Discrete orthogonal polynomials and superlinear convergence of Krylov subspace methods in numerical linear algebra

Bernhard Beckermann, Labo Painlevé (ANO-EDP), UST Lille bbecker@ano.univ-lille1.fr
http://math.univ-lille1.fr/~bbecker

OPSF summer school, Madrid, 8-18 July 2004
B. Beckermann
first|-1 back \mid goto $|+1|$ last \mid toc

Menu

- Rate of convergence of Krylov subspace methods and Ritz values
B. Beckermann

first	-1	back	goto	+1	last

Menu

- Motivation, link to discrete orthogonal polynomials
\bullet
\bullet
\bullet
- Rate of convergence of Krylov subspace methods and Ritz values

Menu

- Motivation, link to discrete orthogonal polynomials
- Definition of Krylov subspace methods, polynomial language
- Rate of convergence of Krylov subspace methods and Ritz values

Menu

- Motivation, link to discrete orthogonal polynomials
- Definition of Krylov subspace methods, polynomial language
- Asymptotics of discrete orthogonal polynomials
- Rate of convergence of Krylov subspace methods and Ritz values

Menu

- Motivation, link to discrete orthogonal polynomials
- Definition of Krylov subspace methods, polynomial language
- Logarithmic potential theory (with constraint)
- Asymptotics of discrete orthogonal polynomials
- Rate of convergence of Krylov subspace methods and Ritz values

Menu

- Motivation, link to discrete orthogonal polynomials
- Definition of Krylov subspace methods, polynomial language
- Logarithmic potential theory (with constraint)
- Asymptotics of discrete orthogonal polynomials
- Rate of convergence of Krylov subspace methods and Ritz values
- Further examples, Applications from PDE

Menu

- Motivation, link to discrete orthogonal polynomials $\$ 1.1$
- Definition of Krylov subspace methods, polynomial language $\S 1.2,1.3$, 1.4
- Logarithmic potential theory (with constraint) §2.1, 2.2, talk of AMF
- Asymptotics of discrete orthogonal polynomials $\$ 2.3$
- Rate of convergence of Krylov subspace methods and Ritz values §3.1, 3.2
- Further examples, Applications from PDE §3.3, 3.4

Motivation

- Motivation, link to discrete orthogonal polynomials
- Definition of Krylov subspace methods, polynomial language
- Logarithmic potential theory (with constraint)
- Asymptotics of discrete orthogonal polynomials
- Rate of convergence of Krylov subspace methods and Ritz values
- Further examples, Applications from PDE

A (very) simple example

Consider the system $A x=b$ with

$$
A=\operatorname{diag}(1,2, \ldots, N), \quad b=(1, \ldots, 1)^{t} / \sqrt{N}
$$

and the discrete scalar product (of discrete Chebyshev polynomials)

$$
\prec P, Q \succ=\sum_{j=1}^{N} \frac{1}{N} \overline{P(j)} Q(j)
$$

with orthonormal polynomials p_{k} (that is, $\prec p_{j}, p_{k} \succ=\delta_{j, k}$ for $j, k<N$), then for the nth iterate $x_{n}^{C G}$ of $C G$ (with $x_{0}^{C G}=0$) there holds

$$
b-A x_{n}^{C G}=A\left(x-x_{n}^{C G}\right)=\frac{p_{n}(A) b}{p_{n}(0)}
$$

CG error for the (very) simple example

Write $\Lambda(A)$ for the spectrum of A, and let the $L_{2}(\Lambda(A))$-norm be induced by the above scalar product.

For the relative error of CG in energy norm $\left(\|c\|_{A}:=\sqrt{c^{*} A c}\right)$ one has

$$
\frac{\left\|x_{n}^{C G}-x\right\|_{A}}{\left\|x_{0}^{C G}-x\right\|_{A}}=\frac{1}{\left|p_{n}(0)\right|}
$$

CG error for the (very) simple example

Write $\Lambda(A)$ for the spectrum of A, and let the $L_{2}(\Lambda(A))$-norm be induced by the above scalar product.

For the relative error of CG in energy norm $\left(\|c\|_{A}:=\sqrt{c^{*} A c}\right)$ one has

$$
\frac{\left\|x_{n}^{C G}-x\right\|_{A}}{\left\|x_{0}^{C G}-x\right\|_{A}}=\frac{1}{\left|p_{n}(0)\right|}
$$

B. Beckermann

CG error for the (very) simple example

Write $\Lambda(A)$ for the spectrum of A, and let the $L_{2}(\Lambda(A))$-norm be induced by the above scalar product.

For the relative error of CG in energy norm $\left(\|c\|_{A}:=\sqrt{c^{*} A c}\right)$ one has

$$
\begin{aligned}
\frac{\left\|x_{n}^{C G}-x\right\|_{A}}{\left\|x_{0}^{C G}-x\right\|_{A}} & =\frac{1}{\left|p_{n}(0)\right|} \\
& =\min _{\operatorname{deg} P \leqslant n} \frac{\|P / \sqrt{x}\|_{L_{2}(\Lambda(A))}}{|P(0)|\|1 / \sqrt{x}\|_{L_{2}(\Lambda(A))}} \\
& \leqslant \min _{\operatorname{deg} P \leqslant n} \frac{\|P\| \|_{\infty}(\Lambda(A))}{|P(0)|} \\
& \leqslant \min _{\operatorname{deg} P \leqslant n} \frac{\|P\| L_{\infty}(\operatorname{conv}(\Lambda(A)))}{|P(0)|}
\end{aligned}
$$

CG error for the (very) simple example

Write $\Lambda(A)$ for the spectrum of A, and let the $L_{2}(\Lambda(A))$-norm be induced by the above scalar product.

For the relative error of CG in energy norm $\left(\|c\|_{A}:=\sqrt{c^{*} A c}\right)$ one has

$$
\begin{aligned}
\frac{\left\|x_{n}^{C G}-x\right\|_{A}}{\left\|x_{0}^{C G}-x\right\|_{A}} & =\frac{1}{\left|p_{n}(0)\right|} \\
& =\min _{\operatorname{deg} P \leqslant n} \frac{\|P / \sqrt{x}\|_{L_{2}(\Lambda(A))}}{|P(0)|\|1 / \sqrt{x}\|_{L_{2}(\Lambda(A))}} \\
& \leqslant \min _{\operatorname{deg} P \leqslant n} \frac{\|P\|_{L_{\infty}(\Lambda(A))}}{|P(0)|} \\
& \leqslant \min _{\operatorname{deg} P \leqslant n} \frac{\|P\|_{L_{\infty}(\operatorname{conv}(\Lambda(A)))}^{|P(0)|}}{\mid P(0)}
\end{aligned}
$$

CG error for the (very) simple example

Write $\Lambda(A)$ for the spectrum of A, and let the $L_{2}(\Lambda(A))$-norm be induced by the above scalar product.

For the relative error of CG in energy norm $\left(\|c\|_{A}:=\sqrt{c^{*} A c}\right)$ one has

$$
\begin{aligned}
\frac{\left\|x_{n}^{C G}-x\right\|_{A}}{\left\|x_{0}^{C G}-x\right\|_{A}} & =\frac{1}{\left|p_{n}(0)\right|} \\
& =\min _{\operatorname{deg} P \leqslant n} \frac{\|P / \sqrt{x}\|_{L_{2}(\Lambda(A))}}{|P(0)|\|1 / \sqrt{x}\|_{L_{2}(\Lambda(A))}} \\
& \leqslant \min _{\operatorname{deg} P \leqslant n} \frac{\|P\|_{L_{\infty}(\Lambda(A))}^{|P(0)|}}{} \\
& \leqslant \min _{\operatorname{deg} P \leqslant n} \frac{\|P\|_{L_{\infty}(\operatorname{conv}(\Lambda(A)))}^{|P(0)|}}{\mid P(0)}
\end{aligned}
$$

The different bounds

$A=\operatorname{diag}(1,2, \ldots, 100)$, random solution x, initial residual $r_{0}^{C G}=(1, \ldots, 1)^{t}$.

The CG error curve versus (asymptotic estimate of) $L_{\infty}(\Lambda(A))$ bound versus (classical) $L_{\infty}(\operatorname{conv}(\Lambda(A)))$ bound:

$$
2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{n}, \quad \kappa=\frac{\lambda_{\max }(A)}{\lambda_{\min }(A)} .
$$

B. Beckermann

How to proceed?

- Asymptotics of discrete orthogonal polynomials?
\ominus different from Szegő theory/classical nth root asymptotics
\ominus we need to know precisely $\Lambda(A)$ (= finite (!) support)
\ominus we need to know eigencomponents of starting residual (= weights)
\oplus theory of Rakhmanov ('96) and Dragnev \& Saff ('97) and ...
- Solve (approximately) the discrete L_{∞} extremal problem?
\oplus "worst case" bound for worst starting residual
\oplus theory of Rakhmanov ('96) and Dragnev \& Saff ('97) and ...
\oplus simpler... (?!)
We have to find a polynomial large at zero and small on a discrete set.

Small on discrete sets

A polynomial small on $N=20$ equidistant points is small in convex hull for degree $n=5$, but no longer for $n=10$ or $n=18$.

Conclusion: We have to take into account the "fine structure" of $\Lambda(A)$.

B. Beckermann | first | -1 | back | goto | +1 | last |
| :--- | :--- | :--- | :--- | :--- | :--- |

What we've learned so far

Not so much (-; but don't worry, we will see everything again in greater detail. Well, maybe one point: depending on the distribution of the elements, a polynomial being small on a discrete set is not necessarily small in the convex hull of this set, at least for larger degrees.

And, there seems to be some link between OP and linear algebra. But this you knew before?

Krylov subspace methods

- Motivation, link to discrete orthogonal polynomials
- Definition of Krylov subspace methods, polynomial language
- Logarithmic potential theory (with constraint)
- Asymptotics of discrete orthogonal polynomials
- Rate of convergence of Krylov subspace methods and Ritz values
- Further examples, Applications from PDE
B. Beckermann

Definition Krylov subspace methods I

In this talk: $A=A^{*}$, of size $N \times N$.

- Solve systems of linear equations $A x=b$,
- Conjugate gradients $(A \geqslant 0)$
- Lanczos
- MinRes/GMRES
- Approach (certain) eigenvalues of A by Ritz values

Assumption: matvec product easy (A large, sparse)
Assumption for our analysis: rounding errors neglected
Construct sequence x_{0} (given), x_{1}, x_{2}, \ldots converging to $A^{-1} b$
with residuals $r_{n}=r\left(x_{n}\right):=b-A x_{n}$

Definition Krylov subspace methods II

Krylov subspace:
$\mathcal{K}_{n}(A, c)=\operatorname{span}\left\{c, A c, A^{2} c, \ldots, A^{n-1} c\right\}=\{p(A) c: p$ a polynomial of degree $\leqslant n-1\}$. Here $x_{n} \in x_{0}+\mathcal{K}_{n-1}\left(A, r_{0}\right)$, and hence for some polynomial q_{n} of degree n

$$
r_{n}=\frac{q_{n}(A) r_{0}}{q_{n}(0)}
$$

- Conjugate gradients: $x_{n}^{C G}=\arg \min \left\{\|r(x)\|_{A^{-1}}: x \in x_{0}+\mathcal{K}_{n}\left(A, r_{0}\right)\right\}$
- MinRes/GMRES: $x_{n}^{G M R E S}=\min \left\{\|r(x)\|: x \in x_{0}+\mathcal{K}_{n}\left(A, r_{0}\right)\right\}$
- sym. Lanczos: $r_{n}^{L} \perp \mathcal{K}_{n}\left(A^{*}, r_{0}\right)=\mathcal{K}_{n}\left(A, r_{0}\right)$

Definition Krylov subspace methods II

Krylov subspace:
$\mathcal{K}_{n}(A, c)=\operatorname{span}\left\{c, A c, A^{2} c, \ldots, A^{n-1} c\right\}=\{p(A) c: p$ a polynomial of degree $\leqslant n-1\}$. Here $x_{n} \in x_{0}+\mathcal{K}_{n-1}\left(A, r_{0}\right)$, and hence for some polynomial q_{n} of degree n

$$
r_{n}=\frac{q_{n}(A) r_{0}}{q_{n}(0)} .
$$

- Conjugate gradients: $x_{n}^{C G}=\arg \min \left\{\|r(x)\|_{A^{-1}}: x \in x_{0}+\mathcal{K}_{n}\left(A, r_{0}\right)\right\}$
- MinRes/GMRES: $x_{n}^{G M R E S}=\min \left\{\|r(x)\|: x \in x_{0}+\mathcal{K}_{n}\left(A, r_{0}\right)\right\}$
- sym. Lanczos: $r_{n}^{L} \perp \mathcal{K}_{n}\left(A^{*}, r_{0}\right)=\mathcal{K}_{n}\left(A, r_{0}\right)$

Definition Krylov subspace methods II

Krylov subspace:
$\mathcal{K}_{n}(A, c)=\operatorname{span}\left\{c, A c, A^{2} c, \ldots, A^{n-1} c\right\}=\{p(A) c: p$ a polynomial of degree $\leqslant n-1\}$.
Here $x_{n} \in x_{0}+\mathcal{K}_{n-1}\left(A, r_{0}\right)$, and hence for some polynomial q_{n} of degree n

$$
r_{n}=\frac{q_{n}(A) r_{0}}{q_{n}(0)} .
$$

- Conjugate gradients: $x_{n}^{C G}=\arg \min \left\{\|r(x)\|_{A^{-1}}: x \in x_{0}+\mathcal{K}_{n}\left(A, r_{0}\right)\right\}$
- MinRes/GMRES: $x_{n}^{G M R E S}=\min \left\{\|r(x)\|: x \in x_{0}+\mathcal{K}_{n}\left(A, r_{0}\right)\right\}$
- sym. Lanczos: $r_{n}^{L} \perp \mathcal{K}_{n}\left(A^{*}, r_{0}\right)=\mathcal{K}_{n}\left(A, r_{0}\right)$

Definition Krylov subspace methods II

Krylov subspace:
$\mathcal{K}_{n}(A, c)=\operatorname{span}\left\{c, A c, A^{2} c, \ldots, A^{n-1} c\right\}=\{p(A) c: p$ a polynomial of degree $\leqslant n-1\}$.
Here $x_{n} \in x_{0}+\mathcal{K}_{n-1}\left(A, r_{0}\right)$, and hence for some polynomial q_{n} of degree n

$$
r_{n}=\frac{q_{n}(A) r_{0}}{q_{n}(0)} .
$$

- Conjugate gradients: $x_{n}^{C G}=\arg \min \left\{\|r(x)\|_{A^{-1}}: x \in x_{0}+\mathcal{K}_{n}\left(A, r_{0}\right)\right\}$
- MinRes/GMRES: $x_{n}^{G M R E S}=\min \left\{\|r(x)\|: x \in x_{0}+\mathcal{K}_{n}\left(A, r_{0}\right)\right\}$
- sym. Lanczos: $r_{n}^{L} \perp \mathcal{K}_{n}\left(A^{*}, r_{0}\right)=\mathcal{K}_{n}\left(A, r_{0}\right)$

The scalar product

Here $A=A^{*}$ and thus $A=V D V^{*}, V$ unitary, $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$. Let $V^{*} r_{0}=: \beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{N}\right)$, and define for polynomials P, Q the scalar product
$\prec P, Q \succ=\left(P(A) r_{0}\right)^{*} Q(A) r_{0}=\left(V P(D) V^{*} r_{0}\right)^{*} V Q(D) V^{*} r_{0}=\sum_{j}\left|\beta_{j}\right|^{2} \overline{P\left(\lambda_{j}\right)} Q\left(\lambda_{j}\right)$ (more complicated if $A \neq A^{*}$, see $\S 1.3$, Example 1.3.8). Define $N^{\prime} \leqslant N$ the number of distinct λ_{j} with non-zero β_{j}, then we can define orthonormal polynomials

$$
\begin{aligned}
& j=0, \ldots, N^{\prime}-1: \quad p_{j}(z)=k_{j} z^{j}+\text { lower powers, } \quad k_{j}>0, \\
& j, k=0, \ldots, N^{\prime}-1: \quad \prec p_{j}, p_{k} \succ=\delta_{j, k}, \\
& \text { for all polynomials } P: \quad \prec P, p_{N^{\prime}} \succ=0, \quad p_{N^{\prime}}(z)=z^{N^{\prime}}+\text { lower powers. } \\
& \text { How to express } x_{n}^{L}, x_{n}^{G M R E S}, x_{n}^{C G} \text { in terms of } p_{n} \text { ? }
\end{aligned}
$$

B. Beckermann
first|-1|back|goto| +1 |last|toc

The scalar product

Here $A=A^{*}$ and thus $A=V D V^{*}, V$ unitary, $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$.
Let $V^{*} r_{0}=: \beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{N}\right)$, and define for polynomials P, Q the scalar product
$\prec P, Q \succ=\left(P(A) r_{0}\right)^{*} Q(A) r_{0}=\left(V P(D) V^{*} r_{0}\right)^{*} V Q(D) V^{*} r_{0}=\sum_{j}\left|\beta_{j}\right|^{2} \overline{P\left(\lambda_{j}\right)} Q\left(\lambda_{j}\right)$ (more complicated if $A \neq A^{*}$, see $\S 1.3$, Example 1.3.8). Define $N^{\prime} \leqslant N$ the number of distinct λ_{j} with non-zero β_{j}, then we can define orthonormal polynomials

$$
\begin{aligned}
& \qquad \quad j=0, \ldots, N^{\prime}-1: \quad p_{j}(z)=k_{j} z^{j}+\text { lower powers, } \quad k_{j}>0, \\
& \qquad j, k=0, \ldots, N^{\prime}-1: \quad \prec p_{j}, p_{k} \succ=\delta_{j, k}, \\
& \text { for all polynomials } P: \quad \prec P, p_{N^{\prime}} \succ=0, \quad p_{N^{\prime}}(z)=z^{N^{\prime}}+\text { lower powers. } \\
& \text { How to express } x_{n}^{L}, x_{n}^{G M R E S}, x_{n}^{C G} \text { in terms of } p_{n} \text { ? }
\end{aligned}
$$

B. Beckermann

The scalar product

Here $A=A^{*}$ and thus $A=V D V^{*}, V$ unitary, $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$.
Let $V^{*} r_{0}=: \beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{N}\right)$, and define for polynomials P, Q the scalar product
$\prec P, Q \succ=\left(P(A) r_{0}\right)^{*} Q(A) r_{0}=\left(V P(D) V^{*} r_{0}\right)^{*} V Q(D) V^{*} r_{0}=\sum_{j}\left|\beta_{j}\right|^{2} \overline{P\left(\lambda_{j}\right)} Q\left(\lambda_{j}\right)$
(more complicated if $A \neq A^{*}$, see $\S 1.3$, Example 1.3.8). Define $N^{\prime} \leqslant N$ the number of distinct λ_{j} with non-zero β_{j}, then we can define orthonormal polynomials

$$
\begin{aligned}
& j=0, \ldots, N^{\prime}-1: \quad p_{j}(z)=k_{j} z^{j}+\text { lower powers, } \quad k_{j}>0, \\
& j, k=0, \ldots, N^{\prime}-1: \quad \prec p_{j}, p_{k} \succ=\delta_{j, k}, \\
& \text { for all polynomials } P: \quad \prec P, p_{N^{\prime}} \succ=0, \quad p_{N^{\prime}}(z)=z^{N^{\prime}}+\text { lower powers. } \\
& \text { How to express } x_{n}^{L}, x_{n}^{G M R E S}, x_{n}^{C G} \text { in terms of } p_{n} \text { ? }
\end{aligned}
$$

The scalar product

Here $A=A^{*}$ and thus $A=V D V^{*}, V$ unitary, $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$.
Let $V^{*} r_{0}=: \beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{N}\right)$, and define for polynomials P, Q the scalar product
$\prec P, Q \succ=\left(P(A) r_{0}\right)^{*} Q(A) r_{0}=\left(V P(D) V^{*} r_{0}\right)^{*} V Q(D) V^{*} r_{0}=\sum_{j}\left|\beta_{j}\right|^{2} \overline{P\left(\lambda_{j}\right)} Q\left(\lambda_{j}\right)$ (more complicated if $A \neq A^{*}$, see $\S 1.3$, Example 1.3.8). Define $N^{\prime} \leqslant N$ the number of distinct λ_{j} with non-zero β_{j}, then we can define orthonormal polynomials

$$
\begin{aligned}
j=0, \ldots, N^{\prime}-1: & p_{j}(z)=k_{j} z^{j}+\text { lower powers, } \quad k_{j}>0, \\
j, k=0, \ldots, N^{\prime}-1: & \prec p_{j}, p_{k} \succ=\delta_{j, k}, \\
\text { for all polynomials } P: & \prec P, p_{N^{\prime}} \succ=0, \quad p_{N^{\prime}}(z)=z^{N^{\prime}}+\text { lower powers. }
\end{aligned}
$$

How to express $x_{n}^{L}, x_{n}^{G M R E S}, x_{n}^{C G}$ in terms of p_{n} ?
B. Beckermann
first|-1|back|goto|+1|last|toc

The scalar product

Here $A=A^{*}$ and thus $A=V D V^{*}, V$ unitary, $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$.
Let $V^{*} r_{0}=: \beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{N}\right)$, and define for polynomials P, Q the scalar product
$\prec P, Q \succ=\left(P(A) r_{0}\right)^{*} Q(A) r_{0}=\left(V P(D) V^{*} r_{0}\right)^{*} V Q(D) V^{*} r_{0}=\sum_{j}\left|\beta_{j}\right|^{2} \overline{P\left(\lambda_{j}\right)} Q\left(\lambda_{j}\right)$
(more complicated if $A \neq A^{*}$, see $\S 1.3$, Example 1.3.8). Define $N^{\prime} \leqslant N$ the number of distinct λ_{j} with non-zero β_{j}, then we can define orthonormal polynomials

$$
\begin{aligned}
j=0, \ldots, N^{\prime}-1: & p_{j}(z)=k_{j} z^{j}+\text { lower powers, } \quad k_{j}>0, \\
j, k=0, \ldots, N^{\prime}-1: & \prec p_{j}, p_{k} \succ=\delta_{j, k}, \\
\text { for all polynomials } P: & \prec P, p_{N^{\prime}} \succ=0, \quad p_{N^{\prime}}(z)=z^{N^{\prime}}+\text { lower powers. }
\end{aligned}
$$

How to express $x_{n}^{L}, x_{n}^{G M R E S}, x_{n}^{C G}$ in terms of p_{n} ?
B. Beckermann

The scalar product

Here $A=A^{*}$ and thus $A=V D V^{*}, V$ unitary, $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$.
Let $V^{*} r_{0}=: \beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{N}\right)$, and define for polynomials P, Q the scalar product
$\prec P, Q \succ=\left(P(A) r_{0}\right)^{*} Q(A) r_{0}=\left(V P(D) V^{*} r_{0}\right)^{*} V Q(D) V^{*} r_{0}=\sum_{j}\left|\beta_{j}\right|^{2} \overline{P\left(\lambda_{j}\right)} Q\left(\lambda_{j}\right)$
(more complicated if $A \neq A^{*}$, see $\S 1.3$, Example 1.3.8). Define $N^{\prime} \leqslant N$ the number of distinct λ_{j} with non-zero β_{j}, then we can define orthonormal polynomials

$$
\begin{aligned}
j=0, \ldots, N^{\prime}-1: & p_{j}(z)=k_{j} z^{j}+\text { lower powers, } \quad k_{j}>0, \\
j, k=0, \ldots, N^{\prime}-1: & \prec p_{j}, p_{k} \succ=\delta_{j, k}, \\
\text { for all polynomials } P: & \prec P, p_{N^{\prime}} \succ=0, \quad p_{N^{\prime}}(z)=z^{N^{\prime}}+\text { lower powers. }
\end{aligned}
$$

How to express $x_{n}^{L}, x_{n}^{G M R E S}, x_{n}^{C G}$ in terms of p_{n} ?

The scalar product

Here $A=A^{*}$ and thus $A=V D V^{*}, V$ unitary, $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$.
Let $V^{*} r_{0}=: \beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{N}\right)$, and define for polynomials P, Q the scalar product
$\prec P, Q \succ=\left(P(A) r_{0}\right)^{*} Q(A) r_{0}=\left(V P(D) V^{*} r_{0}\right)^{*} V Q(D) V^{*} r_{0}=\sum_{j}\left|\beta_{j}\right|^{2} \overline{P\left(\lambda_{j}\right)} Q\left(\lambda_{j}\right)$
(more complicated if $A \neq A^{*}$, see $\S 1.3$, Example 1.3.8). Define $N^{\prime} \leqslant N$ the number of distinct λ_{j} with non-zero β_{j}, then we can define orthonormal polynomials

$$
\begin{aligned}
j=0, \ldots, N^{\prime}-1: & p_{j}(z)=k_{j} z^{j}+\text { lower powers, } \quad k_{j}>0, \\
j, k=0, \ldots, N^{\prime}-1: & \prec p_{j}, p_{k} \succ=\delta_{j, k}, \\
\text { for all polynomials } P: & \prec P, p_{N^{\prime}} \succ=0, \quad p_{N^{\prime}}(z)=z^{N^{\prime}}+\text { lower powers. }
\end{aligned}
$$

How to express $x_{n}^{L}, x_{n}^{G M R E S}, x_{n}^{C G}$ in terms of p_{n} ?

Arnoldi basis

By construction, the vectors $v_{n+1}:=p_{n}(A) r_{0}$ satisfy

$$
\begin{aligned}
1 \leqslant n \leqslant N^{\prime}: \quad & v_{n} \in \mathcal{K}_{n}\left(A, r_{0}\right), \quad v_{n} \perp \mathcal{K}_{n-1}\left(A, r_{0}\right) \\
& v_{N^{\prime}+1}=0
\end{aligned}
$$

and hence (c.f. 1.2.2)

$$
\begin{array}{ll}
\text { for } n \leqslant N^{\prime}: & \operatorname{dim} \mathcal{K}_{n}\left(A, r_{0}\right)=n, \quad \text { with ONB } v_{1}, v_{2}, \ldots, v_{n} \\
\text { for } n \geqslant N^{\prime}: & \operatorname{dim} \mathcal{K}_{n}\left(A, r_{0}\right)=N^{\prime}, \quad \text { with ONB } v_{1}, v_{2}, \ldots, v_{N^{\prime}} .
\end{array}
$$

Idea: express $r_{n}^{L}, r_{n}^{G M R E S}, r_{n}^{C G}$ in terms of the Arnoldi basis!

FOM $=$ sym. Lanczos (if $A=A^{*}$)

r_{n}^{L} is in $\mathcal{K}_{n+1}\left(A, r_{0}\right)$ and \perp to $\mathcal{K}_{n}\left(A, r_{0}\right)$, like v_{n+1}, c.f. 1.3.4.

Thus x_{n}^{L} exists iff $p_{n}(0) \neq 0$ ("breakdown"), and then

$$
r_{n}^{L}=\frac{p_{n}(A) r_{0}}{p_{n}(0)}=\frac{1}{p_{n}(0)} v_{n+1}, \quad\left\|r_{n}^{L}\right\|=\frac{1}{\left|p_{n}(0)\right|} .
$$

GMRES/MINRES

By definition of GMRES

$$
\left\|r_{n}^{G M R E S}\right\|^{2}=\min _{\operatorname{deg} P \leqslant n} \frac{\prec P, P \succ}{|P(0)|^{2}}=\frac{1}{K_{n, 2}(0,0)}
$$

with the Szegő function

$$
K_{n, 2}(x, y)=\sum_{j=0}^{n} \overline{p_{j}(x)} p_{j}(y)
$$

and the minimum is attained for $P(z)=K_{n, 2}(0, z)$.
Hence (c.f. 1.3.6)

$$
r_{n}^{G M R E S}=\frac{K_{n, 2}(0, A) r_{0}}{K_{n, 2}(0,0)}=\frac{1}{K_{n, 2}(0,0)} \sum_{j=0}^{n} \overline{p_{j}(0)} v_{j+1}
$$

CG (for $\left.A=A^{*}, A>0\right)$

With the same argument as for GMRES/MINRES

$$
\left\|r_{n}^{C G}\right\|_{A^{-1}}^{2}=\frac{1}{K_{n, 2}^{\#}(0,0)}, \quad, \quad r_{n}^{C G}=\frac{K_{n, 2}^{\#}(0, A) r_{0}}{K_{n, 2}^{\#}(0,0)}
$$

with the Szegő function $K_{n, 2}^{\#}(x, y)$ constructed for the modified scalar product

$$
\prec P, Q \succ \neq \prec P, Q / z \succ .
$$

From Christoffel-Darboux: $K_{n, 2}^{\#}(0, z)$ is proportional to $p_{n}(z)$.
Hence $p_{n}(0) \neq 0$, and (c.f. 1.4.2)

$$
r_{n}^{C G}=r_{n}^{L}=\frac{p_{n}(A) r_{0}}{p_{n}(0)}=\frac{1}{p_{n}(0)} v_{n+1}, \quad\left\|r_{n}^{C G}\right\|=\frac{1}{\left|p_{n}(0)\right|}
$$

See 1.4.1(g), 1.4.2 for a link between CG and Padé approximants of the rational function $z \mapsto r_{0}^{*}(z I-A)^{-1} r_{0}$.

Corollary: L_{∞} bounds

Let

$$
E_{n}(z, S):=\min _{p \in P_{n}} \max _{\lambda \in S} \frac{|p(\lambda)|}{|p(z)|}
$$

then $K_{0,2}(0,0) / K_{n, 2}(0,0) \leqslant E_{n}(0, \Lambda(A))^{2}$, and hence

$$
\frac{\left\|r_{n}^{G M R E S}\right\|}{\left\|r_{0}^{G M R E S}\right\|} \leqslant E_{n}(0, \Lambda(A)), \quad \frac{\left\|r_{n}^{C G}\right\|_{A^{-1}}}{\left\|r_{0}^{C G}\right\|_{A^{-1}}} \leqslant E_{n}(0, \Lambda(A)) .
$$

Remarks:

- $E_{n}(z, S)$ is decreasing in n and increasing in S,
- for $a \neq 0: E_{n}(z, a S)=E_{n}(z / a, S)=E_{n}(0, S-z / a)$,
- the extremal polynomial for $E_{n}(z,[-1,1]), z \in \mathbb{R} \backslash[-1,1]$ is the Chebyshev polynomial of the first kind, c.f. 1.4.6, 1.4.7
\Longrightarrow classical CG bound in terms of condition number.

Jacobi matrices

Define the Jacobi matrix (upper Hessenberg if $A \neq A^{*}$, c.f. $1.2 .5,1.3 .2$)

$$
J_{n}:=\left[\prec p_{j}, z p_{k} \succ\right]_{j, k}=\left[\begin{array}{cccccc}
b_{0} & a_{0} & 0 & \cdots & \cdots & 0 \\
a_{0} & b_{1} & a_{1} & 0 & \cdots & 0 \\
0 & a_{1} & b_{2} & a_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & a_{n-3} & b_{n-2} & a_{n-2} \\
0 & \cdots & \cdots & 0 & a_{n-2} & b_{n-1}
\end{array}\right]
$$

then

$$
z\left(p_{0}, p_{1}, \ldots, p_{n-1}\right)(z)=\left(p_{0}, p_{1}, \ldots, p_{n-1}\right)(z) J_{n}+a_{n-1} p_{n}(z)(0, \ldots, 0,1)
$$

Note: eigenvalues of J_{n} are zeros of OP p_{n} !

Computing Jacobi matrix through Arnoldi basis

Writing $V_{n}:=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{C}^{N \times n}$, we get

$$
A V_{n}=V_{n} J_{n}+a_{n-1}\left(0, \ldots, 0, v_{n+1}\right) .
$$

- Recursive way of computing v_{n}, J_{n},
- three term recurrence for the v_{n} (in case $A=A^{*}$).
B. Beckermann

Ritz values

The eigenvalues of the orthogonal projection $J_{n}=V_{n}^{*} A V_{n}$ are called the nth Ritz values of A.
"Lucky" breakdown $A V_{N^{\prime}}=V_{N^{\prime}} J_{N^{\prime}}$ (i.e., the columns of $V_{N^{\prime}}$ form an A-invariant subspace), and $N^{\prime} \ll N$.

Interlacing/separation: write $\lambda_{1} \leqslant \lambda_{2} \leqslant \ldots \leqslant \lambda_{N}$ for the spectrum of A, $x_{1, n}<x_{2, n}<\ldots<x_{n, n}$ for the nth Ritz values, then

$$
\begin{aligned}
& x_{j, n+1}<x_{j, n}<x_{j+1, n+1} \\
& \lambda_{1} \leqslant x_{j, n} \leqslant \lambda_{N} \\
& \forall \kappa<n \exists k: \quad x_{\kappa, n} \leqslant \lambda_{k} \leqslant x_{\kappa+1, n}
\end{aligned}
$$

Approaching eigenvalues by Ritz values? Which ones?

An example for convergence of Ritz values

100 equidistant eigenvalues in $[0,1]$. We draw vertically the nth Ritz values for $n=1,2, \ldots, 100$. A Ritz value is red if closer than 10^{-3} to some eigenvalue.

B. Beckermann

An example for convergence of Ritz values (continued)

Observations:

- In most of the cases (up to some "accidents"): once there is a Ritz value close to an eigenvalue λ_{j}, this λ_{j} is well approximated also for larger n.
We say that a Ritz value "converged".
More precisely, one can show that that for $x \in \Lambda\left(J_{n}\right), y \in \Lambda\left(J_{n+1}\right)$

$$
\max \{\operatorname{dist}(x, \Lambda(A)), \operatorname{dist}(y, \Lambda(A))\} \leqslant 2 \sqrt{|x-y|\left(\lambda_{\max }(A)-\lambda_{\min }(A)\right)} .
$$

- Ritz values closer to 0,1 seem to converge faster.
- Some particular black line (half circle) seems to separate the converged and the non-converged Ritz values.

Trefethen \& Bau '97, Kuijlaars '00, BB
B. Beckermann

An example for convergence of Ritz values (continued)

Observations:

- In most of the cases (up to some "accidents"): once there is a Ritz value close to an eigenvalue λ_{j}, this λ_{j} is well approximated also for larger n. We say that a Ritz value "converged".
More precisely, one can show that that for $x \in \Lambda\left(J_{n}\right), y \in \Lambda\left(J_{n+1}\right)$
$\max \{\operatorname{dist}(x, \Lambda(A)), \operatorname{dist}(y, \Lambda(A))\} \leqslant 2 \sqrt{|x-y|\left(\lambda_{\max }(A)-\lambda_{\min }(A)\right)}$.
- Ritz values closer to 0,1 seem to converge faster.
- Some particular black line (half circle) seems to separate the converged and the non-converged Ritz values.

Trefethen \& Bau '97, Kuijlaars '00, BB
B. Beckermann

An example for convergence of Ritz values (continued)

Observations:

- In most of the cases (up to some "accidents"): once there is a Ritz value close to an eigenvalue λ_{j}, this λ_{j} is well approximated also for larger n. We say that a Ritz value "converged".
More precisely, one can show that that for $x \in \Lambda\left(J_{n}\right), y \in \Lambda\left(J_{n+1}\right)$

$$
\max \{\operatorname{dist}(x, \Lambda(A)), \operatorname{dist}(y, \Lambda(A))\} \leqslant 2 \sqrt{|x-y|\left(\lambda_{\max }(A)-\lambda_{\min }(A)\right)} .
$$

- Ritz values closer to 0,1 seem to converge faster.
- Some particular black line (half circle) seems to separate the converged and the non-converged Ritz values.

Trefethen \& Bau '97, Kuijlaars '00, BB
B. Beckermann

An example for convergence of Ritz values (continued)

Observations:

- In most of the cases (up to some "accidents"): once there is a Ritz value close to an eigenvalue λ_{j}, this λ_{j} is well approximated also for larger n.
We say that a Ritz value "converged".
More precisely, one can show that that for $x \in \Lambda\left(J_{n}\right), y \in \Lambda\left(J_{n+1}\right)$

$$
\max \{\operatorname{dist}(x, \Lambda(A)), \operatorname{dist}(y, \Lambda(A))\} \leqslant 2 \sqrt{|x-y|\left(\lambda_{\max }(A)-\lambda_{\min }(A)\right)} .
$$

- Ritz values closer to 0,1 seem to converge faster.
- Some particular black line (half circle) seems to separate the converged and the non-converged Ritz values.

Trefethen \& Bau '97, Kuijlaars '00, BB

An example for convergence of Ritz values (continued)

Observations:

- In most of the cases (up to some "accidents"): once there is a Ritz value close to an eigenvalue λ_{j}, this λ_{j} is well approximated also for larger n. We say that a Ritz value "converged".
More precisely, one can show that that for $x \in \Lambda\left(J_{n}\right), y \in \Lambda\left(J_{n+1}\right)$

$$
\max \{\operatorname{dist}(x, \Lambda(A)), \operatorname{dist}(y, \Lambda(A))\} \leqslant 2 \sqrt{|x-y|\left(\lambda_{\max }(A)-\lambda_{\min }(A)\right)} .
$$

- Ritz values closer to 0,1 seem to converge faster.
- Some particular black line (half circle) seems to separate the converged and the non-converged Ritz values.

Trefethen \& Bau '97, Kuijlaars '00, BB

An example for convergence of Ritz values (continued)

Observations:

- In most of the cases (up to some "accidents"): once there is a Ritz value close to an eigenvalue λ_{j}, this λ_{j} is well approximated also for larger n. We say that a Ritz value "converged".
More precisely, one can show that that for $x \in \Lambda\left(J_{n}\right), y \in \Lambda\left(J_{n+1}\right)$

$$
\max \{\operatorname{dist}(x, \Lambda(A)), \operatorname{dist}(y, \Lambda(A))\} \leqslant 2 \sqrt{|x-y|\left(\lambda_{\max }(A)-\lambda_{\min }(A)\right)}
$$

- Ritz values closer to 0,1 seem to converge faster.
- Some particular black line (half circle) seems to separate the converged and the non-converged Ritz values.

Trefethen \& Bau '97, Kuijlaars '00, BB

Ritz and CG/GMRES

Linear algebra interpretation:
Eigenvalues matched by Ritz values should no longer be taken into account for CG convergence history
\Longrightarrow decreasing " marginal condition number" ?!
B. Beckermann

Kaniel-Page-Saad estimate for extremal eigenvalues

$$
x_{1, n}-\lambda_{1} \leqslant \frac{\lambda_{N}-\lambda_{1}}{T_{n-1}\left(1+2 \frac{\lambda_{2}-\lambda_{1}}{\lambda_{N}-\lambda_{2}}\right)^{2}} \frac{1}{\left|\beta_{1}\right|^{2}} \sum_{j=2}^{N}\left|\beta_{j}\right|^{2}
$$

with T_{n} being the nth Chebyshev polynomial of the first kind.
Right-hand side small if λ_{1} "far" from rest of spectrum, $\left|\beta_{1}\right|$ not too small.

New bounds also for inner eigenvalues

If $\lambda_{k} \leqslant x_{1, n}$ then $x_{1, n}-\lambda_{k}$ equals

$$
\min \left\{\frac{\sum_{j \neq k}\left|\beta_{j}\right|^{2}\left(\lambda_{j}-x_{1, n}\right)\left|q\left(\lambda_{j}\right)\right|^{2}}{\left|\beta_{k}\right|^{2}\left|q\left(\lambda_{k}\right)\right|^{2}}: \operatorname{deg} q<n, q\left(\lambda_{k}\right) \neq 0\right\} .
$$

Here the minimum is attained for the polynomial $q(x)=p_{n}(x) /\left(x-x_{1, n}\right)$.
If $\lambda_{k} \in\left[x_{1, n}, x_{n, n}\right]$, say, $x_{\kappa-1, n} \leqslant \lambda_{k} \leqslant x_{\kappa, n}$, then $\left(\lambda_{k}-x_{\kappa-1, n}\right)\left(x_{\kappa, n}-\lambda_{k}\right)$ equals

Here the minimum is attained for the polynomial $q(x)=p_{n}(x) /\left[\left(x-x_{\kappa-1, n}\right)(x-\right.$ $\left.x_{\kappa, n}\right)$]. Cf. 1.4.3, §3.2, BB '00b

New bounds also for inner eigenvalues

If $\lambda_{k} \leqslant x_{1, n}$ then $x_{1, n}-\lambda_{k}$ equals

$$
\min \left\{\frac{\sum_{j \neq k}\left|\beta_{j}\right|^{2}\left(\lambda_{j}-x_{1, n}\right)\left|q\left(\lambda_{j}\right)\right|^{2}}{\left|\beta_{k}\right|^{2}\left|q\left(\lambda_{k}\right)\right|^{2}}: \operatorname{deg} q<n, q\left(\lambda_{k}\right) \neq 0\right\} .
$$

Here the minimum is attained for the polynomial $q(x)=p_{n}(x) /\left(x-x_{1, n}\right)$.
If $\lambda_{k} \in\left[x_{1, n}, x_{n, n}\right]$, say, $x_{\kappa-1, n} \leqslant \lambda_{k} \leqslant x_{\kappa, n}$, then $\left(\lambda_{k}-x_{\kappa-1, n}\right)\left(x_{\kappa, n}-\lambda_{k}\right)$ equals

$$
\min \left\{\frac{\sum_{j \neq k}\left|\beta_{j}\right|^{2}\left(\lambda_{j}-x_{\kappa-1, n}\right)\left(\lambda_{j}-x_{\kappa, n}\right)\left|q\left(\lambda_{j}\right)\right|^{2}}{\left|\beta_{k}\right|^{2}\left|q\left(\lambda_{k}\right)\right|^{2}}: \operatorname{deg} q<n-1,\left|q\left(\lambda_{k}\right)\right| \neq 0\right\} .
$$

Here the minimum is attained for the polynomial $q(x)=p_{n}(x) /\left[\left(x-x_{\kappa-1, n}\right)(x-\right.$ $\left.\left.x_{\kappa, n}\right)\right]$. Cf. 1.4.3, §3.2, BB '00b

Idea of proof for this (second) bound

Step 1: Gaussian quadrature: if $\operatorname{deg} P \leqslant 2 n-1$ then

$$
\prec 1, P \succ=\sum_{j=1}^{n} \frac{P\left(x_{j, n}\right)}{K_{n, 2}\left(x_{j, n}, x_{j, n}\right)} .
$$

Step 2: positivity of a certain polynomial: let

$$
P(z)=\left(z-x_{\kappa-1, n}\right)\left(z-x_{\kappa, n}\right) q(z) \overline{q(\bar{z})}, \quad \operatorname{deg} q \leqslant n-2
$$

then $\prec 1, P \succ \geqslant 0$ (and $=0$ for the given polynomial q).
Step 3: solve

$$
\prec 1, P \succ=\sum_{j}\left|\beta_{j}\right|^{2} P\left(\lambda_{j}\right) \geqslant 0
$$

for the left hand term occurring in the assertion.
B. Beckermann

Idea of proof for this (second) bound

Step 1: Gaussian quadrature: if $\operatorname{deg} P \leqslant 2 n-1$ then

$$
\prec 1, P \succ=\sum_{j=1}^{n} \frac{P\left(x_{j, n}\right)}{K_{n, 2}\left(x_{j, n}, x_{j, n}\right)} .
$$

Step 2: positivity of a certain polynomial: let

$$
P(z)=\left(z-x_{\kappa-1, n}\right)\left(z-x_{\kappa, n}\right) q(z) \overline{q(\bar{z})}, \quad \operatorname{deg} q \leqslant n-2
$$

then $\prec 1, P \succ \geqslant 0$ (and $=0$ for the given polynomial q).
Step 3: solve

$$
\prec 1, P \succ=\sum_{j}\left|\beta_{j}\right|^{2} P\left(\lambda_{j}\right) \geqslant 0
$$

for the left hand term occurring in the assertion.

Idea of proof for this (second) bound

Step 1: Gaussian quadrature: if $\operatorname{deg} P \leqslant 2 n-1$ then

$$
\prec 1, P \succ=\sum_{j=1}^{n} \frac{P\left(x_{j, n}\right)}{K_{n, 2}\left(x_{j, n}, x_{j, n}\right)} .
$$

Step 2: positivity of a certain polynomial: let

$$
P(z)=\left(z-x_{\kappa-1, n}\right)\left(z-x_{\kappa, n}\right) q(z) \overline{q(\bar{z})}, \quad \operatorname{deg} q \leqslant n-2
$$

then $\prec 1, P \succ \geqslant 0$ (and $=0$ for the given polynomial q).
Step 3: solve

$$
\prec 1, P \succ=\sum_{j}\left|\beta_{j}\right|^{2} P\left(\lambda_{j}\right) \geqslant 0
$$

for the left hand term occurring in the assertion.

L_{∞} counterpart

If $\lambda_{k} \leqslant x_{1, n}$ then

$$
x_{1, n}-\lambda_{k} \leqslant\left(\lambda_{N}-\lambda_{1}\right) E_{n-1}\left(\lambda_{k}, \Lambda(A) \backslash\left\{\lambda_{k}\right\}\right)^{2} \frac{1}{\left|\beta_{1}\right|^{2}} \sum_{j \neq k}\left|\beta_{j}\right|^{2}
$$

If $\lambda_{k} \in\left[x_{1, n}, x_{n, n}\right]$, say, $x_{\kappa-1, n} \leqslant \lambda_{k} \leqslant x_{\kappa, n}$, then

$$
\left(\lambda_{k}-x_{\kappa-1, n}\right)\left(x_{\kappa, n}-\lambda_{k}\right) \leqslant\left(\lambda_{N}-\lambda_{1}\right)^{2} E_{n-2}\left(\lambda_{k}, \Lambda(A) \backslash\left\{\lambda_{k}\right\}\right)^{2} \frac{1}{\left|\beta_{k}\right|^{2}} \sum_{j \neq k}\left|\beta_{j}\right|^{2} .
$$

Proof
Right-hand side is small if $\left|\beta_{k}\right|$ is not "too small" and $\Lambda(A)$ is not "too dense" around λ_{k}.
B. Beckermann

L_{∞} counterpart

If $\lambda_{k} \leqslant x_{1, n}$ then

$$
x_{1, n}-\lambda_{k} \leqslant\left(\lambda_{N}-\lambda_{1}\right) E_{n-1}\left(\lambda_{k}, \Lambda(A) \backslash\left\{\lambda_{k}\right\}\right)^{2} \frac{1}{\left|\beta_{1}\right|^{2}} \sum_{j \neq k}\left|\beta_{j}\right|^{2}
$$

If $\lambda_{k} \in\left[x_{1, n}, x_{n, n}\right]$, say, $x_{\kappa-1, n} \leqslant \lambda_{k} \leqslant x_{\kappa, n}$, then

$$
\left(\lambda_{k}-x_{\kappa-1, n}\right)\left(x_{\kappa, n}-\lambda_{k}\right) \leqslant\left(\lambda_{N}-\lambda_{1}\right)^{2} E_{n-2}\left(\lambda_{k}, \Lambda(A) \backslash\left\{\lambda_{k}\right\}\right)^{2} \frac{1}{\left|\beta_{k}\right|^{2}} \sum_{j \neq k}\left|\beta_{j}\right|^{2} .
$$

Proof

Right-hand side is small if $\left|\beta_{k}\right|$ is not "too small" and $\Lambda(A)$ is not "too dense" around λ_{k}.

L_{∞} counterpart

If $\lambda_{k} \leqslant x_{1, n}$ then

$$
x_{1, n}-\lambda_{k} \leqslant\left(\lambda_{N}-\lambda_{1}\right) E_{n-1}\left(\lambda_{k}, \Lambda(A) \backslash\left\{\lambda_{k}\right\}\right)^{2} \frac{1}{\left|\beta_{1}\right|^{2}} \sum_{j \neq k}\left|\beta_{j}\right|^{2}
$$

If $\lambda_{k} \in\left[x_{1, n}, x_{n, n}\right]$, say, $x_{\kappa-1, n} \leqslant \lambda_{k} \leqslant x_{\kappa, n}$, then

$$
\left(\lambda_{k}-x_{\kappa-1, n}\right)\left(x_{\kappa, n}-\lambda_{k}\right) \leqslant\left(\lambda_{N}-\lambda_{1}\right)^{2} E_{n-2}\left(\lambda_{k}, \Lambda(A) \backslash\left\{\lambda_{k}\right\}\right)^{2} \frac{1}{\left|\beta_{k}\right|^{2}} \sum_{j \neq k}\left|\beta_{j}\right|^{2} .
$$

Proof

Right-hand side is small if $\left|\beta_{k}\right|$ is not "too small" and $\Lambda(A)$ is not "too dense" around λ_{k}.

What we've learned so far

- Lanczos, CG and GMRES residuals can be expressed in terms of discrete OP
- their error can be bounded in terms of "classical" discrete L_{2} or L_{∞} extremal problems
- Ritz values are just zeros of discrete OP, they should approach set of EV = support of measure of orthogonality
- the distance of an eigenvalue to the set of Ritz values can be bounded in terms of discrete L_{2} or L_{∞} extremal problems

Logarithmic potential theory with constraint

- Motivation, link to discrete orthogonal polynomials
- Definition of Krylov subspace methods, polynomial language
- Logarithmic potential theory (with constraint)
- Asymptotics of discrete orthogonal polynomials
- Rate of convergence of Krylov subspace methods and Ritz values
- Further examples, Applications from PDE
B. Beckermann

Basic definitions

$\mathcal{M}_{t}(\Sigma)$: set of Borel measures μ with support $\operatorname{supp}(\mu) \subset \Sigma(\Sigma$ compact $)$ and mass $\|\mu\|:=\mu(\Sigma)=t$.

Logarithmic potential and the energy of a measure

$$
U^{\mu}(z)=\int \log \left(\frac{1}{|x-z|}\right) d \mu(x), \quad I(\mu)=\iint \log \left(\frac{1}{|x-y|}\right) d \mu(x) d \mu(y)
$$

External field $Q \in \mathcal{C}(\Sigma)$: weighted energy $I^{Q}(\mu)=I(\mu)+2 \int Q d \mu$.
Why logarithmic potentials?
$P(z)=\prod_{j=1}^{n}\left(z-z_{j}\right), \quad \nu_{N}(P)=\frac{1}{N} \sum_{j=1}^{n} \delta_{z_{j}} \quad \Longrightarrow \quad-\log \left(|P(z)|^{1 / N}\right)=U^{\nu_{N}(P)}(z)$, and discrete measures are dense in $\mathcal{M}_{t}(\Sigma)$.

Basic definitions

$\mathcal{M}_{t}(\Sigma)$: set of Borel measures μ with support $\operatorname{supp}(\mu) \subset \Sigma(\Sigma$ compact $)$ and mass $\|\mu\|:=\mu(\Sigma)=t$.

Logarithmic potential and the energy of a measure

$$
U^{\mu}(z)=\int \log \left(\frac{1}{|x-z|}\right) d \mu(x), \quad I(\mu)=\iint \log \left(\frac{1}{|x-y|}\right) d \mu(x) d \mu(y)
$$

External field $Q \in \mathcal{C}(\Sigma)$: weighted energy $I^{Q}(\mu)=I(\mu)+2 \int Q d \mu$.
Why logarithmic potentials?
$P(z)=\prod_{j=1}^{n}\left(z-z_{j}\right), \quad \nu_{N}(P)=\frac{1}{N} \sum_{j=1}^{n} \delta_{z_{j}} \quad \Longrightarrow \quad-\log \left(|P(z)|^{1 / N}\right)=U^{\nu_{N}(P)}(z)$,
and discrete measures are dense in $\mathcal{M}_{t}(\Sigma)$.

Basic definitions

$\mathcal{M}_{t}(\Sigma)$: set of Borel measures μ with support $\operatorname{supp}(\mu) \subset \Sigma(\Sigma$ compact $)$ and mass $\|\mu\|:=\mu(\Sigma)=t$.

Logarithmic potential and the energy of a measure

$$
U^{\mu}(z)=\int \log \left(\frac{1}{|x-z|}\right) d \mu(x), \quad I(\mu)=\iint \log \left(\frac{1}{|x-y|}\right) d \mu(x) d \mu(y)
$$

External field $Q \in \mathcal{C}(\Sigma)$: weighted energy $I^{Q}(\mu)=I(\mu)+2 \int Q d \mu$.
Why logarithmic potentials? $P(z)=\prod_{j=1}^{n}\left(z-z_{j}\right), \quad \nu_{N}(P)=\frac{1}{N} \sum_{j=1}^{n} \delta_{z_{j}} \quad \Longrightarrow \quad-\log \left(|P(z)|^{1 / N}\right)=U^{\nu_{N}(P)}(z)$, and discrete measures are dense in $\mathcal{M}_{t}(\Sigma)$.

Basic definitions

$\mathcal{M}_{t}(\Sigma)$: set of Borel measures μ with support $\operatorname{supp}(\mu) \subset \Sigma(\Sigma$ compact $)$ and mass $\|\mu\|:=\mu(\Sigma)=t$.

Logarithmic potential and the energy of a measure

$$
U^{\mu}(z)=\int \log \left(\frac{1}{|x-z|}\right) d \mu(x), \quad I(\mu)=\iint \log \left(\frac{1}{|x-y|}\right) d \mu(x) d \mu(y)
$$

External field $Q \in \mathcal{C}(\Sigma)$: weighted energy $I^{Q}(\mu)=I(\mu)+2 \int Q d \mu$.
Why logarithmic potentials?

$$
P(z)=\prod_{j=1}^{n}\left(z-z_{j}\right), \quad \nu_{N}(P)=\frac{1}{N} \sum_{j=1}^{n} \delta_{z_{j}} \quad \Longrightarrow \quad-\log \left(|P(z)|^{1 / N}\right)=U^{\nu_{N}(P)}(z),
$$

and discrete measures are dense in $\mathcal{M}_{t}(\Sigma)$.

Electrostatic iterpretation

- μ : electric charge in \mathbb{R}^{2} (or cylinder-symmetric in \mathbb{R}^{3}).
- $I(\mu)$ electric energy, U^{μ} electric potential of a positive charge μ.
- Minimize $I(\mu), \mu \in \mathcal{M}_{1}(\Sigma)$: find electrostatic equilibrium of unit charge on conductor Σ (Faraday principle).
- Minimize $I^{Q}(\mu), \mu \in \mathcal{M}_{1}(\Sigma)$: presence of an external force Q coming from, e.g., a negative/positive fixed charge on some isolator (problem of balayage).

- Adding a constraint $\mu \leqslant \sigma$: maximum charge constraint σ.

Electrostatic iterpretation

- μ : electric charge in \mathbb{R}^{2} (or cylinder-symmetric in \mathbb{R}^{3}).
- $I(\mu)$ electric energy, U^{μ} electric potential of a positive charge μ.
- Minimize $I(\mu), \mu \in \mathcal{M}_{1}(\Sigma)$: find electrostatic equilibrium of unit charge on conductor Σ (Faraday principle).
- Minimize $I^{Q}(\mu), \mu \in \mathcal{M}_{1}(\Sigma)$: presence of an external force Q coming from, e.g., a negative/positive fixed charge on some isolator (problem of balayage).

- Adding a constraint $\mu \leqslant \sigma$: maximum charge constraint σ.

Electrostatic iterpretation

- μ : electric charge in \mathbb{R}^{2} (or cylinder-symmetric in \mathbb{R}^{3}).
- $I(\mu)$ electric energy, U^{μ} electric potential of a positive charge μ.
- Minimize $I(\mu), \mu \in \mathcal{M}_{1}(\Sigma)$: find electrostatic equilibrium of unit charge on conductor Σ (Faraday principle).
- Minimize $I^{Q}(\mu), \mu \in \mathcal{M}_{1}(\Sigma)$: presence of an external force Q coming from, e.g., a negative/ positive fixed charge on some isolator (problem of balayage).

- Adding a constraint $\mu \leqslant \sigma$: maximum charge constraint σ.

Electrostatic iterpretation

- μ : electric charge in \mathbb{R}^{2} (or cylinder-symmetric in \mathbb{R}^{3}).
- $I(\mu)$ electric energy, U^{μ} electric potential of a positive charge μ.
- Minimize $I(\mu), \mu \in \mathcal{M}_{1}(\Sigma)$: find electrostatic equilibrium of unit charge on conductor Σ (Faraday principle).
- Minimize $I^{Q}(\mu), \mu \in \mathcal{M}_{1}(\Sigma)$: presence of an external force Q coming from, e.g., a negative/positive fixed charge on some isolator (problem of balayage).

- Adding a constraint $\mu \leqslant \sigma$: maximum charge constraint σ.

Electrostatic iterpretation

- μ : electric charge in \mathbb{R}^{2} (or cylinder-symmetric in \mathbb{R}^{3}).
- $I(\mu)$ electric energy, U^{μ} electric potential of a positive charge μ.
- Minimize $I(\mu), \mu \in \mathcal{M}_{1}(\Sigma)$: find electrostatic equilibrium of unit charge on conductor Σ (Faraday principle).
- Minimize $I^{Q}(\mu), \mu \in \mathcal{M}_{1}(\Sigma)$: presence of an external force Q coming from, e.g., a negative/positive fixed charge on some isolator (problem of balayage).

- Adding a constraint $\mu \leqslant \sigma$: maximum charge constraint σ.

Equilibrium with external field without constraint

Let Σ compact, " regular", $Q \in \mathcal{C}(\Sigma)$.
There exists a unique minimizer called $\mu_{t, Q, \Sigma}$ for the problem

$$
\min \left\{I^{Q}(\mu): \mu \in \mathcal{M}_{t}(\Sigma)\right\}
$$

Equilibrium conditions: with $\mu=\mu_{t, Q, \Sigma}, w=w_{t, Q, \Sigma}$ there holds

$$
\begin{array}{ll}
U^{\mu}(z)+Q(z) \geqslant w & \text { for } z \in \Sigma, \text { and } \\
U^{\mu}(z)+Q(z) \leqslant w & \text { for } z \in \operatorname{supp}(\mu) . \tag{2}
\end{array}
$$

Conversely, if (1) and (2) for some measure $\mu \in \mathcal{M}_{t}(\Sigma)$ then $\mu=\mu_{t, Q, \Sigma}$.

- Green function $(Q=0)$:

$$
g_{\Sigma}(z)=w_{t, 0, \Sigma}-U^{\mu_{t, 0, \Sigma}}(z)=\log (|z|)-\log (\operatorname{cap}(\Sigma))+o(1)_{|z| \rightarrow \infty}
$$

- Weighted Bernstein-Walsh inequality, c.f. 2.1.8, Saff \& Totik
- nth root asymptotics for Hermite polynomials, weights $w(z)^{n}$, c.f. 2.1.11

Equilibrium with external field without constraint

Let Σ compact, " regular", $Q \in \mathcal{C}(\Sigma)$.
There exists a unique minimizer called $\mu_{t, Q, \Sigma}$ for the problem

$$
\min \left\{I^{Q}(\mu): \mu \in \mathcal{M}_{t}(\Sigma)\right\}
$$

Equilibrium conditions: with $\mu=\mu_{t, Q, \Sigma}, w=w_{t, Q, \Sigma}$ there holds

$$
\begin{array}{ll}
U^{\mu}(z)+Q(z) \geqslant w & \text { for } z \in \Sigma, \text { and } \\
U^{\mu}(z)+Q(z) \leqslant w & \text { for } z \in \operatorname{supp}(\mu) . \tag{2}
\end{array}
$$

Conversely, if (1) and (2) for some measure $\mu \in \mathcal{M}_{t}(\Sigma)$ then $\mu=\mu_{t, Q, \Sigma}$.

- Green function $(Q=0)$:

$$
g_{\Sigma}(z)=w_{t, 0, \Sigma}-U^{\mu_{t, 0, \Sigma}}(z)=\log (|z|)-\log (\operatorname{cap}(\Sigma))+o(1)_{|z| \rightarrow \infty} .
$$

- Weighted Bernstein-Walsh inequality, c.f. 2.1.8, Saff \& Totik
- nth root asymptotics for Hermite polynomials, weights $w(z)^{n}$, c.f. 2.1.11

Equilibrium with external field without constraint

Let Σ compact, " regular", $Q \in \mathcal{C}(\Sigma)$.
There exists a unique minimizer called $\mu_{t, Q, \Sigma}$ for the problem

$$
\min \left\{I^{Q}(\mu): \mu \in \mathcal{M}_{t}(\Sigma)\right\}
$$

Equilibrium conditions: with $\mu=\mu_{t, Q, \Sigma}, w=w_{t, Q, \Sigma}$ there holds

$$
\begin{array}{ll}
U^{\mu}(z)+Q(z) \geqslant w & \text { for } z \in \Sigma \text {, and } \\
U^{\mu}(z)+Q(z) \leqslant w & \text { for } z \in \operatorname{supp}(\mu) . \tag{2}
\end{array}
$$

Conversely, if (1) and (2) for some measure $\mu \in \mathcal{M}_{t}(\Sigma)$ then $\mu=\mu_{t, Q, \Sigma}$.

- Green function $(Q=0)$: $g_{\Sigma}(z)=w_{t, 0, \Sigma}-U^{\mu_{t, 0, \Sigma}}(z)=\log (|z|)-\log (\operatorname{cap}(\Sigma))+o(1)_{|z| \rightarrow \infty}$.
- Weighted Bernstein-Walsh inequality, c.f. 2.1.8, Saff \& Totik
- nth root asymptotics for Hermite polynomials, weights $w(z)^{n}$, c.f. 2.1.11

Equilibrium with external field without constraint

Let Σ compact, " regular", $Q \in \mathcal{C}(\Sigma)$.
There exists a unique minimizer called $\mu_{t, Q, \Sigma}$ for the problem

$$
\min \left\{I^{Q}(\mu): \mu \in \mathcal{M}_{t}(\Sigma)\right\}
$$

Equilibrium conditions: with $\mu=\mu_{t, Q, \Sigma}, w=w_{t, Q, \Sigma}$ there holds

$$
\begin{array}{ll}
U^{\mu}(z)+Q(z) \geqslant w & \text { for } z \in \Sigma \text {, and } \\
U^{\mu}(z)+Q(z) \leqslant w & \text { for } z \in \operatorname{supp}(\mu) . \tag{2}
\end{array}
$$

Conversely, if (1) and (2) for some measure $\mu \in \mathcal{M}_{t}(\Sigma)$ then $\mu=\mu_{t, Q, \Sigma}$.

- Green function $(Q=0)$: $g_{\Sigma}(z)=w_{t, 0, \Sigma}-U^{\mu_{t, 0, \Sigma}}(z)=\log (|z|)-\log (\operatorname{cap}(\Sigma))+o(1)_{|z| \rightarrow \infty}$.
- Weighted Bernstein-Walsh inequality, c.f. 2.1.8, Saff \& Totik
- nth root asymptotics for Hermite polynomials, weights $w(z)^{n}$, c.f. 2.1.11

Equilibrium with external field without constraint

Let Σ compact, " regular", $Q \in \mathcal{C}(\Sigma)$.
There exists a unique minimizer called $\mu_{t, Q, \Sigma}$ for the problem

$$
\min \left\{I^{Q}(\mu): \mu \in \mathcal{M}_{t}(\Sigma)\right\}
$$

Equilibrium conditions: with $\mu=\mu_{t, Q, \Sigma}, w=w_{t, Q, \Sigma}$ there holds

$$
\begin{array}{ll}
U^{\mu}(z)+Q(z) \geqslant w & \text { for } z \in \Sigma, \text { and } \\
U^{\mu}(z)+Q(z) \leqslant w & \text { for } z \in \operatorname{supp}(\mu) . \tag{2}
\end{array}
$$

Conversely, if (1) and (2) for some measure $\mu \in \mathcal{M}_{t}(\Sigma)$ then $\mu=\mu_{t, Q, \Sigma}$.

- Green function ($Q=0$):

$$
g_{\Sigma}(z)=w_{t, 0, \Sigma}-U^{\mu_{t, 0, \Sigma}}(z)=\log (|z|)-\log (\operatorname{cap}(\Sigma))+o(1)_{|z| \rightarrow \infty} .
$$

- Weighted Bernstein-Walsh inequality, c.f. 2.1.8, Saff \& Totik
- nth root asymptotics for Hermite polynomials, weights $w(z)^{n}$, c.f. 2.1.11.

Equilibrium with external field with constraint

Let Σ compact, $Q \in \mathcal{C}(\Sigma), \sigma \in \mathcal{M}(\Sigma)$ with $U^{\sigma} \in \mathcal{C}(\Sigma)$.
There exists a unique minimizer called $\mu_{t, Q, \sigma}$ for the problem

$$
\min \left\{I^{Q}(\mu): \mu \in \mathcal{M}_{t}(\Sigma), \mu \leqslant \sigma\right\} .
$$

Equilibrium conditions: with $\mu=\mu_{t, Q, \sigma}, w=w_{t, Q, \sigma}$ there holds

$$
\begin{array}{ll}
U^{\mu}(z)+Q(z) \geqslant w & \text { for } z \in \operatorname{supp}(\sigma-\mu), \text { and } \\
U^{\mu}(z)+Q(z) \leqslant w & \text { for } z \in \operatorname{supp}(\mu) . \tag{4}
\end{array}
$$

Conversely, if (3) and (4) for some measure $\mu \in \mathcal{M}_{t}(\Sigma)$ with $\mu \leqslant \sigma$ then $\mu=\mu_{t, Q, \Sigma}$.
C.f. 2.2.1, Rakhmanov 96, Dragnev \& Saff '97
Σ possibly not compact, but then assumption on decay of $Q(z)$ for $|z| \rightarrow \infty$.
B. Beckermann
first|-1|back|goto| +1 |last|toc

Equilibrium with external field with constraint

Let Σ compact, $Q \in \mathcal{C}(\Sigma), \sigma \in \mathcal{M}(\Sigma)$ with $U^{\sigma} \in \mathcal{C}(\Sigma)$.
There exists a unique minimizer called $\mu_{t, Q, \sigma}$ for the problem

$$
\min \left\{I^{Q}(\mu): \mu \in \mathcal{M}_{t}(\Sigma), \mu \leqslant \sigma\right\} .
$$

Equilibrium conditions: with $\mu=\mu_{t, Q, \sigma}, w=w_{t, Q, \sigma}$ there holds

$$
\begin{array}{ll}
U^{\mu}(z)+Q(z) \geqslant w & \text { for } z \in \operatorname{supp}(\sigma-\mu), \text { and } \\
U^{\mu}(z)+Q(z) \leqslant w & \text { for } z \in \operatorname{supp}(\mu) \tag{4}
\end{array}
$$

Conversely, if (3) and (4) for some measure $\mu \in \mathcal{M}_{t}(\Sigma)$ with $\mu \leqslant \sigma$ then $\mu=\mu_{t, Q, \Sigma}$.
C.f. 2.2.1, Rakhmanov 96, Dragnev \& Saff '97
Σ possibly not compact, but then assumption on decay of $Q(z)$ for $|z| \rightarrow \infty$.
B. Beckermann

Equilibrium with external field with constraint

Let Σ compact, $Q \in \mathcal{C}(\Sigma), \sigma \in \mathcal{M}(\Sigma)$ with $U^{\sigma} \in \mathcal{C}(\Sigma)$.
There exists a unique minimizer called $\mu_{t, Q, \sigma}$ for the problem

$$
\min \left\{I^{Q}(\mu): \mu \in \mathcal{M}_{t}(\Sigma), \mu \leqslant \sigma\right\} .
$$

Equilibrium conditions: with $\mu=\mu_{t, Q, \sigma}, w=w_{t, Q, \sigma}$ there holds

$$
\begin{array}{ll}
U^{\mu}(z)+Q(z) \geqslant w & \text { for } z \in \operatorname{supp}(\sigma-\mu), \text { and } \\
U^{\mu}(z)+Q(z) \leqslant w & \text { for } z \in \operatorname{supp}(\mu) \tag{4}
\end{array}
$$

Conversely, if (3) and (4) for some measure $\mu \in \mathcal{M}_{t}(\Sigma)$ with $\mu \leqslant \sigma$ then $\mu=\mu_{t, Q, \Sigma}$.
C.f. 2.2.1, Rakhmanov 96, Dragnev \& Saff '97
Σ possibly not compact, but then assumption on decay of $Q(z)$ for $|z| \rightarrow \infty$.
B. Beckermann

Equilibrium with external field with constraint

Let Σ compact, $Q \in \mathcal{C}(\Sigma), \sigma \in \mathcal{M}(\Sigma)$ with $U^{\sigma} \in \mathcal{C}(\Sigma)$.
There exists a unique minimizer called $\mu_{t, Q, \sigma}$ for the problem

$$
\min \left\{I^{Q}(\mu): \mu \in \mathcal{M}_{t}(\Sigma), \mu \leqslant \sigma\right\} .
$$

Equilibrium conditions: with $\mu=\mu_{t, Q, \sigma}, w=w_{t, Q, \sigma}$ there holds

$$
\begin{array}{ll}
U^{\mu}(z)+Q(z) \geqslant w & \text { for } z \in \operatorname{supp}(\sigma-\mu), \text { and } \\
U^{\mu}(z)+Q(z) \leqslant w & \text { for } z \in \operatorname{supp}(\mu) \tag{4}
\end{array}
$$

Conversely, if (3) and (4) for some measure $\mu \in \mathcal{M}_{t}(\Sigma)$ with $\mu \leqslant \sigma$ then $\mu=\mu_{t, Q, \Sigma}$.
Σ possibly not compact, but then assumption on decay of $Q(z)$ for $|z| \rightarrow \infty$.

Equilibrium with external field with constraint

Let Σ compact, $Q \in \mathcal{C}(\Sigma), \sigma \in \mathcal{M}(\Sigma)$ with $U^{\sigma} \in \mathcal{C}(\Sigma)$.
There exists a unique minimizer called $\mu_{t, Q, \sigma}$ for the problem

$$
\min \left\{I^{Q}(\mu): \mu \in \mathcal{M}_{t}(\Sigma), \mu \leqslant \sigma\right\}
$$

Equilibrium conditions: with $\mu=\mu_{t, Q, \sigma}, w=w_{t, Q, \sigma}$ there holds

$$
\begin{array}{ll}
U^{\mu}(z)+Q(z) \geqslant w & \text { for } z \in \operatorname{supp}(\sigma-\mu), \text { and } \\
U^{\mu}(z)+Q(z) \leqslant w & \text { for } z \in \operatorname{supp}(\mu) \tag{4}
\end{array}
$$

Conversely, if (3) and (4) for some measure $\mu \in \mathcal{M}_{t}(\Sigma)$ with $\mu \leqslant \sigma$ then $\mu=\mu_{t, Q, \Sigma}$.
C.f. 2.2.1, Rakhmanov 96, Dragnev \& Saff '97
Σ possibly not compact, but then assumption on decay of $Q(z)$ for $|z| \rightarrow \infty$.

Equilibrium with external field with constraint

Let Σ compact, $Q \in \mathcal{C}(\Sigma), \sigma \in \mathcal{M}(\Sigma)$ with $U^{\sigma} \in \mathcal{C}(\Sigma)$.
There exists a unique minimizer called $\mu_{t, Q, \sigma}$ for the problem

$$
\min \left\{I^{Q}(\mu): \mu \in \mathcal{M}_{t}(\Sigma), \mu \leqslant \sigma\right\} .
$$

Equilibrium conditions: with $\mu=\mu_{t, Q, \sigma}, w=w_{t, Q, \sigma}$ there holds

$$
\begin{array}{ll}
U^{\mu}(z)+Q(z) \geqslant w & \text { for } z \in \operatorname{supp}(\sigma-\mu), \text { and } \\
U^{\mu}(z)+Q(z) \leqslant w & \text { for } z \in \operatorname{supp}(\mu) \tag{4}
\end{array}
$$

Conversely, if (3) and (4) for some measure $\mu \in \mathcal{M}_{t}(\Sigma)$ with $\mu \leqslant \sigma$ then $\mu=\mu_{t, Q, \Sigma}$.

C.f. 2.2.1, Rakhmanov 96, Dragnev \& Saff '97

Σ possibly not compact, but then assumption on decay of $Q(z)$ for $|z| \rightarrow \infty$.

Constraint $=$ maximum charge

On the left: density of equilibrium measure for $Q=0, d \sigma=d x$ Lebesgue measure on $[0,1]$ and $t=0.95,0.8,0.5,0.3,0.1$.

Observations: $\operatorname{supp}\left(\mu_{t, 0, \sigma}\right)=\operatorname{supp}(\sigma), \operatorname{supp}\left(\sigma-\mu_{t, 0, \sigma}\right)$ decreases in t.

Idea of proof for the two theorems

Let $\mathcal{N} \subset \mathcal{M}_{t}(\Sigma)^{*}$ closed \& convex, and consider $\min \left\{I^{Q}(\mu): \mu \in \mathcal{N}\right\}$.
Step 1: existence of minimizer $\mu_{\mathcal{N}}$. Helly's principle and lower semi-continuity

$$
\mu_{n} \xrightarrow{*} \mu \quad \Longrightarrow \quad \liminf _{n} I^{Q}\left(\mu_{n}\right) \geqslant I^{Q}(\mu) .
$$

Step 2: uniqueness of minimizer $\mu_{\mathcal{N}}$. The map $\mathcal{N} \ni \mu \mapsto I^{Q}(\mu)$ is strictly convex.
Step 3: minimizer \Longrightarrow equilibrium. By convexity,

$$
\begin{equation*}
\forall \mu \in \mathcal{N}: \quad \int\left[U^{\mu_{\mathcal{N}}}+Q\right] d \mu_{\mathcal{N}} \leqslant \int\left[U^{\mu_{\mathcal{N}}}+Q\right] d \mu . \tag{5}
\end{equation*}
$$

Use also "Principle of domination" (c.f. 2.1.7)
Step 4: minimizer \Longleftarrow equilibrium. From equilibrium conditions we get (5), which uniquely characterizes minimizer.

Idea of proof for the two theorems

Let $\mathcal{N} \subset \mathcal{M}_{t}(\Sigma)^{*}$ closed \& convex, and consider $\min \left\{I^{Q}(\mu): \mu \in \mathcal{N}\right\}$.
Step 1: existence of minimizer $\mu_{\mathcal{N}}$. Helly's principle and lower semi-continuity

$$
\mu_{n} \stackrel{*}{\longrightarrow} \mu \quad \Longrightarrow \quad \liminf _{n} I^{Q}\left(\mu_{n}\right) \geqslant I^{Q}(\mu) .
$$

Step 2: uniqueness of minimizer $\mu_{\mathcal{N}}$. The map $\mathcal{N} \ni \mu \mapsto I^{Q}(\mu)$ is strictly convex.
Step 3: minimizer \Longrightarrow equilibrium. By convexity,

$$
\begin{equation*}
\forall \mu \in \mathcal{N}: \quad \int\left[U^{\mu_{\mathcal{N}}}+Q\right] d \mu_{\mathcal{N}} \leqslant \int\left[U^{\mu_{\mathcal{N}}}+Q\right] d \mu . \tag{5}
\end{equation*}
$$

Use also "Principle of domination" (c.f. 2.1.7)
Step 4: minimizer \Longleftarrow equilibrium. From equilibrium conditions we get (5), which uniquely characterizes minimizer.

Idea of proof for the two theorems

Let $\mathcal{N} \subset \mathcal{M}_{t}(\Sigma)^{*}$ closed \& convex, and consider $\min \left\{I^{Q}(\mu): \mu \in \mathcal{N}\right\}$.
Step 1: existence of minimizer $\mu_{\mathcal{N}}$. Helly's principle and lower semi-continuity

$$
\mu_{n} \stackrel{*}{\longrightarrow} \mu \quad \Longrightarrow \quad \liminf _{n} I^{Q}\left(\mu_{n}\right) \geqslant I^{Q}(\mu) .
$$

Step 2: uniqueness of minimizer $\mu_{\mathcal{N}}$. The map $\mathcal{N} \ni \mu \mapsto I^{Q}(\mu)$ is strictly convex.
Step 3: minimizer \Longrightarrow equilibrium. By convexity,

$$
\begin{equation*}
\forall \mu \in \mathcal{N}: \quad \int\left[U^{\mu_{\mathcal{N}}}+Q\right] d \mu_{\mathcal{N}} \leqslant \int\left[U^{\mu_{\mathcal{N}}}+Q\right] d \mu . \tag{5}
\end{equation*}
$$

Use also "Principle of domination" (c.f. 2.1.7)
Step 4: minimizer \Longleftarrow equilibrium. From equilibrium conditions we get (5), which uniquely characterizes minimizer.

Idea of proof for the two theorems

Let $\mathcal{N} \subset \mathcal{M}_{t}(\Sigma)^{*}$ closed \& convex, and consider $\min \left\{I^{Q}(\mu): \mu \in \mathcal{N}\right\}$.
Step 1: existence of minimizer $\mu_{\mathcal{N}}$. Helly's principle and lower semi-continuity

$$
\mu_{n} \stackrel{*}{\longrightarrow} \mu \quad \Longrightarrow \quad \liminf _{n} I^{Q}\left(\mu_{n}\right) \geqslant I^{Q}(\mu) .
$$

Step 2: uniqueness of minimizer $\mu_{\mathcal{N}}$. The map $\mathcal{N} \ni \mu \mapsto I^{Q}(\mu)$ is strictly convex. Step 3: minimizer \Longrightarrow equilibrium. By convexity,

$$
\begin{equation*}
\forall \mu \in \mathcal{N}: \quad \int\left[U^{\mu_{\mathcal{N}}}+Q\right] d \mu_{\mathcal{N}} \leqslant \int\left[U^{\mu_{\mathcal{N}}}+Q\right] d \mu \tag{5}
\end{equation*}
$$

Use also "Principle of domination" (c.f. 2.1.7).
Step 4: minimizer \Longleftarrow equilibrium. From equilibrium conditions we get (5), which uniquely characterizes minimizer.

Idea of proof for the two theorems

Let $\mathcal{N} \subset \mathcal{M}_{t}(\Sigma)^{*}$ closed \& convex, and consider $\min \left\{I^{Q}(\mu): \mu \in \mathcal{N}\right\}$.
Step 1: existence of minimizer $\mu_{\mathcal{N}}$. Helly's principle and lower semi-continuity

$$
\mu_{n} \stackrel{*}{\longrightarrow} \mu \quad \Longrightarrow \quad \liminf _{n} I^{Q}\left(\mu_{n}\right) \geqslant I^{Q}(\mu) .
$$

Step 2: uniqueness of minimizer $\mu_{\mathcal{N}}$. The $\operatorname{map} \mathcal{N} \ni \mu \mapsto I^{Q}(\mu)$ is strictly convex.
Step 3: minimizer \Longrightarrow equilibrium. By convexity,

$$
\begin{equation*}
\forall \mu \in \mathcal{N}: \quad \int\left[U^{\mu_{\mathcal{N}}}+Q\right] d \mu_{\mathcal{N}} \leqslant \int\left[U^{\mu_{\mathcal{N}}}+Q\right] d \mu \tag{5}
\end{equation*}
$$

Use also "Principle of domination" (c.f. 2.1.7).
Step 4: minimizer \Longleftarrow equilibrium. From equilibrium conditions we get (5), which uniquely characterizes minimizer.

How to find equilibrium measure ?

- Case with Q without σ (talk of AMF, work of Buyarov \& Rakhmanov '99): we have formulas for $\mu_{t, Q, \Sigma}, Q$ once we know $\operatorname{supp}\left(\mu_{t, Q, \Sigma}\right)$ for all t.
- Case with $Q=0$ and integral formula for σ : if $S(t)$ decreasing sets in t then

$$
\sigma(x)=\int_{0}^{\|\sigma\|} \omega_{S(t)}(x) d t \quad \Longrightarrow \quad w_{t, 0, \sigma}-U^{\mu_{t, 0, \sigma}}(z)=\int_{0}^{t} g_{S(\tau)}(z) d \tau
$$

where $\omega_{S}:=\mu_{1,0, S}$ Robin equilibrium distribution, c.f. 2.1.1, 2.2.6, 2.2.7.

- Case with $Q=0$ and known $S(t):=\operatorname{supp}\left(\sigma-\mu_{t, 0, \sigma}\right)(B B \& K u i j l a a r s ' 99)$

$$
w_{t, 0, \sigma}-U^{\mu_{t, 0, \sigma}}(z)=\int_{0}^{t} g_{S(\tau)}(z) d \tau
$$

For supp $(\sigma)=[A, B], S(t)=[a, b], A<a<b<B$ typical integral equations

$$
t=\int_{S(t)^{c}} \sqrt{\frac{b-u}{a-u}} d \sigma(u), \quad t=\int_{S(t)^{c}} \sqrt{\frac{a-u}{b-u}} d \sigma(u) .
$$

How to find equilibrium measure?

- Case with Q without σ (talk of AMF, work of Buyarov \& Rakhmanov '99): we have formulas for $\mu_{t, Q, \Sigma}, Q$ once we know $\operatorname{supp}\left(\mu_{t, Q, \Sigma}\right)$ for all t.
- Case with $Q=0$ and integral formula for σ : if $S(t)$ decreasing sets in t then

$$
\sigma(x)=\int_{0}^{\|\sigma\|} \omega_{S(t)}(x) d t \quad \Longrightarrow \quad w_{t, 0, \sigma}-U^{\mu_{t, 0, \sigma}}(z)=\int_{0}^{t} g_{S(\tau)}(z) d \tau
$$

where $\omega_{S}:=\mu_{1,0, S}$ Robin equilibrium distribution, c.f. 2.1.1, 2.2.6, 2.2.7.

- Case with $Q=0$ and known $S(t):=\operatorname{supp}\left(\sigma-\mu_{t, 0, \sigma}\right)(B B \& K u i j l a a r s ' 99)$

$$
w_{t, 0, \sigma}-U^{\mu_{t, 0, \sigma}}(z)=\int_{0}^{t} g_{S(\tau)}(z) d \tau
$$

For supp $(\sigma)=[A, B], S(t)=[a, b], A<a<b<B$ typical integral equations

$$
t=\int_{S(t)^{c}} \sqrt{\frac{b-u}{a-u}} d \sigma(u), \quad t=\int_{S(t)^{c}} \sqrt{\frac{a-u}{b-u}} d \sigma(u) .
$$

How to find equilibrium measure ?

- Case with Q without σ (talk of AMF, work of Buyarov \& Rakhmanov '99): we have formulas for $\mu_{t, Q, \Sigma}, Q$ once we know $\operatorname{supp}\left(\mu_{t, Q, \Sigma}\right)$ for all t.
- Case with $Q=0$ and integral formula for σ : if $S(t)$ decreasing sets in t then

$$
\sigma(x)=\int_{0}^{\|\sigma\|} \omega_{S(t)}(x) d t \quad \Longrightarrow \quad w_{t, 0, \sigma}-U^{\mu_{t, 0, \sigma}}(z)=\int_{0}^{t} g_{S(\tau)}(z) d \tau
$$

where $\omega_{S}:=\mu_{1,0, S}$ Robin equilibrium distribution, c.f. 2.1.1, 2.2.6, 2.2.7.

- Case with $Q=0$ and known $S(t):=\operatorname{supp}\left(\sigma-\mu_{t, 0, \sigma}\right)$ (BB \& Kuijlaars'99)

$$
w_{t, 0, \sigma}-U^{\mu_{t, 0, \sigma}}(z)=\int_{0}^{t} g_{S(\tau)}(z) d \tau
$$

For supp $(\sigma)=[A, B], S(t)=[a, b], A<a<b<B$ typical integral equations

$$
t=\int_{S(t)^{c}} \sqrt{\frac{b-u}{a-u}} d \sigma(u), \quad t=\int_{S(t)^{c}} \sqrt{\frac{a-u}{b-u}} d \sigma(u) .
$$

How to find equilibrium measure ?

- Case with Q without σ (talk of AMF, work of Buyarov \& Rakhmanov '99): we have formulas for $\mu_{t, Q, \Sigma}, Q$ once we know $\operatorname{supp}\left(\mu_{t, Q, \Sigma}\right)$ for all t.
- Case with $Q=0$ and integral formula for σ : if $S(t)$ decreasing sets in t then

$$
\sigma(x)=\int_{0}^{\|\sigma\|} \omega_{S(t)}(x) d t \quad \Longrightarrow \quad w_{t, 0, \sigma}-U^{\mu_{t, 0, \sigma}}(z)=\int_{0}^{t} g_{S(\tau)}(z) d \tau
$$

where $\omega_{S}:=\mu_{1,0, S}$ Robin equilibrium distribution, c.f. 2.1.1, 2.2.6, 2.2.7.

- Case with $Q=0$ and known $S(t):=\operatorname{supp}\left(\sigma-\mu_{t, 0, \sigma}\right)$ (BB \& Kuijlaars'99)

$$
w_{t, 0, \sigma}-U^{\mu_{t, 0, \sigma}}(z)=\int_{0}^{t} g_{S(\tau)}(z) d \tau
$$

For supp $(\sigma)=[A, B], S(t)=[a, b], A<a<b<B$ typical integral equations

$$
t=\int_{S(t)^{c}} \sqrt{\frac{b-u}{a-u}} d \sigma(u), \quad t=\int_{S(t)^{c}} \sqrt{\frac{a-u}{b-u}} d \sigma(u) .
$$

What we've learned so far

- minimizing logarithmic energy means looking for electro-static equilibrium in plane
- even in presence of external field and/or an upper constraint, electro-static equilibrium is unique, and can be characterized by equilibrium conditions
- logarithmic potential theory is natural to describe nth root asymptotics of moduli of polynomials of degree n.
- solving (exactly) an equilibrium problem is in general difficult, often we get (systems of) integral equations for the endpoints of the supports
- there are some nice integral formulas for the equilibrium potential

Asymptotics of discrete orthogonal polynomials

- Motivation, link to discrete orthogonal polynomials
- Definition of Krylov subspace methods, polynomial language
- Logarithmic potential theory (with constraint)
- Asymptotics of discrete orthogonal polynomials
- Rate of convergence of Krylov subspace methods and Ritz values
- Further examples, Applications from PDE

Part 2 Part 3

B. Beckermann

Discrete Chebyshev, Meixner, Charlier, etc.

Consider ONP $p_{n, N}$ with respect to the discrete scalar product

$$
\begin{gathered}
\qquad P, Q \succ=\sum_{z \in E_{N}} w_{N}(z)^{2} \overline{P(z)} Q(z) \\
\text { e.g. } E_{N}=\{0,1, \ldots, N\}, w_{N}=1 \text { (discrete Chebyshev) or } E_{N}=\{0,1,2, \ldots\}, \text { and } \\
w_{N}(k)^{2}=\frac{c^{k}(b)_{k}}{k!}(\text { Meixner }) \text { or } w_{N}(k)^{2}=\frac{c^{k} e^{-c}}{k!}(\text { Charlier }) \text { or } \ldots
\end{gathered}
$$

- Question: $\left|p_{n, N}\left(N^{\alpha} z\right)\right|^{1 / N} \rightarrow$? for $n, N \rightarrow \infty, n / N \rightarrow t>0$?
- Answer: extremal problem with constraint and external field, c.f. Rakhmanov '96, Dragnev \& Saff '97
- Further results: Kuijlaars \& Van Assche '99, Kujlaars \& Rakhmanov '98, BB 'OOa, Damelin \& Saff '98?
- Applications: Random matrices (Johansson '00), Continuum limit of Toda lattice (Deift \& McLaughlin '00, ...), coding theory,...

Discrete Chebyshev, Meixner, Charlier, etc.

Consider ONP $p_{n, N}$ with respect to the discrete scalar product

$$
\prec P, Q \succ=\sum_{z \in E_{N}} w_{N}(z)^{2} \overline{P(z)} Q(z)
$$

e.g., $E_{N}=\{0,1, \ldots, N\}, w_{N}=1$ (discrete Chebyshev) or $E_{N}=\{0,1,2, \ldots\}$, and $w_{N}(k)^{2}=\frac{c^{k}(b)_{k}}{k!}$ (Meixner) or $w_{N}(k)^{2}=\frac{c^{k} e^{-c}}{k!}$ (Charlier) or \ldots

- Question: $\left|p_{n, N}\left(N^{\alpha} z\right)\right|^{1 / N} \rightarrow$? for $n, N \rightarrow \infty, n / N \rightarrow t>0$?
- Answer: extremal problem with constraint and external field, c.f. Rakhmanov '96, Dragnev \& Saff '97
- Further results: Kuijlaars \& Van Assche '99, Kujlaars \& Rakhmanov '98, BB 'OOa, Damelin \& Saff '98?
- Applications: Random matrices (Johansson '00), Continuum limit of Toda lattice (Deift \& McLaughlin '00, ...), coding theory,...

Discrete Chebyshev, Meixner, Charlier, etc.

Consider ONP $p_{n, N}$ with respect to the discrete scalar product

$$
\prec P, Q \succ=\sum_{z \in E_{N}} w_{N}(z)^{2} \overline{P(z)} Q(z)
$$

e.g., $E_{N}=\{0,1, \ldots, N\}, w_{N}=1$ (discrete Chebyshev) or $E_{N}=\{0,1,2, \ldots\}$, and $w_{N}(k)^{2}=\frac{c^{k}(b)_{k}}{k!}$ (Meixner) or $w_{N}(k)^{2}=\frac{c^{k} e^{-c}}{k!}$ (Charlier) or \ldots

- Question: $\left|p_{n, N}\left(N^{\alpha} z\right)\right|^{1 / N} \rightarrow$? for $n, N \rightarrow \infty, n / N \rightarrow t>0$?
- Answer: extremal problem with constraint and external field, c.f. Rakhmanov '96, Dragnev \& Saff '97
- Further results: Kuijlaars \& Van Assche '99, Kujlaars \& Rakhmanov '98, BB '00a, Damelin \& Saff '98?
- Applications: Random matrices (Johansson '00), Continuum limit of Toda lattice (Deift \& McLaughlin '00, ...), coding theory,...

Discrete Chebyshev, Meixner, Charlier, etc.

Consider ONP $p_{n, N}$ with respect to the discrete scalar product

$$
\prec P, Q \succ=\sum_{z \in E_{N}} w_{N}(z)^{2} \overline{P(z)} Q(z)
$$

e.g., $E_{N}=\{0,1, \ldots, N\}, w_{N}=1$ (discrete Chebyshev) or $E_{N}=\{0,1,2, \ldots\}$, and $w_{N}(k)^{2}=\frac{c^{k}(b)_{k}}{k!}$ (Meixner) or $w_{N}(k)^{2}=\frac{c^{k} e^{-c}}{k!}$ (Charlier) or \ldots

- Question: $\left|p_{n, N}\left(N^{\alpha} z\right)\right|^{1 / N} \rightarrow$? for $n, N \rightarrow \infty, n / N \rightarrow t>0$?
- Answer: extremal problem with constraint and external field, c.f. Rakhmanov '96, Dragnev \& Saff '97
- Further results: Kuijlaars \& Van Assche '99, Kujlaars \& Rakhmanov '98, BB 'OOa, Damelin \& Saff '98?
- Applications: Random matrices (Johansson '00), Continuum limit of Toda lattice (Deift \& McLaughlin '00, ...), coding theory,...

Discrete Chebyshev, Meixner, Charlier, etc.

Consider ONP $p_{n, N}$ with respect to the discrete scalar product

$$
\prec P, Q \succ=\sum_{z \in E_{N}} w_{N}(z)^{2} \overline{P(z)} Q(z)
$$

e.g., $E_{N}=\{0,1, \ldots, N\}, w_{N}=1$ (discrete Chebyshev) or $E_{N}=\{0,1,2, \ldots\}$, and $w_{N}(k)^{2}=\frac{c^{k}(b)_{k}}{k!}$ (Meixner) or $w_{N}(k)^{2}=\frac{c^{k} e^{-c}}{k!}$ (Charlier) or \ldots

- Question: $\left|p_{n, N}\left(N^{\alpha} z\right)\right|^{1 / N} \rightarrow$? for $n, N \rightarrow \infty, n / N \rightarrow t>0$?
- Answer: extremal problem with constraint and external field, c.f. Rakhmanov '96, Dragnev \& Saff '97
- Further results: Kuijlaars \& Van Assche '99, Kujlaars \& Rakhmanov '98, BB '00a, Damelin \& Saff '98?
- Applications: Random matrices (Johansson '00), Continuum limit of Toda lattice (Deift \& McLaughlin '00, ...), coding theory,...

Discrete Chebyshev, Meixner, Charlier, etc.

Consider ONP $p_{n, N}$ with respect to the discrete scalar product

$$
\prec P, Q \succ=\sum_{z \in E_{N}} w_{N}(z)^{2} \overline{P(z)} Q(z)
$$

e.g., $E_{N}=\{0,1, \ldots, N\}, w_{N}=1$ (discrete Chebyshev) or $E_{N}=\{0,1,2, \ldots\}$, and $w_{N}(k)^{2}=\frac{c^{k}(b)_{k}}{k!}$ (Meixner) or $w_{N}(k)^{2}=\frac{c^{k} e^{-c}}{k!}$ (Charlier) or \ldots

- Question: $\left|p_{n, N}\left(N^{\alpha} z\right)\right|^{1 / N} \rightarrow$? for $n, N \rightarrow \infty, n / N \rightarrow t>0$?
- Answer: extremal problem with constraint and external field, c.f. Rakhmanov '96, Dragnev \& Saff '97
- Further results: Kuijlaars \& Van Assche '99, Kujlaars \& Rakhmanov '98, BB '00a, Damelin \& Saff '98?
- Applications: Random matrices (Johansson '00), Continuum limit of Toda lattice (Deift \& McLaughlin '00, ...), coding theory,...

Thm 2.3.2: notation

Discrete L_{p} norm

$$
\|w Q\|_{L_{p}\left(E_{N}\right)}=\left[\sum_{z \in E_{N}} w(z)^{p}|Q(z)|^{p}\right]^{1 / p}, \quad\|w Q\|_{L_{\infty}\left(E_{N}\right)}=\sup _{z \in E_{N}}|w(z) Q(z)|
$$

Set counting measure

$$
\nu_{N}\left(E_{N}\right)=\frac{1}{N} \sum_{z \in E_{N}} \delta_{z}
$$

Discrete energy

$$
I_{N}\left(E_{N}\right)=\frac{1}{N^{2}} \sum_{x \in E_{N}} \sum_{y \in E_{N}, y \neq x} \log \left(\frac{1}{|x-y|}\right) .
$$

Lower semi-continuity:

$$
\nu_{N}\left(E_{N}\right) \xrightarrow{*} \sigma \quad \Longrightarrow \quad \liminf _{N} I_{N}\left(E_{N}\right) \geqslant I(\sigma) .
$$

Thm 2.3.2 "light": Σ compact

Suppose that
(H1) $\quad \forall N: \quad E_{N} \subset \Sigma \quad$ with Σ compact
$(\mathbf{H 2}) \nu_{N}\left(E_{N}\right) \xrightarrow{*} \sigma, \quad$ with $U^{\sigma} \in \mathcal{C}(\Sigma)$,
(H3) $\quad \lim \sup _{N} \sup _{z \in E_{N}} w_{N}(z)^{1 / N} / e^{-Q(z)} \leqslant 1$, with $Q \in \mathcal{C}(\Sigma)$,
(H4) $\operatorname{supp}\left(\mu_{t, Q, \sigma}\right) \cap \operatorname{supp}\left(\sigma-\mu_{t, Q, \sigma}\right) \neq \emptyset$,

Then for all $z \notin \Sigma$

$$
\begin{equation*}
\limsup _{n, N \rightarrow \infty, n / N \rightarrow t}\left[\min _{-\operatorname{deg} P \leqslant n} \frac{\left\|w_{N} \cdot P\right\|_{L_{p}\left(E_{N}\right)}}{|P(z)|}\right]^{1 / N} \leqslant \exp \left(U^{\mu_{t}, Q, \sigma}(z)-w_{t, Q, \sigma}\right) . \tag{6}
\end{equation*}
$$

More generally, limit is true for all z with (H6): $\limsup _{N} U^{\nu_{N}\left(E_{N}\right)}(z) \leqslant U^{\sigma}(z)$.
B. Beckermann

Thm 2.3.2 "light": Σ compact

Suppose that
(H1) $\quad \forall N: \quad E_{N} \subset \Sigma \quad$ with Σ compact
$(\mathbf{H 2}) \quad \nu_{N}\left(E_{N}\right) \xrightarrow{*} \sigma, \quad$ with $U^{\sigma} \in \mathcal{C}(\Sigma)$,
(H3) $\quad \lim \sup _{N} \sup _{z \in E_{N}} w_{N}(z)^{1 / N} / e^{-Q(z)} \leqslant 1$, with $Q \in \mathcal{C}(\Sigma)$,
(H4) $\operatorname{supp}\left(\mu_{t, Q, \sigma}\right) \cap \operatorname{supp}\left(\sigma-\mu_{t, Q, \sigma}\right) \neq \emptyset$,

Then for all $z \notin \Sigma$

$$
\begin{equation*}
\limsup _{n, N \rightarrow \infty, n / N \rightarrow t}\left[\min _{-\operatorname{deg} P \leqslant n} \frac{\left\|w_{N} \cdot P\right\|_{L_{p}\left(E_{N}\right)}}{|P(z)|}\right]^{1 / N} \leqslant \exp \left(U^{\mu_{t}, Q, \sigma}(z)-w_{t, Q, \sigma}\right) . \tag{6}
\end{equation*}
$$

More generally, limit is true for all z with (H6): $\lim _{\sup _{N}} U^{\nu_{N}\left(E_{N}\right)}(z) \leqslant U^{\sigma}(z)$.
B. Beckermann

Thm 2.3.2 "light": Σ compact

Suppose that
(H1) $\quad \forall N: \quad E_{N} \subset \Sigma \quad$ with Σ compact
$(\mathbf{H 2}) \quad \nu_{N}\left(E_{N}\right) \xrightarrow{*} \sigma, \quad$ with $U^{\sigma} \in \mathcal{C}(\Sigma)$,
(H3) $\quad \lim \sup _{N} \sup _{z \in E_{N}} w_{N}(z)^{1 / N} / e^{-Q(z)} \leqslant 1$, with $Q \in \mathcal{C}(\Sigma)$,
(H4) $\operatorname{supp}\left(\mu_{t, Q, \sigma}\right) \cap \operatorname{supp}\left(\sigma-\mu_{t, Q, \sigma}\right) \neq \emptyset$,

Then for all $z \notin \Sigma$
$\limsup _{n, N \rightarrow \infty, n / N \rightarrow t}\left[\min _{\operatorname{deg} P \leqslant n} \frac{\left\|w_{N} \cdot P\right\|_{L_{p}\left(E_{N}\right)}}{|P(z)|}\right]^{1 / N} \leqslant \exp \left(U^{\mu_{t}, Q, \sigma}(z)-w_{t, Q, \sigma}\right)$.
More generally, limit is true for all z with (H6): $\lim _{\sup _{N}} U^{\nu_{N}\left(E_{N}\right)}(z) \leqslant U^{\sigma}(z)$.
B. Beckermann

Thm 2.3.2 "light": Σ compact

Suppose that
(H1) $\quad \forall N: \quad E_{N} \subset \Sigma \quad$ with Σ compact
$(\mathbf{H 2}) \quad \nu_{N}\left(E_{N}\right) \xrightarrow{*} \sigma, \quad$ with $U^{\sigma} \in \mathcal{C}(\Sigma)$,
(H3) $\quad \lim \sup _{N} \sup _{z \in E_{N}} w_{N}(z)^{1 / N} / e^{-Q(z)} \leqslant 1$, with $Q \in \mathcal{C}(\Sigma)$,
(H4) $\quad \operatorname{supp}\left(\mu_{t, Q, \sigma}\right) \cap \operatorname{supp}\left(\sigma-\mu_{t, Q, \sigma}\right) \neq \emptyset$,

Then for all $z \notin \Sigma$
$\limsup _{n, N \rightarrow \infty, n / N \rightarrow t}\left[\min _{\operatorname{deg} P \leqslant n} \frac{\left\|w_{N} \cdot P\right\|_{L_{p}\left(E_{N}\right)}}{|P(z)|}\right]^{1 / N} \leqslant \exp \left(U^{\mu_{t}, Q, \sigma}(z)-w_{t, Q, \sigma}\right)$.
More generally, limit is true for all z with (H6): $\lim _{\sup _{N}} U^{\nu_{N}\left(E_{N}\right)}(z) \leqslant U^{\sigma}(z)$.
B. Beckermann

Thm 2.3.2 "light": Σ compact

Suppose that
(H1) $\quad \forall N: \quad E_{N} \subset \Sigma \quad$ with Σ compact
$(\mathbf{H 2}) \quad \nu_{N}\left(E_{N}\right) \xrightarrow{*} \sigma, \quad$ with $U^{\sigma} \in \mathcal{C}(\Sigma)$,
(H3) $\quad \lim \sup _{N} \sup _{z \in E_{N}} w_{N}(z)^{1 / N} / e^{-Q(z)} \leqslant 1, \quad$ with $Q \in \mathcal{C}(\Sigma)$,
(H4) $\operatorname{supp}\left(\mu_{t, Q, \sigma}\right) \cap \operatorname{supp}\left(\sigma-\mu_{t, Q, \sigma}\right) \neq \emptyset$,

Then for all $z \notin \Sigma$

$$
\begin{equation*}
\limsup _{n, N \rightarrow \infty, n / N \rightarrow t}\left[\min _{\operatorname{deg} P \leqslant n} \frac{\left\|w_{N} \cdot P\right\|_{L_{p}\left(E_{N}\right)}}{|P(z)|}\right]^{1 / N} \leqslant \exp \left(U^{\mu_{t, Q, \sigma}}(z)-w_{t, Q, \sigma}\right) . \tag{6}
\end{equation*}
$$

More generally, limit is true for all z with (H6): $\lim \sup _{N} U^{\nu_{N}\left(E_{N}\right)}(z) \leqslant U^{\sigma}(z)$.
B. Beckermann

Thm 2.3.2 "light": Σ compact

Suppose that
(H1) $\quad \forall N: \quad E_{N} \subset \Sigma \quad$ with Σ compact
$(\mathbf{H 2}) \quad \nu_{N}\left(E_{N}\right) \xrightarrow{*} \sigma, \quad$ with $U^{\sigma} \in \mathcal{C}(\Sigma)$,
(H3) $\quad \lim \sup _{N} \sup _{z \in E_{N}} w_{N}(z)^{1 / N} / e^{-Q(z)} \leqslant 1$, with $Q \in \mathcal{C}(\Sigma)$,
(H4) $\operatorname{supp}\left(\mu_{t, Q, \sigma}\right) \cap \operatorname{supp}\left(\sigma-\mu_{t, Q, \sigma}\right) \neq \emptyset$,

Then for all $z \notin \Sigma$

$$
\begin{equation*}
\limsup _{n, N \rightarrow \infty, n / N \rightarrow t}\left[\min _{\operatorname{deg} P \leqslant n} \frac{\left\|w_{N} \cdot P\right\|_{L_{p}\left(E_{N}\right)}}{|P(z)|}\right]^{1 / N} \leqslant \exp \left(U^{\mu_{t, Q, \sigma}}(z)-w_{t, Q, \sigma}\right) . \tag{6}
\end{equation*}
$$

More generally, limit is true for all z with (H6): $\limsup _{N} U^{\nu_{N}\left(E_{N}\right)}(z) \leqslant U^{\sigma}(z)$.
B. Beckermann

Thm 2.3.2 "light": Σ compact (continued)

Suppose that
(H1) $\quad \forall N: \quad E_{N} \subset \Sigma \quad$ with Σ compact
$(\mathbf{H 2}) \quad \nu_{N}\left(E_{N}\right) \xrightarrow{*} \sigma, \quad$ with $U^{\sigma} \in \mathcal{C}(\Sigma)$,
$(\mathbf{H} 3)^{\prime} \quad \lim \sup _{N} \sup _{z \in E_{N}}\left|e^{-Q(z)}-w_{N}(z)^{1 / N}\right|=0, \quad$ with $Q \in \mathcal{C}(\Sigma)$,
(H4) $\operatorname{supp}\left(\mu_{t, Q, \sigma}\right) \cap \operatorname{supp}\left(\sigma-\mu_{t, Q, \sigma}\right) \neq \emptyset$,
(H5) $\underset{N}{\limsup } I_{N}\left(E_{N}\right) \leqslant I(\sigma)$.
Then for all $z \notin \Sigma$

$$
\begin{equation*}
\lim _{n, N \rightarrow \infty, n / N \rightarrow t}\left[\min _{\operatorname{deg} P \leqslant n} \frac{\left\|w_{N} \cdot P\right\|_{L_{p}\left(E_{N}\right)}}{|P(z)|}\right]^{1 / N}=\exp \left(U^{\mu_{t, Q, \sigma}}(z)-w_{t, Q, \sigma}\right) . \tag{7}
\end{equation*}
$$

More generally, limit is true for all z with (H6): $\lim _{\sup _{N}} U^{\nu_{N}\left(E_{N}\right)}(z) \leqslant U^{\sigma}(z)$.
B. Beckermann

Thm 2.3.2 for general Σ

More assumptions:

- $\Sigma, \operatorname{supp}(\sigma)$ no longer compact. We need $\forall K$ compact: $U^{\left.\sigma\right|_{K}}$ continuous;
- add decay rate for $w_{N}(z)$ and for $Q(z)$ for large $|z|$;
- impose (H3), (H3)' only on compacts;
- restrict E_{N}, σ to suitable open set in (H5), (H6).

Remark: Assumption (H5) conjectured by Rakhmanov.
He introduced the stronger separation condition

$$
\liminf _{N \rightarrow \infty} \inf _{x, y \in E_{N}, x \neq y} N^{\alpha}|x-y|>0 \quad \text { for } \alpha=1
$$

Idea of proof for Thm 2.3.2 for compact Σ

Step 1: L_{p}-norms are equivalent (up to power of N), thus proof for $p=\infty$ sufficient.
Step 2 (discretization of $\mu_{t, Q, \sigma}$): for $\epsilon>0$, let

$$
K_{\epsilon}=\left\{\lambda \in \Sigma: U^{\mu_{t, Q, \sigma}}(\lambda)+Q(\lambda) \leqslant w_{t, Q, \sigma}-\epsilon\right\}
$$

and determine $E_{N}^{*} \subset E_{N}$ with

$$
E_{N}^{*} \subset E_{N}, \quad E_{N}^{*} \cap K_{\epsilon}=E_{N} \cap K_{\epsilon}, \quad \nu_{N}\left(E_{N}^{*}\right) \xrightarrow{*} \mu_{t, Q, \sigma} \quad \text { for } N \rightarrow \infty
$$

Step 3: with P_{N} having set of zeros E_{N}^{*} :
$\lim \sup \left\|e^{-N Q} P_{N}\right\|_{L_{\infty}\left(E_{N}\right)}^{1 / N} \leqslant \exp \left(-w_{t, Q, \sigma}+\epsilon\right)$ by construction and principle of descent,
$\lim \left|P_{N}(z)\right|^{1 / N}=\exp \left(-U^{\mu_{t, Q, \sigma}}(z)\right)$ by (H6) and principle of descent.
Step 4: constrained Fekete points minimizing $I_{N}\left(E_{N}^{\prime}\right)+2 \int Q d \nu_{N}\left(E_{N}^{\prime}\right)$ in E_{N}.

Idea of proof for Thm 2.3.2 for compact Σ

Step 1: L_{p}-norms are equivalent (up to power of N), thus proof for $p=\infty$ sufficient.
Step 2 (discretization of $\mu_{t, Q, \sigma}$): for $\epsilon>0$, let

$$
K_{\epsilon}=\left\{\lambda \in \Sigma: U^{\mu_{t, Q, \sigma}}(\lambda)+Q(\lambda) \leqslant w_{t, Q, \sigma}-\epsilon\right\},
$$

and determine $E_{N}^{*} \subset E_{N}$ with

$$
E_{N}^{*} \subset E_{N}, \quad E_{N}^{*} \cap K_{\epsilon}=E_{N} \cap K_{\epsilon}, \quad \nu_{N}\left(E_{N}^{*}\right) \xrightarrow{*} \mu_{t, Q, \sigma} \quad \text { for } N \rightarrow \infty .
$$

Step 3: with P_{N} having set of zeros E_{N}^{*} :

$\limsup \left\|e^{-N Q} P_{N}\right\|_{L_{\infty}\left(E_{N}\right)}^{1 / N} \leqslant \exp \left(-w_{t, Q, \sigma}+\epsilon\right)$ by construction and principle of descent,
$\lim \left|P_{N}(z)\right|^{1 / N}=\exp \left(-U^{\mu_{t, Q, \sigma}}(z)\right)$ by (H6) and principle of descent.
Step 4: constrained Fekete points minimizing $I_{N}\left(E_{N}^{\prime}\right)+2 \int Q d \nu_{N}\left(E_{N}^{\prime}\right)$ in E_{N}.

Idea of proof for Thm 2.3.2 for compact Σ

Step 1: L_{p}-norms are equivalent (up to power of N), thus proof for $p=\infty$ sufficient.
Step 2 (discretization of $\mu_{t, Q, \sigma}$): for $\epsilon>0$, let

$$
K_{\epsilon}=\left\{\lambda \in \Sigma: U^{\mu_{t, Q, \sigma}}(\lambda)+Q(\lambda) \leqslant w_{t, Q, \sigma}-\epsilon\right\},
$$

and determine $E_{N}^{*} \subset E_{N}$ with

$$
E_{N}^{*} \subset E_{N}, \quad E_{N}^{*} \cap K_{\epsilon}=E_{N} \cap K_{\epsilon}, \quad \nu_{N}\left(E_{N}^{*}\right) \xrightarrow{*} \mu_{t, Q, \sigma} \quad \text { for } N \rightarrow \infty .
$$

Step 3: with P_{N} having set of zeros E_{N}^{*} :
$\limsup \left\|e^{-N Q} P_{N}\right\|_{L_{\infty}\left(E_{N}\right)}^{1 / N} \leqslant \exp \left(-w_{t, Q, \sigma}+\epsilon\right)$ by construction and principle of descent,
$\lim \left|P_{N}(z)\right|^{1 / N}=\exp \left(-U^{\mu_{t, Q, \sigma}}(z)\right)$ by (H6) and principle of descent.
Step 4: constrained Fekete points minimizing $I_{N}\left(E_{N}^{\prime}\right)+2 \int Q d \nu_{N}\left(E_{N}^{\prime}\right)$ in E_{N}.

Idea of proof for Thm 2.3.2 for compact Σ

Step 1: L_{p}-norms are equivalent (up to power of N), thus proof for $p=\infty$ sufficient.
Step 2 (discretization of $\mu_{t, Q, \sigma}$): for $\epsilon>0$, let

$$
K_{\epsilon}=\left\{\lambda \in \Sigma: U^{\mu_{t, Q, \sigma}}(\lambda)+Q(\lambda) \leqslant w_{t, Q, \sigma}-\epsilon\right\},
$$

and determine $E_{N}^{*} \subset E_{N}$ with

$$
E_{N}^{*} \subset E_{N}, \quad E_{N}^{*} \cap K_{\epsilon}=E_{N} \cap K_{\epsilon}, \quad \nu_{N}\left(E_{N}^{*}\right) \xrightarrow{*} \mu_{t, Q, \sigma} \quad \text { for } N \rightarrow \infty .
$$

Step 3: with P_{N} having set of zeros E_{N}^{*} :
$\limsup \left\|e^{-N Q} P_{N}\right\|_{L_{\infty}\left(E_{N}\right)}^{1 / N} \leqslant \exp \left(-w_{t, Q, \sigma}+\epsilon\right)$ by construction and principle of descent,
$\lim \left|P_{N}(z)\right|^{1 / N}=\exp \left(-U^{\mu_{t, Q, \sigma}}(z)\right)$ by (H6) and principle of descent.
Step 4: constrained Fekete points minimizing $I_{N}\left(E_{N}^{\prime}\right)+2 \int Q d \nu_{N}\left(E_{N}^{\prime}\right)$ in E_{N}.

Example discrete Chebyshev polynomials

$$
\begin{aligned}
& w_{N}=1 \Longrightarrow Q=0, \\
& E_{N}=\{1 / N, 2 / N, \ldots, N / N\} \Longrightarrow \operatorname{supp}(\sigma)=\Sigma=[0,1], \text { and } \\
& \\
& \qquad \frac{d \sigma}{d x}(x)=1=\int_{\arg \sqrt{ }>0} \frac{1}{\pi \sqrt{\left(1-t^{2}\right) / 4-(x-1 / 2)^{2}}} d t
\end{aligned}
$$

Thus $S(t)=\operatorname{supp}\left(\sigma-\mu_{t, Q, \sigma}\right)=\left[\left(1-\sqrt{1-t^{2}}\right) / 2,\left(1+\sqrt{1-t^{2}}\right) / 2\right]$, and

$$
w_{t, 0, \sigma}-U^{\mu_{t, 0, \sigma}}(0)=\int_{0}^{t} g_{S(\tau)}(0) d \tau=-\frac{(1+t) \log (1+t)+(1-t) \log (1-t)}{2} .
$$

CG Ritz values

Example Meixner polynomials

$E_{N}=\{1 / N, 2 / N, \ldots, N / N,(N+1) / N, \ldots\} \Longrightarrow \operatorname{supp}(\sigma)=\Sigma=[0,+\infty)$, and σ the Lebesgue measure on $[0,+\infty)$.

By Stirling's formula, we have for $x=k / N$ and $Q(x)=-x \log (c) / 2$

$$
\frac{w_{N}(x)^{1 / N}}{\exp (-Q(x))}=c^{-x / 2}\left[\frac{c^{N x} \Gamma(N x+b)}{\Gamma(N x+1)}\right]^{1 /(2 N)}=1+o(1)_{N \rightarrow \infty}
$$

uniformly for x in some compact.
Extremal measure? Complicated, see 2.2.4, 2.3.4, or Kuijlaars \& Van Assche '98:

$$
\operatorname{supp}\left(\mu_{t, Q, \sigma}\right)=\left[0, \frac{1+\sqrt{c}}{1-\sqrt{c}} t\right], \quad \operatorname{supp}\left(\sigma-\mu_{t, Q, \sigma}\right)=\left[\frac{1-\sqrt{c}}{1+\sqrt{c}} t,+\infty\right) .
$$

What we've learned so far

If $\nu_{N}\left(E_{N}\right) \xrightarrow{*} \sigma$ and \ldots detais \ldots then
$\limsup _{n / N \rightarrow t} E_{n}\left(z, E_{N}\right)^{1 / N} \leqslant \exp \left(-\int_{0}^{t} g_{S(\tau)}(z) d \tau\right), \quad S(t)=\operatorname{supp}\left(\sigma-\mu_{t, 0, \sigma}\right)$.

If $\nu_{N}\left(E_{N}\right) \xrightarrow{*} \sigma$ and $w_{N}^{1 / N} \rightarrow \exp (-Q)$ and \ldots details \ldots then

$$
\limsup _{n / N \rightarrow t} \frac{1}{K_{n, 2}^{N}(z, z)^{1 /(2 N)}} \leqslant \exp \left(-\left(w_{t, Q, \sigma}-U^{\mu_{t, Q, \sigma}}(z)\right)\right)
$$

Both estimates are sharp.
B. Beckermann

Rate of convergence of Krylov subspace methods and Ritz values

- Motivation, link to discrete orthogonal polynomials
- Definition of Krylov subspace methods, polynomial language
- Logarithmic potential theory (with constraint)
- Asymptotics of discrete orthogonal polynomials
- Rate of convergence of Krylov subspace methods and Ritz values
- Further examples, Applications from PDE
B. Beckermann

CG/GMRES convergence

Let $\left(A_{N}\right)_{N}$ be a sequence of symmetric invertible matrices, A_{N} of size $N \times N$, satisfying the conditions
(i) Asymptotic eigenvalue distribution: There exists a compact Σ and a Borel measure σ such that $\Lambda\left(A_{N}\right) \subset \Sigma$ for all N, and $\nu_{N}\left(\Lambda\left(A_{N}\right)\right) \xrightarrow{*} \sigma$ for $N \rightarrow \infty$;
(ii) Regularity: σ has a continuous potential;
(iii) Not too many eigenvalues too close to zero: $U^{\nu_{N}\left(\Lambda\left(A_{N}\right)\right)}(0) \rightarrow U^{\sigma}(0)$.

Define $S(t):=\operatorname{supp}\left(\sigma-\mu_{t, 0, \sigma}\right)$, with the extremal measure $\mu_{t, 0, \sigma}$ as before. Then for $t \in(0,\|\sigma\|)$, we have
$\limsup _{\substack{n, N \rightarrow \infty \\ n / N \rightarrow t}}\left(\frac{\left\|r_{n, N}^{C G}\right\|_{A_{N}^{-1}}}{\left\|r_{0, N}^{C G}\right\|_{A_{N}^{-1}}}\right)^{1 / n} \leqslant \limsup _{\substack{n, N \rightarrow \infty \\ n / N \rightarrow t}} E_{n}\left(0, \Lambda\left(A_{N}\right)\right)^{1 / n} \leqslant \exp \left(-\frac{1}{t} \int_{0}^{t} g_{S(\tau)}(0) d \tau\right)$.
Similarly for $\left\|r_{n, N}^{G M R E S}\right\| /\left\|r_{0, N}^{G M R E S}\right\|$.
Proof part 1 Proof part 2
c.f. 3.1.1, BB \& Kuijlaars SINUM '00

CG/GMRES convergence

Let $\left(A_{N}\right)_{N}$ be a sequence of symmetric invertible matrices, A_{N} of size $N \times N$, satisfying the conditions
(i) Asymptotic eigenvalue distribution: There exists a compact Σ and a Borel measure σ such that $\Lambda\left(A_{N}\right) \subset \Sigma$ for all N, and $\nu_{N}\left(\Lambda\left(A_{N}\right)\right) \xrightarrow{*} \sigma$ for $N \rightarrow \infty$;
(ii) Regularity: σ has a continuous potential;
(iii) Not too many eigenvalues too close to zero: $U^{\nu_{N}\left(\Lambda\left(A_{N}\right)\right)}(0) \rightarrow U^{\sigma}(0)$.

Define $S(t):=\operatorname{supp}\left(\sigma-\mu_{t, 0, \sigma}\right)$, with the extremal measure $\mu_{t, 0, \sigma}$ as before. Then for $t \in(0,\|\sigma\|)$, we have
$\limsup _{\substack{n, N \rightarrow \infty \\ n / N \rightarrow t}}\left(\frac{\left\|r_{n, N}^{C G}\right\|_{A_{N}^{-1}}}{\left\|r_{0, N}^{C G}\right\|_{A_{N}^{-1}}}\right)^{1 / n} \leqslant \limsup _{\substack{n, N \rightarrow \infty \\ n / N \rightarrow t}} E_{n}\left(0, \Lambda\left(A_{N}\right)\right)^{1 / n} \leqslant \exp \left(-\frac{1}{t} \int_{0}^{t} g_{S(\tau)}(0) d \tau\right)$.
Similarly for $\left\|r_{n, N}^{G M R E S}\right\| /\left\|r_{0, N}^{G M R E S}\right\|$.
Proof part 1 Proof part 2
c.f. 3.1.1, BB \& Kuijlaars SINUM '00

CG/GMRES convergence

Let $\left(A_{N}\right)_{N}$ be a sequence of symmetric invertible matrices, A_{N} of size $N \times N$, satisfying the conditions
(i) Asymptotic eigenvalue distribution: There exists a compact Σ and a Borel measure σ such that $\Lambda\left(A_{N}\right) \subset \Sigma$ for all N, and $\nu_{N}\left(\Lambda\left(A_{N}\right)\right) \xrightarrow{*} \sigma$ for $N \rightarrow \infty$;
(ii) Regularity: σ has a continuous potential;
(iii) Not too many eigenvalues too close to zero: $U^{\nu_{N}\left(\Lambda\left(A_{N}\right)\right)}(0) \rightarrow U^{\sigma}(0)$.

Define $S(t):=\operatorname{supp}\left(\sigma-\mu_{t, 0, \sigma}\right)$, with the extremal measure $\mu_{t, 0, \sigma}$ as before. Then for $t \in(0,\|\sigma\|)$, we have
$\limsup _{\substack{n, N \rightarrow \infty \\ n / N \rightarrow t}}\left(\frac{\left\|r_{n, N}^{C G}\right\|_{A_{N}^{-1}}}{\left\|r_{0, N}^{C G}\right\|_{A_{N}^{-1}}}\right)^{1 / n} \leqslant \limsup _{\substack{n, N \rightarrow \infty \\ n / N \rightarrow t}} E_{n}\left(0, \Lambda\left(A_{N}\right)\right)^{1 / n} \leqslant \exp \left(-\frac{1}{t} \int_{0}^{t} g_{S(\tau)}(0) d \tau\right)$.
Similarly for $\left\|r_{n, N}^{G M R E S}\right\| /\left\|r_{0, N}^{G M R E S}\right\|$.
Proof part 1 Proof part 2
c.f. 3.1.1, BB \& Kuijlaars SINUM '00

CG/GMRES convergence

Let $\left(A_{N}\right)_{N}$ be a sequence of symmetric invertible matrices, A_{N} of size $N \times N$, satisfying the conditions
(i) Asymptotic eigenvalue distribution: There exists a compact Σ and a Borel measure σ such that $\Lambda\left(A_{N}\right) \subset \Sigma$ for all N, and $\nu_{N}\left(\Lambda\left(A_{N}\right)\right) \xrightarrow{*} \sigma$ for $N \rightarrow \infty$;
(ii) Regularity: σ has a continuous potential;
(iii) Not too many eigenvalues too close to zero: $U^{\nu_{N}\left(\Lambda\left(A_{N}\right)\right)}(0) \rightarrow U^{\sigma}(0)$.

Define $S(t):=\operatorname{supp}\left(\sigma-\mu_{t, 0, \sigma}\right)$, with the extremal measure $\mu_{t, 0, \sigma}$ as before. Then for $t \in(0,\|\sigma\|)$, we have
$\limsup _{\substack{n, N \rightarrow \infty \\ n / N \rightarrow t}}\left(\frac{\left\|r_{n, N}^{C G}\right\|_{A_{N}^{-1}}}{\left\|r_{0, N}^{C G}\right\|_{A_{N}^{-1}}}\right)^{1 / n} \leqslant \limsup _{\substack{n, N \rightarrow \infty \\ n / N \rightarrow t}} E_{n}\left(0, \Lambda\left(A_{N}\right)\right)^{1 / n} \leqslant \exp \left(-\frac{1}{t} \int_{0}^{t} g_{S(\tau)}(0) d \tau\right)$.
Similarly for $\left\|r_{n, N}^{G M R E S}\right\| /\left\|r_{0, N}^{G M R E S}\right\|$.
Proof part 1 Proof part 2
c.f. 3.1.1, BB \& Kuijlaars SINUM '00

CG/GMRES convergence

Let $\left(A_{N}\right)_{N}$ be a sequence of symmetric invertible matrices, A_{N} of size $N \times N$, satisfying the conditions
(i) Asymptotic eigenvalue distribution: There exists a compact Σ and a Borel measure σ such that $\Lambda\left(A_{N}\right) \subset \Sigma$ for all N, and $\nu_{N}\left(\Lambda\left(A_{N}\right)\right) \xrightarrow{*} \sigma$ for $N \rightarrow \infty$;
(ii) Regularity: σ has a continuous potential;
(iii) Not too many eigenvalues too close to zero: $U^{\nu_{N}\left(\Lambda\left(A_{N}\right)\right)}(0) \rightarrow U^{\sigma}(0)$.

Define $S(t):=\operatorname{supp}\left(\sigma-\mu_{t, 0, \sigma}\right)$, with the extremal measure $\mu_{t, 0, \sigma}$ as before. Then for $t \in(0,\|\sigma\|)$, we have
$\limsup _{\substack{n, N \rightarrow \infty \\ n / N \rightarrow t}}\left(\frac{\left\|r_{n, N}^{C G}\right\|_{A_{N}^{-1}}}{\left\|r_{0, N}^{C G}\right\|_{A_{N}^{-1}}}\right)^{1 / n} \leqslant \limsup _{\substack{n, N \rightarrow \infty \\ n / N \rightarrow t}} E_{n}\left(0, \Lambda\left(A_{N}\right)\right)^{1 / n} \leqslant \exp \left(-\frac{1}{t} \int_{0}^{t} g_{S(\tau)}(0) d \tau\right)$.
Similarly for $\left\|r_{n, N}^{G M R E S}\right\| /\left\|r_{0, N}^{G M R E S}\right\|$.
Proof part 1 Proof part 2
c.f. 3.1.1, BB \& Kuijlaars SINUM '00

CG/GMRES convergence

Let $\left(A_{N}\right)_{N}$ be a sequence of symmetric invertible matrices, A_{N} of size $N \times N$, satisfying the conditions
(i) Asymptotic eigenvalue distribution: There exists a compact Σ and a Borel measure σ such that $\Lambda\left(A_{N}\right) \subset \Sigma$ for all N, and $\nu_{N}\left(\Lambda\left(A_{N}\right)\right) \xrightarrow{*} \sigma$ for $N \rightarrow \infty$;
(ii) Regularity: σ has a continuous potential;
(iii) Not too many eigenvalues too close to zero: $U^{\nu_{N}\left(\Lambda\left(A_{N}\right)\right)}(0) \rightarrow U^{\sigma}(0)$.

Define $S(t):=\operatorname{supp}\left(\sigma-\mu_{t, 0, \sigma}\right)$, with the extremal measure $\mu_{t, 0, \sigma}$ as before. Then for $t \in(0,\|\sigma\|)$, we have
$\limsup _{\substack{n, N \rightarrow \infty \\ n / N \rightarrow t}}\left(\frac{\left\|r_{n, N}^{C G}\right\|_{A_{N}^{-1}}}{\left\|r_{0, N}^{C G}\right\|_{A_{N}^{-1}}}\right)^{1 / n} \leqslant \limsup _{\substack{n, N \rightarrow \infty \\ n / N \rightarrow t}} E_{n}\left(0, \Lambda\left(A_{N}\right)\right)^{1 / n} \leqslant \exp \left(-\frac{1}{t} \int_{0}^{t} g_{S(\tau)}(0) d \tau\right)$.
Similarly for $\left\|r_{n, N}^{G M R E S}\right\| /\left\|r_{0, N}^{G M R E S}\right\|$.
Proof part 1 Proof part 2
c.f. 3.1.1, BB \& Kuijlaars SINUM '00

CG/GMRES convergence

Let $\left(A_{N}\right)_{N}$ be a sequence of symmetric invertible matrices, A_{N} of size $N \times N$, satisfying the conditions
(i) Asymptotic eigenvalue distribution: There exists a compact Σ and a Borel measure σ such that $\Lambda\left(A_{N}\right) \subset \Sigma$ for all N, and $\nu_{N}\left(\Lambda\left(A_{N}\right)\right) \xrightarrow{*} \sigma$ for $N \rightarrow \infty$;
(ii) Regularity: σ has a continuous potential;
(iii) Not too many eigenvalues too close to zero: $U^{\nu_{N}\left(\Lambda\left(A_{N}\right)\right)}(0) \rightarrow U^{\sigma}(0)$.

Define $S(t):=\operatorname{supp}\left(\sigma-\mu_{t, 0, \sigma}\right)$, with the extremal measure $\mu_{t, 0, \sigma}$ as before. Then for $t \in(0,\|\sigma\|)$, we have
$\limsup _{\substack{n, N \rightarrow \infty \\ n / N \rightarrow t}}\left(\frac{\left\|r_{n, N}^{C G}\right\|_{A_{N}^{-1}}}{\left\|r_{0, N}^{C G}\right\|_{A_{N}^{-1}}}\right)^{1 / n} \leqslant \limsup _{\substack{n, N \rightarrow \infty \\ n / N \rightarrow t}} E_{n}\left(0, \Lambda\left(A_{N}\right)\right)^{1 / n} \leqslant \exp \left(-\frac{1}{t} \int_{0}^{t} g_{S(\tau)}(0) d \tau\right)$.
Similarly for $\left\|r_{n, N}^{G M R E S}\right\| /\left\|r_{0, N}^{G M R E S}\right\|$.
Proof part 1 Proof part 2
c.f. 3.1.1, BB \& Kuijlaars SINUM '00

CG/GMRES convergence

Let $\left(A_{N}\right)_{N}$ be a sequence of symmetric invertible matrices, A_{N} of size $N \times N$, satisfying the conditions
(i) Asymptotic eigenvalue distribution: There exists a compact Σ and a Borel measure σ such that $\Lambda\left(A_{N}\right) \subset \Sigma$ for all N, and $\nu_{N}\left(\Lambda\left(A_{N}\right)\right) \xrightarrow{*} \sigma$ for $N \rightarrow \infty$;
(ii) Regularity: σ has a continuous potential;
(iii) Not too many eigenvalues too close to zero: $U^{\nu_{N}\left(\Lambda\left(A_{N}\right)\right)}(0) \rightarrow U^{\sigma}(0)$.

Define $S(t):=\operatorname{supp}\left(\sigma-\mu_{t, 0, \sigma}\right)$, with the extremal measure $\mu_{t, 0, \sigma}$ as before. Then for $t \in(0,\|\sigma\|)$, we have

$$
\limsup _{\substack{n, N \rightarrow \infty \\ n / N \rightarrow t}}\left(\frac{\left\|r_{n, N}^{C G}\right\|_{A_{N}^{-1}}}{\left\|r_{0, N}^{C G}\right\|_{A_{N}^{-1}}}\right)^{1 / n} \leqslant \limsup _{\substack{n, N \rightarrow \infty \\ n / N \rightarrow t}} E_{n}\left(0, \Lambda\left(A_{N}\right)\right)^{1 / n} \leqslant \exp \left(-\frac{1}{t} \int_{0}^{t} g_{S(\tau)}(0) d \tau\right)
$$

Similarly for $\left\|r_{n, N}^{G M R E S}\right\| /\left\|r_{0, N}^{G M R E S}\right\|$.
Proof part 1 Proof part 2
c.f. 3.1.1, BB \& Kuijlaars SINUM '00

CG/GMRES convergence

Let $\left(A_{N}\right)_{N}$ be a sequence of symmetric invertible matrices, A_{N} of size $N \times N$, satisfying the conditions
(i) Asymptotic eigenvalue distribution: There exists a compact Σ and a Borel measure σ such that $\Lambda\left(A_{N}\right) \subset \Sigma$ for all N, and $\nu_{N}\left(\Lambda\left(A_{N}\right)\right) \xrightarrow{*} \sigma$ for $N \rightarrow \infty$;
(ii) Regularity: σ has a continuous potential;
(iii) Not too many eigenvalues too close to zero: $U^{\nu_{N}\left(\Lambda\left(A_{N}\right)\right)}(0) \rightarrow U^{\sigma}(0)$.

Define $S(t):=\operatorname{supp}\left(\sigma-\mu_{t, 0, \sigma}\right)$, with the extremal measure $\mu_{t, 0, \sigma}$ as before. Then for $t \in(0,\|\sigma\|)$, we have
$\limsup _{\substack{n, N \rightarrow \infty \\ n / N \rightarrow t}}\left(\frac{\left\|r_{n, N}^{C G}\right\|_{A_{N}^{-1}}}{\left\|r_{0, N}^{C G}\right\|_{A_{N}^{-1}}}\right)^{1 / n} \leqslant \limsup _{\substack{n, N \rightarrow \infty \\ n / N \rightarrow t}} E_{n}\left(0, \Lambda\left(A_{N}\right)\right)^{1 / n} \leqslant \exp \left(-\frac{1}{t} \int_{0}^{t} g_{S(\tau)}(0) d \tau\right)$.
Similarly for $\left\|r_{n, N}^{G M R E S}\right\| /\left\|r_{0, N}^{G M R E S}\right\|$.
Proof part 1, Proof part 2 c.f. 3.1.1, BB \& Kuijlaars SINUM '00

Remarks CG/GMRES convergence

- A priori we do not count multiplicities of eigenvalues, but result remains valid if we do: we get conditions (i)', (ii)', (iii)'.
- Bound can roughly be written as

Notice that the factors become smaller \Longrightarrow superlinear convergence.

- If $S(t)=[a(t), b(t)]$ then we get roughly

$$
\frac{\left\|r_{n, N}^{C G}\right\|_{A_{N}^{-1}}}{\left\|r_{0, N}^{C G}\right\|_{A_{N}^{-1}}} \lesssim \prod_{j=0}^{n-1} \frac{\sqrt{b\left(\frac{j}{N}\right) / a\left(\frac{j}{N}\right)}-1}{\sqrt{b\left(\frac{j}{N}\right) / a\left(\frac{j}{N}\right)}+1}
$$

$\Longrightarrow b\left(\frac{j}{N}\right) / a\left(\frac{j}{N}\right)$ marginal condition number.

Remarks CG/GMRES convergence

- A priori we do not count multiplicities of eigenvalues, but result remains valid if we do: we get conditions (i)', (ii)', (iii)'.
- Bound can roughly be written as

$$
\frac{\left\|r_{n, N}^{C G}\right\|_{A_{N}^{-1}}}{\left\|r_{0, N}^{C G}\right\|_{A_{N}^{-1}}} \lesssim \exp \left(-N \int_{0}^{n / N} g_{S(\tau)}(0) d \tau\right) \leqslant \prod_{j=0}^{n-1} \exp \left(-g_{S(j / N)}(0)\right)
$$

Notice that the factors become smaller \Longrightarrow superlinear convergence.

- If $S(t)=[a(t), b(t)]$ then we get roughly

$\Longrightarrow b\left(\frac{j}{N}\right) / a\left(\frac{j}{N}\right)$ marginal condition number.

Remarks CG/GMRES convergence

- A priori we do not count multiplicities of eigenvalues, but result remains valid if we do: we get conditions (i)', (ii)', (iii)'.
- Bound can roughly be written as

$$
\frac{\left\|r_{n, N}^{C G}\right\|_{A_{N}^{-1}}}{\left\|r_{0, N}^{C G}\right\|_{A_{N}^{-1}}} \lesssim \exp \left(-N \int_{0}^{n / N} g_{S(\tau)}(0) d \tau\right) \leqslant \prod_{j=0}^{n-1} \exp \left(-g_{S(j / N)}(0)\right)
$$

Notice that the factors become smaller \Longrightarrow superlinear convergence.

- If $S(t)=[a(t), b(t)]$ then we get roughly

$$
\frac{\left\|r_{n, N}^{C G}\right\|_{A_{N}^{-1}}}{\left\|r_{0, N}^{C G}\right\|_{A_{N}^{-1}}} \lesssim \prod_{j=0}^{n-1} \frac{\sqrt{b\left(\frac{j}{N}\right) / a\left(\frac{j}{N}\right)}-1}{\sqrt{b\left(\frac{j}{N}\right) / a\left(\frac{j}{N}\right)}+1}
$$

$\Longrightarrow b\left(\frac{j}{N}\right) / a\left(\frac{j}{N}\right)$ marginal condition number.

The example of Kac, Murdock and Szegő

$A_{N}:=\left(\gamma^{|j-k|}\right)_{j, k=1,2 \ldots, N}, 0<\gamma<1$, here (i)',(ii)',(iii)' true with $S(t)=[a, 1 / a]$ for $0<t<a:=\frac{1-\gamma}{1+\gamma}, S(t)=\left[a, a / t^{2}\right]$ for $a \leqslant t<1$.

The error curve of CG (solid line) and GMRES' (dotted line) versus the classical upper bound (crosses) and our asymptotic upper bound (circles) for the system $A_{200} x=b$, with random solution x, and initial residual $r_{0}=(1, \ldots, 1)^{T}$, with parameter $\gamma \in\{1 / 2,2 / 3,5 / 6,19 / 20\}$.

The Poisson model problem I

Consider the two dimensional Poisson equation

$$
-\frac{\partial^{2} u(x, y)}{\partial x^{2}}-\frac{\partial^{2} u(x, y)}{\partial y^{2}}=f(x, y)
$$

for (x, y) in the unit square $0<x, y<1$, with Dirichlet boundary conditions on the boundary of the square.

Five-point finite difference approximation on the uniform grid

$$
\left(j /\left(m_{x}+1\right), k /\left(m_{y}+1\right)\right), \quad j=0,1, \ldots, m_{x}+1, k=0,1, \ldots, m_{y}+1
$$

leads to a system of size $N \times N$ where $N=m_{x} m_{y}$,

$$
A_{N}=\frac{m_{x}+1}{m_{y}+1} B_{m_{x}} \otimes I_{m_{y}}+\frac{m_{y}+1}{m_{x}+1} I_{m_{x}} \otimes B_{m_{y}}, \quad B_{m}=\operatorname{tridiag}(-1,2,-1)_{m \times m} .
$$

The Poisson model problem II

Since

$$
A_{N}=\frac{m_{x}+1}{m_{y}+1} B_{m_{x}} \otimes I_{m_{y}}+\frac{m_{y}+1}{m_{x}+1} I_{m_{x}} \otimes B_{m_{y}}, \quad \lambda_{k}\left(B_{m}\right)=2-2 \cos \frac{\pi k}{m+1}
$$

we get explicit formulas for $\lambda\left(A_{N}\right)$, and (i)' with

$$
\sigma=\omega_{[0,4 \delta]} * \omega_{[0,4 / \delta]} \quad \text { for } m_{x}, m_{y} \rightarrow \infty, m_{x} / m_{y} \rightarrow \delta \leqslant 1
$$

One may show with $\Delta:=2 \delta+2 \delta^{-1}$

$$
S(t)=\left[\Delta-\sqrt{\Delta^{2}-16 \sin ^{2}\left(\frac{\pi t}{2}\right)}, \Delta+\sqrt{\Delta^{2}-16 \sin ^{2}\left(\frac{\pi t}{2}\right)}\right]
$$

c.f. 3.1.11 and BB \& Kuijlaars SINUM '00 for $\delta=1$.

Notice that $S(0)=[0,2 \Delta], S(1)=[\delta, 1 / \delta]$.

The Poisson model problem III

The CG error curve versus the two upper bounds for the system $A_{N} x=b$ resulting from discretizing the 2D Poisson equation on a uniform grid with $m_{x}=m_{y}=150$. We have chosen a random solution x, and initial residual $r_{0}=(1, \ldots, 1)^{T}$. For the new bound we have added a factor $1 / 2$ in front of σ since $\lambda_{j, k}=\lambda_{k, j}$, and we suspect that most of the eigenvalues are of multiplicity 2 .

CG/GMRES convergence for special right-hand sides

Let $\left(A_{N}\right)_{N}$ be a sequence of symmetric invertible matrices, A_{N} of size $N \times N$, satisfying the conditions
(i), (ii), (iii) from before
(iv) particular starting residuals: there exists a nonnegative $Q \in \mathcal{C}(\Sigma)$ such that

$$
\limsup _{N \rightarrow \infty} \max _{j}\left[e^{Q\left(\lambda_{j, N}\right)} \frac{\left|\beta_{j, N}\right|}{\left\|r_{0, N}\right\|}\right]^{1 / N} \leqslant 1 .
$$

Define the extremal measure $\mu_{t, Q, \sigma}$ as before. Then for $t \in(0,\|\sigma\|)$, we have

Similarly for $\left\|r_{n, N}^{G M R E S}\right\| /\left\|r_{0, N}^{G M R E S}\right\|$.
Proof part 1 Proof part 2
c.f. 3.1.12, BB \& Kuijlaars ETNA '02
B. Beckermann
first|-1 back|goto|+1|last|toc

CG/GMRES convergence for special right-hand sides

Let $\left(A_{N}\right)_{N}$ be a sequence of symmetric invertible matrices, A_{N} of size $N \times N$, satisfying the conditions
(i), (ii), (iii) from before;
(iv) particular starting residuals: there exists a nonnegative $Q \in \mathcal{C}(\Sigma)$ such that

Define the extremal measure $\mu_{t, Q, \sigma}$ as before. Then for $t \in(0,\|\sigma\|)$, we have

Similarly for $\left\|r_{n, N}^{G M R E S}\right\| /\left\|r_{0, N}^{G M R E S}\right\|$.
Proof part 1 Proof part 2
c.f. 3.1.12, BB \& Kuijlaars ETNA '02

CG/GMRES convergence for special right-hand sides

Let $\left(A_{N}\right)_{N}$ be a sequence of symmetric invertible matrices, A_{N} of size $N \times N$, satisfying the conditions
(i), (ii), (iii) from before
(iv) particular starting residuals: there exists a nonnegative $Q \in \mathcal{C}(\Sigma)$ such that

$$
\limsup _{N \rightarrow \infty} \max _{j}\left[e^{Q\left(\lambda_{j, N}\right)} \frac{\left|\beta_{j, N}\right|}{\left\|r_{0, N}\right\|}\right]^{1 / N} \leqslant 1
$$

Define the extremal measure $\mu_{t, Q, \sigma}$ as before. Then for $t \in(0,\|\sigma\|)$, we have

Similarly for $\left\|r_{n, N}^{G M R E S}\right\| /\left\|r_{0, N}^{G M R E S}\right\|$.
Proof part 1 Proof part 2
c.f. 3.1.12, BB \& Kuijlaars ETNA '02

CG/GMRES convergence for special right-hand sides

Let $\left(A_{N}\right)_{N}$ be a sequence of symmetric invertible matrices, A_{N} of size $N \times N$, satisfying the conditions
(i), (ii), (iii) from before
(iv) particular starting residuals: there exists a nonnegative $Q \in \mathcal{C}(\Sigma)$ such that

$$
\limsup _{N \rightarrow \infty} \max _{j}\left[e^{Q\left(\lambda_{j, N}\right)} \frac{\left|\beta_{j, N}\right|}{\left\|r_{0, N}\right\|}\right]^{1 / N} \leqslant 1 .
$$

Define the extremal measure $\mu_{t, Q, \sigma}$ as before. Then for $t \in(0,\|\sigma\|)$, we have

\square
Similarly for $\left\|r_{n, N}^{G M R E S}\right\| /\left\|r_{0, N}^{G M R E S}\right\|$.
Proof part 1 Proof part 2
c.f. 3.1.12, BB \& Kuijlaars ETNA '02
B. Beckermann

| first | -1 | back | goto |
| :--- | :--- | :--- | :--- |$+1$ last \mid toc

CG/GMRES convergence for special right-hand sides

Let $\left(A_{N}\right)_{N}$ be a sequence of symmetric invertible matrices, A_{N} of size $N \times N$, satisfying the conditions
(i), (ii), (iii) from before
(iv) particular starting residuals: there exists a nonnegative $Q \in \mathcal{C}(\Sigma)$ such that

$$
\limsup _{N \rightarrow \infty} \max _{j}\left[e^{Q\left(\lambda_{j, N}\right)} \frac{\left|\beta_{j, N}\right|}{\left\|r_{0, N}\right\|}\right]^{1 / N} \leqslant 1 .
$$

Define the extremal measure $\mu_{t, Q, \sigma}$ as before. Then for $t \in(0,\|\sigma\|)$, we have

$$
\limsup _{\substack{n, N \rightarrow \infty \\ n / N \rightarrow t}}\left(\frac{\left\|r_{n, N}^{C G}\right\|_{A_{N}^{-1}}}{\left\|r_{0, N}^{C G}\right\|_{A_{N}^{-1}}}\right)^{1 / N} \leqslant \exp \left(-w_{t, Q, \sigma}+U^{\mu_{t, Q, \sigma}}(0)\right)
$$

Similarly for $\left\|r_{n, N}^{G M R E S}\right\| /\left\|r_{0, N}^{G M R E S}\right\|$.
Proof part 1 Proof part 2
c.f. 3.1.12, BB \& Kuijlaars ETNA '02
B. Beckermann

CG/GMRES convergence for special right-hand sides

Let $\left(A_{N}\right)_{N}$ be a sequence of symmetric invertible matrices, A_{N} of size $N \times N$, satisfying the conditions
(i), (ii), (iii) from before
(iv) particular starting residuals: there exists a nonnegative $Q \in \mathcal{C}(\Sigma)$ such that

$$
\limsup _{N \rightarrow \infty} \max _{j}\left[e^{Q\left(\lambda_{j, N}\right)} \frac{\left|\beta_{j, N}\right|}{\left\|r_{0, N}\right\|}\right]^{1 / N} \leqslant 1 .
$$

Define the extremal measure $\mu_{t, Q, \sigma}$ as before. Then for $t \in(0,\|\sigma\|)$, we have

$$
\limsup _{\substack{n, N \rightarrow \infty \\ n / N \rightarrow t}}\left(\frac{\left\|r_{n, N}^{C G}\right\|_{A_{N}^{-1}}}{\left\|r_{0, N}^{C G}\right\|_{A_{N}^{-1}}}\right)^{1 / N} \leqslant \exp \left(-w_{t, Q, \sigma}+U^{\mu_{t, Q, \sigma}}(0)\right)
$$

Similarly for $\left\|r_{n, N}^{G M R E S}\right\| /\left\|r_{0, N}^{G M R E S}\right\|$.
Proof part 1, Proof part 2
c.f. 3.1.12, BB \& Kuijlaars ETNA '02

Example for special right-hand sides

Finite difference approximation of $-u^{\prime \prime}(x)=f(x)$ on $[0,1], u(0)=u(1)=0$. If $f(x)=\sum_{j=1}^{\infty} f_{j} \sin (\pi j x)$ with $r:=\limsup _{j \rightarrow \infty}\left|f_{j}\right|^{1 / j} \in(0,1)$, then $\sigma=\omega_{[0,4]}, Q(\lambda)=\frac{\log (1 / r)}{\pi} \arccos \left(\frac{2-\lambda}{2}\right)$, and $w_{t, Q, \sigma}-U^{\mu_{t, Q, \sigma}}(0)=\int_{0}^{t} g_{[a(\tau), b(\tau)]}(0) d \tau$, with $a, b \nearrow$ (explicitly known).

B. Beckermann
first|-1| back|goto|+1|last|toc

Convergence of Ritz values

Let $\left(A_{N}\right)_{N}$ be a sequence of symmetric invertible matrices, A_{N} of size $N \times N$, satisfying the conditions (i), (ii) from before
(iv)' particular eigenvalues: Let k_{N} be a sequence of indices such that $\lim _{N \rightarrow \infty} \lambda_{k_{N}, N}=\lambda$, and suppose that

$$
\begin{align*}
& \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j \neq k_{N}} \log \left|\lambda_{k_{N}, N}-\lambda_{j, N}\right|=\int \log \left|\lambda-\lambda^{\prime}\right| d \sigma\left(\lambda^{\prime}\right) \tag{8}\\
& \liminf _{N \rightarrow \infty}\left[\frac{\left|\beta_{k_{N}, N}\right|}{\| r_{0, N}| |}\right]^{1 / N}=: \rho \in(0,1] . \tag{9}
\end{align*}
$$

Define the extremal measure $\mu_{t, 0, \sigma}$ as before. Then for $t \in(0,\|\sigma\|)$, we have

Proof part 1 Proof part 2
c.f. 3.1.12, BB '02-'04

Convergence of Ritz values

Let $\left(A_{N}\right)_{N}$ be a sequence of symmetric invertible matrices, A_{N} of size $N \times N$, satisfying the conditions (i), (ii) from before
(iv)' particular eigenvalues: Let k_{N} be a sequence of indices such that $\lim _{N \rightarrow \infty} \lambda_{k_{N}, N}=\lambda$, and suppose that

$$
\begin{align*}
& \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j \neq k_{N}} \log \left|\lambda_{k_{N}, N}-\lambda_{j, N}\right|=\int \log \left|\lambda-\lambda^{\prime}\right| d \sigma\left(\lambda^{\prime}\right) \tag{8}\\
& \liminf _{N \rightarrow \infty}\left[\frac{\left|\beta_{k_{N}, N}\right|}{\| r_{0, N}| |}\right]^{1 / N}=: \rho \in(0,1] . \tag{9}
\end{align*}
$$

Define the extremal measure $\mu_{t, 0, \sigma}$ as before. Then for $t \in(0,\|\sigma\|)$, we have

Proof part 1 Proof part 2
c.f. 3.1.12, BB '02-'04

Convergence of Ritz values

Let $\left(A_{N}\right)_{N}$ be a sequence of symmetric invertible matrices, A_{N} of size $N \times N$, satisfying the conditions (i), (ii) from before
(iv)' particular eigenvalues: Let k_{N} be a sequence of indices such that $\lim _{N \rightarrow \infty} \lambda_{k_{N}, N}=\lambda$, and suppose that

$$
\begin{align*}
& \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j \neq k_{N}} \log \left|\lambda_{k_{N}, N}-\lambda_{j, N}\right|=\int \log \left|\lambda-\lambda^{\prime}\right| d \sigma\left(\lambda^{\prime}\right), \tag{8}\\
& \liminf _{N \rightarrow \infty}\left[\frac{\left|\beta_{k_{N}, N}\right|}{\| r_{0, N}| |}\right]^{1 / N}=: \rho \in(0,1] . \tag{9}
\end{align*}
$$

Define the extremal measure $\mu_{t, 0, \sigma}$ as before. Then for $t \in(0,\|\sigma\|)$, we have

Proof part 1 Proof part 2
c.f. 3.1.12, BB '02-'04

Convergence of Ritz values

Let $\left(A_{N}\right)_{N}$ be a sequence of symmetric invertible matrices, A_{N} of size $N \times N$, satisfying the conditions (i), (ii) from before
(iv)' particular eigenvalues: Let k_{N} be a sequence of indices such that $\lim _{N \rightarrow \infty} \lambda_{k_{N}, N}=\lambda$, and suppose that

$$
\begin{align*}
& \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j \neq k_{N}} \log \left|\lambda_{k_{N}, N}-\lambda_{j, N}\right|=\int \log \left|\lambda-\lambda^{\prime}\right| d \sigma\left(\lambda^{\prime}\right) \tag{8}\\
& \liminf _{N \rightarrow \infty}\left[\frac{\left|\beta_{k_{N}, N}\right|}{\| r_{0, N}| |}\right]^{1 / N}=: \rho \in(0,1] . \tag{9}
\end{align*}
$$

Define the extremal measure $\mu_{t, 0, \sigma}$ as before. Then for $t \in(0,\|\sigma\|)$, we have

Proof part 1 Proof part 2
c.f. 3.1.12, BB '02-'04

Convergence of Ritz values

Let $\left(A_{N}\right)_{N}$ be a sequence of symmetric invertible matrices, A_{N} of size $N \times N$, satisfying the conditions (i), (ii) from before
(iv)' particular eigenvalues: Let k_{N} be a sequence of indices such that $\lim _{N \rightarrow \infty} \lambda_{k_{N}, N}=\lambda$, and suppose that

$$
\begin{align*}
& \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j \neq k_{N}} \log \left|\lambda_{k_{N}, N}-\lambda_{j, N}\right|=\int \log \left|\lambda-\lambda^{\prime}\right| d \sigma\left(\lambda^{\prime}\right) \tag{8}\\
& \liminf _{N \rightarrow \infty}\left[\frac{\left|\beta_{k_{N}, N}\right|}{\| r_{0, N}| |}\right]^{1 / N}=: \rho \in(0,1] . \tag{9}
\end{align*}
$$

Define the extremal measure $\mu_{t, 0, \sigma}$ as before. Then for $t \in(0,\|\sigma\|)$, we have

$$
\begin{aligned}
& \limsup _{\substack{n, N \rightarrow \infty \\
n / N \rightarrow t}} \min _{j}\left|\lambda_{k_{N}, N}-x_{j, n, N}\right|^{1 / N} \leqslant \frac{1}{\rho} \exp \left(U^{\mu_{t, 0, \sigma}}(\lambda)-w_{t, 0, \sigma}\right) \\
& \text { Proof part 1 Proof part 2 }
\end{aligned} \quad \text { c.f. 3.1.12, BB '02-'04 }
$$

Convergence of Ritz values

Let $\left(A_{N}\right)_{N}$ be a sequence of symmetric invertible matrices, A_{N} of size $N \times N$, satisfying the conditions (i), (ii) from before
(iv)' particular eigenvalues: Let k_{N} be a sequence of indices such that $\lim _{N \rightarrow \infty} \lambda_{k_{N}, N}=\lambda$, and suppose that

$$
\begin{align*}
& \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j \neq k_{N}} \log \left|\lambda_{k_{N}, N}-\lambda_{j, N}\right|=\int \log \left|\lambda-\lambda^{\prime}\right| d \sigma\left(\lambda^{\prime}\right) \tag{8}\\
& \liminf _{N \rightarrow \infty}\left[\frac{\left|\beta_{k_{N}, N}\right|}{\| r_{0, N}| |}\right]^{1 / N}=: \rho \in(0,1] \tag{9}
\end{align*}
$$

Define the extremal measure $\mu_{t, 0, \sigma}$ as before. Then for $t \in(0,\|\sigma\|)$, we have

$$
\limsup _{\substack{n, N \rightarrow \infty \\ n / N \rightarrow t}} \min _{j}\left|\lambda_{k_{N}, N}-x_{j, n, N}\right|^{1 / N} \leqslant \frac{1}{\rho} \exp \left(U^{\mu_{t, 0, \sigma}}(\lambda)-w_{t, 0, \sigma}\right) .
$$

Proof part 1, Proof part 2

Remarks to convergence of Ritz values

- Some eigenvalues are well approximated, but some Ritz values can be far from $\Lambda\left(A_{N}\right)$.
- Rule of thumb (c.f. Trefethen \& Bau '97): Ritz values tend to converge to eigenvalues in regions of "too little charge" σ for an equilibrium distribution $\omega_{\text {supp }(\sigma)}$.
More precisely (in case $\rho=1$): outside the region $\cap_{\tau<t} \operatorname{supp}\left(\sigma-\mu_{t, 0, \sigma}\right)$.
- Former result with square root of right-hand bound under stronger assumptions: Kuijlaars '00a.
- If $\Sigma=[A, B]$ and if condition (vi)' with $\rho=1$ is true uniformly for $\lambda \in\left[A, B^{\prime}\right)$, then for such λ we may take the square of the right-hand bound: Go back to Proof part 1
- See Ritz values for equidistant eigenvalues or special right-hand sides

Remarks to convergence of Ritz values

- Some eigenvalues are well approximated, but some Ritz values can be far from $\Lambda\left(A_{N}\right)$.
- Rule of thumb (c.f. Trefethen \& Bau '97): Ritz values tend to converge to eigenvalues in regions of "too little charge" σ for an equilibrium distribution $\omega_{\text {supp }(\sigma)}$. More precisely (in case $\rho=1$): outside the region $\cap_{\tau<t} \operatorname{supp}\left(\sigma-\mu_{t, 0, \sigma}\right)$.
- Former result with square root of right-hand bound under stronger assumptions: Kuijlaars '00a.
- If $\Sigma=[A, B]$ and if condition (vi)' with $\rho=1$ is true uniformly for $\lambda \in\left[A, B^{\prime}\right)$, then for such λ we may take the square of the right-hand bound: Go back to Proof part 1
- See Ritz values for equidistant eigenvalues or special right-hand sides

Remarks to convergence of Ritz values

- Some eigenvalues are well approximated, but some Ritz values can be far from $\Lambda\left(A_{N}\right)$.
- Rule of thumb (c.f. Trefethen \& Bau '97): Ritz values tend to converge to eigenvalues in regions of "too little charge" σ for an equilibrium distribution $\omega_{\text {supp }(\sigma)}$.
More precisely (in case $\rho=1$): outside the region $\cap_{\tau<t} \operatorname{Supp}\left(\sigma-\mu_{t, 0, \sigma}\right)$.
- Former result with square root of right-hand bound under stronger assumptions: Kuijlaars '00a.
- If $\Sigma=[A, B]$ and if condition (vi)' with $\rho=1$ is true uniformly for $\lambda \in\left[A, B^{\prime}\right)$, then for such λ we may take the square of the right-hand bound: Go back to Proof part 1
- See Ritz values for equidistant eigenvalues or special right-hand sides

Remarks to convergence of Ritz values

- Some eigenvalues are well approximated, but some Ritz values can be far from $\Lambda\left(A_{N}\right)$.
- Rule of thumb (c.f. Trefethen \& Bau '97): Ritz values tend to converge to eigenvalues in regions of "too little charge" σ for an equilibrium distribution $\omega_{\text {supp }(\sigma)}$.
More precisely (in case $\rho=1$): outside the region $\cap_{\tau<t} \operatorname{Supp}\left(\sigma-\mu_{t, 0, \sigma}\right)$.
- Former result with square root of right-hand bound under stronger assumptions: Kuijlaars '00a.
- If $\Sigma=[A, B]$ and if condition (vi)' with $\rho=1$ is true uniformly for $\lambda \in\left[A, B^{\prime}\right)$, then for such λ we may take the square of the right-hand bound: Go back to Proof part 1
- See Ritz values for equidistant eigenvalues or special right-hand sides

Remarks to convergence of Ritz values

- Some eigenvalues are well approximated, but some Ritz values can be far from $\Lambda\left(A_{N}\right)$.
- Rule of thumb (c.f. Trefethen \& Bau '97): Ritz values tend to converge to eigenvalues in regions of "too little charge" σ for an equilibrium distribution $\omega_{\text {supp }(\sigma)}$.
More precisely (in case $\rho=1$): outside the region $\cap_{\tau<t} \operatorname{Supp}\left(\sigma-\mu_{t, 0, \sigma}\right)$.
- Former result with square root of right-hand bound under stronger assumptions: Kuijlaars '00a.
- If $\Sigma=[A, B]$ and if condition (vi)' with $\rho=1$ is true uniformly for $\lambda \in\left[A, B^{\prime}\right)$, then for such λ we may take the square of the right-hand bound: Go back to Proof part 1
- See Ritz values for equidistant eigenvalues or special right-hand sides

Remarks to convergence of Ritz values

- Some eigenvalues are well approximated, but some Ritz values can be far from $\Lambda\left(A_{N}\right)$.
- Rule of thumb (c.f. Trefethen \& Bau '97): Ritz values tend to converge to eigenvalues in regions of "too little charge" σ for an equilibrium distribution $\omega_{\text {supp }(\sigma)}$.
More precisely (in case $\rho=1$): outside the region $\cap_{\tau<t} \operatorname{Supp}\left(\sigma-\mu_{t, 0, \sigma}\right)$.
- Former result with square root of right-hand bound under stronger assumptions: Kuijlaars '00a.
- If $\Sigma=[A, B]$ and if condition (vi)' with $\rho=1$ is true uniformly for $\lambda \in\left[A, B^{\prime}\right)$, then for such λ we may take the square of the right-hand bound: Go back to Proof part 1
- See Ritz values for equidistant eigenvalues or special right-hand sides

The Poisson model problem IV

Discretized 17×24 Poisson equation, $-12 \leq \log _{10}($ dist) ≤-3

Convergence of Ritz values for the 2D Poisson problem with $m_{x}=17$ and $m_{y}=24$. Notice that, even for large $n \approx N$, hardly any eigenvalue in $S(1)=\left[4 \delta, 4 \delta^{-1}\right]=[2.83,5.65]$ is found by Ritz values, see old results.

"Squares" of Chebyshev eigenvalues

Consider

$$
\lambda_{j, N}=\epsilon_{j, N} \cos ^{2}\left(\pi \frac{2 j-1}{2 N}\right), \quad \epsilon_{j, N}=-1 \text { for } 2 j<N \text { and } \epsilon_{j, N}=1 \text { else. }
$$

For $0<t \leqslant 1 / \sqrt{2}$ we obtain $S(t)=[-1,1]$, and there is no geometric convergence of Ritz values. For $t \in(1 / \sqrt{2}, 1)$, the sets are strictly decreasing and of the form $S(t)=[-b(t), b(t)]$, see the picture for $N=400$.

Power 2 of 400 Chebyshev eigenvalues

B. Beckermann

| | ${ }^{-0^{-10}}$ | ${ }^{10^{-9}}$ | 10^{-8} | 10^{-7} |
| :---: | :---: | :---: | :---: | :---: | :---: |

\square

"Square roots" of Chebyshev eigenvalues

Consider

$$
\lambda_{j, N}=\epsilon_{j, N} \sqrt{\left|\cos \left(\pi \frac{2 j-1}{2 N}\right)\right|,} \quad \epsilon_{j, N}=-1 \text { for } 2 j<N \text { and } \epsilon_{j, N}=1 \text { else. }
$$

Here $S(t)=[-1,-r(t)] \cup[r(t), 1]$, with $r(t)=\frac{1-\cos (\pi t / 2)}{1+\cos (\pi t / 2)}$, see the pictures for $N=400$ and $N=401$.

B. Beckermann

first	-1	back	goto	+1	last
toc					

What we should have learned

For sequences of matrices with asymptotic eigenvalue distribution σ :

- convergence of Ritz values where spectrum is not "too" dense
- rate can be quantified in terms of $\mu_{t, 0, \sigma}$, solution of constrained minimal energy problem
- once an eigenvalue is matched (geometrically) by Ritz value, it can be neglected for CG or GMRES convergence
- effective condition number ($=$ superlinear convergence) can be quantified (in weak sense) in terms of $\mu_{t, 0, \sigma}$ or even $\mu_{t, Q, \sigma}$
- theory can be applied to Toeplitz matrices and systems coming from discretization of elliptic PDE

Further examples, Applications from PDE

- Motivation, link to discrete orthogonal polynomials
- Definition of Krylov subspace methods, polynomial language
- Logarithmic potential theory (with constraint)
- Asymptotics of discrete orthogonal polynomials
- Rate of convergence of Krylov subspace methods and Ritz values
- Further examples, Applications from PDE
B. Beckermann

Toeplitz matrices

$$
T_{N}(\phi)=\left[\begin{array}{cccc}
\phi_{0} & \phi_{1} & \cdots & \phi_{N-1} \\
\phi_{-1} & \phi_{0} & \cdots & \phi_{N-2} \\
\vdots & \vdots & & \vdots \\
\phi_{1-N} & \phi_{2_{N}} & \cdots & \phi_{0}
\end{array}\right], \quad \phi(\theta)=\sum_{j=-\infty}^{\infty} \phi_{j} e^{i j \theta}
$$

$T_{N}(\phi)=T_{N}(\phi)^{*}$ iff $\phi_{j}=\overline{\phi_{-j}} . T_{N}(\phi) \geqslant 0$ iff $\phi \geqslant 0$ a.e. on $[0,2 \pi]$.
Thm: Let ϕ be real-valued and of Wiener class $\left(\sum\left|\phi_{j}\right|<\infty\right)$, then (H1)' holds,

$$
\text { with } \quad \int f d \sigma=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(\phi\left(e^{i \theta}\right)\right) d \theta
$$

Moreover, if $\phi \geqslant 0$, then (H2)' implies (H3)'.
Remark: A similar result is true for level 2 Toeplitz matrices (each entry is again Toeplitz) with symbol having absolutely convergent Fourier series.

Idea of proof

Step 1 (make T_{N} banded): Let $\phi^{(k)}$ be partial sum of ϕ, then

$$
\limsup _{k}\left\|T_{N}(\phi)-T_{N}\left(\phi^{(k)}\right)\right\| \leqslant \lim _{k} \sum_{|j|>k}\left|\phi_{j}\right|=0 .
$$

Step 2 (transform to circulants): let
$C_{k, N}=\left[\begin{array}{cccccccccccc}\phi_{0} & \phi_{1} & \cdots & \phi_{k} & 0 & 0 & \cdots & 0 & \phi_{-k} & \phi_{1-k} & \cdots & \phi_{-1} \\ \phi_{-1} & \phi_{0} & \cdots & \phi_{k-1} & \phi_{k} & 0 & \cdots & 0 & 0 & \phi_{-k} & \cdots & \phi_{-2} \\ \vdots & \ddots & \ddots & & \ddots & \ddots & \ddots & & \ddots & \ddots & & \end{array}\right]$
For fixed k, (asymptotic) spectrum of $\left(C_{k, N}\right)_{N}$ is known (FFT), given by $\sigma^{(k)}$, and $\operatorname{rank}\left(C_{N, k}-T_{N}\left(\phi^{(k)}\right)\right) \leqslant 2 k$.
B. Beckermann

Idea of proof

Step 1 (make T_{N} banded): Let $\phi^{(k)}$ be partial sum of ϕ, then

$$
\limsup _{k}\left\|T_{N}(\phi)-T_{N}\left(\phi^{(k)}\right)\right\| \leqslant \lim _{k} \sum_{|j|>k}\left|\phi_{j}\right|=0 .
$$

Step 2 (transform to circulants): let
$C_{k, N}=\left[\begin{array}{cccccccccccc}\phi_{0} & \phi_{1} & \cdots & \phi_{k} & 0 & 0 & \cdots & 0 & \phi_{-k} & \phi_{1-k} & \cdots & \phi_{-1} \\ \phi_{-1} & \phi_{0} & \cdots & \phi_{k-1} & \phi_{k} & 0 & \cdots & 0 & 0 & \phi_{-k} & \cdots & \phi_{-2} \\ \vdots & \ddots & \ddots & & \ddots & \ddots & \ddots & \ddots & \ddots & & \end{array}\right]$.
For fixed k, (asymptotic) spectrum of $\left(C_{k, N}\right)_{N}$ is known (FFT), given by $\sigma^{(k)}$, and $\operatorname{rank}\left(C_{N, k}-T_{N}\left(\phi^{(k)}\right)\right) \leqslant 2 k$.

Idea of proof (continued)

Step 3: Apply general perturbation result of Tyrtyshnikov/Serra Capizzano, 3.3.2: $\sigma^{(k)} \xrightarrow{*} \sigma$ for $k \rightarrow \infty$.
Step 4: (H2)' implies that

$$
\begin{array}{ll}
\infty>U^{\sigma}(0)=-\int \log \left(\phi^{i \theta}\right) d \theta & \Longrightarrow \\
\frac{\operatorname{det}\left(T_{N}(\phi)\right)}{\operatorname{det}\left(T_{N-1}(\phi)\right)} \rightarrow-U^{\sigma}(0) \quad \Longrightarrow & \\
\left|\operatorname{det}\left(T_{N}(\phi)\right)\right|^{1 / N} \rightarrow-U^{\sigma}(0) & \Longrightarrow(\mathrm{H} 3)^{\prime}
\end{array}
$$

B. Beckermann

Idea of proof (continued)

Step 3: Apply general perturbation result of Tyrtyshnikov/Serra Capizzano, 3.3.2: $\sigma^{(k)} \xrightarrow{*} \sigma$ for $k \rightarrow \infty$.
Step 4: (H2)' implies that

$$
\begin{array}{ll}
\infty>U^{\sigma}(0)=-\int \log \left(\phi^{i \theta}\right) d \theta & \Longrightarrow \\
\frac{\operatorname{det}\left(T_{N}(\phi)\right)}{\operatorname{det}\left(T_{N-1}(\phi)\right)} \rightarrow-U^{\sigma}(0) \quad \Longrightarrow & \\
\left|\operatorname{det}\left(T_{N}(\phi)\right)\right|^{1 / N} \rightarrow-U^{\sigma}(0) \quad \Longrightarrow(H 3)^{\prime}
\end{array}
$$

B. Beckermann

Idea of proof (continued)

Step 3: Apply general perturbation result of Tyrtyshnikov/Serra Capizzano, 3.3.2: $\sigma^{(k)} \xrightarrow{*} \sigma$ for $k \rightarrow \infty$.
Step 4: (H2)' implies that

$$
\begin{array}{ll}
\infty>U^{\sigma}(0)=-\int \log \left(\phi^{i \theta}\right) d \theta & \Longrightarrow \\
\frac{\operatorname{det}\left(T_{N}(\phi)\right)}{\operatorname{det}\left(T_{N-1}(\phi)\right)} \rightarrow-U^{\sigma}(0) \quad \Longrightarrow & \\
\left|\operatorname{det}\left(T_{N}(\phi)\right)\right|^{1 / N} \rightarrow-U^{\sigma}(0) & \Longrightarrow(H 3)^{\prime}
\end{array}
$$

B. Beckermann

Idea of proof (continued)

Step 3: Apply general perturbation result of Tyrtyshnikov/Serra Capizzano, 3.3.2: $\sigma^{(k)} \xrightarrow{*} \sigma$ for $k \rightarrow \infty$.
Step 4: (H2)' implies that

$$
\begin{array}{ll}
\infty>U^{\sigma}(0)=-\int \log \left(\phi^{i \theta}\right) d \theta & \Longrightarrow \\
\frac{\operatorname{det}\left(T_{N}(\phi)\right)}{\operatorname{det}\left(T_{N-1}(\phi)\right)} \rightarrow-U^{\sigma}(0) \quad \Longrightarrow & \\
\left|\operatorname{det}\left(T_{N}(\phi)\right)\right|^{1 / N} \rightarrow-U^{\sigma}(0) & \Longrightarrow(\mathrm{H} 3)^{\prime}
\end{array}
$$

B. Beckermann

Diffusion problem I

Let $\Omega \subset[0,1]^{2}$ be some open polyhedron, and $b: \Omega \rightarrow[0,+\infty)$ piecewise continuous. Discretize

$$
\operatorname{div}(b \nabla u)=f \text { on } \Omega
$$

plus Dirichlet (Neumann) boundary conditions via central finite differences with stepsizes

$$
\Delta x=\frac{1}{m_{x}+1}, \quad \Delta y=\frac{1}{m_{y}+1}, \quad m_{x}, m_{y} \rightarrow \infty, \quad \frac{m_{x}}{m_{y}} \rightarrow \delta<1
$$

Leads to system

$$
A_{N} x=b_{N} .
$$

Remark: (Discretization of) BC not so important, small rank pertubation of order $\mathcal{O}(\sqrt{N})$.

Diffusion problem II

Thm: We have

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \int f d \nu_{N}\left(A_{N}\right)= \\
& \frac{1}{m(\Omega)} \int_{\Omega} d x \frac{1}{(2 \pi)^{2}} \iint_{[0,2 \pi]^{2}} d s f\left(b(x) \cdot\left[2 \delta\left(1-\cos \left(s_{1}\right)\right)+2 \delta^{-1}\left(1-\cos \left(s_{2}\right)\right)\right]\right)
\end{aligned}
$$

with $m(\cdot)$ denoting the two-dimensional Lebesgue measure.

Idea of proof:

- cut Ω in squares, replace b on each square by constant;
- use 3.1.11 on each square, apply the perturbation result.

Diffusion problem II

Thm: We have

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \int f d \nu_{N}\left(A_{N}\right)= \\
& \frac{1}{m(\Omega)} \int_{\Omega} d x \frac{1}{(2 \pi)^{2}} \iint_{[0,2 \pi]^{2}} d s f\left(b(x) \cdot\left[2 \delta\left(1-\cos \left(s_{1}\right)\right)+2 \delta^{-1}\left(1-\cos \left(s_{2}\right)\right)\right]\right)
\end{aligned}
$$

with $m(\cdot)$ denoting the two-dimensional Lebesgue measure.

Idea of proof:

- cut Ω in squares, replace b on each square by constant;
- use 3.1.11 on each square, apply the perturbation result.

Diffusion problem II

Thm: We have

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \int f d \nu_{N}\left(A_{N}\right)= \\
& \frac{1}{m(\Omega)} \int_{\Omega} d x \frac{1}{(2 \pi)^{2}} \iint_{[0,2 \pi]^{2}} d s f\left(b(x) \cdot\left[2 \delta\left(1-\cos \left(s_{1}\right)\right)+2 \delta^{-1}\left(1-\cos \left(s_{2}\right)\right)\right]\right)
\end{aligned}
$$

with $m(\cdot)$ denoting the two-dimensional Lebesgue measure.

Idea of proof:

- cut Ω in squares, replace b on each square by constant;
- use 3.1.11 on each square, apply the perturbation result.

Diffusion problem II

Thm: We have

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \int f d \nu_{N}\left(A_{N}\right)= \\
& \frac{1}{m(\Omega)} \int_{\Omega} d x \frac{1}{(2 \pi)^{2}} \iint_{[0,2 \pi]^{2}} d s f\left(b(x) \cdot\left[2 \delta\left(1-\cos \left(s_{1}\right)\right)+2 \delta^{-1}\left(1-\cos \left(s_{2}\right)\right)\right]\right)
\end{aligned}
$$

with $m(\cdot)$ denoting the two-dimensional Lebesgue measure.

Idea of proof:

- cut Ω in squares, replace b on each square by constant;
- use 3.1.11 on each square, apply the perturbation result.

Diffusion problem II

Thm: We have

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \int f d \nu_{N}\left(A_{N}\right)= \\
& \frac{1}{m(\Omega)} \int_{\Omega} d x \frac{1}{(2 \pi)^{2}} \iint_{[0,2 \pi]^{2}} d s f\left(b(x) \cdot\left[2 \delta\left(1-\cos \left(s_{1}\right)\right)+2 \delta^{-1}\left(1-\cos \left(s_{2}\right)\right)\right]\right)
\end{aligned}
$$

with $m(\cdot)$ denoting the two-dimensional Lebesgue measure.

Idea of proof:

- cut Ω in squares, replace b on each square by constant;
- use 3.1.11 on each square, apply the perturbation result.

Diffusion problem II

Thm: We have

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \int f d \nu_{N}\left(A_{N}\right)= \\
& \frac{1}{m(\Omega)} \int_{\Omega} d x \frac{1}{(2 \pi)^{2}} \iint_{[0,2 \pi]^{2}} d s f\left(b(x) \cdot\left[2 \delta\left(1-\cos \left(s_{1}\right)\right)+2 \delta^{-1}\left(1-\cos \left(s_{2}\right)\right)\right]\right)
\end{aligned}
$$

with $m(\cdot)$ denoting the two-dimensional Lebesgue measure.

Idea of proof:

- cut Ω in squares, replace b on each square by constant;
- use 3.1.11 on each square, apply the perturbation result.

Diffusion problem III

- more general result on FD discretization given by Serra Capizzano;
- Relation to Weyl formula

$$
\sigma^{\prime}(y)=\frac{1}{4 \pi m(\Omega)} \int_{\Omega} \frac{d x}{b(x)}+y \frac{\delta+\delta^{-1}}{32 \pi m(\Omega)} \int_{\Omega} \frac{d x}{b(x)^{2}}+\mathcal{O}\left(y^{2}\right)_{y \rightarrow 0}
$$

- Numerical experiments for four domains \quad _
B. Beckermann

Diffusion problem III

- more general result on FD discretization given by Serra Capizzano;
- Relation to Weyl formula

$$
\sigma^{\prime}(y)=\frac{1}{4 \pi m(\Omega)} \int_{\Omega} \frac{d x}{b(x)}+y \frac{\delta+\delta^{-1}}{32 \pi m(\Omega)} \int_{\Omega} \frac{d x}{b(x)^{2}}+\mathcal{O}\left(y^{2}\right)_{y \rightarrow 0}
$$

- Numerical experiments for four domains \square_{0}. \square_{0}

Diffusion problem III

- more general result on FD discretization given by Serra Capizzano;
- Relation to Weyl formula

$$
\sigma^{\prime}(y)=\frac{1}{4 \pi m(\Omega)} \int_{\Omega} \frac{d x}{b(x)}+y \frac{\delta+\delta^{-1}}{32 \pi m(\Omega)} \int_{\Omega} \frac{d x}{b(x)^{2}}+\mathcal{O}\left(y^{2}\right)_{y \rightarrow 0}
$$

- Numerical experiments for four domains \quad U

Diffusion problem IV

B. Beckermann

Diffusion problem V

