process can now be repeated inductively. If we fix a clustered cell CΣi,(l1)
i ,

the 1-signature is fixed. This clustered cell can now be partitioned into cells
C

Σi,(l1,l2)
i , where CΣi,(l1,l2)

i is defined as
Σi,(l1,l2) := {(s, c) ∈ Σi,(l1) | k2(c) = l2},

again for l2 ∈ {1, . . . , qK}. We can repeat the process until we have a partition
of CΣi

i into regular clustered cells C
Σi,(l1,...,ldi )

i that satisfy conditions (a) and
(b).

Readers familiar with other cell decomposition theorems may have noticed that
in both Theorem 2.7.1 and 1.1.9, no further conditions are imposed on the
parameter set S (besides definability). In many similar-style theorems, cells are
defined inductively, in the sense that the set S is required to be a cell as well,
and similarly for its consecutive projections. We have not insisted on this, but
we are however convinced that such an inductive cell decomposition theorem
can be derived quite easily, when taking into account both K-cell and Γ-cell
decomposition.

2.7.1 Clustered cells of minimal order and open questions

In looking for further simplifications of Theorem 2.7.1, we considered the
following open question.
Question 2.7.2. Can every regular clustered cell of finite order be decomposed
into finitely many regular clustered cells of order 1?

If this question were to have an affirmative answer, this would imply a significant
simplification of Theorem 2.7.1. Moreover, this would mean that, at least in
spirit, such a generalized cell decomposition theorem stays very close to the
spirit of classical (Denef-type) cell decomposition: for a clustered cell of order
1, the set Σ can still be seen as the graph of a definable function c : S → B,
where B denotes the set of balls in K. Unfortunately, it may not be possible to
achieve this.

To investigate this question, we introduce regular clustered cells of minimal
order.
Definition 2.7.3. A regular clustered cell CΣ of order k is of minimal order if
it cannot be partitioned as a finite union of regular clustered cells CΣi

i of order
ki < k.
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Some remarks are in order here. In this definition we allow for the option that,
given a regular clustered cell CΣ of order k, there may exist a cell condition C1
and a multi-ball Σ1 such that CΣ = CΣ1

1 , but the order of CΣ1
1 is strictly lower

than the order of CΣ. Also in more general cases there need not be a direct
connection between the original C and Σ and the Ci and Σi occurring in the
partition.

Lemma 2.7.4. Every regular clustered cell of finite order can be partitioned
into regular clustered cells of minimal order.

Proof. Let k be the minimal integer for which there exists a regular clustered cell
CΣ of order k that cannot be partitioned as a finite union of regular clustered
cells of minimal order. In particular, CΣ is not of minimal order, hence it can
be partitioned into finitely many regular clustered cells CΣ1

1 , . . . , CΣn
n each of

order ki < k. But by the minimality of k, each CΣi
i can be partitioned into

regular clustered cells of minimal order, which provides a decomposition of CΣ,
contradicting the assumption.

Note that there is no canonicity here: it may well be that, by making different
choices in each step of the induction, one can obtain different partitions of
the same set where the number of cells in the decomposition and their specific
orders ki may differ.

This lemma allows us to formulate an alternative clustered cell decomposition
theorem. However, some of the statements of Theorem 2.7.1 need to be relaxed
slightly. Specifically, we can no longer require that all clustered cells occurring
in the decomposition, are described using the same set Qn,m.

Theorem 2.7.5. Let X ⊆ S × K be a definable set. Then X partitions as
a finite union of classical cells and regular clustered cells of minimal order.
Moreover, no regular clustered cell has a definable section.

Proof. By Theorem 2.7.1 it suffices to show the result for a regular clustered
cell CΣ. By Lemma 2.7.4, CΣ can be decomposed into finitely many regular
clustered cells of minimal order CΣ1

1 , . . . , CΣn
n . It remains to check whether

these cells admit a definable section. Note that if Σi is of order ki > 1, then it
cannot contain a definable section. Indeed, if such a section were to exist, this
would contradict the minimality of ki, since it would be possible to definably
split CΣi

i into a regular clustered cell of order 1 and a cell of order ki−1. Hence,
if Σi has a definable section it must be of order 1. Put I := {1, . . . , n} and let
I0 := {i ∈ I | Σi has a definable section σi}. Then CΣ is decomposed into⋃

i∈I0

Cσii ∪
⋃

i∈I\I0

CΣi
i ,
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which shows the result.

Note that the uniformity for n,m from Theorem 2.7.1 is lost here because a
priori, there is no guarantee that the cell conditions Ci in the above proof
are defined using the same set Qn,m. In the proof of Theorem 2.7.1, this
uniformity was obtained through a further partitioning of the cell conditions
Ci. Unfortunately, the cost of this (especially for m) is that the order of the
associated multi-balls Σi may increase, and hence we risk losing the minimality.
The proof of the following lemma illustrates that this can indeed happen.

Lemma 2.7.6. Let CΣ be a regular clustered cell of minimal order over S.
Then for every s ∈ S, every ball B which is an equivalence class of (C,Σs), is
maximally contained in Σs.

Proof. Note that, if CΣ is defined by a large cell condition, then Σ already
satisfies the conclusion of this lemma. Indeed, regularity implies that all
branching heights are below α(s), and hence the equivalence classes are always
maximal balls.

Suppose now that CΣ is a small clustered cell of (minimal) order k > 1, and
that the maximal balls of Σs contain more than one (C,Σs)-equivalence class.
We need to show that CΣ cannot be of minimal order. We will do this by
showing explicitly how to decompose CΣ as a finite union of regular clustered
cells of order strictly smaller than k.

So let CΣ be a clustered cell associated to a small cell condition C with its
leaf at height γ(s). By the similar reasoning as in the proof of condition (b)
from Theorem 2.7.1 we may assume that all elements of (Σ)s have the same
N -signature for all N ∈ N, uniformly in S. Hence, we can assume that there
exists some ` ∈ Z with ` < m, such that for all s ∈ S, Σs consists of maximal
balls of the same size γ(s) + ` (here we also use our assumption that maximal
balls contain more than one equivalence class).

First consider the case where ` 6 0. Consider a maximal ball B in Σs. We claim
that CB = B. Take b ∈ B. Then B contains an element c with ord(c−b) = γ(s)
and acm(c− b) = λ, and hence B ⊂ CB . The other inclusion is proven similarly.
Hence, both Σs and CΣs consist of k′ := k/qm−`K maximal balls. We will rewrite
both the cell condition and the set of centers, such that these k′ balls become
the leaves of the new small cell fibers. Write ρ(s) = γ(s) + ` for the size of the
maximal balls in Σ. First put

Σ̃ := {(s, c′) ∈ S ×K | ∃(s, c) ∈ Σ : ord(c′ − c) = ρ(s)− 1 ∧ c− c′ ∈ Q1,1},
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and let C̃ be the cell condition

C̃(s, c, t) := s ∈ S ∧ ρ(s)− 1 = ord(t− c) ∧ t− c ∈ Q1,1.

Then clearly, C̃Σ̃ is a regular clustered cell defining the same set as CΣ, yet
having strictly smaller order.

For 0 < ` < m, we can apply the inverse operation of the repartitioning of
Lemma-Definition 2.5.1 part (c). There we observed that, when increasing the
value of m (in the set Qn,m), the effect was that a single equivalence class was
split in smaller equivalence classes. In our case, we will replace the original
condition acm(t − c) ∈ λQn,m in C by a condition ac`(t − c) ∈ λQn,`, and
call the resulting cell condition Ĉ. Then ĈΣ will be a clustered cell where
the maximal balls of Σs coincide with the (Ĉ,Σs)-equivalence classes. Since
moreover, the order of ĈΣ is smaller than the order of CΣ, this completes the
proof.

Using clustered cells of minimal order, we can reformulate the open Question
2.7.2.

Definition 2.7.7. Let H be a multi-ball of order k over S.

• We say that H is maximal if for every s ∈ S, every ball B among the k
balls whose union is Σs, satisfies B v Σs.

• We say that a maximal multi-ball Σ admits finite Skolem functions if
there exists a definable function f : S → B such that for all s ∈ S, f(s) is
a maximal ball of Σs.

When we say that a function f : S → B is definable, we simply mean that its
graph should correspond to a definable set A ⊆ S ×K, such that As is a ball
for all s ∈ S.

Lemma 2.7.8. The following questions are equivalent:

1. Can every regular clustered cell of finite order be partitioned into finitely
many regular clustered cells of order 1?

2. Is every regular clustered cell of minimal order of order 1?

3. Does every maximal multi-ball admit finite Skolem functions?

Proof. We first show that Questions 1 and 2 are equivalent. By Lemma 2.7.4,
if the answer to Question 2 is yes, then Question 1 has a positive answer as
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well. Now suppose that Question 1 has an affirmative answer and let CΣ be a
regular clustered cell of minimal order k > 1. By assumption, it is equal to a
finite union of regular clustered cells of order 1, contradicting the minimality of
the order of CΣ. Hence Question 2 has affirmative answer too.

Now let us show that Questions 2 and 3 are equivalent as well. Suppose that
Question 3 has an affirmative answer. Let CΣ be a regular clustered cell of
minimal order k > 1. By Lemma 2.7.6, we may assume that Σ is maximal. Pick
a finite Skolem function for Σ, say with graph H ⊆ S ×K. Then we have that
CΣ is equal to the union of CH and CΣ\H . Since CH has order 1 and CΣ\H

has order k − 1, this contradicts the minimality of k.

Now suppose that every regular clustered cell of minimal order has order 1 (i.e.,
Question 2 has an affirmative answer) and let Σ be a maximal multi-ball of
order k > 1 over S. Note that by the definition of multi-balls, these k maximal
balls have the same radius γ(s) for every s ∈ S. Using Theorem 2.7.5, the set
Σ can be partitioned as a finite union of classical cells Di and regular clustered
cells CΣi

i of minimal order, i.e.,

Σ =
r1⋃
i=1

Di ∪
r2⋃
i=1

CΣi
i .

By our assumptions, the cells CΣi
i all have order 1. Without loss of generality,

we may also assume that all cells in the decomposition are over S. Now put

γDi(s) := min{γ ∈ K | (Di)s contains a ball of radius γ},

γCi(s) := min{γ ∈ K | (CΣi
i )s contains a ball of radius γ}.

We will first explain why k > 1 implies that r1+r2 > 1. Suppose that r1+r2 = 1.
We will only consider the case (r1, r2) = (0, 1), but the other case is completely
similar. In this case, we have that Σs = (CΣ1

1 )s for all s ∈ S. However, note
that Σs is the union of k > 1 disjoint maximal balls of the same size, while the
fiber (CΣ1

1 )s can only contain a single ball of any given radius. This gives a
contradiction, and hence it must be the case that r1 + r2 > 1.

Moreover, since Σ is maximal, we may assume that γ(s) 6 γDi(s) and γ(s) 6
γCi(s). Write DγDi

i , resp. CγCii for the subset of Di, resp. CΣi
i whose fibers are

the (unique) maximal balls of (Di)s, resp. (CΣi
i )s. If r1 6= 0, we can define f as

f(s) = B ⇔ B is a ball, maximally contained in Σs and B ∩DγD1
1 6= ∅,

otherwise we put

f(s) = B ⇔ B is a ball, maximally contained in Σs and B ∩ CγC1
1 6= ∅.

Then f provides a finite Skolem function for Σ.
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An indication that the above questions may well have a negative answer comes
from Remark 4.8 of [HMRC15]. In this remark, it is shown that there exist
elementary extensions K of Qp (for the language of rings), in which the set
of balls is not rigid. In particular, the authors show that there exists an
automorphism σ of K and a ball B such that the orbit of B under σ has size p.
This seems to imply that the answer to the questions in Lemma 2.7.8 would be
‘no’, at least if there exists such a set of p balls which is also maximal, i.e., this
set of p balls does not cover a bigger ball of K.

This observation could serve as a basis for constructing an example showing
that the question in its third form has a negative answer. The basic idea is to
try building a parametrized family of subsets having fibers that are such sets
of p balls. However, actually constructing such a higher-order multi-ball (and
proving that no finite Skolem function exists), appears to be a rather non-trivial
exercise.

Part of the complication, especially for the one-sorted case, lies in the fact that
one needs to work within a structure that does not admit definable Skolem
functions. However, such structures have not been studied in much detail as yet,
given that a first concrete example was only very recently constructed [CN17b].
In this paper Cubides and Nguyen introduce the following multi-ball of order 1:

A := {(x, y) ∈ K2 | ord(f(x)− y) > ρ},

where (K;Lan) is a nonstandard elementary extension of (Qp;Lan), f : Zp → Zp
a transcendental convergent power series, and ρ ∈ ΓK such that ρ > n for
all n ∈ Z. They prove that the structure (K;LA), where LA := Lring ∪ {A},
is P -minimal, but that there exists no definable Skolem function for the set
A. Modifying the multi-ball A into a multi-ball of higher order could be a
possible direction for constructing a multi-ball that does not have finite Skolem
functions.



Chapter 3

Exponential-constructible
functions in P -minimal
structures

This chapter is based on joint work with Pablo Cubides-Kovacsics and Eva
Leenknegt [CCL18].

In this chapter we will try to generalize Theorem 1.2.14 to the wider context of
P -minimal structures on p-adic fields. Part of the difficulty lies in considering
P -minimal expansions which do not have definable Skolem functions. As
we shall explain later, in situations where such functions do not exist, the
classical definition of exponential-constructible functions (Definition 1.2.13) will
not satisfy the desired stability-under-integration result. Therefore we will
introduce the exponential*-constructible functions, which are a refinement of the
exponential-constructible functions. We will then show that the exponential*-
constructible functions are base-stable under integration under one extra
condition that is similar to Condition (1.2.1) from Theorem 1.2.14.

Since we will need to distinguish between P -minimal fields with or without
definable Skolem functions, we will adopt the following convention. We will refer
to the Skolem setting when working over P -minimal fields that admit definable
Skolem functions. The term non-Skolem setting refers to situations where we
explicitly assume we are working over P -minimal fields that do not admit such
definable Skolem functions. When we make no assumptions either way, we
will refer to the P -minimal setting. Also, when referring to general P -minimal
structures, this means that we are considering not only P -minimal expansions
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of p-adic fields but rather P -minimal expansions of arbitrary p-adically closed
fields. We will always work with the two sorted version of P -minimality, i.e.,
structures (K,ΓK ;L2), where L2 = (L,LPres, ord).

3.1 Introduction: from Cexp to C∗exp

In the first part of this introduction we will introduce and motivate our
refinement of the class of exponential-constructible functions and in the second
part we will state our main results.

3.1.1 The algebra C∗exp of exponential*-constructible functions

In this section K will be a p-adic field. We denote by ψ : K → C× an additive
character that satisfies ψ|MK

= 1 and ψ|OK 6= 1. We recall the definitions of
the constructible and exponential-constructible functions.

Definition 3.1.1. Let (K,Z;L2) be a P -minimal structure and X a definable
set.

(i) The algebra C(X) of constructible functions on X is the Q-algebra
generated by the constant functions and the functions of the form

α : X → Z and X → Q : x 7→ q
β(x)
K ,

where α, β : X → Z are definable.

(ii) The algebra Cexp(X) of exponential-constructible functions on X is the
Q-algebra generated by the functions in C(X) and the functions of the
form ψ ◦ f , where f : X → K is definable.

Before providing the definition of C∗exp, let us informally explain why the algebra
Cexp will need to be adapted to suit our purposes. We will need the following
notation and definitions, some of which we have seen already in the previous
chapters.

The set consisting of all balls in K with a given valuation radius γ is denoted as

Bγ := {Bγ(x) | x ∈ K}.
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Definition 3.1.2. Let X ⊆ K. Let B ⊆ X be a ball such that for all balls
B′ ⊆ X, one has that B ⊆ B′ ⇒ B = B′. Then we call B a maximal ball of X.
This property will be denoted as B v X.

Definition 3.1.3. Let k ∈ N \ {0}.

• A set A ⊆ S ×K is called a multi-ball of order k over S, if every fiber As
is a union of k disjoint balls of the same radius.

• A multi-ball A of order k is said to be on Bγ if, for each fiber As, the k
balls B contained in As all satisfy B v As and B ∈ Bγ .

We may not always explicitly mention the order of a multi-ball, but even in
such cases, the order will always be assumed finite.

In the next example we will compute the integral of a very simple exponential-
constructible function to illustrate the type of difficulties one may encounter
when definable Skolem functions are not available. Recall that we integrate
with respect to the normalised Haar measure on K and the counting measure
on Z. If S and Y are sets containing both K- and ΓK-variables, X ⊆ S × Y
and f : X → C, then

Int(f, Y ) := {s ∈ S | f(s, · ) is measurable and integrable over Xs}.

Example 3.1.4. Let k ∈ N \ {0} and let A ⊆ S ×K be a definable multi-ball
of order k on B1. Consider the exponential-constructible function f : A →
C : (s, x) 7→ ψ(x). For any B ∈ B1 and for all x, y ∈ B we have x − y ∈ MK ,
hence ψ(x) = ψ(x− y)ψ(y) = ψ(y). We denote this value by ψ(B) and then we
can calculate that∫

As

f(s, x)|dx| =
∫
As

ψ(x)|dx| =
∑
BvAs

ψ(B) ·Vol(B) = q−1
K ·

∑
BvAs

ψ(B).

If a structure admits definable Skolem functions, there exist definable sections
of A, say f1, . . . , fk : S → K, such that

∑
BvAs

ψ(B) =
k∑
j=1

ψ(fj(s)). (3.1.1)

Hence, the function s 7→
∫
As
f(s, x)|dx| will be an element of Cexp(S). Note

that if a structure does not admit Skolem functions, one cannot always make
this type of substitution.

The next example shows that the character of a definable function can always
be written as a character sum over a multi-ball.
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Example 3.1.5. Let f : X → K be a definable function. For each x ∈ X, let
Ax be the ball Ax := f(x) +MK . Then the set A := {(x, y) ∈ X×K | y ∈ Ax}
is a definable multi-ball of order 1 on B1. Moreover, for all x ∈ X one has that

ψ(f(x)) =
∑
BvAx

ψ(B).

To summarize, Example 3.1.4 shows that the algebras of exponential-
constructible functions will need to be extended if one wants base-stability
under integration (Definition 1.2.2) in the P -minimal setting, and Example
3.1.5 indicates that working with functions of the form x 7→

∑
BvAx ψ(B),

rather than x 7→ ψ(f(x)), yields a very natural generalization to a wider setting.
This motivates us to propose the following definition.
Definition 3.1.6. Let (K,Z;L2) be a P -minimal structure andX be a definable
set. The algebra C∗exp,ψ(X) of L2-exponential*-constructible functions on X
is the Q-algebra generated by functions in C(X) and functions of the form
x 7→

∑
BvAx ψ(B), where A ⊆ X ×K is a definable multi-ball on B1.

We will write C∗exp rather than C∗exp,ψ whenever ψ is clear from the context.
Remark 3.1.7. Note that in the Skolem setting, the identity (3.1.1) holds, hence
any exponential*-constructible function is also exponential-constructible for
such structures.

3.1.2 Overview of main results

We are now ready to state the main theorems of this chapter. We will always
work in a P -minimal structure (K,Z;L2) unless explicitly stated otherwise.
Theorem 3.1.8. Let X ⊆ S × Zn be a definable set. Let f ∈ C∗exp(X) be such
that Int(f,Zn) = S. Then there exists g ∈ C∗exp(S) such that for all s ∈ S,

g(s) =
∫
Xs

f(s, γ)|dγ|.

Let X ⊆ S×Kn be a definable set and f ∈ C∗exp(X) be such that Int(f,Kn) = S.
The main obstruction to deriving the stability under integration for f is related
to integrability conditions on some of the functions used to define f . To formalize
this let us introduce some terminology.
Definition 3.1.9. For n > 1, let X ⊆ S × Kn be a definable set. We say
that a function f ∈ C∗exp(X) can be written in n-normal form, if there exists a
definable partition X = ∪w∈WXw (where W is a finite index set), such that on
each Xw the following holds:
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(i) There exist m > 1 and functions f1, . . . , fm ∈ C∗exp(Xw) such that f|Xw =∑m
i=1 fi,

(ii) Each function fi can be further expanded as

fi(s, x) = hi(s, x)
∑

BvAis,x

ψ(B), where

(a) hi ∈ C(Xw) and Int(hi,Kn) = πS(Xw),
(b) Ai is a definable multi-ball over Xw of order ki on B1,
(c) for each s ∈ πS(Xw), x 7→

∑
BvAis,x

ψ(B) is a measurable function
in x.

Theorem 3.1.10. Let X ⊆ S ×Kn be a definable set and f ∈ C∗exp(X). If f
can be written in n-normal form, then there exists g ∈ C∗exp(S) such that, for
all s ∈ S,

g(s) =
∫
Xs

f(s, x)|dx|.

Note that our notion of n-normal form is similar in nature to the assumptions on
the form of f made in Theorem 1.2.14. Now consider the following conjecture.

Conjecture 3.1.11. Let X ⊆ S ×K be a definable set and f ∈ C∗exp(X) such
that Int(f,K) = S. Then f can be written in 1-normal form.

Under the above conjecture, Theorems 3.1.8 and 3.1.10 imply that the algebras
of exponential*-constructible functions are base-stable under integration. As
the proof is rather short, we will include it here in the introduction for the
reader’s convenience.

Theorem 3.1.12. Suppose Conjecture 3.1.11 holds. Then the algebras of
exponential*-constructible functions are base-stable under integration.

Proof. Let X ⊆ S × Y be a definable set and f ∈ C∗exp(X) be such that
Int(f, Y ) = S. By Fubini, it suffices to consider the cases where Y = K or
Y = Z. The case Y = Z follows from Theorem 3.1.8. For the case Y = K, the
conjecture implies that there exists a finite partitionX = ∪w∈WXw such that for
each Xw, we can write f|Xw(s, x) =

∑m
i=1 fi(s, x), where the functions fi satisfy

condition (ii) of Definition 3.1.9. This implies that for all s ∈ Sw := πS(Xw),
each fi(s, · ) is integrable over (Xw)s, hence∫

(Xw)s
f(s, x)|dx| =

∫
(Xw)s

m∑
i=1

fi(s, x)|dx| =
m∑
i=1

∫
(Xw)s

fi(s, x)|dx|.
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By Theorem 3.1.10 there exists, for each i ∈ {1, . . . ,m}, a function gi ∈ C∗exp(Sw)
such that gi(s) =

∫
(Xw)s fi(s, x)|dx|. Remark 3.1.13 below allows us to extend

the gi to functions in C∗exp(S). Putting gw(s) :=
∑m
i=1 gi(s) and summing over

all w ∈W completes the proof.

Remark 3.1.13. If U ⊆ X are definable sets, then for any f ∈ C∗exp(U), there
exists fX ∈ C∗exp(X), such that

fX(x) =
{
f(x) if x ∈ U ;
0 if not.

We will often abuse notation and simply write f rather than fX . This trick
will be used when partitioning the domain X of an exponential*-constructible
function, as it allows us to extend functions on one of the sets in the partition
to functions on X. We may not always explicitly mention this.

It is worth noting that in [CGH14] they showed (by proving a variation on the
above conjecture) that from Theorem 1.2.14 the Assumption (1.2.1) on the
form of f in the case of Lring or Lan can be removed. The proof made use of
the Jacobian Property [CGH14, Proposition 3.3.5]. At the time of writing, it is
still an open question as to whether (a version of) that property holds in the
P -minimal setting or even in the Skolem setting. Currently only a local version
is known [KL14]. Note that Conjecture 3.1.11 is open in the Skolem setting as
well.

The remainder of this chapter is organised as follows. Sections 3.2 and 3.3
contain several auxiliary results that will be needed in the later sections. The
Theorems 3.1.8 and 3.1.10 will be proven in Sections 3.4 and 3.5.

3.2 Auxiliary results on multi-balls over the value
group

In this section (K,ΓK ;L2) will be a general P -minimal structure. The main
result of this section is Proposition 3.2.11, which holds under the assumption of
relative P -minimality.

Definition 3.2.1. A P -minimal structure (K,ΓK ;L2) is called relative P -
minimal if for all n > 0, every L2-definable subset of K × ΓnK is definable in
Lring,2.

By definition any relative P -minimal structure is P -minimal. The converse is
true under the assumption of the extreme value property.
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Definition 3.2.2. A structure (K,ΓK ;L2) has the extreme value property, if
for every closed and bounded definable subset U ⊆ K and every definable
continuous function f : U → ΓK , f(U) admits a maximal value.

The following is a reformulation of Theorem 4.1 from Darnière and Halupczok.

Theorem 3.2.3 ([DH17]). Assume that (K,ΓK ;L2) is P -minimal and satisfies
the extreme value property. Then (K,ΓK ;L2) is relative P -minimal.

Remark 3.2.4. Note that every P -minimal expansion of a p-adic field satisfies
the extreme value property. This follows from the fact that in a p-adic field a
closed and bounded set U is contained in a compact ball and hence U itself is
compact. Therefore the image of U under a continuous function is a compact
subset of Z, which admits a maximal value. Therefore, all the results proven
in this section for relative P -minimal structures, will hold in particular for
P -minimal expansions of p-adic fields.

Moreover, one can easily prove that any relative P -minimal structure has
the extreme value property. Since this is a property that is preserved under
elementary equivalence, one can see that if a structure (K,ΓK ;L2) is elementary
equivalent to a relative P -minimal structure, then the structure (K,ΓK ;L2) is
also relative P -minimal. This allows us to use logical compactness arguments.

3.2.1 A finiteness result

The purpose of this subsection is to show the following theorem.

Theorem 3.2.5. Let (K,ΓK ;L2) be a relative P -minimal structure and let
A ⊆ S × ΓK ×K be a definable multi-ball of order k with fibers of the form

As,γ = union of k disjoint balls in B1.

Then there exists a uniform bound N ∈ N, such that for every s ∈ S,

#{B ∈ B1 | ∃γ ∈ ΓK : B ⊆ As,γ} < N.

Remark 3.2.6. This theorem holds also for multi-balls for which the k balls in
each fiber are in Bη for some η ∈ ΓK .

Before we can give the proof of Theorem 3.2.5, we will need some preliminary
results. The following lemma is due to Haskell and Macpherson.

Lemma 3.2.7 ([HM97], Remark 3.4). Let (K,ΓK ;L2) be a P -minimal structure
and let g : D ⊆ K → ΓK be a definable function. Then there exists a finite set
D′ such that g is locally constant on D \D′.
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Lemma 3.2.8. Let (K,ΓK ;L2) be a P -minimal structure and let f : ΓK → K
be a definable function. Then f has finite image.

Proof. We apply Γ-cell decomposition (Theorem 1.1.9) to the inverted graph of
f , that is, to the set

{(x, γ) ∈ K × ΓK | f(γ) = x}.

It is sufficient to show that on each Γ-cell C of such a decomposition, the
projection onto the first coordinate is finite. Let C be a given Γ-cell of the
decomposition,

C := {(x, γ) ∈ D × ΓK | α(x) �1 γ �2 β(x) ∧ γ ≡ k mod n},

where D is a definable subset of K, α, β are definable functions D → ΓK and
k, n ∈ N. We may furthermore assume that D is a K-cell over ∅. From assuming
that D is a 1-cell, we will derive a contradiction. This will show that D has
to be a 0-cell, hence consisting of only one element. There are two cases to
consider.

Case 1: Suppose that �1 (resp. �2) equals ‘no condition’. Pick distinct
x, y ∈ D and γ ∈ ΓK such that γ ≡ k mod n and γ ∈ Cx ∪ Cy. Because of
the assumption, we can do this by taking γ small enough (resp. big enough),
i.e., γ < min{β(x), β(y)} (resp. γ > max{α(x), α(y)}). This contradicts the
assumption that f is a function, since it implies that γ would have two images
x and y.

Case 2: Suppose that both �1 and �2 are ‘<’. By Lemma 3.2.7, there
exist distinct x, y ∈ D such that α(x) = α(y) and β(x) = β(y). As before,
this contradicts the assumption that f is a function, since any γ such that
α(x) < γ < β(x) will have both x and y as images.

Lemma 3.2.9. Let (K,ΓK ;L2) be a relative P -minimal structure and let
α : D ⊆ K → ΓK be a definable function. Then there exists a finite set D′ and
constants c1, . . . , cl ∈ K, and a partition of D \D′ into l 1-cells Ccii , such that
the function α is constant on each of the leaves Cci,γi .

Proof. By relative P -minimality, the inverted graph of α is an Lring,2-definable
set, which can be partitioned as a finite union of classical cells of the form

C :=

(γ, x) ∈ ΓK ×K
∣∣∣∣∣ a(γ) �11 ord(x− c(γ)) �12 b(γ) ∧
x− c(γ) ∈ λQn,m ∧
c1 �21 γ �22 c2 ∧ γ ≡ k mod n′

 ,

where c : ΓK → K is an Lring,2-definable function. Moreover, by Lemma 3.2.8
we know that c has finite image, hence we may as well assume that c(γ) is in
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fact constant on each cell. Note that, if λ = 0 for some cell C, then C only
contains a single point (α(c), c). We take D′ to be the set consisting of these
values c ∈ K.

Let us show that the projection of a cell C with constant center c(γ) = c
and λ 6= 0, onto the second variable, can be written as a finite union of cells
Cci ⊆ D \D′ (that is, all cells are centered at c). Let Z denote the projection
of C onto the second variable, and consider the set Y := {ord(x− c) | x ∈ Z}.
The set Y can be partitioned into finitely many Γ-cells Y1, . . . , Yr. The reader
can check that for i ∈ {1, . . . , r}, the sets

Cci := {x ∈ K | ord(x− c) ∈ Yi ∧ x− c ∈ λQn,m}

form a cell decomposition of Z with cells centered at c.

Doing this for all cells for which λ 6= 0, gives a partition of D \D′. If x ∈ Cci ,
then the value of α(x) equals the unique γ for which a(γ) �11 ord(x−c) �12 b(γ),
c1 �21 γ �22 c2 and γ ≡ k mod n′. Hence, α(x) is constant on leaves of Cci .

Lemma 3.2.10. Let (K,ΓK ;L2) be a relative P -minimal structure and let
α1, α2 : D ⊆ K → ΓK be two definable functions. Then there exists a finite
set D′, finitely many constants c1, . . . , cl ∈ K and a partition of D \D′ into l
1-cells Ccjj , such that on each cell, both α1 and α2 have constant value on each
of the leaves Ccj ,γj .

Proof. Applying Lemma 3.2.9 yields two partitions of D:

D = D′1 ∪
l⋃
i=1

Ddi
i = D′2 ∪

l′⋃
ι=1

Eeιι ,

such that the D′j are finite sets, and Ddi
i , resp. Eeιι are 1-cells such that α1,

resp. α2 have constant value on leaves of Ddi
i , resp. Eeιι .

A refinement of both partitions can be found by considering intersections
Ddi
i ∩ Eeιι , D′1 ∩ Eeιι and D′2 ∩Ddi

i . The intersection of a point and a cell can
either be empty or a point. The intersection of two 1-cells Ddi

i ∩ Eeιι is either
empty, or a definable set that can once again be partitioned as a finite union of
points and 1-cells Ccjj . In order to finish the proof, we need to check that, for
any γ0 ∈ ΓK , there exist γ, γ′ ∈ ΓK such that

C
cj ,γ0
j ⊆ Ddi,γ

i ∩ Eeι,γ
′

ι . (3.2.1)

Indeed, if this holds then α1 and α2 will have constant value on the leaves of
C
cj
j as required.
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We will show that there exists γ ∈ ΓK , such that Ccj ,γ0
j ⊆ Ddi,γ

i . The same
argument will allow us to find γ′ ∈ ΓK such that Ccj ,γ0

j ⊆ Eeι,γ
′

ι . These two
statements together imply (3.2.1).

Since Ccj ,γ0
j ⊆ Ddi

i , we know that there must exist at least one leaf of Ddi
i that

has nonempty intersection with Ccj ,γ0
j . Let L := {ρ ∈ ΓK | Ddi,ρ

i ∩ Ccj ,γ0
j 6= ∅}

be the set listing the heights of such leaves. We need to check that L cannot
contain more than one element. Note that, if L has more than one element, then
C
cj ,γ0
j contains elements from at least two different leaves of Ddi

i , hence Ccj ,γ0
j

also contains the smallest ball that contains these elements. Such a ball will
always contain the center di, hence di ∈ Ccj ,γ0

j , but di /∈ Ddi
i . This contradicts

C
cj ,γ0
j ⊆ Ddi

i , and therefore we can conclude that L can only have a single
element γ, which implies that Ccj ,γ0

j ⊆ Ddi,γ
i .

Proof of Theorem 3.2.5. By logical compactness, it suffices to show that for
every s ∈ S, there exists Ns ∈ N, and balls B1, . . . , BNs from B1, such that⋃

γ

As,γ = B1 ∪ . . . ∪BNs .

Fix s ∈ S, and consider the fiber As ⊆ ΓK ×K. Reversing the order of the
variables and applying Γ-cell decomposition, this set can be partitioned as a
finite union of cells of the form

C := {(x, γ) ∈ D × ΓK | α1(x) �11 γ �12 α2(x) ∧ γ ≡ κ mod n′},

where D is a semi-algebraic cell of the form

D := {x ∈ K | γ1 �21 ord(x− c) �22 γ2 ∧ x− c ∈ λQn,m},

and γi ∈ ΓK , λ, c ∈ K, m,n, n′, κ ∈ N and the αi : D → ΓK are definable
functions. By Lemma 3.2.10, there is a finite set D′, finitely many constants
c1, . . . , cl ∈ K and a partition of D \D′ into l 1-cells Ccjj , such that on each
cell, both α1 and α2 have constant value on each leaf Ccj ,γj .

Choose r such that k < qrK . Fix one of the cells Ccjj , and consider a leaf Ccj ,γ0
j

for some γ0 < 1−mj − r, where mj is as in the set Qnj ,mj , appearing in the
cell condition Cj . Note that this leaf is the union of at least qrK disjoint balls
from B1. Take some x ∈ Ccj ,γ0

j , and choose γ such that

α1(x) �11 γ �12 α2(x) ∧ γ ≡ κ mod n′.

Then x ∈ As,γ . Lemma 3.2.10 implies that αi(x) = αi(x′) for any other
x′ ∈ Ccj ,γ0

j , and hence Ccj ,γ0
j ⊆ As,γ . This means that As,γ must contain at
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least qrK > k balls from B1, which contradicts our assumption that As,γ consists
of k balls.

The only way this contradiction can be avoided is if the cells Ccjj have no leaves
C
cj ,γ0
j for which γ0 < 1−mj − r. This in turn implies that D can only intersect

a finite number of disjoint balls from B1, since for γ > 1, all leaves Ccj ,γj of the
cell Ccjj are contained within a single ball of B1. Hence, the theorem follows.

3.2.2 Multi-balls over the value group

In this section we show that in relative P -minimal structures, definable multi-
balls on B1 over definable sets of the form S×ΓK can be partitioned into finitely
many definable sets which are multi-balls over S.

Proposition 3.2.11. Let (K,ΓK ;L2) be a relative P -minimal structure and
let X ⊆ S×ΓK be a definable set and A ⊆ X×K a definable multi-ball of order
k on B1. Then there is a finite set W and a definable partition X =

⋃
w∈W Xw

with Sw := πS(Xw), such that for every s ∈ Sw, As has constant fibers over
(Xw)s (i.e., As,γ1 = As,γ2 for all γ1, γ2 ∈ (Xw)s).

Proof. By Theorem 3.2.5, there is an integer NA such that for every s, there
exists Ns < NA, and balls {B1,s, . . . , BNs,s} =: Bs from B1 (depending on s!),
such that ⋃

γ∈Xs

As,γ = B1,s ∪ . . . ∪BNs,s.

By partitioning S into finitely many definable pieces, without loss of generality
we may assume that the cardinality of Bs is constant and equal to N for all
s ∈ S. For every s ∈ S, there are

(
N
k

)
possible values for the fiber As,γ .

Recall that a definably well-ordering C on ΓK is a linear ordering satisfying
that every definable subset Y ⊆ ΓK has a C-minimal element. Let C be the
definably well-ordering on ΓK defined by

xC y ⇔ |x| < |y| ∨ x = y ∨ (−x = y ∧ y > 0).

To see that C is a definably well-ordering on ΓK , note first that on Z, C defines
the well-ordering

0C−1C 1C−2C 2C · · · ,

so, in particular, every LPres-definable subset of Z has a C-minimal element.
Since (ΓK ,LPres) ≡ (Z,LPres), the fact that every definable subset of ΓK is
LPres-definable implies the desired property.



104 EXPONENTIAL-CONSTRUCTIBLE FUNCTIONS IN P -MINIMAL STRUCTURES

Let δ1 : S → ΓK be the definable function sending s to minCXs, the minimal
element with respect to the ordering C. Setting Z1 := X, we inductively define
sets Zi+1 ⊆ Zi and functions δi+1 : S → ΓK ∪ {∞} for i > 1 as follows:

Zi+1 := {(s, γ) ∈ Zi | As,γ 6= As,δi(s)};

δi+1(s) :=
{

minC(Zi+1)s if (Zi+1)s 6= ∅;
∞ otherwise.

The idea is to order the different configurations of Bs that appear as fibers As,γ
with respect to their minimal representatives in Xs. Doing this uniformly in S
and grouping the elements defining the same fiber is the idea behind the sets
Zi. Note that

X = Z1 ⊇ Z2 ⊇ · · · ⊇ Z(Nk) ⊇ Z(Nk)+1 = ∅.

Moreover, for s ∈ S, if δi(s) 6=∞, the same holds for all i′ < i. Therefore, the
sets S1, . . . , S(Nk) with

Si := {s ∈ S | δi(s) 6=∞ ∧ δi+1(s) =∞},

form a definable partition of S, which induces a partition of X as well (some of
the Si might be empty). By restricting to S = Sm for some m ∈

{
1, . . . ,

(
N
k

)}
,

we find that As,δ1(s), . . . , As,δm(s) are all the multi-balls that appear as fibers of
As over Xs. To conclude the proof we use the functions δ1, . . . , δm to partition
X as follows. For 1 6 i 6 m let

Xi := {(s, γ) ∈ X | As,γ = As,δi(s)}.

We clearly have that the sets {X1, . . . , Xm} form a partition of X. Moreover,
by construction, for every s ∈ S the fibers of As over (Xi)s are constant and
equal to As,δi(s).

3.3 Auxiliary results on the form of the elements of
C∗exp(X)

For the rest of this chapter K will be a p-adic field. In the following lemma we
state an elementary yet important result on integration of the character ψ over
balls of valuation radius at most 0.
Lemma 3.3.1. Let a ∈ K and γ ∈ Z with γ 6 0, then∫

Bγ(a)
ψ(x)|dx| = 0.
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Proof. Since ψ|OK 6= 1, there exists g ∈ OK such that ψ(g) 6= 1. The ball Bγ(a)
is a disjoint union of q−γ+1

K balls from B1 and it is easy to see that the map
x 7→ x+ g permutes these balls. So if we take R to be a set of representatives
from each of those balls, then

Bγ(a) =
⋃
b∈R

B1(b) =
⋃
b∈R

B1(b+ g).

The character ψ is constant on each of the balls B1(b), which have volume q−1
K ,

so∫
Bγ(a)

ψ(x)|dx| = q−1
K

∑
b∈R

ψ(b) = q−1
K

∑
b∈R

ψ(b+g) = q−1
K ψ(g)

∑
b∈R

ψ(b). (3.3.1)

Since ψ(g) 6= 1, (3.3.1) can only hold if
∑
b∈R ψ(b) = 0, which implies that∫

Bγ(a) ψ(x)|dx| = 0.

Recall that in the Definition 3.1.6, the character ψ is summed over multi-balls
that consist purely of maximal balls from B1. The above lemma explains why
it makes sense to impose that restriction.

The following lemma gives a useful description of the form of exponential*-
constructible functions.

Lemma 3.3.2. Let X be a definable set. Then C∗exp(X) = W (X), where

W (X) :=

∑
i∈I

hi(x)
∑
BvAix

ψ(B)
∣∣∣∣ I finite set, hi ∈ C(X), Ai ⊆ X ×K
definable multi-ball of order ki on B1

 .

Proof. The inclusion W (X) ⊆ C∗exp(X) is clear from the definition of C∗exp(X).
Furthermore, W (X) contains the generators of C∗exp(X) and is closed under
addition and scalar multiplication by elements of Q. Hence, it remains to show
that W (X) is closed under multiplication. Now consider(∑

i∈I
hi(x)

∑
BvAix

ψ(B)
)
·
(∑
j∈J

h̃j(x)
∑
B̃vÃjx

ψ(B̃)
)

=

∑
(i,j)∈I×J

hi(x)h̃j(x)
( ∑
BvAix,
B̃vÃjx

ψ(B + B̃)
)
.
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The reader can check that B + B̃ is again a ball in B1. For each i ∈ I, j ∈ J
and r > 1, there exist definable sets

D(i,j,>r) :=

(x, b) ∈ X ×K
∣∣∣∣∣
∃b1, . . . , br ∈ Aix ∃b̃1, . . . , b̃r ∈ Ãjx :∧r
k,l=1

(
ord(bk − bl) 6 0 ∧ ord(b̃k − b̃l) 6 0

)
∧
∧r
k=1(b = bk + b̃k)

 ;

D(i,j,r) := D(i,j,>r)\D(i,j,>r+1);

E(i,j,r) :=
{

(x, b) ∈ D(i,j,r) | ∃b′ ∈ K : ord(b− b′) > 0 ∧ b′ 6∈ D(i,j,r)
x

}
.

Each fiber D(i,j,r)
x consists of the balls from B1 that can be written in exactly

r ways as the sum of a ball B v Aix and a ball B̃ v Ãjx. Now E
(i,j,r)
x contains

only those balls in D
(i,j,r)
x , that are maximal in D

(i,j,r)
x . Remark that for

r > k(i,j) := min{ki, k̃j} (where ki is the order of Ai and k̃j is the order of Ãj),
D

(i,j,r)
x and E(i,j,r)

x are empty, so we can write∑
(i,j)∈I×J

hi(x)h̃j(x)
( ∑
BvAix,
B̃vÃjx

ψ(B + B̃)
)

=

∑
(i,j)∈I×J

k(i,j)∑
r=1

rhi(x)h̃j(x)
( ∑
B⊆D(i,j,r)

x ,
B∈B1

ψ(B)
)

=

∑
(i,j)∈I×J

k(i,j)∑
r=1

rhi(x)h̃j(x)
( ∑
BvE(i,j,r)

x

ψ(B)
)
.

Here we have used the fact that
∫
D

(i,j,r)
x \E(i,j,r)

x
ψ(b)|db| = 0 which is a

consequence of Lemma 3.3.1.

Unfortunately, the set E(i,j,r) is not necessarily a multi-ball, because different
fibers might contain a different number of maximal balls. However, we do
know that for 1 6 r 6 k(i,j), each fiber E(i,j,r)

x contains at most kik̃j maximal
balls from B1. Hence we can partition the set X into definable sets X(i,j,r)

t ,
for 1 6 t 6 kik̃j , such that E(i,j,r)

x contains exactly t maximal balls, for each
x ∈ X(i,j,r)

t . Remark that for each E(i,j,r) we might have to consider a different
partition of X.

Now, for each 1 6 t 6 kik̃j , we fix a set Ht ⊆ K of t maximal balls from
B1. Then we define (with parameters) a subset of X ×K, of which each fiber
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consists of t maximal balls from B1:

E(i,j,r,t) := {(x, b) ∈ E(i,j,r) | x ∈ X(i,j,r)
t } ∪ (X \X(i,j,r)

t )×Ht.

Then we find(∑
i∈I

hi(x)
∑
BvAix

ψ(B)
)
·
(∑
j∈J

h̃j(x)
∑
B̃vÃjx

ψ(B̃)
)

=

∑
(i,j)∈I×J

k(i,j)∑
r=1

kik̃j∑
t=1

rhi(x)h̃j(x)1
X

(i,j,r)
t

(x)
∑

BvE(i,j,r,t)
x

ψ(B),

where 1
X

(i,j,r)
t

: X → Z denotes the characteristic function of the set X(i,j,r)
t .

The last expression is clearly an element of W (X), since rhih̃j1X(i,j,r)
t

∈ C(X)
and E(i,j,r,t) is a definable multi-ball of order t on B1.

Remark 3.3.3. There are of course several ways of writing a function f ∈ C∗exp(X)
as an element of W (X). The main difficulty in proving Conjecture 3.1.11 lies
in showing that for an integrable function f , at least one of those ways uses
only constructible functions hi that are integrable themselves.

3.4 Integration of Z-variables

Let us now prove Theorem 3.1.8, which we restate here for the reader’s
convenience.
Theorem 3.4.1. Let X ⊆ S × Zn be a definable set. Let f ∈ C∗exp(X) be such
that Int(f,Zn) = S. Then there exists g ∈ C∗exp(S) such that for all s ∈ S,

g(s) =
∫
Xs

f(s, γ)|dγ|.

Proof. First of all, note that by Fubini it suffices to show the result for n = 1. By
Lemma 3.3.2 and Definition 3.1.1 (i) on the generators of C(X) as a Q-algebra,
we may suppose that f has the following form

f(s, γ) =
m∑
i=1

ciq
αi(s,γ)
K

ri∏
k=1

βik(s, γ)
∑

BvAis,γ

ψ(B), (3.4.1)

where the ci are non-zero rational constants, αi, βik are definable functions from
X to Z and Ai are definable multi-balls on B1 over X. Let I denote the set
I := {1, . . . ,m}.
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By iterating Proposition 3.2.11, there is a finite definable partition of X into
sets {Xw}w∈W such that for each s ∈ Sw := πS(Xw), and for each i ∈ I, the
multi-ball Ais has constant fibers over (Xw)s. Without loss of generality, suppose
from now on that X is one such piece Xw. Therefore, for all s ∈ S the function

ei : (s, γ) 7→
∑

BvAis,γ

ψ(B)

does not depend on γ. Note that this function is an element of C∗exp(S). Indeed,
the set Ei ⊆ S ×K, defined by having fibers Eis :=

⋃
γ∈Xs A

i
s,γ , is a multi-ball

on B1 over S, which shows that the function ei : s 7→
∑
BvEis

ψ(B) is in C∗exp(S).
By multiplying ei by the constant ci, we may omit such constants and rewrite
equation (3.4.1) as

f(s, γ) =
∑
i∈I

ei(s)qαi(s,γ)
K

ri∏
k=1

βik(s, γ). (3.4.2)

By Theorem 1.1.9 we may further suppose that X is a Γ-cell of the form

X = {(s, γ) ∈ S × Z | θ1(s) �1 γ �2 θ2(s) ∧ γ ≡ l mod M}, (3.4.3)

for θ1, θ2 definable functions from S to Z and l,M ∈ N with M > 0, and that
for all s ∈ S, the functions αi(s, · ) and βik(s, · ) are linear in γ−l

M . From now
on, we will denote γ−l

M by ζ. Writing products of linear terms as polynomials in
ζ, we have that, for each i ∈ I,

q
αi(s,γ)
K

ri∏
k=1

βik(s, γ) = q
aiζ+δi(s)
K

ri∑
k=0

dik(s)ζk, (3.4.4)

where ai ∈ Z, δi is a definable function from S to Z and dik ∈ C(S). Since
q
δi(s)
K ∈ C∗exp(S), we may assume that δi(s) = 0 by merging this factor into the
functions ei(s). Therefore we have that

f(s, γ) =
∑
i∈I

ei(s)qaiζK
ri∑
k=0

dik(s)ζk. (3.4.5)

After merging terms with the same factor qaiζK , we may suppose that ai 6= aj
for all i, j ∈ I such that i 6= j. Set

hi(s, γ) := qaiζK

(
ri∑
k=0

dik(s)ζk
)
.

Claim 3.4.2. If for each s ∈ S and i ∈ I the functions hi(s, · ) are integrable
over Xs, then there is g ∈ C∗exp(S) such that g(s) =

∫
Xs
f(s, γ)|dγ|.
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Note that for each i ∈ I, hi is L2-constructible. Therefore, by Theorem 1.2.3,
letting gi(s) =

∫
Xs
hi(s, γ)|dγ| we have that

∫
Xs

f(s, γ)|dγ| =
∫
Xs

(∑
i∈I

ei(s)hi(s, γ)
)
|dγ|

=
∑
i∈I

ei(s)
∫
Xs

hi(s, γ)|dγ| =
∑
i∈I

ei(s)gi(s),

which is a function in C∗exp(S). This completes the proof of the claim.

We will finish the argument by splitting in cases depending on the possible
values of �1 and �2.

Case 1: Suppose that �1 = �2 = ‘<’. In this case the set Xs is finite for each
s ∈ S, hence the functions hi(s, · ) are integrable over Xs. The result follows
now by Claim 3.4.2.

Case 2: Suppose that �1 = ‘<’ and �2 = ‘no condition’. Let j ∈ I be such
that aj = maxi∈I ai. In this case, if aj > 0, then ej(s)

∑rj
k=1 djk(s)ζk = 0 for

all (s, γ) ∈ X, since f(s, · ) must be integrable over Xs for each s ∈ S. If this
holds, then

f(s, γ) =
∑

i∈I,i6=j
ei(s)qaiζK

(
ri∑
k=0

dik(s)ζk
)
.

By induction on #I, either f is identically 0 or we may suppose that aj < 0. In
the first case, the theorem clearly holds. In the second case, we have that each
function hi(s, · ) is integrable over Xs and we conclude again by Claim 3.4.2. A
similar argument handles the case �2 = ‘<’ and �1 = ‘no condition’. Finally,
the case �1 = �2 = ‘no condition’ also reduces to this case by partitioning X
into X1 and X2 where

X1 := {(s, γ) ∈ X | 0 6 γ} and X2 := {(s, γ) ∈ X | γ < 0}.

3.5 Integration of K-variables

This section is dedicated to the proof of Theorem 3.1.10. In the first subsection
we deal with a special instance of the theorem.
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3.5.1 Integrating characters over a definable subset of K

The goal of this section is to show that functions of the form s 7→
∫
Xs
ψ(x)|dx|,

where X is a definable set, are always exponential*-constructible. Note that
this constitutes a generalization of our observations in Example 3.1.4.

Proposition 3.5.1. Let X ⊆ S ×K be a definable set with bounded fibers Xs,
i.e., for each s ∈ S, there exists M ∈ Z such that ord(x) > M for all x ∈ Xs.
Then the function

s 7→
∫
Xs

ψ(x)|dx| (3.5.1)

is an element of C∗exp(S).

For the proof of this proposition we will use the clustered cell decomposition
from Theorem 2.7.1. This theorem states that one can partition the set X into
a finite union of classical cells and regular clustered cells. Recall that a regular
clustered cell CΣ of order k can be written as a disjoint union Cσ1 ∪ . . . ∪ Cσk
of k sets Cσi that can (non-definably) be described as

Cσi = {(s, t) ∈ S ×K | α(s) < ord(t− σi(s)) < β(s) ∧ t− σi(s) ∈ λQn,m}.

Let us take a moment to explore the case where X = CΣ. By Lemma 3.3.1
we may assume that the leaves of any fiber Xs are balls of valuation radius
at least 1, since leaves with smaller valuation radius will contribute nothing
to the integral

∫
Xs
ψ(x)|dx|. Hence, we may assume that α(s) > −m, for all

s ∈ S. Note that this assumption will not affect the tree structure T (Σs) of the
fibers of CΣ. Furthermore, it implies that there exists a uniform bound on the
number of balls in B1 that have non-empty intersection with Xs. For fixed s,
the union of all these balls is equal to the corresponding fiber of the definable
set

B := {(s, x) ∈ S ×K | ∃y ∈ Xs : ord(x− y) > 1}.
In the proof of Proposition 3.5.1 we will partition this set into a finite number
of definable multi-balls B1, . . . ,Bi0 of orders k1, . . . , ki0 on B1, such that∫

Xs

ψ(x)|dx| =
i0∑
j=1

gj(s)
∑
BvBjs

ψ(B), (3.5.2)

for certain g1, . . . , gi0 ∈ C(S). These constructible functions gi will denote the
volumes of the fibers of certain definable subsets of S ×K.

Proof of Proposition 3.5.1. We will first consider the case where X is a large,
regular clustered cell CΣ of order k, using the notation from the previous
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discussion. Recall that for such cells, all of the branching heights of Σs occur
below α(s), which follows from the definition of regularity. As mentioned before,
we may also assume that α(s) > −m.

For each ball B ⊆ Bs from B1 we want to analyse the set B ∩ Xs and its
volume. In most cases this set will consist of exactly one leaf from one of the
sets Cσi(s), but in some cases several leaves (possibly from different sets Cσi′ (s))
could be contained within the ball B. We will have to distinguish between
these two cases. Let σi be a (non-definable) section of Σ and Cσi(s),γ the leaf of
Cσi(s) at height γ. This leaf has volume q−(γ+m)

K , which is at most q−1
K , since

−(γ +m) 6 −γ + α(s) 6 −1. Depending on the height γ, two cases may occur.

1

γ
−m

Figure 3.1: leaves of type (1)

γ

1

−m

Figure 3.2: leaves of type (2)

(1) If α(s) < γ 6 0, then the unique ball B ⊆ Bs from B1 which contains
Cσi(s),γ , contains no other leaves of Cσi(s). Since all the branching heights
of Σs occur below α(s), hence below 0, B does not intersect any of the
other k − 1 sets Cσi′ (s). This is the situation depicted in Figure 3.1.

(2) If γ > 0, then Cσi(s),γ is contained in the ball B1(σi(s)) ⊆ Bs from
B1. For any other (non-definable) section ζ for which σi(s) and ζ(s) are
(C,Σs)-equivalent, we know that ord(σi(s)− ζ(s)) > α(s) +m > 0, hence
B1(σi(s)) = B1(ζ(s)). Thus Bs contains at most k of these balls. This is
the situation depicted in Figure 3.2.

As we have already mentioned, we want to partition the set B in a definable
way. For each γ of type (1), we will define a set consisting of all the balls that
contain a leaf at height γ. The balls that contain a leaf of type (2) will be
collected in an additional definable set. We will now explain how to define these
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sets uniformly in s. For this, note that the leaves of Xs are also the maximal
balls of Xs, since all the branching heights of Σs occur below α(s).

We inductively define, for each j > 1, a definable set X(j) and a definable
function dj : S → Z ∪ {∞} as follows. For each s ∈ S, the set X(j)

s is the set
containing the leaves with the largest volume in Xs \

(
∪j−1
l=1 X

(l)
s

)
. The function

dj is such that for each s ∈ S, the volume of the leaves in X(j)
s equals q−dj(s)K

when the set X(j)
s is not empty, and dj(s) =∞ otherwise. Note that one always

has dj(s) > 1. Furthermore, dj(s) 6 m if and only if the leaves in X
(j)
s are

leaves of type (1).

Now let i0(s) be the smallest positive integer for which di0(s)(s) > m. This
integer can depend on S, but in any case, i0(s) is uniformly bounded on S,
by m + 1. Thus there exists a finite definable partition of S, such that i0(s)
is constant on each of the sets in the partition. By restricting our clustered
cell to any set in this partition, we may assume that i0 is constant on S. This
means that for all s ∈ S there are i0 − 1 definable sets of leaves of type (1),
X

(1)
s , . . . , X

(i0−1)
s . Note that each of these sets contains exactly k leaves, one

for each equivalence class of centers in Σs.

For each 1 6 j 6 i0 − 1, define

Bj := {(s, x) ∈ S ×K | ∃y ∈ X(j)
s : ord(x− y) > 1}

to be the definable set whose fibers Bjs contain all balls in B1 that have a
nonempty intersection with X(j)

s . With this definition, the sets Bj are disjoint
subsets of B and each of them is a multi-ball of order k on B1, since all the
branching heights of Σs occur below α(s).

For each 1 6 j 6 i0 − 1, we now have that∫
X

(j)
s

ψ(x)|dx| =
∑
BvBjs

ψ(B) ·Vol(B ∩Xs) (3.5.3)

= q
−dj(s)
K ·

∑
BvBjs

ψ(B) ∈ C∗exp(S),

where we use the fact that B ∩Xs is one leaf of Xs with volume q−dj(s)K .

For all j > i0 the leaves in X(j)
s are leaves of type (2). The union of these leaves

is the definable set
X ′s := Xs \

(
∪i0−1
l=1 X(l)

s

)
.
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The balls from B1 in Bs that have nonempty intersection with X ′s make up the
fibers of the definable set

Bi0 := {(s, x) ∈ S ×K | ∃y ∈ X ′s : ord(x− y) > 1}

= B \
(
∪i0−1
l=1 B

l
)
.

Note that if Σs has branching heights above 1, then even for certain σi, σi′ not
equivalent at s, we will have B1(σi(s)) = B1(σi′(s)). Therefore it could happen
that Bs contains strictly less than k of these balls. Let us denote the number of
such balls in Bi0s by k0(s). Since this number may change with s, the set Bi0 is
not necessarily a multi-ball. To make it into one, we will have to partition S,
using the procedure described below.

It could happen that the balls from B1 in Bi0s are not maximal balls. This
happens exactly if Σs has a branching height at 0 with qK branches. Let S′ ⊆ S
be the definable set of s for which this happens, then for each s ∈ S′,∫

X′s

ψ(x)|dx| =
∑

B⊆Bi0s ,
B∈B1

ψ(B) ·Vol(X ′s ∩B) = 0,

where we have used Lemma 3.3.1 and the fact that the volume of X ′s ∩B is the
same for each B ⊆ Bi0s with B ∈ B1, by condition (b) of Theorem 2.7.1. The
constant function 0 is clearly an exponential*-constructible function on S′.

From now on we may assume without loss of generality that S′ = ∅. Since we
have k0(s) 6 k for all s ∈ S, we can (definably) partition S further and reduce
to the case where for all s ∈ S, Bi0s contains exactly k0 maximal balls from
B1. By condition (b) from Theorem 2.7.1, the tree associated to Σs is highly
symmetric, and hence the sets X ′s ∩ (B1(c)) all have the same volume, for each
c ∈ Σs. There are k0 of these sets, hence each of them has volume 1

k0
·Vol(X ′s),

which is a constructible function on S. We can conclude that∫
X′s

ψ(x)|dx| = 1
k0
·Vol(X ′s)

∑
BvBi0s

ψ(B) ∈ C∗exp(S). (3.5.4)

The equations (3.5.3) and (3.5.4) give us the form of (3.5.2).

Now consider the case where X is a small clustered cell. For such a cell, each
fiber only has leaves at a single height, but we can no longer assure that the
branching heights will necessarily occur below α(s). Still, the reader can check
that this case can be proven similarly as the case of large cells, by partitioning
S in the same way as for case (2) above. The proof for classical cells follows the
same structure as the proof for large cells and will be left to the reader. This
concludes the proof of this theorem.
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3.5.2 The proof of Theorem 3.1.10

We are ready to prove Theorem 3.1.10, which we restate for the reader’s
convenience.

Theorem 3.5.2. Let X ⊆ S ×Kn be a definable set and f ∈ C∗exp(X). If f
can be written in n-normal form, then there exists g ∈ C∗exp(S) such that, for
all s ∈ S,

g(s) =
∫
Xs

f(s, x)|dx|.

Proof. Since f can be written in n-normal form, by additivity of integration we
can reduce to proving the case where f is of the form

f(s, x) := h(s, x)
∑

BvAs,x

ψ(B),

with A ⊆ X ×K a definable multi-ball on B1, Int(h,Kn) = S and Int(f,Kn) =
S.

Put Y := {(s, b, x) ∈ S ×Kn+1 | b ∈ As,x}, which can have empty fibers Ys,b
for some (s, b) ∈ S ×K. Since h(s, · ) is integrable over Xs for each s ∈ S, we
can apply Fubini to change the order of integration. Hence∫

Xs

h(s, x) ·
∑

BvAs,x

ψ(B)|dx| = qK

∫
Xs

∫
As,x

h(s, x)ψ(b)|db||dx|

= qK

∫
K

∫
Ys,b

h(s, x)ψ(b)|dx||db|

= qK

∫
K

ψ(b)
(∫

Ys,b

h(s, x)|dx|
)
|db|. (3.5.5)

The set Ys,b is a definable subset of Kn, so by Theorem 1.2.3 the function

S ×K → Q : (s, b) 7→
∫
Ys,b

h(s, x)|dx|

is a constructible function. This means it is composed of generators of the Q-
algebra C(S×K): there exist definable functions αi : S×K → Z, βij : S×K → Z
and constants ci ∈ Q such that, for all s ∈ S, b ∈ K,∫

Ys,b

h(s, x)|dx| =
m∑
i=1

ciq
αi(s,b)
K

r∏
j=1

βij(s, b). (3.5.6)
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For each s ∈ S and b ∈ K we denote

α(s, b) :=
(
α1(s, b), . . . , αm(s, b)

)
;

β(s, b) :=
(
β11(s, b), . . . , βmr(s, b)

)
,

and for each γ = (γi)i ∈ Zm(r+1) we denote by Cγ the rational number∑m
i=1 ciq

γi
K

∏r
j=1 γjm+i. We consider the definable set

D := {(s, γ, b) ∈ S × Zm(r+1) ×K |
(
α(s, b), β(s, b)

)
= γ}.

Note that for a fixed s ∈ S, the fibers Ds,γ partition K. We can definably
distinguish between the fibers Ds,γ that are bounded and the ones that are not:

G := {(s, γ) ∈ S × Zm(r+1) | ∃δ ∈ Z : Ds,γ ⊆ Bδ(0)}.

Combining (3.5.5) and (3.5.6) gives us, for each s ∈ S,

g(s) =
∫
Xs

h(s, x) ·
∑

BvAs,x

ψ(B)|dx|

= qK ·
∫
K

ψ(b)
m∑
i=1

ciq
αi(s,b)
K

r∏
j=1

βij(s, b)|db|

= qK
∑

γ∈Zm(r+1)

∫
Ds,γ

Cγψ(b)|db|

= qK
∑
γ∈Gs

∫
Ds,γ

Cγψ(b)|db|+ qK
∑

γ∈Zm(r+1)\Gs

∫
Ds,γ

Cγψ(b)|db|

= qK

∫
Gs

(
Cγ

∫
Ds,γ

ψ(b)|db|
)
|dγ|,

where the last equality follows from the fact that each of the integrals∫
Ds,γ

Cγψ(b)|db| must exist, which means that if γ /∈ Gs, then Cγ = 0. Using
Proposition 3.5.1 we see that the function

l : (s, γ) 7→ Cγ

∫
Ds,γ

ψ(b)|db|

is an exponential*-constructible function on G ⊆ S × Zm(r+1). By applying
Theorem 3.1.8 to l we can conclude that g : s 7→ qK

∫
Gs
l(s, γ)|dγ| is an

exponential*-constructible function on S.





Chapter 4

The Cluckers-Veys conjecture
on exponential sums for
polynomials with
log-canonical threshold at
most a half

This chapter is based on [CN17a], which is joint work with Kien Huu Nguyen.

The goal of this chapter is to proof the Cluckers-Veys conjecture 1.3.13 for
polynomials with log-canonical threshold at most one half. This result will
imply the Igusa conjecture 1.3.10 and the Denef-Sperber conjecture 1.3.11 under
the same restrictions on the log-canonical threshold.

In these conjectures f ∈ Z[x1, . . . , xn] is a nonconstant polynomial and without
loss of generality we can assume that f(0) = 0. We are interested in the
global sum Ef (m, p) and the local sums Eyf (m, p) around points y ∈ Zn, both
depending on an integer m ∈ Z and a prime number p. Recall that

Ef (m, p) := 1
pmn

∑
x∈(Z/pmZ)n

exp
(

2πif(x)
pm

)
;

117
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Eyf (m, p) := 1
pmn

∑
x∈y+(pZ/pmZ)n

exp
(

2πif(x)
pm

)
.

In the conjectures of Igusa, Denef-Sperber and Cluckers-Veys the asymptotic
behaviour of |Ef (m, p)|C and |Eyf (m, p)|C is expressed in terms of log-canonical
thresholds. We recall their definitions, that were introduced in Definitions 1.3.8
and 1.3.12 and Equation (1.3.2).

Definition 4.0.1. Let k be a field of characteristic 0 and f ∈ k [x1, . . . , xn] a
nonconstant polynomial. We fix an embedded resolution (Y, h) of f−1(0) with
{Ei | i ∈ T} the set of prime divisors of (f ◦ h)−1(0) and {(Ni, νi) | i ∈ T} the
corresponding set of numerical data. For y ∈ (kalg)n such that f(y) = 0, we call

cy(f) := min
i∈T :y∈h(Ei)

{ νi
Ni

}
the log-canonical threshold of f at y and

c(f) := inf
y∈f−1(0)

cy(f) = min
i∈T

{ νi
Ni

}
the log-canonical threshold of f .

Definition 4.0.2. Let f ∈ Z[x1, . . . , xn] be a nonconstant polynomial. Recall
that Vf ⊆ Qalg denotes the set of critical values of f . Fix y ∈ Zn and p a prime
number. Then we define

a(f) := min
b∈Vf∪{0}

c(f − b);

ay,p(f) := inf
y′∈y+pZnp

cy′(f − f(y′)).

The exact theorem that we are proving in this chapter is the following.

Theorem 4.0.3. Let f ∈ Z[x1, . . . , xn] be a nonconstant polynomial with
f(0) = 0. Put σ := min

{
a(f), 1

2
}
and σy,p := min

{
ay,p(f), 1

2
}
for all y ∈ Zn

and all primes p. Then there exists a constant C > 0 (that may depend on the
polynomial f), such that for all m > 2, for all primes p and for all y ∈ Zn, we
have

|Ef (m, p)|C 6 Cmn−1p−mσ, (4.0.1)

|Eyf (m, p)|C 6 Cmn−1p−mσy,p . (4.0.2)
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Note that the homogeneous polynomials f in two variables that are not yet
covered by Igusa’s proof of his own conjecture [Igu78], satisfy that a(f) 6 1

2 .
For these polynomials Igusa’s conjecture was already proven by Lichtin [Lic13]
and by Wright [Wri12], hence our results can be considered a generalisation of
theirs to more variables.

In order to prove Theorem 4.0.3, we will first prove an upper bound for the
local sum around 0, E0

f (m, p). It is a consequence of Corollary 1.3.7 that for
each prime number p, there exists a constant Cp > 0, such that for all m > 1,
we have

|E0
f (m, p)|C 6 Cpmn−1p−mc0(f). (4.0.3)

We will show that if c0(f) 6 1
2 , then the constant Cp can be taken independent

of p, for p big enough. This is the content of the following theorem.

Theorem 4.0.4. Let f ∈ Z[x1, . . . , xn] be a nonconstant polynomial with
f(0) = 0. Put σ0 := min

{
c0(f), 1

2
}
. Then there exist a constant C > 0 and a

natural number N , such that for all m > 1 and for all primes p > N , we have

|E0
f (m, p)|C 6 Cmn−1p−mσ0 .

Combining this theorem and Equation (4.0.3) shows that this theorem even
holds for N = 1.
Remark 4.0.5. If m = 1, then E0

f (m, p) = 1
pn , hence Theorem 4.0.4 is trivially

satisfied. Therefore we only need to prove it for m > 2.

We will give two proofs of Theorem 4.0.4. Both of these proofs contain ideas
that could be useful for later developments around this conjecture. The first
approach, in Section 4.1, makes use of the Cluckers-Loeser motivic integration
theory. By considering certain well-chosen motivic functions and specializing
them to p-adic functions, we can deduce information about our exponential
sums in a uniform way for all but finitely many prime numbers p. To get
strong enough upper bounds, we need to prove that the specializations of the
motivic functions do not depend on the choice of a uniformizer in Qp, but only
on the angular component of the chosen uniformizer. Hence, when varying
uniformizers, we obtain orbits of points on which these functions are constant.
In fact, these orbits depend on actions of the group µp−1(Qp), the group of
(p− 1)th roots of unity of Qp, on the set of uniformizers of Qp and on Qp. This
idea could link the Cluckers-Loeser theory of motivic integration to the one of
Hrushovski-Kazhdan (see [HK06]). The latter makes use of the action of the
group µ̂ = lim

←−d
µd on the set of uniformizers and hence on the residue field.

The second approach, in Section 4.2, is based on existing results on the Igusa
zeta functions and the Lang-Weil estimates ([LW54]) for the number of points
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of varieties over finite fields. Improving certain parts of this approach could
lead to the proof of other cases of the Cluckers-Veys conjecture.

In Section 4.3 we will deduce the global Cluckers-Veys upper bound (4.0.1)
and in Section 4.4 we will prove the uniform local Cluckers-Veys upper bounds
(4.0.2) for all y ∈ Zn.

We remark that our results can be extended to the ring of integers of any
number field, but we will only work with Z and Q to simplify notation.

4.1 The model theoretic approach

The proof of Theorem 4.0.4 that we give in this section, uses some results
from the Cluckers-Loeser theory of motivic integration. The results that we
need here, can be found in Section 1.2. The idea of the proof is to split the
exponential sum E0

f (m, p) into three subsums and to give estimates for each
of these subsums. Some of these estimates will depend on the value of m, but
when we combine them with Corollary 1.3.7, we can obtain an estimate that is
uniform in m. The decomposition of E0

f (m, p) that we consider, is the following:

E0
f (m, p) = 1

pnm

∑
x∈(pZ/pmZ)n,

ordp(f(x))6m−2

exp
(

2πif(x)
pm

)
+

1
pnm

∑
x∈(pZ/pmZ)n,

ordp(f(x))=m−1

exp
(

2πif(x)
pm

)
+ 1
pnm

∑
x∈(pZ/pmZ)n,
ordp(f(x))>m

exp
(

2πif(x)
pm

)
.

In three different lemmas we will analyse each of these sums.

For the first subsum we will introduce a constructible function G, that expresses,
for a certain input z ∈ Zp with ordp(z) 6 m−2, how many x ∈ pZnp are mapped
close to z by f . We will apply a cell decomposition theorem to G and with
some further techniques like elimination of quantifiers, we will show that certain
values z of f occur equally often. In the exponential sum these values will
cancel out.
Lemma 4.1.1. Let f ∈ Z[x1, . . . , xn] be a nonconstant polynomial with f(0) =
0. Then there exists a natural number N such that, for all m > 1 and for all
primes p > N , we have ∑

x∈(pZ/pmZ)n,
ordp(f(x))6m−2

exp
(

2πif(x)
pm

)
= 0.
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Proof. The statement is obvious when m = 1 or m = 2, so we can assume that
m > 2. Let ϕ be the LZ-formula given by

ϕ(x1, . . . , xn, z,m) :=
n∧
i=1

(ord(xi) > 1) ∧
(
ord(z) 6 m− 2

)
∧

(
ord(z − f(x1, . . . , xn)) > m

)
,

where xi, z are in the VF-sort and m is in the VG-sort. To shorten notation
we set x = (x1, . . . , xn). For each prime p and each uniformizer $p of Qp, ϕ
defines a definable set Xp ⊆ pZnp × Zp × Z. More precisely, we have

Xp := {(x, z,m) ∈ pZnp × Zp × Z | ordp(f(x)− z) > m ∧ ordp(z) 6 m− 2}.

It is obvious that Xp does not depend on $p.

We denote by X ⊆ h[n+ 1, 0, 1] the definable subassignment defined by ϕ. Let
F := 1X ∈ Ih[0,0,1]C(h[n + 1, 0, 1]) be the characteristic function on X and
π the projection from h[n + 1, 0, 1] to h[1, 0, 1]. Then we have G := π!(F ) ∈
Ih[0,0,1]C(h[1, 0, 1]). For each prime p and each uniformizer $p of Qp, we can
interpret F and G in Qp:

Fp = 1Xp ,

and if ordp(z) 6 m− 2, then

Gp(z,m) =
∫
Xp,z,m

|dx| = p−mn#{x ∈ (pZ/pmZ)n | f(x) ≡ z mod pm},

where Xp,z,m is the fiber of Xp over (z,m). If ordp(z) > m− 1, then

Gp(z,m) = 0.

We can see that both Fp(x, z,m) and Gp(z,m) do not depend on $p.

Now we use Corollary 1.2.12 for G ∈ C(h[1, 0, 1]). This means that there exists
a finite partition of h[1, 0, 1] into cells Zi (for i in some finite index set I) with
presentation (λi, ZCi,αi,ξi,ci), such that G|Zi = λ∗i p

∗
i (Gi) with Gi ∈ C(Ci) and

pi : ZCi,αi,ξi,ci → Ci the projection. Note that Ci ⊆ h[0, ri, si + 1] for some
ri, si ∈ N. Several observations related to this cell decomposition can be made.

First of all, we will show that the functions ci : Ci → h[1, 0, 0] have finite image.
We denote by θi(z, η, γ,m) the LZ-formula defining the graph of ci : Ci →
h[1, 0, 0], where z ∈ h[1, 0, 0], η ∈ h[0, ri, 0], γ ∈ h[0, 0, si] and m ∈ h[0, 0, 1].
By elimination of quantifiers in the VF-sort (Corollary 1.2.5), there exist
polynomials f1, . . . , fr in one variable z with coefficients in Z[[t]], such that
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θi(z, η, γ,m) is equivalent to the formula∨
j

(
ζij
(
ac(f1(z)), . . . , ac(fr(z)), η

)
∧ νij

(
ord(f1(z)), . . . , ord(fr(z)), γ,m

))
,

where the ζij are Lring-formulas and the νij are Loag-formulas. Since ci is a
function, we know that, for each (η, γ,m) ∈ Ci, there exists a unique z =
ci(η, γ,m) such that θi(z, η, γ,m) holds.

We claim that there exists 1 6 ` 6 r such that f`(z) = 0. Indeed, if f`(z) 6= 0,
for all `, then there exists a small open neighbourhood V of z and an index j,
such that, for all y ∈ V , the formula

ζij
(
ac(f1(y)), . . . , ac(fr(y)), η

)
∧ νij

(
ord(f1(y)), . . . , ord(fr(y)), γ,m

)
is satisfied. Since this would contradict the uniqueness of z, we must have that
f`(z) = 0 for some `. We conclude that the set of centers is a finite set. More
precisely,

A := {ci(η, γ,m) ∈ h[1, 0, 0] | i ∈ I, (η, γ,m) ∈ Ci} ⊆
r⋃
`=1

Z(f`),

where Z(f`) denotes the zero set of f`. Now, for each m > 2, we set

Dm := A ∩ {z ∈ h[1, 0, 0] | m− 2 > ord(z) > 1};

Um := {y ∈ h[1, 0, 0] | ∀z ∈ Dm : ord(y − z) < m− 1}.

Hence Um is a union of balls of radius m− 1. Since f(0) = 0, we can see that
G( · ,m) is zero on the set {z ∈ h[1, 0, 0] | ord(z) 6 0}, when m > 2.

Claim 4.1.2. Let m > 2 and z ∈ Um, with ord(z) > 1, then G( · ,m) is constant
on the ball Bm−1(z) (the ball with center z and valuation radius m− 1).

From the cell decomposition that we applied to h[1, 0, 1], we know that there
exist i ∈ I and (η, γ) ∈ h[0, ri, si], such that (z, η, γ,m) ∈ ZCi,αi,ξi,ci . Hence
(η, γ,m) ∈ Ci and z belongs to the ball

B =
{
y ∈ h[1, 0, 0]

∣∣∣∣ ord(y − ci(η, γ,m)) = αi(η, γ,m),
ac(y − ci(η, γ,m)) = ξi(η, γ,m)

}
.

It follows from the definition of Gi that Gi(η, γ,m) = G(y,m) for all y ∈ B,
hence G( · ,m) is constant on B.

To prove the claim we will distinguish three cases, depending on the value of
ci(η, γ,m).
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• If ci(η, γ,m) ∈ Dm, then we see that αi(η, γ,m) = ord(z − ci(η, γ,m)) <
m− 1. Therefore the ball B will contain the ball Bm−1(z), hence G( · ,m)
will be constant on Bm−1(z).

• If ord(ci(η, γ,m)) 6 0, then we see that ord(z) > 1 implies that
αi(η, γ,m) 6 0 < m − 1 so we have the same situation as the first
case.

• If ord(ci(η, γ,m)) > m− 1, then the case αi(η, γ,m) < m− 1 has already
been treated above. Hence we can assume that αi(η, γ,m) > m − 1, in
which case we have Bm−1(z) = Bm−1(0). By definition of G we have
G( · ,m)|Bm−1(0) = 0.

This proves the claim.

Now for p big enough we can interpret all of the above discussion in Qp. More
precisely, there exists N0 ∈ N (independent of m) such that for all primes
p > N0 and any choice of uniformizer $p, there exists an interpretation of
the above by applying the map λ$p to the coefficients of the polynomials
f1, . . . , fr and by taking the angular component map ac$p with respect to the
uniformizer $p. The interpretation Um,$p ⊆ Qp of Um is an {m,$p}-definable
set in the language LDP, which can vary when changing $p. Therefore we
set Um,p := ∪$pUm,$p with $p running over the set of all uniformizers of Qp.
Then Um,p is {m}-definable by an LDP-formula.

Claim 4.1.3. There exists N ∈ N, such that Um,p = Qp, for all m > 2 and for
all primes p > N .

It follows from the definition of Um,$p that Vm,p := Qp \Um,p is a union of dm,p
balls of radius m−1, contained in pZp, for some dm,p 6

∑r
`=1 deg f`. Moreover,

V_,p is given by a LDP-formula. We use elimination of quantifiers (Theorem
1.2.4) for this formula. Hence there exist polynomials g1, . . . , gs in one variable
z with coefficients in Z and formulas ϕj in Lring and νj in Loag, such that Vm,p
contains exactly the elements z that satisfy∨
j

(
ϕj
(
ac$p(g1(z)), . . . , ac$p(gs(z))

)
∧ νj

(
ordp(g1(z)), . . . , ordp(gs(z)),m

))
,

for any p > N0 (after enlarging N0 if necessary) and any uniformizer $p.

We note that if z ∈ Vm,p, then ordp(z) > 1. Since gi has coefficients in Z,
we can assume that ac$p(gi(z)) only depends on ac$p(z) and ordp(gi(z)) only
depends on ordp(z), for any p > N0 after possibly enlarging N0 again. This
follows from the t-adic version of this statement by a compactness argument.
Therefore, if z1 and z2 satisfy
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• ordp(z1) = ordp(z2) > 1,

• there exist two uniformizers $1,p and $2,p, such that ac$1,p(z1) =
ac$2,p(z2),

then z1 ∈ Vm,p if and only if z2 ∈ Vm,p. This implies that the set Vm,p :=
ac$p(Vm,p) is independent of$p, for any p > N0. In particular, sinceBm−1(0) *
Vm,p, we see that the number of elements in Vm,p is at most

∑r
`=1 deg f`.

In what follows we will show that if Vm,p were not empty, then the set Vm,p
would grow with p. This gives a contradiction which proves the claim. We set

D∞ := A ∩ {z ∈ h[1, 0, 0] | ∞ > ord(z) > 1} ⊆
r⋃
`=1

Z(f`),

thus D∞ is a finite set with 0 /∈ D∞ and Dm ⊆ D∞ for all m > 2. Looking
at the order of the coefficients of f` we see that there exists M ∈ N such that
ordp(z) 6 M for all z ∈ ∪r`=1Z(f`,$p) \ {0}, p > N0 and uniformizers $p. So
ordp(z) 6M for all z ∈ D∞,$p , for any $p.

It follows that ordp(z) 6M for all z ∈ Vm,p, for all m > 2 and p > N0. Indeed,
since Bm−1(0) * Vm,p we have ordp(z) < m− 1 for all z ∈ Vm,p, so the claim
clearly holds if m − 1 6 M . On the other hand, if m − 1 > M , then for
each z ∈ Vm,p and each uniformizer $p, there exists z0 ∈ D∞,$p such that
ordp(z − z0) > m− 1 > M > ordp(z0), thus ordp(z) = ordp(z0) 6M .

Now put N := max
{
N0, 1 + M

∑r
`=1 deg f`

}
. Suppose for a contradiction,

that for some p > N , there exists z ∈ Vp,m. Then ac$p(z) ∈ Vm,p, for every
uniformizer $p, and so {ac$p(z) | ordp($p) = 1} ⊆ Vm,p. Suppose that
acp($p) = u, then uordp(z)ac$p(z) = acp(z), so we have {ac$p(z) | ordp($p) =
1} = {u−ordp(z)acp(z) | u ∈ F×p }. Therefore #{u−ordp(z)acp(z) | u ∈ F×p } 6∑r

`=1 deg f`. However,

#{u−ordp(z)acp(z) | u ∈ F×p } = p− 1
gcd(ordp(z), p− 1) >

p− 1
ordp(z)

>
p− 1
M

,

where gcd(a, b) is the greatest common divisor of a and b. Then we have
p− 1 6M

∑r
`=1 deg f` 6 N − 1. This is a contradiction, since p > N , so this

proves the claim.

We know from Claim 4.1.2 that if m > 2 and z ∈ Um,$p such that 1 6
ordp(z) 6 m− 2, then Gp( · ,m) will be constant on the ball Bm−1(z). So for
any y ∈ pZ/pmZ with y ≡ z mod pm−1, we have #{x ∈ (pZ/pmZ)n | f(x) ≡
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y mod pm} = #{x ∈ (pZ/pmZ)n | f(x) ≡ z mod pm}. Hence∑
x∈(pZ/pmZ)n,

f(x)≡z mod pm−1

p−mn exp
(

2πif(x)
pm

)
=

Gp(z,m)
∑

y∈pZ/pmZ,
y≡z mod pm−1

exp
(

2πiy
pm

)
= 0,

since the values of exp
(

2πiy
pm

)
cancel out. This implies that

∑
x∈(pZ/pmZ)n,
f(x)∈Um,p

p−mn exp
(

2πif(x)
pm

)
= 0,

where Um,p := {z ∈ pZ/pm−1Z | z ∈ Um,p, m−2 > ordp(z) > 1}. For all m > 2
and p > N , we have Um,p = Qp, so Um,p = {z ∈ pZ/pm−1Z | ordp(z) 6 m− 2}.
Thus ∑

x∈(pZ/pmZ)n,
ordp(f(x))6m−2

p−mn exp
(

2πif(x)
pm

)
= 0.

To estimate the other two subsums we need the following theorem of Mustaţǎ
that relates the log-canonical threshold to the dimensions of arc spaces and jet
spaces.

Theorem 4.1.4 ([Mus02], Corollaries 0.2 and 3.6). Let k be an algebraically
closed field of characteristic 0 and f ∈ k [x1, . . . , xn] a nonconstant polynomial.
For any m ∈ N we set

Cont>m(f) := {x ∈ k [[t]]n | f(x) ≡ 0 mod tm},

Cont>m0 (f) := {x ∈ tk [[t]]n | f(x) ≡ 0 mod tm}.

Let pm denote the quotient map k [[t]]n →
(
k [t]/(tm)

)n. The codimensions of
pm(Cont>m(f)) and pm(Cont>m0 (f)) in

(
k [t]/(tm)

)n ∼= k
nm are denoted by

codim Cont>m(f) and codim Cont>m0 (f), respectively. Then the log-canonical
threshold of f equals

c(f) = inf
m>1

codim Cont>m(f)
m



126 THE CLUCKERS-VEYS CONJECTURE

and if f(0) = 0,then the log-canonical threshold of f at 0 equals

c0(f) = inf
m>1

codim Cont>m0 (f)
m

.

In the proof of the following lemma we will introduce again a constructible
function G, similar to the one from the previous lemma. For this exponential
sum the different values z of f do not cancel out completely. By using the
Lang-Weil estimate [LW54] and the above theorem we obtain the following
upper bound for the second subsum.

Lemma 4.1.5. Let f ∈ Z[x1, . . . , xn] be a nonconstant polynomial with f(0) =
0. Put σ0 := min

{
c0(f), 1

2
}
. Then for each integer m > 2, there exist a natural

number Nm and a constant Dm > 0, such that, for all primes p > Nm, we have∣∣∣∣ ∑
x∈(pZ/pmZ)n,

ordp(f(x))=m−1

p−mn exp
(

2πif(x)
pm

) ∣∣∣∣
C
6 Dmp

−mσ0 .

Proof. Let ϕ and ϕ be two LZ-formulas given by

ϕ(x1, . . . , xn, z,m) :=
n∧
i=1

(ord(xi) > 1) ∧
(
ord(z) = m− 1

)
∧

(
ord(z − f(x1, . . . , xn)) > m

)
,

ϕ(x1, . . . , xn, ξ,m) :=
n∧
i=1

(ord(xi) > 1) ∧
(
ord(f(x1, . . . , xn) = m− 1

)
∧

(
ac(f(x1, . . . , xn)) = ξ

)
,

where xi, z are in the VF-sort, m is in the VG-sort and ξ is in the RF-sort.
To shorten notation we set x = (x1, . . . , xn). For each prime p and each
uniformizer $p of Qp, ϕ and ϕ define definable sets Xp ⊆ pZnp × Zp × Z and
X$p ⊆ pZnp × Fp × Z. More precisely, we have

Xp := {(x, z,m) ∈ pZnp × Zp × Z | ordp(f(x)− z) > m ∧ ordp(z) = m− 1},

X$p := {(x, ξ,m) ∈ pZnp × Fp × Z | ordp(f(x)) = m− 1 ∧ ac$p(f(x)) = ξ}.

It is obvious that Xp does not depend on $p.

We denote by X ⊆ h[n + 1, 0, 1], resp. X ⊆ h[n, 1, 1], the definable
subassignments defined by ϕ, resp. ϕ. Let F := 1X ∈ Ih[0,0,1]C(h[n+ 1, 0, 1])
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be the characteristic function on X and π the projection from h[n+ 1, 0, 1] to
h[1, 0, 1]. Then we have G := π!(F ) ∈ Ih[0,0,1]C(h[1, 0, 1]). For each prime p
and each uniformizer $p of Qp, we can interpret F and G in Qp:

Fp = 1Xp ,

and if ordp(z) = m− 1, then

Gp(z,m) =
∫
Xp,z,m

|dx| = p−mn#{x ∈ (pZ/pmZ)n | f(x) ≡ z mod pm},

where Xp,z,m is the fiber of Xp over (z,m). If ordp(z) 6= m− 1, then

Gp(z,m) = 0.

We can see that both Fp(x, z,m) and Gp(z,m) do not depend on $p. The idea
is to partition pm−1Zp \ pmZp into sets on which Gp( · ,m) is constant. First of
all, we can see that Gp( · ,m) is constant on balls of the form

{z ∈ Zp | ordp(z) = m− 1 ∧ ac$p(z) = ξ0},

with ξ0 ∈ F×p . Now we will look more closely on which of these balls Gp( · ,m)
takes the same value. In what follows we will show is that for p big enough, if
$p and $′p are two uniformizers, then Gp( · ,m) will take the same value on the
sets

{z ∈ Zp | ordp(z) = m− 1 ∧ ac$p(z) = ξ0}

and
{z ∈ Zp | ordp(z) = m− 1 ∧ ac$′p(z) = ξ0}.

From this it will follow that Gp( · ,m) is constant on the orbits of an action of
the group µp−1(Qp) (the group of (p− 1)-roots of unity) on Qp.

Let F := 1X ∈ Ih[0,0,1]C(h[n, 1, 1]) be the characteristic function on X and
π the projection from h[n, 1, 1] to h[0, 1, 1]. Then we have G := π!(F ) ∈
Ih[0,0,1]C(h[0, 1, 1]). For each prime p and each uniformizer $p of Qp, we can
interpret F and G in Qp:

F$p = 1X$p
,

G$p(ξ,m) =
∫
X$p,ξ,m

|dx|

= p−mn#
{
x ∈ (pZ/pmZ)n

∣∣∣∣ ordp(f(x)) = m− 1,
ac$p(f(x)) = ξ

}
,
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where X$p,ξ,m is the fiber of X$p over (ξ,m).

Since G ∈ C(h[0, 1, 1]), we can write G in the form

G(ξ,m) =
∑
i∈I

niαi(ξ,m)Lβi(ξ,m)[Vi],

where ni ∈ Z, αi, βi are LZ-definable functions from h[0, 1, 1] to h[0, 0, 1] and
[Vi] ∈ K0(RDefh[0,1,1],LZ). We apply elimination of VF-quantifiers (Corollary
1.2.5) to the formulas defining αi, βi and Vi and we interpret everything in Qp.
This means that there exist (Lring ∪ Z)-formulas φij , θij , ςij and (Loag ∪ Z)-
formulas ηij , νij , τij , and a natural number N , such that for all primes p > N
and all uniformizers $p of Qp, we have

αi,$p(ξ,m) = a⇔ ∨j∈J(φij(ξ) ∧ ηij(a,m));

βi,$p(ξ,m) = b⇔ ∨j∈J(θij(ξ) ∧ νij(b,m));

(ξ,m, ζ) ∈ Vi,$p ⇔ ∨j∈J(ςij(ζ, ξ) ∧ τij(m)).

From these formulas we can see that the interpretations αi,$p , βi,$p , Vi,$p and
hence G$p(ξ,m) are independent of the choice of the uniformizer $p, for p > N .
Therefore we will write Gp(ξ,m) instead of G$p(ξ,m).

By definition of G and G we can see that Gp(z,m) = G$p(z,m) = G$p(ξ,m) =
Gp(ξ,m), if ordp(z) = m− 1 and ac$p(z) = ξ for some uniformizer $p. Hence,
for all m > 2, p > N and z1, z2 ∈ Zp for which ordp(z1) = ordp(z2) = m − 1,
we have Gp(z1,m) = Gp(z2,m), if there exist two uniformizers $1,p, $2,p such
that ac$1,p(z1) = ac$2,p(z2) ∈ F×p . Let d := gcd(m−1, p−1), then by the same
reasoning as in Lemma 4.1.1 we see that Gp( · ,m) is constant on the sets{

z ∈ Zp
∣∣∣ ordp(z) = ordp(z0) = m− 1 ∧ acp

( z
z0

) p−1
d = 1

}
,

for any z0 ∈ Zp with ordp(z0) = m− 1. Now Lm := pm−1Zp \ pmZp partitions
into d of these sets, each of them consisting of p−1

d disjoint balls of volume p−m
and Gp( · ,m) is constant on these sets. We denote these sets by Y1, . . . , Yd and
the values of Gp( · ,m) on these sets by G1, . . . , Gd respectively. We remark
that if ordp(z) = m− 1, then

exp
(

2πiz
pm

)
= exp

(
2πi acp(z)

p

)
,

so ∣∣∣∣ ∑
y∈Yi/pmZp

exp
(

2πiy
pm

) ∣∣∣∣
C

=
∣∣∣∣ ∑
ξ∈acp(Yi)

exp
(

2πiξ
p

) ∣∣∣∣
C
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=
∣∣∣∣ ∑
u∈F×p

exp
(

2πiudξ0
p

) ∣∣∣∣
C

for any ξ0 ∈ acp(Yi). Since d < p we can apply Weil’s bound, i.e., the last result
from [Wei48], so we have∣∣∣∣ ∑
u∈F×p

exp
(

2πiudξ0
p

) ∣∣∣∣
C

=
∣∣∣∣ ∑
u∈Fp

exp
(

2πiudξ0
p

)
− 1
∣∣∣∣
C
6 (d− 1)p 1

2 + 1 6 dp 1
2 ,

hence∣∣∣∣ ∑
x∈(pZ/pmZ)n,

ordp(f(x))=m−1

p−mn exp
(

2πif(x)
pm

) ∣∣∣∣
C

=
∣∣∣∣ ∑
z∈Lm/pmZp

Gp(z,m) exp
(

2πiz
pm

) ∣∣∣∣
C

=
∣∣∣∣ d∑
i=1

Gi
∑

y∈Yi/pmZp

exp
(

2πiy
pm

) ∣∣∣∣
C
6

d∑
i=1

Gidp
1
2 .

We also have
d∑
i=1

p− 1
d

Gi =
∑

z∈Lm/pmZp

Gp(z,m)

= p−mn#{x ∈ (pZ/pmZ)n | ordp(f(x)) = m− 1} = p−mn#Ap,m,

where Ap,m := {x ∈ (pZp/pmZp)n | ordp(f(x)) = m− 1}. When we view Ap,m
as a constructible subset of Fmnp , then, by the Lang-Weil estimate [LW54], there
exists a constant D′m, not depending on p, such that

#Ap,m 6 D′mpdimFp (Ap,m).

By Theorem 4.1.4 we have

c0(f) 6
(m− 1)n− dimFp(Ãp,m)

m− 1 ,

where Ãp,m is the image of Ap,m under the projection pm−1 : (Zp/pmZp)n →
(Zp/pm−1Zp)n, viewed as a constructible subset of Fmn−np . Then we have

dimFp(Am,p) 6 n+ dimFp(Ãm,p) 6 mn− (m− 1)c0(f).

Now we finish the proof by showing that for all p big enough,∣∣∣∣ ∑
x∈(pZ/pmZ)n,

ordp(f(x))=m−1

p−mn exp
(

2πif(x)
pm

) ∣∣∣∣
C
6

d∑
i=1

Gidp
1
2 =
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d2 p
−mn+ 1

2

p− 1 #Ap,m 6 2d2p−mn−
1
2D′mp

mn−(m−1)c0(f) 6 Dmp
−mσ0 ,

because σ0 = min
{
c0(f), 1

2
}
. Here Dm = 2(m− 1)2D′m.

The last subsum can be easily estimated using the Lang-Weil estimate and
Theorem 4.1.4.

Lemma 4.1.6. Let f ∈ Z[x1, . . . , xn] be a nonconstant polynomial with f(0) =
0. Put σ0 := min

{
c0(f), 1

2
}
. Then for each integer m > 2, there exist a natural

number Nm and a constant Dm > 0, such that, for all primes p > Nm, we have∣∣∣∣ ∑
x∈(pZ/pmZ)n,
ordp(f(x))>m

p−mn exp
(

2πif(x)
pm

) ∣∣∣∣
C
6 Dmp

−mσ0 .

Proof. If ordp(f(x)) > m, then exp
(

2πif(x)
pm

)
= 1, so we have∣∣∣∣ ∑

x∈(pZ/pmZ)n,
ordp(f(x))>m

p−mn exp
(

2πif(x)
pm

) ∣∣∣∣
C

= p−mn#Bp,m,

where Bp,m := {x ∈ (pZp/pmZp)n | ordp(f(x)) > m}. We can view Bp,m as
a subvariety of Fmnp . Then, by the Lang-Weil estimate [LW54], there exist a
natural number Nm and a constant Dm > 0, such that, for all primes p > Nm,
we have

#Bp,m 6 Dmp
dimFp (Bm,p).

By Theorem 4.1.4 we have

c0(f) 6
mn− dimFp(Bm,p)

m
,

so dimFp(Bm,p) 6 mn−mc0(f). Hence, for all p > Nm,∣∣∣∣ ∑
x∈(pZ/pmZ)n,
ordp(f(x))>m

p−mn exp
(

2πif(x)
pm

) ∣∣∣∣
C
6 p−mnDmp

mn−mc0(f)

6 Dmp
−mσ0 .

We will now put the three lemmas together to prove the Denef-Sperber conjecture
for polynomials with log-canonical threshold at most one half (Theorem 4.0.4).
The essential ingredient in this proof is the expression that was obtained in
Corollary 1.3.7.
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Proof of Theorem 4.0.4. From the Lemmas 4.1.1, 4.1.5 and 4.1.6 it follows that,
for each m > 2, there exist a natural number Nm and a positive constant Cm,
such that for all p > Nm, we have

|E0
f (m, p)|C 6 Cmp−mσ0 . (4.1.1)

We apply Corollary 1.3.7 (with Supp(Φ) = {0}) to E0
f (m, p). For the poles λ of

the Igusa zeta functions that occur in this expression, we can write

p−mλ = p−mρ exp
(

2πi`m
N

)
,

where ρ is the real part of λ (hence of the form ν
N ) and ` is some integer.

The angular component of this expression can be merged with the complex
coefficients from Corollary 1.3.7, as long as the value of m mod N is taken
into consideration, for example by means of a Presburger-definable set. More
precisely, there exist constants s,M ′, N ′ ∈ N, and for each 1 6 i 6 s, there
exist constants βi ∈ N, ρi ∈ Q and an LPres-definable set Ai ⊆ N, such that for
all p > N ′ and for all 1 6 i 6 s, there exists ai,p ∈ C, such that for all m > M ′,
we have

E0
f (m, p) =

s∑
i=1

ai,p1Ai(m)mβip−mρi . (4.1.2)

Moreover, 0 6 βi 6 n− 1 and σ0 6 c0(f) 6 ρi for all 1 6 i 6 s. After removing
finitely many small elements from the sets Ai and enlarging M ′, we can assume
that for each subset I ⊆ {1, . . . , s}, the set ∩i∈IAi \ ∪i/∈IAi is either empty or
infinite and that (4.1.2) holds for all m > M ′. Furthermore, for each m > M ′

there is a unique subset I ⊆ {1, . . . , s}, such that m ∈ ∩i∈IAi \ ∪i/∈IAi.

Claim 4.1.7. There exist M̃ > M ′, Ñ > N ′ and a constant C̃ > 0, such that
for all m > M̃ , p > Ñ and 1 6 i 6 s, we have

|ai,p1Ai(m)p−mρi |C 6 C̃p−mσ0 .

Since there are only finitely many subsets I ⊆ {1, . . . , s}, it suffices to fix
a subset I and prove the claim for m restricted to the set ∩i∈IAi \ ∪i/∈IAi
and i restricted to the set I. Without loss of generality, we can assume that
I = {1, . . . , r} for some r 6 s. Since the claim is trivial for r = 0, we can assume
moreover that r > 1. Now for p > N ′, m ∈ ∩i∈IAi \ ∪i/∈IAi and m > M ′, we
have

E0
f (m, p) =

r∑
i=1

ai,pm
βip−mρi .
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From Equation (4.1.1) we can see that, for such m and for all p > max{N ′, Nm},
we have ∣∣∣∣ r∑

i=1
ai,pm

βip−mρi
∣∣∣∣
C

= |E0
f (m, p)|C 6 Cmp−mσ0 .

This implies that ∣∣∣∣ r∑
i=1

ai,pm
βipm(σ0−ρi)

∣∣∣∣
C
6 Cm.

Since the set ∩i∈IAi\∪i/∈IAi is infinite, there existm1, . . . ,mr ∈ ∩i∈IAi\∪i/∈IAi,
all bigger than M ′, such that all of the determinants of the size r and r − 1
submatrices of the matrix

Bp =
(
mβi
j p

(σ0−ρi)mj
)

16j,i6r

are different from zero for every p > NI := max{N ′, Nm1 , . . . , Nmr}. We take
the determinant of a matrix of size 0 to be 1. We set

CI := max{Cmi | 1 6 i 6 r};

uj,p :=
r∑
i=1

ai,pm
βi
j p

(σ0−ρi)mj , for 1 6 j 6 r;

Dp := det(Bp);

Dk,l,p := (−1)k+l det
(

(mβi
j p

(σ0−ρi)mj )j 6=k,i 6=l
)
, for 1 6 k, l 6 r.

If we write xp := (a1,p, . . . , ar,p)T and up := (u1,p, . . . , ur,p)T , then xp is a
solution of the equation BpX = up. By our assumption on m1, . . . ,mr we see
that Dp 6= 0 and Dk,l,p 6= 0 for every 1 6 k, l 6 r and p > NI . Using Cramer’s
rule we have

ai,p =
∑r
j=1 uj,pDj,i,p

Dp
,

for all 1 6 i 6 r and p > NI . We remark that |uj,p|C 6 CI , for all p > NI . This
gives us

|ai,p|C 6
∑r
j=1|uj,pDj,i,p|C
|Dp|C

6 CI

∑r
j=1|Dj,i,p|C
|Dp|C

,

for all 1 6 i 6 r and p > NI . When p → ∞, then the determinants |Dj,i,p|C,
resp. |Dp|C behave like dj,ipγj,i , resp. dpγ . So there exists α such that, for
1 6 i 6 r and p > NI , we have |ai,p|C 6 pα.

Take 1 6 i 6 r. To finish the proof of the claim we will distinguish between
two cases.
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• If ρi > σ0, then there exists M̃i > M ′ such that, for every m > M̃i and
p > NI we have

|ai,pp−mρi |C 6 pα−mρi 6 p−mσ0 .

• If ρi = σ0, we observe that

Dp =
r∑
j=1

mβi
j p

(σ0−ρi)mjDj,i,p =
r∑
j=1

mβi
j Dj,i,p.

This means that γ = max{γj,i | 1 6 j 6 r}. Thus there exist C̃i > 0 and
Ñi > NI , such that

|ai,p|C 6 CI

∑r
j=1|Dj,i,p|C
|Dp|C

6 C̃i,

for all p > Ñi. Thus

|ai,pp−mρi |C 6 C̃ip−mσ0 ,

for all p > Ñi.

This proves the claim. Hence we have

|E0
f (m, p)|C =

∣∣∣∣ s∑
i=1

ai,p1Ai(m)mβip−mρi
∣∣∣∣
C
6 sC̃mn−1p−mσ0 ,

for all m > M̃ , p > Ñ . By Equation (4.1.1) we also have, for each 2 6 m 6 M̃ ,
an upper bound for |E0

f (m, p)|C in terms of some constant Cm. Now let N :=
max{Ñ ,N2, . . . , NM̃} and C := max{sC̃, C2, . . . , CM̃}, then we have

|E0
f (m, p)|C =

∣∣∣∣ s∑
i=1

ai,p1Ai(m)mβip−mρi
∣∣∣∣
C
6 Cmn−1p−mσ0 ,

for all m > 2 and p > N .

4.2 The geometric approach

In this section we will give another proof of Theorem 4.0.4, using the results
from Section 1.3 on Igusa zeta functions and their relation to exponential sums.
We will work over the number field Q with ring of integers Z, f ∈ Z[x1, . . . , xn]
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a nonconstant polynomial with f(0) = 0 and (Y, h) a fixed embedded resolution
of the singularities of f−1(0). For any prime number p, we will write Φp for
the Schwartz-Bruhat function 1pZnp , Z(s, p, χ) for the zeta function ZΦp(s, p, χ)
and cI,χ for cI,χ,Φp .

We will need the following lemma several times in our calculations.

Lemma 4.2.1. Let f ∈ Z[x1, . . . , xn] \ Z. Then there exists Ñ ∈ N, such that
for all p > Ñ and for all y ∈ Znp for which f(y) = 0, we have

cy(f) = min
i∈T :y∈h(Ei(Fp))

{ νi
Ni

}
.

Proof. There exists Ñ ∈ N such that (Y, h) has good reduction modulo p for
all p > Ñ . If p > Ñ , y ∈ f−1(0) ∩ Znp and E is an irreducible component of
(f ◦ h)−1(0), such that y ∈ h(E), then h(E) ∩ (y + pZnp ) 6= ∅. Remark that
h is proper, so h(E) is a closed subvariety of An. Therefore, after possibly
enlarging Ñ if necessary, we can assume that for all p > Ñ , if y /∈ h(E), then
h(E) ∩ (y + pZnp ) = ∅. Hence, for p > Ñ , y ∈ h(E) implies y ∈ h(E). So the
map E 7→ E is a bijection between

{Ei | i ∈ T, y ∈ h(Ei)} and {Ei | i ∈ T, y ∈ h(Ei)}.

This completes the proof.

To prove Theorem 4.0.4, we use Proposition 1.3.6 with z0 = 1, $ = p and
m > 2. This proposition tells us that E0

f (m, p) is equal to

Z(0, p, χtriv) + Coefftm−1
(t− p)Z(s, p, χtriv)

(p− 1)(1− t) +
∑

χ 6=χtriv

gχ−1Coefftm−1Z(s, p, χ).

We will split this expression in two parts and in the following two lemmas we
will prove estimates of these two parts.

Lemma 4.2.2. There exist a constant C > 0 and a natural number N , such
that for all m > 2 and for all primes p > N , we have∣∣∣∣Z(0, p, χtriv) + Coefftm−1

(t− p)Z(s, p, χtriv)
(p− 1)(1− t)

∣∣∣∣
C
6 Cmn−1p−mc0(f).

Proof. We use Theorem 1.3.3 which tells us that there exists a natural number
N ′, such that for all p > N ′,

Z(0, p, χtriv) =
∑
I⊆T

cI,χtriv

(p− 1)#I

pn

∏
i∈I

p−νi

1− p−νi ; (4.2.1)
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Z(s, p, χtriv) =
∑
I⊆T

cI,χtriv

(p− 1)#I

pn

∏
i∈I

tNip−νi

1− tNip−νi .

Since (t−p)
(p−1)(1−t) = − 1

p−1 −
1

1−t , we need to consider

Coefftm−1
Z(s, p, χtriv)

p− 1 =
∑
I⊆T

cI,χtriv

(p− 1)#I

pn(p− 1)Coefftm−1

∏
i∈I

tNip−νi

1− tNip−νi

(4.2.2)

and

Coefftm−1
Z(s, p, χtriv)

1− t =
∑
I⊆T

cI,χtriv

(p− 1)#I

pn
Coefftm−1

1
1− t

∏
i∈I

tNip−νi

1− tNip−νi .

(4.2.3)

In what follows, we will give upper bounds for (4.2.2) and for the difference of
(4.2.1) and (4.2.3). By writing the fractions tNip−νi

1−tN
i
p−νi

as power series in t, we
get

Coefftm−1

∏
i∈I

tNip−νi

1− tNip−νi =
∑

(`i)i∈I∈Jm−1

p
−
∑

i∈I
νi(`i+1); (4.2.4)

Coefftm−1
1

1− t
∏
i∈I

tNip−νi

1− tNip−νi =
∑

(`i)i∈I∈J6m−1

p
−
∑

i∈I
νi(`i+1)

, (4.2.5)

where

Jm−1 :=
{

(`i)i∈I ∈ N#I |
∑
i∈I

Ni(`i + 1) = m− 1
}

;

J6m−1 :=
{

(`i)i∈I ∈ N#I |
∑
i∈I

Ni(`i + 1) 6 m− 1
}
.

Note that if I ⊆ T , such that EI
◦ ∩ h−1(0) = EI

◦ ∩ h−1(Supp(Φp)) = ∅, then
cI,χtriv = 0. Hence we can restrict the Equations (4.2.1), (4.2.2) and (4.2.3) to
sums over I ⊆ T for which EI

◦ ∩ h−1(0) 6= ∅. For such I ⊆ T , we have #I 6 n.
Moreover, by Lemma 4.2.1, there exists Ñ ∈ N, such that for all p > Ñ , I ⊆ T
with EI

◦ ∩ h−1(0) 6= ∅ and (`i)i∈I ∈ Jm−1, we have

−
∑
i∈I

νi(`i + 1) 6 −
∑
i∈I

Ni(`i + 1)c0(f) = −(m− 1)c0(f),
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because νi
Ni
> c0(f) for all i ∈ I. By using Equation (4.2.4), we get

Coefftm−1

∏
i∈I

tNip−νi

1− tNip−νi 6 #(Jm−1)p−(m−1)c0(f) 6 mn−1p−(m−1)c0(f),

(4.2.6)
for all p > Ñ .

Next, we want to find an upper bound for the difference of (4.2.1) and (4.2.3).
Using Equation (4.2.5) we can see that we need to analyse the expression

∏
i∈I

p−νi

1− p−νi −
∑

(`i)i∈I∈J6m−1

p
−
∑

i∈I
νi(`i+1) =

∑
(`i)i∈I∈N#I

p
−
∑

i∈I
νi(`i+1) −

∑
(`i)i∈I∈J6m−1

p
−
∑

i∈I
νi(`i+1) =

∑
(`i)i∈I∈J>m

p
−
∑

i∈I
νi(`i+1) = (4.2.7)

∑
(`i)i∈I∈J>m

p
−
∑

i∈I
νi(`i+1) +

∑
(`i)i∈I∈J>m\J>m

p
−
∑

i∈I
νi(`i+1)

,

where

J>m :=
{

(`i)i∈I ∈ N#I |
∑
i∈I

Ni(`i + 1) > m
}

;

mI := m+ max{Ni | i ∈ I};

J>m :=
{

(`i)i∈I ∈ N#I | m 6
∑
i∈I

Ni(`i + 1) 6 mI

}
.

Suppose (`i)i∈I ∈ J>m \ J>m, then
∑
i∈I Ni(`i + 1) > mI . Hence, there

exists a tuple (li)i∈I ∈ N#I , such that for each i ∈ I, li 6 `i, and m 6∑
i∈I Ni(`i − li + 1) 6 mI . In other words, (`i − li)i∈I ∈ J>m. Now we can

write

p
−
∑

i∈I
νi(`i+1) = p

−
∑

i∈I
νili · p−

∑
i∈I

νi(`i−li+1)

=
(∏
i∈I

p−νili
)
p
−
∑

i∈I
νi(`i−li+1)

.
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This implies that∑
(`i)i∈I∈J>m

p
−
∑

i∈I
νi(`i+1) 6

(
1 +

∏
i∈I

1
1− p−νi

) ∑
(`i)i∈I∈J>m

p
−
∑

i∈I
νi(`i+1)

.

(4.2.8)
If I ⊆ T with EI

◦ ∩ h−1(0) 6= ∅, p > Ñ and (`i)i∈I ∈ J>m, then, we can use
Lemma 4.2.1 again for the following estimate:

−
∑
i∈I

νi(`i + 1) 6 −
∑
i∈I

Ni(`i + 1)c0(f) 6 −mc0(f).

Combining this with the Equations (4.2.5), (4.2.7) and (4.2.8), we find that, for
all I ⊆ T with EI

◦ ∩ h−1(0) 6= ∅, and for all p > Ñ , we have,∏
i∈I

p−νi

1− p−νi − Coefftm−1
1

1− t
∏
i∈I

tNip−νi

1− tNip−νi 6 (1 + 2#I)#(J>m)p−mc0(f)

6 CIm
n−1p−mc0(f), (4.2.9)

where CI is a constant which does not depend on m and p, for example we can
take CI = (1 + 2#I)(max{Ni | i ∈ I}+ 1).

We also have to estimate the constants cI,χtriv . By the Lang-Weil estimate
[LW54], there exist, for each I ⊆ T , a constant DI and a natural number NI ,
depending only on I, such that for all p > NI , we have

cI,χtriv =
∑

a∈EI
◦∩h−1(0)

Ωχtriv(a) = #
(
EI
◦ ∩ h−1(0)

)
6 #EI 6 DIp

n−#I .

(4.2.10)
From the Equations (4.2.1), (4.2.2), (4.2.3), (4.2.6), (4.2.9) and (4.2.10), it
follows that there exists a natural number N > max{N ′, Ñ , (NI)I⊆T }, such
that for all p > N , we have∣∣∣∣Z(0, p, χtriv) + Coefftm−1

(t− p)Z(s, p, χtriv)
(p− 1)(1− t)

∣∣∣∣
C

6
∑
I⊆T,

EI
◦∩h−1(0) 6=∅

cI,χtriv

(p− 1)#I

pn
mn−1

(
p−(m−1)c0(f)

p− 1 + CIp
−mc0(f)

)

6
∑
I⊆T

DIp
n−#I (p− 1)#I

pn
mn−1

(
p−mc0(f)+c0(f)

p− 1 + CIp
−mc0(f)

)
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6
∑
I⊆T

DI(CI + 2)mn−1p−mc0(f) 6 Cmn−1p−mc0(f),

where C =
∑
I⊆T DI(CI + 2) is a constant that is independent of p and m and

where we have used the fact that c0(f) 6 1.

Lemma 4.2.3. There exist a constant C > 0 and a natural number N , such
that for all m > 2 and for all primes p > N , we have∣∣∣ ∑

χ 6=χtriv

gχ−1Coefftm−1Z(s, p, χ)
∣∣∣
C
6 Cmn−1p−mσ0 .

Proof. Denote by Υp the set of non-trivial multiplicative characters χ on Z×p
for which Z(s, p, χ) 6= 0. By Theorem 1.3.5 and Remark 1.3.4 there exist
M,N0 ∈ N, such that for all p > N0, the set Υp has at most M elements.
Moreover any such character has conductor c(χ) = 1.

Just as in the proof of Lemma 4.2.2, we use Theorem 1.3.3. Hence, there exists
a natural number N ′, such that for all p > N ′ and for all characters χ with
conductor c(χ) = 1, we have

Z(s, p, χ) =
∑
I⊆T,

∀i∈I:d(χ)|Ni

cI,χ
(p− 1)#I

pn

∏
i∈I

tNip−νi

1− tNip−νi .

We can assume as well that we only sum over I ⊆ T for which EI
◦ ∩h−1(0) 6= ∅.

For any such I, and for any p > Ñ (coming from Lemma 4.2.1), Equation
(4.2.6) holds:

Coefftm−1

∏
i∈I

tNip−νi

1− tNip−νi 6 m
n−1p−(m−1)c0(f).

We use the Lang-Weil estimate [LW54] again, so for each I ⊆ T , there exist a
constant DI and a natural number NI , depending only on I, such that for all
p > NI , we have

|cI,χ|C =
∣∣∣∣ ∑
a∈EI

◦∩h−1(0)

Ωχ(a)
∣∣∣∣
C
6

∑
a∈EI

◦∩h−1(0)

1

= #
(
EI
◦ ∩ h−1(0)

)
6 #EI 6 DIp

n−#I .
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If we take N > max{N0, N
′, Ñ , (NI)I⊆T }, then for all p > N and for any

character χ with c(χ) = 1, we have

|Coefftm−1Z(s, p, χ)|C 6
∑
I⊆T,

∀i∈I:d(χ)|Ni,
EI
◦∩h−1(0)

cI,χ
(p− 1)#I

pn
mn−1p−(m−1)c0(f)

6
∑
I⊆T

DIp
n−#I (p− 1)#I

pn
mn−1p−(m−1)c0(f)

6
∑
I⊆T

DIm
n−1p−(m−1)c0(f)

6 C ′mn−1p−(m−1)c0(f),

where C ′ :=
∑
I⊆T DI . Furthermore, by a standard result on Gauss sums, we

can see that, if χ 6= χtriv, then |gχ−1 |C 6 Dp−
1
2 , for some constant D, that does

not depend on χ and p. So for any p > N , we have∣∣∣ ∑
χ 6=χtriv

gχ−1Coefftm−1Z(s, p, χ)
∣∣∣
C

=
∣∣∣ ∑
χ∈Υp

gχ−1Coefftm−1Z(s, p, χ)
∣∣∣
C

6
∑
χ∈Υp

Dp−
1
2C ′mn−1p−(m−1)c0(f)

6
∑
χ∈Υp

DC ′mn−1p−(m−1)σ0−σ0

6 Cmn−1p−mσ0 ,

where C = MDC ′ is a constant that is independent of p and m and where we
have used the fact that σ0 = min

{
c0(f), 1

2
}
.

Proof of Theorem 4.0.4. The proof follows by combining the Proposition 1.3.6
with the two Lemmas 4.2.2 and 4.2.3 and using the fact that σ0 6 c0(f).

Remark 4.2.4. The proofs in this section work for a wider range of exponential
sums. If we take, for each prime p, instead of 1pZnp , Φp to be any residual
Schwartz-Bruhat function, for which Cf ∩Supp(Φp) ⊆ f

−1(0), then the Lemmas
4.2.2 and 4.2.3 still hold, when we replace c0(f) by c(f). In the proofs we have
to replace EI

◦ ∩ h−1(0) by EI
◦ ∩ h−1(Supp(Φp)). The constant C and the



140 THE CLUCKERS-VEYS CONJECTURE

natural number N that are found in these proofs, do not depend on the tuple of
functions (Φp)p. They do depend however on f and on the embedded resolution
(Y, h) of f . So for all m > 1 and for all primes p > N , we have∣∣∣EΦp

f (m, p)
∣∣∣
C
6 Cmn−1p−mσ

′
,

where σ′ := min
{
c(f), 1

2
}
.

4.3 Proof of the global Cluckers-Veys upper bound

In this section we will prove the global upper bound (4.0.1) from the Cluckers-
Veys conjecture for σ := min

{
a(f), 1

2
}
by adapting the proofs from Section

4.2. We saw in Equation (1.3.1) that there exists, for each prime number p, a
constant Cp > 0, such that for all m > 2, we have

|Ef (m, p)|C 6 Cpmn−1p−ma(f).

Therefore, in order to prove the global Cluckers-Veys upper bound, it is enough
to prove it for all primes p big enough. More precisely, we will prove that there
exists a constant C > 0 and a natural number N , such that for all m > 2 and
for all primes p > N , we have

|Ef (m, p)|C 6 Cmn−1p−mσ. (4.3.1)

First, we need the following lemma.

Lemma 4.3.1. Let f ∈ Z[x1, . . . , xn] and Vf,p be the set of critical values
of f in Qp. Then #(Vf,p) has an upper bound d, that does not depend on p.
Furthermore, there exists N ′ ∈ N, such that for all p > N ′, the following holds:

(i) for all z ∈ Vf,p, we have ordp(z) = 0;

(ii) for any two distinct points z1, z2 in Vf,p, we have ordp(z1 − z2) = 0;

(iii) if x ∈ Znp such that ordp(f(x)− z) = 0 for all z ∈ Vf,p, then x, resp. x, is
a regular point of f , resp. f .

Proof. Remark that we can uniquely extend the valuation ordp from Qp to
(Qp)alg (an algebraic closure of Qp). We denote by

Op = {z ∈ (Qp)alg | ordp(z) > 0}
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the ring of integers of (Qp)alg and by

Mp = {z ∈ (Qp)alg | ordp(z) > 0}

its maximal ideal.

The set of critical values Vf of f is a definable set in Lring given by

z ∈ Vf ⇔ ∃y : f(y) = z ∧ ∂f

∂x1
(y) = 0 ∧ . . . ∧ ∂f

∂xn
(y) = 0.

By elimination of quantifiers in the ACF0-theory, i.e., the theory of algebraically
closed fields of characteristic 0, and the fact that Vf is a finite set, there exist
nonzero polynomials T (z) ∈ Z[z] and R(z) ∈ Qalg[z], such that

Vf = Z(R) ⊆ Z(T ) ⊆ Qalg,

where Z(R) and Z(T ) denote the zero sets of R, resp. T . Moreover, we can
assume that T (z) and R(z) only have simple roots in Qalg. Since Vf,p ⊆ Vf , we
have

#(Vf,p) 6 #(Vf ) = deg(R) =: d,

for all primes p. Because Z(T ) ⊆ Qalg is a finite set of algebraic numbers, there
exists N ′′ ∈ N, such that for all p > N ′′, Z(T ) satisfies the conditions (i) and
(ii). This implies that these two conditions also hold for Z(R) and for Vf,p.

To prove condition (iii) we put

T := (T mod p) ∈ Fp[z] and R := (R modMp) ∈ (Fp)alg[z].

By logical compactness, there exists N ′ > N ′′, such that for all p > N ′,
the polynomials T (z) and R(z) also only have simple roots in (Fp)alg and
Vf = Z(R) ⊆ Z(T ) ⊆ (Fp)alg.

Now take p > N ′ and x ∈ Znp such that ordp(f(x) − z) = 0 for all z ∈ Vf,p.
Then f(x) /∈ Vf,p, so x is a regular point of f . Suppose, for a contradiction,
that x is a critical point of f , then ξ := f(x) ∈ Vf = Z(R) ⊆ Z(T ). From the
facts that T has only simple roots in (Fp)alg, ξ ∈ Fp and T (ξ) = 0, it follows
by Hensel’s lemma that there exists z1 ∈ Zp such that T (z1) = 0 and z1 = ξ.
Hence ordp(f(x)− z1) > 0, and therefore z1 /∈ Vf,p. On the other hand, R also
has only simple roots in (Fp)alg and R(ξ) = 0. Thus, again by Hensel’s lemma,
there exists z2 ∈ Op such that R(z2) = 0 and z2 = ξ. From the facts that z1
and z2 are both roots of T , z1 = ξ = z2 and Z(T ) satisfies the conditions (i)
and (ii), it follows that z1 = z2. Hence z1 ∈ Z(R) = Vf , and we knew already
that z1 ∈ Zp so z1 ∈ Vf,p. This is a contradiction and thus condition (iii) also
holds.
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Now we are ready to prove the global upper bound from Theorem 4.0.3.

Proof of (4.3.1). LetN ′ and d be as in Lemma 4.3.1 and write Vf = {z1, . . . , zd}.
For each 1 6 j 6 d, we define fj(x) := f(x) − zj ∈ Z[zj ][x1, . . . , xn], which
is a polynomial with coefficients in the ring Z[zj ], and we fix an embedded
resolution hj : Yj → (Qalg)n of f−1

j (0).

If we fix p > N ′, then Vf,p ⊆ {z1, . . . , zd}. We define, for each 1 6 j 6 d, a
Schwartz-Bruhat function on Qnp as follows:

Φj :=
{
1{x∈Znp |ordp(fj(x))>0} if zj ∈ Vf,p;
0 if not.

Since f ∈ Z[x1, . . . , xn] and by the conditions (i) and (ii) from Lemma 4.3.1 we
see that Φj is residual, for all 1 6 j 6 d, and that Supp(Φi) ∩ Supp(Φj) = ∅,
if i 6= j. Furthermore, by definition of Φj , we have Cfj ∩ Supp(Φj) ⊆ fj

−1(0).
This means that we can apply Remark 4.2.4 to the exponential sums EΦj

fj
(m, p).

Thus for each 1 6 j 6 d, there exist a constant Cj and a natural number
Nj > N ′, only depending on f and on the chosen resolution (Yj , hj) of f−1

j (0),
such that, for all m > 1 and for all p > Nj , we have

|EΦj
fj

(m, p)|C 6 Cjmn−1p−mσj ,

where σj := min
{
c(fj), 1

2
}
.

For any p > N ′, we take Φ0 := 1Znp −
∑d
j=1 Φj . Then Φ0 is also residual and

by condition (iii) from Lemma 4.3.1, we have Cf ∩ Supp(Φ0) = ∅. It is well
known that this implies that EΦ0

f (m, p) = 0 for all m > 2 (see [Den91b, Remark
4.5.3]).

Therefore, for any m > 2 and for any p > N := max{N ′, N1, . . . , Nd}, we have

|Ef (m, p)|C =
∣∣∣ ∫

Znp
exp

(
2πif(x)
pm

)
|dx|

∣∣∣
C

6
d∑
j=0

∣∣∣ ∫
Znp

Φj(x) exp
(

2πif(x)
pm

)
|dx|

∣∣∣
C

6
d∑
j=1

∣∣∣ ∫
Znp

Φj(x) exp
(

2πif(x)
pm

)
|dx|

∣∣∣
C

+ |EΦ0
f (m, p)|C
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=
d∑
j=1

∣∣∣ ∫
Znp

Φj(x) exp
(

2πizj
pm

)
exp

(
2πi(f(x)− zj)

pm

)
|dx|

∣∣∣
C

6
d∑
j=1

∣∣∣ exp
(

2πizj
pm

) ∣∣∣
C
|EΦj
fj

(m, p)|C

6
d∑
j=1

Cjm
n−1p−mσj

6 Cmn−1p−mσ,

where C :=
∑d
j=1 Cj and σ = min

{
a(f), 1

2
}
6 min

{
c(fj), 1

2
}

= σj for all
1 6 j 6 d.

4.4 Proof of the uniform local Cluckers-Veys upper
bounds

In this section we will prove the local upper bounds (4.0.2) from the Cluckers-
Veys conjecture for σy,p := min

{
ay,p(f), 1

2
}
, for each y ∈ Zn, by adapting the

proofs from the Sections 4.1 and 4.2. For each y ∈ Zn and for each prime p we
denote by Φy,p the Schwarz-Bruhat function 1y+pZnp and by Zy(s, p, χ) the zeta
function ZΦy,p(s, p, χ).

For each prime p we will partition Zn, according to the location of the critical
values of f . Let N ′ and d be as in Lemma 4.3.1 and write Vf = {z1, . . . , zd}. For
each 1 6 j 6 d, we define fj(x) := f(x)− zj and we fix an embedded resolution
hj : Yj → (Qalg)n of f−1

j (0). Let N ′j be a natural number, such that for all p >
N ′j , (Yj , hj) has good reduction modulo p. We put N0 := max{N ′, N ′1, . . . , N ′d}
and for each p > N0, we consider the following partition of Zn:

Zn =
d⋃
j=1

Aj,p ∪
d⋃
j=1

Bj,p ∪Wp,

where

Aj,p := {y ∈ Zn | ordp(fj(y)) > 0 and f has a critical point in y + pZnp},

Bj,p := {y ∈ Zn | ordp(fj(y)) > 0 and f has no critical points in y + pZnp},
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for 1 6 j 6 d, and

Wp := Zn \
d⋃
j=1

(Aj,p ∪Bj,p).

In different lemmas we will analyse the local sums Eyf (m, p) for y in each of the
sets in this partition.

Lemma 4.4.1. For all m > 2, p > N0 and y ∈Wp we have Eyf (m, p) = 0.

Proof. We observe that for all p > N0 and y ∈Wp, we have ordp(f(y)− zj) 6 0
for all 1 6 j 6 d. In particular, ordp(f(y)−zj) = 0 for all zj ∈ Vf∩Zp = Vf,p. So
by condition (iii) from Lemma 4.3.1, y is a regular point of f , hence the condition
Cf ∩ Supp(Φy,p) = Cf ∩ {y} = ∅ is satisfied. Now it follows from [Den91b,
Remark 4.5.3] that Eyf (m, p) = 0, for all m > 2, p > N0 and y ∈Wp.

Lemma 4.4.2. Let j ∈ {1, . . . , d}. For all m > 2, p > N0 and y ∈ Bj,p we
have Eyfj (m, p) = 0.

Proof. If 1 6 j 6 d, p > N0, and y ∈ Bj,p, then fj has no critical points in
y + pZnp , i.e., Cfj ∩ Supp(Φy,p) = ∅. So by (1.4.1) from [Den91b], we have
Eyfj (m, p) = 0, for m large enough. Using Corollary 1.4.5 from [Den91b], we see
that

(ps+1 − 1)Zyfj (s, p, χtriv) and Zyfj (s, p, χ), with χ 6= χtriv,

cannot have any poles in C.

For all p > N0, the resolution (Yj , hj) of f−1
j (0) has good reduction modulo p

and Cfj ∩ Supp(Φy,p) ⊆ fj
−1(0), for any y ∈ Bj,p, hence Theorem 1.3.5 applies.

By combining this information with Proposition 1.3.6, we get that for all m > 1,
p > N0 and y ∈ Bj,p, the sum Eyfj (m, p) equals

Zyfj (0, p, χtriv) + Coefftm−1

(t− p)Zyfj (s, p, χtriv)
(p− 1)(1− t) (4.4.1)

+
∑

χ 6=χtriv,
c(χ)=1

gχ−1Coefftm−1(Zyfj (s, p, χ)).

Since Zyfj (s, p, χ) does not have any poles for χ 6= χtriv, we can see that, for
m big enough, Coefftm−1(Zyfj (s, p, χ)) does not depend on m. Also the total
expression (4.4.1) is independent of m, for m big enough (because it is equal
to 0). Therefore the part Coefftm−1

(t−p)Zy
fj

(s,p,χtriv)
(p−1)(1−t) must be independent of m
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as well, for m big enough. This can only be the case if
(t−p)Zy

fj
(s,p,χtriv)

(p−1)(1−t) , as a
function in t, has at most two poles, one pole at t = 1 of order 1 and one pole
at t = 0. However, the explicit formula of Zyfj (s, p, χtriv) implies that it can not

have poles at t = 0. So
(t−p)Zy

fj
(s,p,χtriv)

(p−1)(1−t) has at most one pole, and this pole (if
it exists) must be of order 1 at t = 1.

According to (4.1.1) from [Den91b], the degree of Zyfj (s, p, χ) is at most 0 (as a
rational function in t), for all p > N0 and all characters χ with conductor
c(χ) = 1. This implies that

(t−p)Zy
fj

(s,p,χtriv)
(p−1)(1−t) is of the form c + d

1−t , for
certain c, d ∈ C, and that Zyfj (s, p, χ) is equal to a constant function, for

χ 6= χtriv. Now we can easily see that for all m > 2, Coefftm−1
(t−p)Zy

fj
(s,p,χtriv)

(p−1)(1−t)
and Coefftm−1Zyfj (s, p, χ), for χ 6= χtriv, are independent of m. We conclude
that Eym,p(fj) = 0, for all m > 2, p > N0 and y ∈ Bj,p.

Lemma 4.4.3. Let j ∈ {1, . . . , d}. There exists a constant Cj > 0 and a
natural number Nj, such that for all m > 2, p > Nj and y ∈ Aj,p we have

|Eyfj (m, p)|C 6 Cjm
n−1p−mσy,p .

We will give two proofs of this lemma. One proof will be based on techniques
from Section 4.2 and the other on techniques from Section 4.1. First we will
show how one concludes the local Cluckers-Veys upper bounds (4.0.2) from
these three lemmas. For any 1 6 j 6 d we have |Eyfj (m, p)|C = |Eyf (m, p)|C.
Take C := max{Cj | 1 6 j 6 d} and N := max{Nj | 0 6 j 6 d}, then for all
m > 2, p > N and y ∈ Zn, we have

|Eyf (m, p)|C 6 Cmn−1p−σy,p .

Together with Equation (1.3.3) the local Cluckers-Veys upper bounds follow.

4.4.1 Adapting the geometric proof

We will prove the following variant of Lemma 4.2.1.

Lemma 4.4.4. Let f ∈ Z[x1, . . . , xn] \Z and j ∈ {1, . . . , d}. Then there exists
Ñj ∈ N, such that for all p > Ñj and y ∈ Aj,p,

ay,p(f) = min
E:y∈hj(E(Fp))

{ ν
N

}
.
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Proof. We remark that if y′ ∈ y + pZnp is not a critical point of f , then
cy′(f(x)− f(y′)) = 1. If, on the other hand, y′ ∈ y + pZnp is a critical point of
f , then we know by Lemma 4.3.1 that f(y′) = zj , because we assumed that
y ∈ Aj,p. Thus fj(y′) = f(y′)− zj = 0. Now it follows from Lemma 4.2.1 that
there exists Ñj , independent of y′ ∈ f−1

j (0), such that for all p > Ñj ,

cy′(f(x)− f(y′)) = cy′(fj) = min
E:y′∈hj(E(Fp))

{ ν
N

}
= min
E:y∈hj(E(Fp))

{ ν
N

}
6 1.

If y ∈ Aj,p, then y + pZnp contains at least one critical point of f , in which
proves the claim.

Now for any y ∈ Aj,p, we can apply Remark 4.2.4 to fj with Φp = 1y+pZnp and
σ′ = min

{
ay,p,

1
2
}

= σy,p. The constant Cj and the natural number Nj > Ñj
that we find, are independent of y ∈ Aj,p. This proves Lemma 4.4.3.

4.4.2 Adapting the model theoretic proof

For 1 6 j 6 d and y ∈ Aj,p, we will split the exponential sum Eyfj (m, p) into
three subsums in exactly the same way as in Section 4.1. In each of the Lemmas
4.1.1, 4.1.5, 4.1.6 and in the proof of Theorem 4.0.4 we will need to make some
changes.

Lemma 4.4.5. Let f ∈ Z[x1, . . . , xn] \Z and j ∈ {1, . . . , d}. Then there exists
a natural number Nj , such that for all m > 1, for all primes p > Nj and for all
y ∈ Aj,p, we have

∑
x∈y+(pZ/pmZ)n,
ordp(fj(x))6m−2

exp
(

2πifj(x)
pm

)
= 0.

Remark that if Aj,p 6= ∅, then zj ∈ Vf,p ⊆ Zp, so exp
(

2πifj(x)
pm

)
is well-defined.

To prove this lemma, we adapt the proof of Lemma 4.1.1 as follows. We replace
the formula ϕ by

ϕj(x1, . . . , xn, z, ξ1, . . . , ξn,m) =
n∧
i=1

(xi = ξi) ∧
(
ord(z − zj) 6 m− 2

)
∧

(
ord(z − f(x1, . . . , xn)) > m

)
,
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where xi, z are in the VF-sort, ξi are in the RF-sort and m is in the VG-sort.
This is an LZ ∪ {zj}-formula, with zj a constant symbol in the VF-sort. We
remark that the function OK → kK : x 7→ x = (x modMK) is definable in
LDP.

Now ϕj induces a definable subassignment Xj ⊂ h[n+ 1, n, 1] and constructible
functions Fj := 1Xj and Gj := π!(Fj), where π : h[n+ 1, n, 1]→ h[1, n, 1] is the
projection onto the last n+2 coordinates. For each prime p, for each uniformizer
$p of Qp and for each y ∈ Aj,p, we have the following interpretation of Gj in
Qp:

Gj,$p(z, y,m) = #{x(m) ∈ y(m) + (pZ/pmZ)n | f(x) ≡ z mod pm}

if ordp(z − zj) 6 m− 2 and Gj,$p(z, y,m) = 0 if ordp(z − zj) > m− 1. Here
the notation x(m) means the class of (x mod pm). Note however that Gj,$p
actually only depends on (y mod p), i.e., on y. We remark that if Aj,p 6= ∅, then
zj ∈ Zp, which makes it possible to interpret ord(z − zj) (and other formulas
that contain the symbol zj) in Qp.

We apply Corollary 1.2.12 to Gj to obtain a cell decomposition where the
centers ci are given by LZ ∪ {zj}-formulas θi(z, ξ, η, γ,m). By elimination of
quantifiers, θi is equivalent to the formula∨
`

(
ζi`
(
ac(g1(z)), . . . , ac(gs(z)), ξ, η

)
∧ νi`

(
ord(g1(z)), . . . , ord(gs(z)), γ,m

))
,

where ζi` is an Lring-formula, νi` an Loag-formula, and g1, . . . , gs ∈ (Z[zj ][[t]])[z].
The rest of the proof of Lemma 4.1.1 still applies if we replace ord(z) by
ord(z − zj) everywhere. By going over the proof, we can see that the natural
number Nj that is obtained in the proof, only depends on j.

Lemma 4.4.6. Let f ∈ Z[x1, . . . , xn] \ Z and j ∈ {1, . . . , d}. Then for each
integer m > 2, there exists a natural number Nm and a constant Dm > 0, such
that for all primes p > Nm and for all y ∈ Aj,p, we have∣∣∣∣ ∑

x∈y+(pZ/pmZ)n,
ordp(fj(x))=m−1

p−mn exp
(

2πifj(x)
pm

) ∣∣∣∣
C
6 Dmp

−mσy,p .

To prove this lemma, we adapt the proof of Lemma 4.1.5 as follows. We replace
the formulas ϕ and ϕ by

ϕj(x1, . . . , xn, z, ξ1, . . . , ξn,m) =
n∧
i=1

(xi = ξi) ∧
(
ord(z − zj) = m− 1

)
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∧
(
ord(z − f(x1, . . . , xn)) > m

)
,

ϕj(x1, . . . , xn, ξ, ξ1, . . . , ξn,m) =
n∧
i=1

(xi = ξi) ∧
(
ac(f(x1, . . . , xn)− zj) = ξ

)
∧
(
ord(f(x1, . . . , xn)− zj) = m− 1

)
,

where xi, z are in the VF-sort, ξi, ξ are in the RF-sort and m is in the VG-sort.
These are also LZ ∪ {zj}-formulas. Most of the other modifications in the proof
of Lemma 4.1.5 are the same as we discussed above for Lemma 4.4.5.

The only moment that we have to be more careful, is when estimating #{x(m) ∈
y(m) + (pZp/pmZp)n | ordp(fj(x)) = m−1}. From the proof of Lemma 4.4.4 we
know that there exists a natural number Ñj , such that if p > Ñj and y ∈ Aj,p,
then there exists a critical point ỹ ∈ y + (pZp)n, such that ay,p(f) = cỹ(fj). By
[Mus02, Corollary 3.6] we have

ay,p(f) = cỹ(fj) 6
(m− 1)n− dimFp(Ãp,m,y)

m− 1 ,

where Ap,m,y := {x(m) ∈ y(m) + (pZp/pmZp)n | ordp(fj(x)) = m− 1}, viewed
as a constructible subset of Fmnp , and where Ãp,m,y is the image of Ap,m,y under
the projection pm : (Zp/pmZp)n → (Zp/pm−1Zp)n, viewed as a constructible
subset of Fmn−np . Then #Ap,m,y 6 #Ãp,m,y · pn. By the Lang-Weil estimate,
there exists a constant D′m,y, not depending on p, such that

#Ãp,m,y 6 D′m,ypdimFp (Ãp,m,y).

By looking at the arc space of Z(fj), we can see that, for eachm, there are finitely
many schemes Z(m)

1 , . . . , Z
(m)
`m

, such that for all p and y, Ãp,m,y ∼= Z
(m)
i (Fp)

for some i ∈ {1, . . . , `m}. This means that the constant D′m,y, which we
know already to be independent of p, only depends on the set of schemes
{Z(m)

1 , . . . , Z
(m)
`m
}. Hence there exists a constant D′m,j , such that D′m,j > D′m,y

for all y ∈ Aj,p. By going over the rest of the proof of Lemma 4.1.5, we can see
that the natural number Nm and the constant Dm, that are obtained in the
proof, only depend on m and j.

We need to make similar adjustments in the proof of Lemma 4.1.6, to obtain
the following lemma.

Lemma 4.4.7. Let f ∈ Z[x1, . . . , xn] \ Z and j ∈ {1, . . . , d}. Then for each
integer m > 2, there exists a natural number Nm and a constant Dm > 0, such
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that for all primes p > Nm and for all y ∈ Aj,p, we have∣∣∣∣ ∑
x∈y+(pZ/pmZ)n,
ordp(fj(x))>m

p−mn exp
(

2πifj(x)
pm

) ∣∣∣∣
C
6 Dmp

−mσy,p .

The final step after these three lemmas, is to modify the proof of Theorem 4.0.4
at the end of Section 4.1. According to Corollary 1.3.7 and its proof, there exist
natural numbers sj ,M ′j , N ′′j , such that for all p > N ′′j , m > M ′j and y ∈ Aj,p,
we have

Eym,p(fj) =
sj∑
i=1

ai,p,y1Aij (m)mβijp−mρij . (4.4.2)

We can easily see that βij , ρij and Aij only depend on fj and not on y. By
going through the proof of Claim 2.2.7 we obtain a constant C̃j and natural
numbers M̃j , Ñj (that depend on βij , ρij and Aij , but not on ai,p,y), such that
for all m > M̃j , p > Ñj , y ∈ Aj,p and 1 6 i 6 sj , we have

|ai,p,y1Aijp−mρij |C 6 C̃p−mσy,p .

This proves Lemma 4.4.3.
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χ, 29
ψ, 28, 94
Ψ, 29
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x(m), 32
Z, see reduction modulo p
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a(f), 37, 118
ã(h), 37
ay,p(f), 37, 118
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moduloMK

acm, 17
angular component map, 12

moduloMK , 9

B, 10, 61

Bγ , 10, 94
Bγ(x), 10
B(σ(s)), 60
base-stable under integration, 20

of K-variables, 20
branching height, 60
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function

C∗exp(X), see exponential*-
constructible
function
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c̃(h), 35
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c(χ), see conductor
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array, 52
regular, 70

classical, 16, 41, 52
clustered, 52
large, 70
regular of minimal order, 87
regular of order k, 75
small, 70
uniformly bounded, 70

condition, 40
0-, 41
1-, 41

multi-, 51
admissible, 51
small regular, 79

o-minimal, 14
potential, 43

cell decomposition
Γ-, 18
clustered, 85
o-minimal, 15

center, 16, 41
potential, 43

conductor, 29
constructible function, 19, 94
constructible motivic Function, 24
constructible motivic function, 24
constructible Presburger function,

23
critical locus, 30
critical value, 30

d(χ), 29
decomposition, 43

admissible, 44
pre-admissible, 44

Defk , 22
definable, 11

function, 11
L-, 11
section, see definable, Skolem

function

set, 11
Skolem function, 16
subassignment, 22

EΦ
f (z, p), 32

Ef (m, p), 117
Eyf (m, p), 117
EI
◦, 30

(C,Σs)-equivalent, 60
exponential-constructible function,

28, 94
exponential*-constructible function,

96
extreme value property, 99

Fp, 11
Fieldk , 22
finite Skolem function, 90

Grothendieck group, see
Grothendieck ring

Grothendieck ring, 23

h[m,n, r], 22
Haar measure, 12
Henselian valued field, 12

ISC(Z), 25
Igusa zeta function, 29
Int(f, Y ), see locus of integrability

K0(RDefZ), see Grothendieck ring
kK , see residue field
Kp, 29
kp, 29

L2, see language, two-sorted
Lan, see language, subanalytic
LDP, see language, Denef-Pas
LDP,k , 22
LMac, see language, Macintyre
LO, 22
Loag, see language, ordered abelian

groups
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LZ, see LO
language

Denef-Pas, 11
Macintyre, 10
ordered abelian groups, 11
Presburger, 11
ring, 10
semi-algebraic, see language,

ring
subanalytic, 10
two-sorted, 11

leaf, 41
height, 41

locus of integrability, 19, 95
log-canonical threshold, 34, 118

at y, 34, 118

MK , 9
maximal ball, 10, 95
multi-ball of order k, 75, 95

maximal, 90
on Bγ , 95

(N, ν), see numerical data
non-archimedean local field of

characteristic zero, 12
n-normal form, 96
numerical data, 30

essential, 34

OK , see valuation ring
Op, 29
ord, 9, 11
ordp, see p-adic valuation
o-minimal structure, 13
oscillation index

complex, 36
motivic, 36

p, 29
Pn, 10

P(Z), see constructible Presburger
function

p-adic field, 11
p-adic integers, 11
p-adic numbers, 11
p-adic valuation, 11
p-adically closed field, 12
P -minimal field, see P -minimal

structure
P -minimal structure, 15

relative, 98
two-sorted, 17

qK , 12
Qn,m, 17
Qp, see p-adic numbers

real closed field, 14
reduction modulo p, 30

good, 30
tame good, 30

repartitioning, 68
residue field, 9
resolution of singularities, 30
RF, 11

Schwartz-Bruhat function, 29
residual, 29

semi-algebraic set, 10
setting

non-Skolem, 93
P -minimal, 93
Skolem, 93

d-signature, 62
specialization, 27
split at k, 54

by definable choice, 54
by projection, 54

subanalytic set, 11
Supp(Φ), 29

T (Σs), 61

uniform tree structure, 70
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uniformizer, 12

Vf , see critical value
valuation, 9
valuation radius, 10
valuation ring, 9
value group, 9
valued field, 9

VF, 11
VG, 11

ZΦ
f (s, p, χ), see Igusa zeta function

Z-group, 12
Zp, see p-adic integers
zeta function, see Igusa zeta

function
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