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Abstract

We give a theoretical explanation for superlinear convergence behavior observed while
solving large symmetric systems of equations using the Conjugate Gradient method, or
other Krylov subspace methods. We present a new bound on the relative error after n
iterations. This bound is valid in an asymptotic sense, when the size N of the system
grows together with the number of iterations. The bound depends on the asymptotic
eigenvalue distribution and on the ratio n/N . Similar bounds are given for the task of
approaching eigenvalues of large symmetric matrices via Ritz values.

Our findings are related to some recent results concerning asymptotics of discrete orthogo-
nal polynomials due to Rakhmanov and Dragnev & Saff, followed by many other authors.
An important tool in these investigations is a constrained energy problem in logarithmic
potential theory.

The present notes are intended to be selfcontained (even if sometimes the proofs are in-
complete and we refer to the original literature for details): the first part about Krylov
subspace methods should be accessible for people from the orthogonal polynomial com-
munity, also for those who do not know much about numerical linear algebra. In the
second part we gather the necessary tools from logarithmic potential theory, and recall
the basic results on the nth root asymptotics of discrete orthogonal polynomials. Finally,
in the third part we discuss the fruitful relationship between these two fields and give
several illustrating examples.
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Chapter 1

Background in Numerical Linear
Algebra

1.1 Introduction

The Conjugate Gradient (CG) method is widely used for solving systems of linear equa-
tions Ax = b with a positive definite symmetric matrix A. The CG method is popular as
an iterative method for large systems, stemming e.g. from the discretisation of boundary
value problems for elliptic PDEs. The rate of convergence of CG depends on the distri-
bution of the eigenvalues of A. A well-known upper bound for the error en in the A-norm
after n steps is

‖en‖A

‖e0‖A
≤ 2

(√
κ− 1√
κ+ 1

)n

(1.1.1)

where e0 is the initial error and the condition number κ = λmax/λmin is the ratio of the
two extreme eigenvalues of A. In practical situation, this bound is too pessimistic, and
one observes an increase in the convergence rate as n increases. This phenomenon is
known as superlinear convergence of the CG method. It is the purpose of this work to
give an explanation for this behavior in an asymptotic sense, following [Kui00a, BeKu99,
BeKu00, BeKu02].

As we will see in Section 1.4 below, the CG convergence behavior is determined by asymp-
totics of discrete orthogonal polynomials, and can be bounded above in terms of asymp-
totics of discrete L∞ extremal polynomials. More generally, consider the extremal poly-
nomials Tn,p(z) = zn + lower powers with regard to some discrete Lp–norm

||wn · Tn,p||Lp(En) = min{||wn · P ||Lp(En) : P (z) = zn + lower powers}, (1.1.2)

where

||f ||L∞(En) := sup
z∈En

|f(z)|, ||f ||Lp(En) :=

[
∑

z∈En

|f(z)|p
]1/p

, (1.1.3)

0 < p < ∞, with En being suitable finite or countable subsets of the complex plane,
#En ≥ n + 1, and wn(z), z ∈ En, being (sufficiently fast decreasing) positive numbers.

For the case p = 2 of monic discrete orthogonal polynomials, examples include the discrete
Chebyshev polynomials [Rak96] (choose wn = 1, En = {0, 1, ..., n}) or other classical
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Figure 1.1: The polynomials Tn,∞ (after normalization) for n = 5, 10, 18 for E consisting
of 20 equidistant points and trivial weight w = 1.

families like Krawtchouk or Meixner polynomials [DaSa98, DrSa97, KuVA99], see for
instance the review in [KuRa98]. A study of asymptotics of such polynomials has some
important applications, e.g., in coding theory, in random matrix theory [Joh00], or in the
study of the continuum limit of the Toda lattice [DeMc98].

It was Rakhmanov [Rak96] who first observed that a particular constrained (weighted)
energy problem in complex potential theory (see Section 2.2) may furnish a method for
calculating the nth root asymptotics of extremal polynomials with respect to so–called
ray sequences obtained by a suitable renormalization of the sets En. Further progress
has been made by Dragnev and Saff for real sets En being uniformly bounded [DrSa97];
they also obtained asymptotics for discrete Lp–norms with 0 < p ≤ ∞. Generalizations
for unbounded real sets En and exponentially decreasing weights have been discussed
by Kuijlaars and Van Assche [KuVA99] (0 < p ≤ ∞) and Kuijlaars and Rakhmanov
[KuRa98] (p = 2). Damelin and Saff [DaSa98] studied the case p = ∞ for more general
classes of weights. Complex possibly unbounded sets En and even more general weights
have been discussed in [Be00a]. Here it is also shown that two conjectures of Rakhmanov
[KuRa98] are true concerning some separation assumption for the sets En.

We will explain in Section 2.3 below how some energy problem with constraint and ex-
ternal field will enable us to describe the nth root asymptotics of the polynomials Tn,p

and the norms ||wN · Tn,p||Lp(EN ). What makes the asymptotic analysis difficult is the
fact that a polynomial can be small on a discrete set without being uniformly small
in the convex hull of this discrete set. To illustrate this observation, we have chosen
E = {j/20 : j = 1, ..., 20} and the trivial weight w = 1, and have drawn the normalized
extremal polynomials Tn,∞/||Tn,∞||L∞(E) for n = 5, 10, 18 in Figure 1.1. We see that, for
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Figure 1.2: The CG error curve versus the two upper bounds for the system Ax = b with
A = diag (1, 2, . . . , 100), random solution x, and initial residual r0 = (1, ..., 1)T .

n = 4, the polynomial is uniformly small on [1/20, 20/20], but this is no longer true for
n = 10 or n = 18.

For the same reason, the classical CG error bound (1.1.1) gives satisfactory results for
small iterations, but can be a crude overestimation in a later stage. Indeed, for small
n, a polynomial p ∈ Pn with p(0) = 1 that is small on the spectrum of A has to be
uniformly small on the full interval [λmin, λmax] as well. When n gets larger, however, a
better strategy for p is to have some of its zeros very close to some of the eigenvalues of
A, thereby annihilating the value of p at those eigenvalues, while being uniformly small
on a subcontinuum of [λmin, λmax] only.

As an illustration we look at the case of a matrix A with 100 equally spaced eigenvalues
1, 2, . . . , 100. The error curve computed for this example is the solid line in Figure 1.2.
See also [DTT98, page 560]. The classical error bound given by (1.1.1) with κ = 100 is
the straight line in Figure 1.1. For smaller values of n, the classical error bound gives
an excellent approximation to the actual error. The other curve (the one with the dots)
is the asymptotic bound for the error proposed in [BeKu99, Corollary 3.2]. This curve
follows the actual error especially well for n ≥ 40, the region of superlinear convergence.

The observations made above have been well known in the numerical linear algebra com-
munity, see for instance the monographs [Fi96, Gr97, Nev93, Saa96, TrBa97] or the orig-
inal articles [AxLi86a, AxLi86b, Gre79, SlvS96, vSvV86]. Eigenvalues far away from the
rest of the spectrum (so-called outliers) have been treated an a separate manner im-
proving (1.1.1) [AxLi86a, AxLi86b]. The strategy described above to get a polynomial
being small on the (discrete) spectrum was known as convergence of some Ritz values
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[Gre79, SlvS96, vSvV86]. In addition, the researchers have been aware of the fact that log-
arithmic potential theory helps in describing or bounding the rate of convergence [DTT98].
There was also a vague idea about what is a ”favorable eigenvalue distribution” in order
to get a pronounced superlinear convergence [DTT98, TrBa97]. However, precise analytic
formulas seemed to occur for the first time only in [Kui00a, BeKu99, BeKu00, BeKu02].

Properly speaking, the concept of superlinear convergence for the CG method applied to
a single linear system does not make sense. Indeed, in the absence of roundoff errors,
the iteration will terminate latest after N steps if N is the size of the system. Also the
notion that the eigenvalues are distributed according to some continuous distribution is
problematic when considering a single matrix.

Therefore we are not going to consider a single matrix A, but instead a sequence (AN)N

of positive definite symmetric matrices. The matrix AN has size N ×N , and we are inter-
ested in asymptotics for large N . These matrices need to have an asymptotic eigenvalue
distribution.

The rest of this manuscript is organized as follows: In §1.2 we present several Krylov
subspace methods and fix notations. Subsequently, we introduce polynomial language
for explaining the link between convergence theory for Krylov subspace methods, and
classical extremal problems in the theory of orthogonal polynomials. We shortly describe
the general case in §1.3, and then analyze in more detail the case of hermitian matrices
in §1.4.

Following [Kui00a, BeKu99, BeKu00, BeKu02, Be00b], we describe in §2 and §3 how
logarithmic potential theory may help to analyze the convergence of Krylov subspace
methods. Some facts about the weighted energy problem are recalled in §2.1, but here
some additional reading would be helpful, see for instance [MaFi04]. The constrained
weighted energy problem is discussed in some more details in §2.2, and used in §2.3 in
order to describe nth root asymptotics of discrete Lp extremal polynomials.

The link to the convergence of Krylov subspace methods for hermitian matrices is pre-
sented in §3.1 and §3.2, where also several illustrating numerical examples are given. The
aim of §3.3 and §3.4 is to show that many classes of structured matrices have an asymp-
totic eigenvalue distribution. We will consider in particular matrices coming from the
discretization of (elliptic) partial differential equations in R2. A generalization to higher
dimension is possible, but for the sake of simplicity we omit details.

1.2 Conjugate gradients, Lanczos, and Ritz values

For solving Ax = b with A being a sparse large matrix of size N ×N , one often makes use
of Krylov subspace methods which only require to compute matrix vector products with
A, the latter can be often implemented in a very efficient manner. In this section we do
not attempt to give a complete account of Krylov subspace methods, the interested reader
should consult the monographs [Fi96, Gr97, Nev93, Saa96, TrBa97]. We just recall the
basic definitions and some elementary properties on the rate of convergence. Here, very
much in the spirit of the Lille reseach group and in particular of Claude Brezinski (see
also [Fi96]), we will use polynomial language, which should make the theory also more
accessible for people coming from orthogonal polynomials.
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In what follows we will always suppose exact arithmetic and ignore errors due to floating
point operations. In particular, we will find that several Krylov subspace methods are
mathematically equivalent for symmetric A. However, their implementation differs quite
a lot, and thus the results may change in a floating point environment. The link between
convergence of Krylov space methods and loss of precision is subjet of actual research,
see for instance the recent work of Strakos or Meurant, e.g., [Meu92, StTi02, Str01].

A Krylov subspace method consists of computing a sequence x0, x1, x2, ... of approximate
solutions of Ax = b, with residual

rn = r(xn) = b− Axn.

The philosophy behind these methods is that (xn) ”converges quickly” to the solution
A−1b, i.e., xn is a ”good” approximation already for n� N . The iterates satisfy

xn ∈ x0 + Kn(A, r0)

with the Krylov space

Kn(A, c) = span{c, Ac, A2c, ..., An−1c} = {p(A)c : p a polynomial of degree ≤ n− 1}.

Notice that rn ∈ r0 + AKn(A, r0), and thus

rn =
qn(A)r0
qn(0)

(1.2.1)

for a certain polynomial qn of degree n. The Krylov subspace method in question is
now defined by imposing on the residual either some minimization property (MinRES,
GMRES, CG) or some orthogonality property (projection methods, FOM, Lanczos, CR).

Definition 1.2.1 The nth iterate xGMRES
n of GMRES is the unique argument realizing

min{||r(x)|| : x ∈ x0 + Kn(A, r0)}.

The nth iterate xFOM
n of FOM is defined by

rFOM
n ⊥ Kn(A, r0).

For some vector y, the nth iterate xL
n of the Lanczos method is defined by

rL
n ⊥ Kn(A

∗, y)

(in case of y = r0 we speak of the symmetric Lanczos method).

For real symmetric positive definite A, the nth iterate xCG
n of the method of conjugate

gradients (CG) is the unique argument realizing

min{||r(x)||A−1 : x ∈ x0 + Kn(A, r0)}, ||c||A−1 =
√
c∗A−1c.

�
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If A is invertible, and s.p.d., respectively, the functions x 7→ ||r(x)||2, and x 7→ ||r(x)||2A−1,
respectively, are strictly convex, and thus the iterates of CG and GMRES exist and are
unique. In contrast, it may happen that the nth iterate of FOM does not exist, see
Corollary 1.3.4.

Exercise 1.2.2 There exists N ′ = N ′(B, r0) such that, for all n ≥ 0,

dim Kn(A, r0) = min{n,N ′}.

Hint: Try first diagonal A, and use the fact the matrix (r0, Ar0, A
2r0, ..., A

n−1r0) is some
diagonal matrix times some Vandermonde matrix. Try then diagonalisable A. �

Exercise 1.2.3 If x0 = 0, and A is invertible, show that A−1b ∈ KN ′(A, r0). �

It follows from the preceding two exercises that, for x0 = 0 and n = N ′, the iterates
xFOM

n , xGMRES
n and xCG

n give the exact solution of Ax = b, but of course we hope that we
have a good approximation already much earlier.

There is a link between the size of the residuals of FOM and GMRES given by the
following result. A proof is immediate once we have the representation (1.2.1) in terms
of orthogonal polynomials, see Section 1.3.

Exercise 1.2.4 Show that

1

||rGMRES
n ||2 =

n∑

j=0

1

||rFOM
j ||2 .

�

Definition 1.2.5 The Arnoldi basis v1, v2, ..., vN ′ is such that, for all n = 1, ..., N ′, the
vectors v1, ..., vn form an orthonormal basis of Kn(A, r0) (obtained by the Arnoldi method:
orthogonalize Avn against v1, ..., vn, and divide the resulting vector by its norm). We also
define the matrices

Vn := (v1, v2, ..., vn) ∈ CN×n,

Jn := V ∗
nAVn ∈ Cn×n, Ĵn = V ∗

n+1AVn ∈ C(n+1)×n.

Finally, the eigenvalues of the projected matrix Jn are called nth Ritz values of A. �

Exercise 1.2.6 Show that Jn and Ĵn are upper Hessenberg (all elements at position
(j, k) with k < j − 1 are equal to zero). Furthermore, show that

n < N ′ : Vn+1Ĵn = AVn. (1.2.2)

Finally, in the case of hermitian A, show that Jn is symmetric (and tridiagonal). �

Remark 1.2.7 By construction we have for n = N ′ that VN ′JN ′ = AVN ′. As a conse-
quence, denoting by Λ(B) the spectrum of some matrix B, we have that the columns of
VN ′ span an A-invariant subspace, and Λ(JN ′) ⊂ Λ(A). �
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Remark 1.2.8 In case of real symmetric A, it follows from Definition 1.2.1 that the
symmetric Lanczos method and FOM are mathematically equivalent, i.e., xFOM

n = xL
n =

xCR
n , the last denoting the iterates of the conjugate residual method. Also, in this case the

GMRES method reduces to the so-called method MinRES (minimal residuals). Finally,
we will show in Corollary 1.4.2 below that, in case of symmetric positive definite A, the
CG iterates coincide with the symmetric Lanczos iterates. �

1.3 Krylov subspace methods and discrete orthogo-

nal polynomials: non symmetric data

One may show that the nth residual polynomial qn of (1.2.1) of the Lanczos method is
given by the denominator of the nth Padé approximant at infinity of the rational function

πN (z) = y∗(zI − A)−1r0 =
∞∑

j=0

z−j−1y∗Ajr0, (1.3.1)

see for instance [Bre72, §3.6] or for the symmetric case [GoSt94]. Hence there is a link be-
tween Lanczos method and formal orthogonal polynomials (polynomials being orthogonal
with respect to some linear form).

In this Section we will concentrate on FOM/GMRES for non symmetric A. Denote by
P the set of polynomials with complex coefficients, and by Pn the set of polynomials of
degree at most n with complex coefficients. For two polynomials P,Q, we consider the
sesquilinear form

≺ P,Q �= (P (A)r0)
∗Q(A)r0.

The following exercise shows that we have a scalar product

Exercise 1.3.1 Let N ′ = N ′(A, r0) as in Exercise 1.2.2. Show that for all P ∈ PN ′−1 \
{0} we have ≺ P, P �> 0, and that there exists a unique monic polynomial Q of degree
N ′ with ≺ Q,Q �= 0. �

As a consequence, we can define uniquely orthonormal polynomials pn, n = 0, 1, ..., N ′,
verifying

j = 0, ..., N ′ − 1 : pj(z) = kjz
j + lower powers, kj > 0, (1.3.2)

j, k = 0, ..., N ′ − 1 : ≺ pj, pk �= δj,k, (1.3.3)

for all P ∈ P : ≺ P, pN ′ �= 0, pN ′(z) = zN ′

+ lower powers (1.3.4)

(we put kN ′ = 1). These orthonormal polynomials are known to satisfy a (full) recurrence:
there exists an upper Hessenberg matrix JN ′ such that

z(p0, p1, ..., pN ′−1)(z) = (p0, p1, ..., pN ′−1)(z)JN ′ +
kN ′−1

kN ′

pN ′(z)(0, ..., 0, 1). (1.3.5)

The Hessenberg matrix Jn occurred already earlier in Definition 1.2.5. Indeed, this is not
an inconsistency in notation, as it becomes clear from the following
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Exercise 1.3.2 The Arnoldi basis is given by the vectors

vj := pj−1(A)r0, j = 1, ..., N ′,

and pN ′(A)r0 = 0. In particular, the matrices JN ′ in Definition 1.2.5 and in (1.3.5)
coincident, and the matrix Jn in Definition 1.2.5 is just the nth principal submatrix of
JN ′ . Finally, for 1 ≤ n ≤ N ′ we have

z(p0, p1, ..., pn−1)(z) = (p0, p1, ..., pn−1)(z)Jn +
kn−1

kn
pn(z)(0, ..., 0, 1). (1.3.6)

�

As a (more or less immediate) consequence of Exercise 1.3.2, we have the following two
interpretations in terms of orthogonal polynomials. A proof is left to the reader.

Corollary 1.3.3 The nth Ritz values of A are given by the zeros of the orthonormal
polynomial pn. �

As we will see below, ≺ ·, · � can be a discrete Sobolev inner product, its support being
a subset of the spectrum of A. Approaching the spectrum of A by Ritz values means
that we approach the support of some scalar product by the zeros of the underlying
orthogonal polynomials, something familiar for people from the OP community (at least
if the support is real, see Section 1.4).

Corollary 1.3.4 The nth iterate of FOM exists if and only if pn(0) 6= 0. In this case

rFOM
n =

pn(A)r0
pn(0)

,
1

||rFOM
n || = |pn(0)|.

�

We may also describe the residuals of GMRES in terms of orthonormal polynomials. For
this we need some preliminary remarks.

Definition 1.3.5 The nth Szegő kernel of the scalar product ≺ ·, · � is defined by

Kn,2(x, y) =
n∑

j=0

pj(x)pj(y).

�

It is a well-known fact (see for instance the ”bible” of Szegő) that

min
P∈Pn

≺ P, P �
|P (0)|2 =

1

Kn,2(0, 0)
, attained for the polynomial P (z) = Kn,2(0, z). (1.3.7)

By construction of the scalar product ≺ ·, · � and by (1.2.1) we have for n < N ′

min
P∈Pn

≺ P, P �
|P (0)|2 = min{||r(x)||2 : x ∈ x0 + Kn(A, r0)},

leading to the following characterization

9



Corollary 1.3.6 For the nth iterate of GMRES, n = 0, 1, ..., N ′ − 1 we have

rGMRES
n =

Kn,2(0, A)r0
Kn,2(0, 0)

,
1

||rGMRES
n ||2 = Kn,2(0, 0).

�

Exercise 1.3.7 Let µj,k := (Ajr0)
∗Akr0. Show that

||rGMRES
1 ||2

||rGMRES
0 ||2 =

µ0,0µ1,1 − |µ0,1|2
µ0,0µ1,1

.

Conclude that the following algorithm (called GMRES(1))

choose any y0

for k = 0, 1, ... until ”convergence” do

compute yk+1 by one iteration of GMRES with starting vector x0 = yk

converges (yk → A−1b for k → ∞) for all b and y0 if and only if for all y 6= 0 we have
y∗Ay 6= 0.
Hint: if you do not find a direct proof, look at [Gr97]. �

We terminate this section by showing that the scalar product can be (but does not need
to be) a Sobolev inner product with finite support, possibly in the complex plane. Finally,
we show that in case of a normal matrix A we have an important simplification, leading
to discrete orthogonal polynomials with possibly complex support.

Example 1.3.8 For some parameter ρ > 0, consider the matrix

A = XBX−1, B =




1 0 0 0
1 1 0 0
0 0 −1 0
0 0 1 −1


 , X =




1 0 0 0
ρ 1 0 0
0 0 1 0
ρ 0 0 1


 ,

and r0 = Xc, c = (1, 0, 1, 0)t. Notice that B is in Jordan form, and hence Λ(A) = {−1, 1}.
It is not difficult to show that, for any polynomial Q,

Q(A)r0 = XQ(B)c = X




Q(1)
Q′(1)
Q(−1)
Q′(−1)


 =




Q(1)
ρQ(1) +Q′(1)

Q(−1)
ρQ(1) +Q′(−1)


 .

Thus we obtain the following simplification for the scalar product

≺ P,Q � = P (1)Q(1) + ρP (1) + P ′(1)(ρQ(1) +Q′(1))

+P (−1)Q(−1) + ρP (1) + P ′(−1)(ρQ(1) +Q′(−1)),

which reduces to a (discrete) Sobolev inner product in the case ρ = 0. �
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One may indeed show that the scalar product always can be represented in terms of a
linear combination of the values and the derivatives of P,Q at the points of the spectrum
of JN ′ . Let us have a closer look at a case where the derivatives do not occur.

Theorem 1.3.9 If A is normal (i.e., A∗A = AA∗), with matrix of right eigenvectors
given by XN and its spectrum by Λ(A) = {λ1, ...λN} then with X−1

N r0 = (βj)j,

P,Q ∈ P : ≺ P,Q �=

N∑

j=1

|βj|2P (λj)Q(λj). (1.3.8)

Conversely, if the scalar product has a such representation then at least the projected
matrix JN ′ is normal, and Λ(JN ′) = {λj : βj 6= 0} ⊂ Λ(A).

Proof. If A is normal then its matrix of eigenvectors XN is unitary, that is,

X∗
NXN = I, X∗

NAXN = Λ = diag (λ1, ..., λN).

Observing that for some polynomial P we have

P (A) = XNP (Λ)X∗
n, with P (Λ) = diag (P (λ1), ..., P (λN)),

we obtain by writing β = X∗
nr0 = X−1

n r0

P,Q ∈ Pn : ≺ P,Q �= β∗P (Λ)∗Q(Λ)β =
N∑

j=1

|βj|2P (λj)Q(λj).

In order to show the converse result, suppose that there are N ∗ distinct λj with βj 6= 0,
say, the terms corresponding to λ1, ..., λN∗. Then we may rewrite the sum in (1.3.8) as

P,Q ∈ P : ≺ P,Q �=

N∗∑

j=1

|β∗
j |2P (λj)Q(λj)

for suitable coefficients β∗
j and distinct λ1, ..., λN∗. From Exercise 1.3.1 together with

(1.3.4) we learn that N ∗ = N ′, and pN ′(z) = (z − λ1)...(z − λN ′). It follows from Corol-
lary 1.3.3 that JN ′ has the distinct eigenvalues λ1, ..., λN ′ , and the relation Λ(JN ′) ⊂ Λ(A)
was established in Remark 1.2.7. Consider the matrix

Y := (pk(λj))j=1,...,N ′,k=0,...,N ′−1,

then from (1.3.5) we know that Y JN ′ = DY , D = diag (λ1, ..., λN ′), and from the repre-
sentation of the scalar product together with (1.3.3) we learn that

Y ∗ diag (|β∗
1 |2, ..., |β∗

N ′|2)Y = I.

Hence, up to a certain normalization of the rows, the left eigenvector matrix of JN ′ is
unitary, implying that JN ′ is normal. �

Analyzing in more detail the preceding proof we obtain the following

Corollary 1.3.10 If A is normal then also JN ′ is normal, with Λ(JN ′) ⊂ Λ(A). Fur-
thermore, JN ′ has N ′ distinct eigenvalues, and

P,Q ∈ P : ≺ P,Q �=
∑

λ∈Λ(JN′ )

w(λ)2P (λ)Q(λ), (1.3.9)

w(λ)2 =
1

KN ′,2(λ, λ)
> 0,

∑

λ∈Λ(JN′ )

w(λ)2 = ||r0||2.
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1.4 Krylov subspace methods and discrete orthogo-

nal polynomials: symmetric data

From now on we will always suppose (up to Remark 1.4.9) that our matrix of coefficients
A is hermitian, i.e., A = A∗, with spectrum λ1 ≤ λ2 ≤ ...λN . From Exercise 1.2.6 it
follows that JN ′ with N ′ = N ′(A, r0) as in Exercise 1.2.2 is an hermitian upper Hessenberg
matrix with positive entries kn/kn+1 > 0 on the first subdiagonal. However, such a matrix
is necessarily tridiagonal, of the form

Jn =




b0 a0 0 · · · · · · 0
a0 b1 a1 0 · · · 0

0 a1 b2 a2
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 an−3 bn−2 an−2

0 · · · · · · 0 an−2 bn−1




, bn ∈ R, an =
kn

kn+1
> 0. (1.4.1)

Thus (1.3.5) becomes a three term recurrence: for n = 0, ..., N ′ − 1

zpn = anpn+1 + bnpn + an−1pn−1, p0(z) =
1

||r0||
, p−1(z) = 0. (1.4.2)

In particular it follows that the orthonormal polynomials pn have real coefficients, and
are orthonormal with respect to the linear functional c acting on the space of polynomials
via

c(P ) =≺ 1, P �= r∗0P (A)r0, (1.4.3)

i.e., c(pjpk) = δj,k. Also, since hermitian matrices are in particular normal, we have the
representation (1.3.9) for the scalar product (and thus for the linear functional), showing
that there is classical orthogonality on the real line (Theorem of Favard) with respect to
a positive measure with finite support Λ(JN ′) (or a positive linear functional).

In the following Theorem we put together some elementary properties of such orthogonal
polynomials. If you do not remember them, please try to prove them (not necessarily in
the indicated order) or look them up in any standard book about OP.

Theorem 1.4.1 (a) For 1 ≤ n ≤ N ′, the zeros of pn are simple and real, say,

x1,n < x2,n < ... < xn,n.

(b) Interlacing property: The zeros of pn and pn+1 interlace

1 ≤ j ≤ n < N ′ : xj,n+1 < xj,n < xj,n+1.

(c) Separation property:

1 ≤ j < n < n′ ≤ N ′ : there exists j ′ such that xj,n ≤ xj′,n′ < xj+1,n.

12



(d) Christoffel-Darboux: For n < N ′ and x, y ∈ C

Kn,2(x, y) =

n∑

j=0

pj(x)pj(y) = an
pn+1(x)pn(y) − pn+1(y)pn(x)

x− y

and for x ∈ R

Kn,2(x, x) =

n∑

j=0

pj(x)pj(x) = an(p′n+1(x)pn(x) − pn+1(x)p
′
n(x)) > 0.

(e) Associated linear functionals: For γ ∈ R\Λ(JN ′), consider the linear functional

c̃(P ) = c(P̃ ), P̃ (z) = (z − γ)P (z). Then Kn,2(γ, ·) is an nth orthogonal polynomial
with respect to c̃.

(f) Gaussian Quadrature: For any 0 < n < N ′ and any polynomial of degree not
exceeding 2n− 1

c(P ) =
n∑

j=1

P (xj,n)

Kn−1,2(xj,n, xj,n)
.

(g) Stieltjes functions and Padé approximation: The rational function

πn(z) = ||r0||2
n∑

j=1

1

Kn−1,2(xj,n, xj,n)

1

z − xj,n
= ||r0||2(e0, (zIn − Jn)−1e0)

with e0 being the first canonical vector of suitable size is of denominator degree n,
of numerator degree n− 1, has real simple poles and positive residuals, and

πn+1(z) − πn(z) =
1

anpn(z)pn+1(z)
= O(z−2n−1)z→∞.

In particular, πn is the nth Padé approximant at infinity of the Stieltjes function
z 7→ r∗0(zI − A)−1r0, and πN ′ coincides with this function. Finally, pn is an nth
Padé denominator. �

Theorem 1.4.1(g) gives a link between Padé and Krylov subspace methods, compare with
the remarks around (1.3.1). More precisely, we have the following link between CG, FOM
(symmetric Lanczos) and Padé.

Corollary 1.4.2 For symmetric positive definite A, the methods CG, FOM and the
symmetric Lanczos method are mathematically equivalent, more precisely,

||rCG
n || =

1

|pn(0)| , ||rCG
n ||2A−1 = πn(0) − πN ′(0).

Proof. Define the scalar product ≺ ·, · �∗ by replacing in (1.3.9) the term w(λ)2 by
w∗(λ)2 = w(λ)2/λ. According to Definition 1.2.1 the residual polynomial qn of CG in
(1.2.1) is the (up to scaling) unique solution of the extremal problem

min
P∈Pn

≺ P, P �∗

|P (0)|2 =
1

K∗
n,2(0, 0)

(1.4.4)
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with the Szegő function K∗
n,2 of the new scalar product. By (1.3.7) the minimum is

attained by qn(z) = K∗
n,2(0, z), the latter being proportional to pn by Theorem 1.4.1(e).

Hence, from (1.2.1) and Corollary 1.3.4 we may conclude that xCG
n = xFOM

n , implying in
particular our claim for ||rCG

n ||.
In order to show the link between CG and Padé, recall that (zI−A)VN ′ = VN ′(zI−JN ′),
and hence

(rFOM
j )∗(zI − A)−1rFOM

k =
v∗j+1(zI − A)−1vk+1

pj(0)pk(0)
=

[(zI − JN ′)−1]j+1,k+1

pj(0)pk(0)
.

It is a well-known fact that the inverse of a Jacobi matrix can be expressed in terms of
Padé approximants

[(zI − JN ′)−1]j+1,k+1 = pj(z)pk(z)[πN ′(z) − πmax{j,k}(z)],

see for instance [Wal73, §60] or the survey paper [Meu92]. Combining these too findings
for z = 0 leads to our claim. �

The representation of the CG error as Padé error has been applied successfully by Golub,
Meurant, Strakos and others [GoMe97, GoSt94, Meu98] to estimate/bound from below
the nth CG error after having computed the (n + p)th iterate for p > 1

||rCG
n ||2A−1 ≥ πn(0) − πn+p(0) =

n+p−1∑

j=n

| 1

ajpj(0)pj+1(0)
|.

In particular, the authors show that these a posteriori bounds are shown to be reliable
even in finite precision arithmetic. A similar results has been already mentioned implicitly
in the original paper of Hestenes and Stiefel [HeSt94].

We should mention that Theorem 1.4.1(a),(b),(c) provides already a quite precise idea
about how Ritz values do approach the real spectrum Λ(JN ′) ⊂ Λ(A), or, equivalently,
how poles of Padé approximants approach the poles of a rational function with positive
residuals. However, up to now there is no information about the rate of convergence.
For this rate of convergence of Ritz values we have the following result which roughly
says that, provided that a certain polynomial extremal problem depending on λk gives a
”small” value, there is at least one Ritz value ”close” to λk. We do not claim that there is
an eigenvalue ”close” to each Ritz value. Indeed there exist examples with Λ(A) = Λ(−A)
where 0 is a Ritz value for each odd n which might be far from Λ(A).

Theorem 1.4.3 [Be00b] If λk ≤ x1,n then

x1,n − λk = min
{

∑

λ∈Λ(JN′ )\{λk}

w(λ)2(λ− x1,n)|q(λ)|2

w(λk)2|q(λk)|2
: deg q < n, q(λk) 6= 0

}
.

Here the minimum is attained for the polynomial q(x) = pn(x)/(x− x1,n).

If λk ∈ [x1,n, xn,n], say, xκ−1,n ≤ λk ≤ xκ,n, then

(λk − xκ−1,n)(xκ,n − λk) =

min
{

∑

λ∈Λ(JN′ )\{λk}

w(λ)2(λ− xκ−1,n)(λ− xκ,n)|q(λ)|2

w(λk)2|q(λk)|2
: deg q < n− 1, |q(λk)| 6= 0

}
.
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Here the minimum is attained for the polynomial q(x) = pn(x)/[(x− xκ−1,n)(x− xκ,n)].

Proof. We will show here the first part of the assertion; similar arguments may be
applied to establish the second part. If q is a polynomial of degree less than n with
q(λk,N) 6= 0 and p(x) = (x− x1,n) · q(x) · q(x), then c(p) ≥ 0 by the Gaussian quadrature
formula of Theorem 1.4.1(f). Hence the right hand side of (1.3.9) is ≥ 0, and thus

x1,n − λk ≤

∑

λ∈Λ(JN′ )\{λk}

w(λ)2(λ− x1,n)|q(λ)|2

w(λk)2|q(λk)|2
.

Finally, notice that for the choice q(x) = pn,N(x)/(x− x1,n,N) we have c(p) = 0 again by
Theorem 1.4.1(f), and thus there is equality in the above estimate. �

There are several possibilities to relate the result of Theorem 1.4.3 to more classical
extremal problems. The term |λ − xj,n| could be bounded by 2 ||A||, and taking into
account (1.3.9) and (1.3.7), we obtain for instance

(λk − xκ−1,n)(xκ,n − λk) ≤ 4 ||A||2
( KN ′,2(λk, λk)

Kn−2,2(λk, λk)
− 1
)
, if xκ−1,n ≤ λk ≤ xκ,n.

It follows that the distance to at least one of the Ritz values become small if all |pj(λk)|2
for j ≥ n− 1 are small compared to 1/||r0||2 = K0,2(λk, λk).

Another possibility could be to relate (1.3.7) to some extremal problem with respect to
the maximum norm: for some integer n ≥ 0, some z ∈ C and some compact set S ⊂ C,
consider the quantity

En(z, S) = min
p∈Pn

max
λ∈S

|p(λ)|
|p(z)| . (1.4.5)

Clearly, En(z, S) is decreasing in n and increasing in S, and E0(z, S) = 1. Also, for any
a, b 6= 0 there holds En(a, a + bS) = En(0, S). The motivation for studying this extremal
problem comes from the following observation

Exercise 1.4.4 For the inner product (1.3.9), show the following link between En and
the Szegő function

z ∈ C :
1

Kn,2(z, z)
≤ ||r0||2En(z,Λ(JN ′))2.

If in addition Λ(A) ⊂ (0,+∞), show that

1

|pn(0)| ≤ ||r0||A−1 En(0,Λ(JN ′)).

�

Also, by dropping the negative terms in the sums occurring in Theorem 1.4.3 we obtain
the following upper bound for the rate of convergence of Ritz values.

15



Corollary 1.4.5 We have the following upper bounds: if λk ≤ x1,n then

x1,n − λk ≤ 2 ||A|| ||r0||2
w(λk)2

En−1(λk,Λ(JN ′) \ (−∞, x1,n])2,

If xκ−1,n ≤ λk ≤ xκ,n then

(λk − xκ−1,n)(xκ,n − λk) ≤ 4 ||A||2 ||r0||2
w(λk)2

En−2(λk,Λ(JN ′) \ [xκ−1,n, xκ,n])
2

�

The preceding Theorem gives the idea that eigenvalues λk sufficiently away from the rest of
the spectrum of Λ(A) (so-called outliers) and having a sufficiently large eigencomponent
w(λk) should be well approximated by Ritz values. However, as we will see later, for
convergence it will be sufficient that there are not ”too many” eigenvalues close to λk.

Let us further discuss the extremal problem (1.4.5). In the case S ⊂ R and real z not
lying in the convex hull of S, it is known that the polynomial Tn,∞ of (1.1.2) (put wn = 1)
is extremal for (1.4.5), see for instance [Fi96]. The latter is uniquely characterized by a
so-called alternant, that is, the extremal polynomial attains its maximum on S at least
n + 1 times, with alternating sign. For the sake of completeness, let us discuss in more
detail the case of an interval.

Lemma 1.4.6 If 0 < a < b, the value En(0, [a, b]) is attained (up to a linear transfor-
mation) for the Chebyshev polynomial of the first kind Tn(cos(φ)) = cos(nφ), and

En(0, [a, b]) =
2

yn + y−n
≤ 2yn, y =

√
b/a− 1√
b/a+ 1

< 1.

Proof. We first notice that En(0, [a, b]) = En(z, [−1, 1]) with z = (b + a)/(b− a) > 1.
If Tn would not be extremal, then there is a polynomial P of degree n with

P (z) = Tn(z), and M := ||P ||L∞([−1,1] < ||Tn||L∞([−1,1] = 1.

If follows that the polynomial R := Tn − P satisfies R(z) = 0, and for j = 0, 1, ..., n

(−1)j R(cos(
πj

n
)) = (−1)j Tn(

πj

n
)) − (−1)j P (cos(

πj

n
))

= 1 − (−1)j P (cos(
πj

n
)) ≥ 1 −M > 0.

Hence R must have n + 1 roots, but is a polynomial of degree n, a contradiction. Thus
Tn is indeed extremal. It remains to compute its value at z, where we use the recurrence

Tn+1(z) = (y + y−1)Tn(z) − Tn−1(z), T0 = 1, T1(z) = z =
y + 1/y

2
.

�

In [Fi96] one also finds a discussion of the case of S being a union of two intervals. Here
the solution may be estimated in terms of Weierstass elliptic functions, see also [Akh90].
A simple upper bound is discussed in the following exercise.

16



Exercise 1.4.7 Using the preceding result, show that, for 0 < a < b,

E2n(0, [−b,−a] ∪ [a, b]) ≤ 2
(b/a− 1

b/a + 1

)n

.

Derive from this relation an explicit bound for (λk − xκ−1,n)(xκ,n − λk) in terms of the
distance of λk to the rest of the spectrum of A. �

A combination of Exercise 1.4.4 with Remark 1.2.8, Corollary 1.3.6 and Corollary 1.4.2
(and its proof) leads to the following estimates.

Corollary 1.4.8 For hermitian A,

||rGMRES
n ||

||rGMRES
0 || =

||rMinRES
n ||

||rMinRES
0 || ≤ En(0,Λ(JN ′)) ≤ En(0,Λ(A)).

Moreover, for symmetric positive definite A

||rCG
n ||A−1

||rCG
0 ||A−1

=
||rFOM

n ||A−1

||rFOM
0 ||A−1

≤ En(0,Λ(JN ′)) ≤ En(0,Λ(A)).

The bounds of Corollary 1.4.8 should be considered as worst case bounds since they do
not take into account the particular choice of the starting residual. However, it is known
[Gre79] that they cannot be sharpened in the following sense: one may give Ã, r̃0 with
En(0,Λ(A)) = En(0,Λ(Ã)) such that there is equality in Corollary 1.4.8 for these new
data.

Notice also that we obtain a proof of (1.1.1) by replacing Λ(A) by its convex hull in
Corollary 1.4.8, and by applying Lemma 1.4.6. However, following this approach we
forget completely about the fine structure of the spectrum. It is the aim of the following
sections to analyze more pecisely in terms of logarithmic potential theory how the actual
distribution of eigenvalues helps us to improve (1.1.1).

Remark 1.4.9 Let us terminate this section by commenting briefly on different ap-
proaches of bounding the residual of Krylov subspace methods in case of not necessarily
normal A. We start from the observation that

||rGMRES
n ||

||rGMRES
0 || ≤ min{||P (A)||

|P (0)| : P is a polynomial of degree ≤ n}. (1.4.6)

For diagonalizable A, the right hand side may be bounded above by En(0,Λ(A)) times the
condition number of the matrix of eigenvectors of A, see for instance [Saa96]. However,
for matrices far from being normal, this condition number might be quite large. There
are mainly two attempts to overcome this difficulties (see for instance [Gr97] and the
references therein), the first being based on the so-called ε-pseudo-spectrum

Λε(A) := {z ∈ C : ||(zI − A)−1|| ≥ 1

ε
}

in terms of En(0,Λε(A)), the second one on the field of values

W (A) = {y
∗Ay

y∗y
: y ∈ CN , y 6= 0},
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which by the Theorem of Haussdorf is a compact and convex set. For a convex set S it
can be shown that

exp(−ngS(0)) ≤ En(0, S) ≤ 3 exp(−ngS(0)) (1.4.7)

gS denoting the Green function of some compact subset of the complex plane, see Sec-
tion 2.1. Here the left hand inequality is just the Bernstein-Walsh inequality (see for
instance [MaFi04]), and the right-hand bound can be shown with help of the correspond-
ing Faber polynomials. A recent and quite deep result of M. Crouzeix [Cro95] (found
after the publication of [Gr97]) says that there is a universal constant C < 34 such that,
for any square matrix A and any polynomial P ,

||P (A)|| ≤ C max
z∈W (A)

|P (z)|. (1.4.8)

Hence combining (1.4.6), (1.4.7), and (1.4.8), we obtain

||rGMRES
n ||

||rGMRES
0 || ≤ 3C exp(−ngW (A)(0)),

compare with [BGT04]. The constant C can be made smaller by replacing W (A) in (1.4.8)
by some larger convex set, see [BGT04, BeCr05]. A different approach via estimating
directly ||P (A)|| for a suitable Faber polynomial P allows even to establish the sharper
bound [Be05]

||rGMRES
n ||

||rGMRES
0 || ≤ 3 exp(−ngW (A)(0)).

Notice however that such bounds are typically interesting for small n since they do not
allow to describe a superlinear rate of convergence.
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Chapter 2

Extremal problems in complex
potential theory and nth root
asymptotics of OP

2.1 Energy problems with external field

The energy problem with external field has been successfully applied in order to describe
asymptotics of orthogonal polynomials on unbounded sets such as Hermite or Freud poly-
nomials. Since this subject has already discussed in detail in [MaFi04], we recall here
without proof the basic concepts. Also, for the sake of a simplified presentation, we will
restrict ourselves to compact regular real sets and continuous external fields.

Given some compact Σ ⊂ R, we denote by Mt(Σ) the set of Borel measures µ with
support supp (µ) ⊂ Σ and mass ||µ|| := µ(Σ) = t. The logarithmic potential and the
energy of a measure µ ∈ Mt(Σ) are given by

Uµ(z) =

∫
log(

1

|x− z|) dµ(x), I(µ) =

∫∫
log(

1

|x− y|) dµ(x) dµ(y).

Notice that, for a monic polynomial P of degree n, the expression − log(|P |1/n) coincides
with the logarithmic potential of some discrete probability measure, which in case of
distinct roots hass mass 1/n at each root of P . On the other hand, such discrete measures
are dense in the set of Borel measures, explaining why the tool of logarithmic potential
theory is suitable for studying nth root asymptotics.

We define more generally for µ, ν ∈ Mx(Σ) the mutual energy by the expression

I(µ, ν) =

∫∫
log(

1

|x− y|) dµ(x) dν(y) ∈ (0,+∞].

The mutual energy is lower semi-continuous, that is, given two sequences (µn), (νn) ⊂
Mx(Σ), which converge in weak star topology to µ, and ν, respectively (written by
µn →∗ µ), we have

lim inf
n→∞

I(µn, νn) ≥ I(µ, ν). (2.1.1)
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From this one can deduce as an exercise the Principle of descent

lim inf
n→∞

Uµn(zn) ≥ Uµ(z), if µn →∗ µ, zn → z for n→ ∞. (2.1.2)

As explained for instance in [MaFi04], the capacity of a compact set E is defined by the
minimization problem

cap (E) := exp(−min{I(µ) : µ ∈ M1(E)}).

If cap (E) > 0, or, equivalently, if there is an µ ∈ M1(E) with finite energy, then on may
prove using the strict convexity of µ 7→ I(µ) and Helly’s Theorem (weak compactness of
Mx(E)) that there is a unique measure ωE called Robin measure realizing the minimum
in the definition of the capacity. The Green function of a compact set E is defined by

gE(z) = log(
1

cap (E)
) − UωE(z),

behaving at infinity like log(|z|) − log(cap (E)) + o(1)z→∞, being harmonic in C \ E,
subharmonic and ≥ 0 in C, and equal to zero quasi everywhere on E, i.e., in E \E0, with
cap (E0) = 0. Conversely, the Green function can be also uniquely characterized by these
properties. For instance, for an interval we have (see, e.g., [MaFi04])

g[a,b](z) = log(|2z − b− a

b− a
+

√
(
2z − b− a

b− a
)2 − 1|), dω[a,b]

dx
(x) =

1

π
√

(x− a)(b− x)
.

(2.1.3)

A compact set E is called regular (with respect to the Dirichlet problem) if gE is identically
zero on E (and hence gE is continuous in C by the principle of continuity [SaTo97,
Theorem II.3.5]). The link with the so-called Wiener condition and the regularity with
respect to the Dirichlet problem is a nice piece of harmonic analysis, we refer the interested
reader for instance to [SaTo97, Appendix A], where it is also shown that regularity is a
local property

E regular, x ∈ E, r > 0 =⇒ E ∩ {y ∈ C : |y − x| ≤ r} is regular. (2.1.4)

Here we only mention a sufficient condition in the following (a little bit difficult) exercise,
the interested reader should compare with [NiSo88, § 5.4.3].

Exercise 2.1.1 Let E ⊂ C be compact, and suppose that for each x ∈ E there exists
C(x), K(x) > 0 such that, for all r > 0 sufficiently small,

cap ({y ∈ E : |y − x| ≤ r}) ≥ C(x) rK(x).

Show that, for any x ∈ E, there exists (µn) ∈ M1(E) with µn →∗ δx (the Dirac measure),
and logarithmic potential V µn being bounded uniformly in n by some integrable function
(use the maximum principle for logarithmic potentials). Also, show that I(µn, ωE) →
UωE(x), and deduce that E is regular. �

Exercise 2.1.2 Using the fact that cap ([a, b]) = (b − a)/4, show that a finite union
of compact non degenerate intervals is regular. Does it remain regular if one adds an
additional point? �
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Logarithmic potential theory has a nice electrostatic interpretation in R2 (or for cylinder
symmetric configurations in R3, that is, a mass point in R2 corresponds to an infinite wire
in R3 with uniform charge). Given a positive unit charge at zero, its electric potential
is given by U δ0 . Under this point of view, µ ∈ M1(E) represents a (static) distribution
of a positive unit charge on some set E, with electric potential Uµ and electric energy
I(µ). In physics, the equilibrium state is always described as the one having minimal
energy. Thus, ωE may be considered as the equilibrium distribution of a positive unit
charge on a conducting material E, which by physical reasons should have a constant
electric potential on E. Also, the fact that supp (ωE) is subset of the outer boundary of
E (see for instance [MaFi04]) is known in physics as the Faraday principle.

One may wonder about what kind of equilibrium distribution is obtained if there is some
additional fixed external field, induced for instance by some negative charge on some
isolator outside of E. This problem has been already considered a long time ago by Gauß.
Mathematically speaking, we have to solve the following problem:

Definition 2.1.3 Let Σ ⊂ R be a regular compact set, t > 0, and Q ∈ C(Σ). For
µ ∈ Mt(Σ), consider the weighted energy IQ(µ) = I(µ) + 2

∫
Qdµ.

We consider the problem of finding

Wt,Q,Σ := inf{IQ(µ) : µ ∈ Mt(Σ)},

and, if possible, an extremal measure µt,Q,Σ avec IQ(µt,Q,Σ) = Wt,Q,Σ. �

If the external field Q is repealing positive charges, it may happen that the support of
some extremal measure is a proper subset of Σ. By physical arguments, it should happen
that there is a unique equilibrium, and that the corresponding potential is constant on
the part of Σ which is charged by the equilibrium measure, and larger than this constant
else on Σ. Indeed, one may give a mathematical proof of this statement.

Theorem 2.1.4 Let Σ ⊂ R be a regular compact set, t > 0, and Q ∈ C(Σ). The
extremal measure µt,Q,Σ of Definition 2.1.3 exists and is unique.

Moreover, with w = wt,Q,Σ := Wt,Q,Σ −
∫
Qdµt,Q,Σ and µ = µt,Q,Σ there holds

Uµ(z) +Q(z) ≥ w for z ∈ Σ, and (2.1.5)

Uµ(z) +Q(z) ≤ w for z ∈ supp (µ). (2.1.6)

Conversely, if there is a measure µ ∈ Mt(Σ) and a constant w such that (2.1.5) and
(2.1.6) hold, then µ = µt,Q,Σ and w = wt,Q,Σ.

Remark 2.1.5 It follows from (2.1.5) and (2.1.6) that the potential of µt,Q,Σ equals
wt,W,Σ −Q on supp (µt,Q,Σ), the latter being continuous. Thus, by the principle of conti-
nuity [SaTo97, Theorem II.3.5], the potential of µt,Q,Σ is continuous. �

The main ideas for the proof of Theorem 2.1.4 are discussed in the following exercise.

Exercise 2.1.6 Let N be some closed convex subset of Mt(Σ), containing at least one
element µ with I(µ) <∞.

21



(a) Show that IQ is strictly convex.

(b) Using the Theorem of Helly, show that WN = min{IQ(µ) : µ ∈ N} is attained for
some µN ∈ N . Why such a mesure must be unique?

(c) By discussing ν = sµ+(1−s)µN for s→ 0+, show that µN is uniquely characterized
by the property

µ ∈ N : wN := I(µN ) +

∫
QdµN ≤ I(µ, µN ) +

∫
Qdµ.

�

The only property of Theorem 2.1.4 not being an immediate consequence of the preceding
exercise is the fact that the equilibrium measure satisfies the equilibrium conditions (2.1.5)
and (2.1.6). For showing this property, one applies a principle known as Principle of
domination for logarithmic potentials.

Theorem 2.1.7 If µ, ν ∈ M(Σ) with finite energy, if ||ν|| ≤ ||µ||, and if, for some
constant C, the relation Uµ ≤ Uν +C holds µ-almost everywhere, then this relation holds
for all z ∈ C.

Proof. See [SaTo97, Theorem II.3.2]. �

Theorem 2.1.4 together with Theorem 2.1.7 allow us to derive the following result known
as the weighted Bernstein-Walsh inequality.

Corollary 2.1.8 With the assumptions of Theorem 2.1.4, let w(x) = exp(−Q(x)).
Then for any polynomial of degree at most n and for all z ∈ C

|P (z)|
||wnP ||L∞(E)

≤ exp(nw1,Q,Σ − nUµ1,Q,Σ(z)).

Proof. Exercice. �

Remark 2.1.9 For a trivial weight w = 1, Corollary 2.1.8 reduces to the classical
Bernstein-Walsh inequality, which in terms of the function En of (1.4.5) can be rewritten
as En(z, S) ≥ exp(−ngS(z)). However, for applications in numerical linear algebra we
need not lower but upper bounds for En. Depending on the ”smoothness” of the set S,
the Bernstein-Walsh inequality is more or less sharp, for instance, from Lemma 1.4.6 and
the explicit formula of (2.1.3) we learn that En(z, [a, b]) ≤ 2 exp(−ng[a,b](z)). For general
sets S of positive capacity and z 6∈ S ony may show (see, e.g., [NiSo88, Section V.5.3])
that En(z, S)1/n tends to exp(−gS(z)) for n→ ∞. �

We learn from Corollary 2.1.8 that the weighted maximum norm of a polynomial P lives
on a possibly proper compact subset of Σ, that is, ||wnP ||L∞(E) = ||wnP ||L∞(S∗(1,Q,Σ)) with

S∗(t, Q,Σ) := {z ∈ E : Uµt,Q,Σ(z) +Q(z) ≤ wt,Q,Σ}. (2.1.7)

The link between S∗(t, Q,Σ) and the support of the equilibrium measure is studied in
[SaTo97, Theorem IV.4.1], and in more detail by Buyarov and Rakhmanov [BuRa99]. We
state parts of their findings without proof.
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Theorem 2.1.10 ([BuRa99]) Let Σ, Q be as in Theorem 2.1.4, and define the sets

S(t) := supp (µt,Q,Σ), t ≥ 0.

The sets S(t) are increasing in t, with ∩τ>tS(τ) = S∗(t, Q,Σ) for all t, and S(t) =
S∗(t, Q,Σ) for almost all t. Furthermore, for all t > 0 and z ∈ C,

µt,Q,Σ =

∫ t

0

ωS(τ) dτ, wt,Q,Σ − Uµ1,Q,Σ(z) =

∫ t

0

gS(τ)(z) dτ.

�

Theorem 2.1.10 tells us that all extremal quantities are completely determined once one
knows S(t) for all t > 0. Notice that S(t) may consist of several intervals, or even have
a Cantor-like structure. The determination of S(t) for particular classes of external fields
Q is facilitated by tools like the F -functional of Rakhmanov-Maskhar-Saff, see [MaFi04]
or [SaTo97, Section IV.1.11], but remains in general a quite difficult task.

A quite interesting example for the preceding findings is the case of an exponential weight
w(x) = exp(−x2), described below, or more generally Freud weights. This example can
be considered as the starting point for the research on weighted energy problems in the
last twenty years.

Example 2.1.11 Given α > 0, let w(x) = exp(−γα|x|α) (i.e., Q(x) = γα|x|α), with

γ(α) =

∫ 1

0

uα−1

√
1 − u2

du =
Γ(α/2)Γ(1/2)

2Γ((α + 1)/2)

(γ2 = 1), and define the probability measure µ with supp (µ) = [−1, 1] by the weight
function

dµ

dλ
(λ) = s(α, λ) =

α

π

∫ 1

|λ|

uα−1

√
u2 − λ2

du.

On shows [SaTo97, Theorem IV.5.1] that

Uµ(x) +Q(x)

{
= w := log(2) + 1/α for x ∈ [−1, 1],
> w = log(2) + 1/α for x ∈ R \ [−1, 1].

Hence, by Theorem 2.1.4, for any compact Σ containing [−1, 1] we have µ1,Q,Σ = µ, and
S∗(1, Q,Σ) = [−1, 1]. In particular, for any polynomial P of degree at most n we get from
Corollary 2.1.8 that

||wnP ||L∞(Σ) = ||wnP ||L∞(R) = ||wnP ||L∞([−1,1]).

Using the linear transformation y = x · (nγα)1/α, it follows that

||e−|y|αP (y)||L∞(R) = ||e−|y|αP (y)||L∞([−(nγα)1/α,(nγα)1/α]).

�

Exercise 2.1.12 Relate the findings of Example 2.1.11 to those of Theorem 2.1.10. �
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Remark 2.1.13 Using the results mentioned in Example 2.1.11 one may show for in-
stance that the zeros of the Hermite orthogonal polynomials, after division by

√
n, have an

asymptotic distribution given by the weight function s(2, λ) = (2/π)
√

1 − λ2 on [−1, 1].
We refer the reader to [SaTo97, Section III.6] for more precise results on nth root asymp-
totics for Lp-extremal polynomials (including the case p = 2 of orthogonal polynomials)
with respect to varying weights wn. �

We terminate this section by discussing two particular examples of external fields given
by the negative potential of a measure.

Exercise 2.1.14 If Q(z) = −Uσ(z) for some σ ∈ M(Σ) with continuous potential,
show that µt,Q,Σ = σ + (t− ||σ||)ωΣ pour tout t ≥ ||σ||. �

Things are becoming more exciting if the external field is a negative potential of some
measure σ with compact support outside of Σ. Here the extremal measure µ||σ||,−Uσ,Σ can
be considered as a sort of projection of σ onto Σ, more precisely, we obtain the ”problem
of balayage” [SaTo97, Section II.4] studied already by H. Poincaré and Ch. de la Vallée-
Poussin: find a measure of the same mass as σ supported on Σ with potential coinciding
(up to some constant) with Uσ on Σ. In terms of electrostatics, we look for a positive
unit charge on some conductor being in equilibrium with some fixed negative unit charge
(on some isolator).

Exercise 2.1.15 Let Σ ⊂ R be compact and regular, t > 0, Q(z) = −U σ(z) for some
measure σ with compact support supp (σ) 6⊂ Σ, finite energy, and potential continuous
on Σ (the latter being true for instance if supp (σ) ∩ Σ is empty), and write shorter
S(t) = supp (µt,Q,Σ).

(a) Show that cap (S(t)) > 0. Use the maximum principle for subharmonic functions
for showing that gS(t)(z) > 0 for all z 6∈ S(t).

(b) Let ∆ ⊂ Σ some Borel set with cap (∆) = 0, and ν ∈ M(Σ) with finite energy.
Show that ν(∆) = 0.

(c) By applying Theorem 2.1.7, show that

z ∈ C : Uµt,Q,Σ(z) +Q(z) ≤ wt,Q,Σ + (||σ|| − t) gS(t)(z).

(d) Using the maximum principle for subharmonic functions and (c), show that S(t) =
Σ for all t ≥ ||σ||. Deduce that the balayage problem onto Σ has a unique solution
given by µ||σ||,−Uσ,Σ.

(e) In the case t < ||σ||, show that µt,Q,Σ +(||σ||− t)ωS(t) is the balayage of σ onto S(t).

�

Exercise 2.1.16 Let Σ $ Σ′ ⊂ R be compact and regular. What is the balayage measure
of ωΣ′ onto Σ? �
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For a regular compact Σ ⊂ R, we may define the Green function with pole at a ∈ C \ Σ
by the (balayage) formula of a Dirac measure

gΣ(z, a) = w1,Q,Σ − Uµ1,Q,Σ(z) −Q(z), Q(z) = −U δa(z),

compare with [SaTo97, Section II.4]. One may show [SaTo97, Eqn. (II.4.31)] that it is
possible to integrate the preceding formula with respect to a: provided that Q(z) =
−Uσ(z), we have

w||σ||,Q,Σ − Uµ||σ||,Q,Σ(z) −Q(z) =

∫
gΣ(z, a) dσ(a). (2.1.8)

Provided that explicit formulas for gΣ(·, ·) are available, this formula can be exploited
to derive explicit formulas for the density of the balayage measure, by recovering the
measure from its potential [SaTo97, Chapter II.1]. E.g., for x ∈ Σ = [a, b], an interval,
and σ(Σ) = 0, corresponding formulas are given in [SaTo97, Corollary IV.4.12]

dµ||σ||,−Uσ,[a,b]

dx
(x) =

1

π

∫ √
|y − a| |y − b|

|y − x|
√

(x− a)(b− x)
dσ(y). (2.1.9)

2.2 Energy problems with constraint and external

field

Discrete Chebyshev polynomials are orthonormal with respect to the scalar product

≺ P,Q �=
∑

z∈EN

wN(z)2 P (z)Q(z)

with EN = {0, 1, ..., N} and wN(z) = 1. Further systems of ”classical” discrete orthogonal
polynomials contain

Meixner polynomials : EN = {0, 1, 2, ...}, wN(k)2 =
ck(b)k

k!

Charlier polynomials : EN = {0, 1, 2, ...}, wN(k)2 =
cke−c

k!

Krawtchouk polynomials, discrete Freud polynomials, discrete Hahn polynomials, see for
instance [Chi78, DrSa97, DaSa98, KuVA99, KuRa98] and the references therein.

It was Rakhmanov [Rak96] who first observed that the nth root of the nth discrete Cheby-
shev polynomial (and other discrete orthogonal polynomials) for so-called ray sequences,
that is, n,N → ∞ in such a manner that n/N → t ∈ (0, 1), can be described in terms of
a constrained weighted equilibrium problem in logarithmic potential theory. Recall from
Chapter 1.3 that asymptotics of discrete Chebyshev polynomials are closely related to
the convergence behavior of Krylov subspace methods applied to a matrix with equally
spaced eigenvalues, and to the convergence of its Ritz values. Other domains of ap-
plications for asymptotics of discrete orthogonal polynomials include coding theory and
discrete dynamical systems.

Similar to the approach for Hermite polynomials (c.f. Remark 2.1.13), for obtaining nth
root asymptotics it is first required to scale the set EN by some appropriate power of N .
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The resulting supports will then have an asymptotic distribution for N → ∞ which can
be described by some Borel measure σ. Furthermore, after scaling, the weights wN will
behave like w(z)N for some appropriate weight which can be written as w = exp(−Q).
The constrained energy problem considered by Rakhmanov [Rak96] consists in minimizing
the logarithmic energy I(µ), where µ is some probability measure satisfying in addition
the constraint that σ − µ is some nonnegative measure. The set of such measures will be
denoted by

Mσ
t := {µ ≥ 0 : ||µ|| = t, σ − µ ≥ 0}

where 0 < t ≤ ||σ||. In our context it will be useful to introduce a weighted analogue of
this problem. Its unique solution has been characterized by Dragnev and Saff [DrSa97,
Theorem 2.1 and Remark 2.3], and further investigated by several other authors. We
summarize some of their findings in Theorem 2.2.1 below, here additional regularity as-
sumptions on σ and Q enable us to obtain a simplified statement.

Theorem 2.2.1 (see [DrSa97]) Let Q be a continuous real–valued function on some
closed set Σ ⊂ C, w := exp(−Q), and, if Σ is unbounded, suppose that Q(z) − log |z| →
+∞ for |z| → ∞. Furthermore, let σ be a positive measure with supp (σ) ⊂ Σ, such that,
for any compact K ⊂ supp (σ), the restriction σ|K of σ to K has a continuous potential.
Finally, let 0 < t < ||σ||.
Then for the extremal problem

Wt,Q,σ := inf{IQ(µ) : µ ∈ Mσ
t }

there exists a unique measure µt,Q,σ ∈ Mσ
t with Wt,Q,σ = IQ(µt,Q,σ), and this extremal

measure has compact support. Furthermore, there exists a constant w = wt,Q,σ such that
for µ = µt,Q,σ we have the equilibrium conditions

Uµ(z) +Q(z) ≥ w for z ∈ supp (σ − µ), and (2.2.1)

Uµ(z) +Q(z) ≤ w for z ∈ supp (µ). (2.2.2)

Conversely, if µ ∈ Mσ
t has compact support and satisfies the equlibrium conditions (2.2.1),

(2.2.2), for some constant w then µ = µt,Q,σ. �

In terms of electrostatics, we may consider µt,Q,σ as the equilibrium distribution on
supp (σ) of a positive charge of mass t in the presence of an external field Q, but here
supp (σ) is no longer conducting: indeed µ ≤ σ imposes a constraint on the maximum
charge per unit. As a consequence, the corresponding weighted potential is no longer
constant on the whole part of supp (σ) charged by our extremal measure: we may have a
strictly smaller weighted potential at the part supp (σ) \ supp (σ − µt,Q,σ) where the con-
straint is active. However, in the free part supp (σ − µt,Q,σ) ∩ supp (µt,Q,σ) the weighted
potential is still constant.

We should comment on the proof of Theorem 2.2.1. For showing existence and uniqueness
of the extremal measure, we can follow the reasoning of Exercice 2.1.6, at least for compact
Σ (the growth condition on Q can be shown to imply that it is sufficient to consider
compact Σ). A proof of the equivalent characterization by the equilibrium conditions
(2.2.1) and (2.2.2) uses Exercice 2.1.6(c) and Theorem 2.1.7, as well as the following
observation.
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Exercise 2.2.2 Let ν be a measure with compact support and continuous potential. Use
twice the principle of descent for showing that any measure µ ≥ 0 with µ ≤ ν also has a
continuous potential (c.f. [Rak96]). Show also that µ has no mass points. �

Remark 2.2.3 The extremal constant wt,Q,σ is not necessarily unique [DrSa97, Exam-
ple 2.4], but will be unique if supp (σ) is connected, or, more generally, if supp (µt,Q,σ)
and supp (σ − µt,Q,σ) have a non-empty intersection. �

Example 2.2.4 For the constrain dσ
dx

(x) = αxα−1 on supp (σ) = [0,+∞), α > 1/2, and
the external field Q(x) = γ · xα, it is shown in [KuVA99, Theorem 2.1] that

µt,Q,σ =

∫ t

0

ω[a(τ),b(τ)] dτ, wt,Q,σ − Uµt,Q,σ(z) =

∫ t

0

g[a(τ),b(τ)](z) dτ, (2.2.3)

supp (µt,Q,σ) = [0, b(t)], supp (µt,Q,σ) ∩ supp (σ − µt,Q,σ) = [a(t), b(t)], (2.2.4)

where 0 ≤ a(t) = tαa0 < b(t) = tαb0 are solutions of the system

0 =
1

π

∫ b(t)

a(t)

Q′(x) dx√
(b(t) − x)(x− a(t))

−
∫

x≤a(t)

dσ(x)√
(β(t) − x)(α(t) − x)

, (2.2.5)

t =
1

π

∫ b(t)

a(t)

xQ′(x) dx√
(b(t) − x)(x− b(t))

−
∫

x≤a(t)

x dσ(x)√
(b(t) − x)(a(t) − x)

. (2.2.6)

�

Exercise 2.2.5 In case of compact supp (σ), show the following property of duality

µt,Q,σ + µ||σ||−t,Q̃,σ = σ, where Q̃ := −Q− Uσ.

�

Let us compare our extremal problem to the unconstrained one of Definition 2.1.3. In
case of a ”sufficiently large” constraint we clearly see by comparing Theorem 2.2.1 with
Theorem 2.1.4 that the following implication holds

σ ≥ µt,Q,Σ =⇒ µt,Q,σ = µt,Q,Σ. (2.2.7)

Of course, the same conclusion is true if supp (σ − µt,Q,σ) = Σ. In what follows we will
consider sometimes the case of a trivial external field Q = 0 (and hence compact supp (σ)).
Here the following result will be helpful relating the constrained energy problem with
trivial weight to an unconstrained weighted extremal problem and more precisely to a
balayage problem.

Lemma 2.2.6 Under the assumptions of Theorem 2.2.1, if Q = 0 then

σ − µt,0,σ = µ||σ||−t,Q̃,Σ̃, where Q̃ := −Uσ and Σ̃ := supp (σ),

and moreover
supp (µt,0,σ) = supp (σ).
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Proof. Write shorter S := supp (µt,0,σ). Recall that gS equals zero on S up to some
set of capacity zero. From (2.2.2) with Q = 0 and Exercise 2.1.15(b) we conclude that

Uµt,0,σ(z) + gS(z) ≤ w := wt,0,σ

holds µt,0,σ–everywhere on S, and the principle of domination of Theorem 2.1.7 tells us that
the above inequality is true for all z ∈ C. In particular, for z 6∈ S we have Uµt,0,σ(z) < w by
Exercise 2.1.15(a). Comparing with (2.2.1) shows that z 6∈ supp (σ−µt,0,σ) ⊃ supp (σ)\S.
Hence S = supp (σ), as claimed in the assertion. Moreover, from (2.2.1) and (2.2.2) we
see that σ−µt,0,σ satisfies the equilibrium conditions (2.1.5), (2.1.6) corresponding to the
external field Q̃ on Σ̃ with the normalization ||σ|| − t, and hence is equal to µ||σ||−t,Q̃,Σ̃ by
Theorem 2.1.4. �

Exercise 2.2.7 Suppose that (0, T ) 3 t 7→ S(t) ⊂ C with S(t) compact and regular
decreasing sets, i.e., S(t′) ⊂ S(t) for t′ > t, and consider the constraint

σ(x) =

∫ T

0

ωS(t)(x) dt, T = ||σ||. (2.2.8)

Show that

wt,0,σ − Uµt,0,σ(z) =

∫ t

0

gS(τ)(z) dτ. (2.2.9)

Hint: verify equilibrium conditions. �

Remark 2.2.8 As shown in [BeKu99, Theorem 2.1], it follows from Theorem 2.1.10 and
Lemma 2.2.6 that the following more general statement is valid:

In case of a trivial external field Q = 0, the compact sets S(t) := supp (σ − µt,0,σ) are
decreasing in t, any constraint σ has the integral representation (2.2.8), and formula
(2.2.9) is true. �

Remark 2.2.9 It is an open problem of establishing integral formulas of Buyarov-
Rakhmanov type in the case of the constrained weighted extremal problem for general
external fields Q. However, beside the preceding remark, there is another case where such
formulas may be established (compare with [KuMc00, Lemma 3.1, Theorem 3.3, Proof of
Lemma 6.2], [DeMc98, Chapter 4], [Kui00b, Proposition 4.1] and [BeKu02]):

Let supp (σ) = [A,B], Q(A) = 0, and suppose that the functions Q and Q̃ defined by

Q̃(x) = −Q(x) − Uσ(x)

are continuous in [A,B] and have a continuous derivative in (A,B). Suppose in addition

that the functions x 7→ (x − A)Q′(x) and x 7→ (B − x)Q̃′(x) are increasing functions
on [A,B]. Then (2.2.3) and (2.2.4) hold, with A ≤ a(t) < b(t) ≤ B defined by (2.2.5),
(2.2.6). �

Some other results on the interval case for the constrained unweighted energy problem
are given in [KuDr99, Theorem 2], [Kui00a, Theorem 5.1], [BeKu99, Lemma 3.1], in
particular one may find (systems of) integral equations for determining the endpoints of
S(t), and links with the technique of balayage since, by Exercise 2.1.15 and Lemma 2.2.6,
the measure σ − µt,0,σ + tωS(t) coincides with the balayage of σ onto S(t).
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2.3 Asymptotics for discrete orthogonal polynomials

Let Tn,p be the extremal polynomials of (1.1.2). In this section we describe how the nth
root asymptotic of the extremal constants ||wN ·Tn,p||Lp(EN ) for ray sequences n,N → ∞,
n/N → t, as well as the asymptotic distribution of zeros of Tn,p may be expressed in terms
of the solution of the constrained weighted energy problem of Section 2.2.

For some discrete set EN we define the corresponding counting measure

νN(EN ) =
1

N

∑

z∈EN

δz,

a discrete measure where each element of EN is charged by the mass 1/N . Similarly,
given a polynomial P with set of zeros Z, we write νN(P ) := νN(Z) for the corresponding
normalized zero counting measure (where we count zeros according to their multiplicities).
As usual, for a sequence of discrete sets (EN )N we write νN (EN) →∗ σ if for any continuous
function f with compact support there holds

lim
N→∞

∫
f(z)dνN(z) =

∫
f(z) dσ(z), where

∫
f(z)dνN (z) =

1

N

∑

z∈EN

f(z).

Finally, for discrete sets EN , FN we define the discrete mutual energy

IN(EN , FN) =
1

N2

∑

x∈EN

∑

y∈FN ,y 6=x

log(
1

|x− y|),

the mutual energy between two systems EN and FN of positive masspoints.

Exercise 2.3.1 Suppose that νN(EN) →∗ µ, νN(FN) →∗ ν. Show the semi-continuity

lim inf
N→∞

IN(EN , FN) ≥ I(µ, ν).

Hint: consider the regularized kernel (x, y) 7→ max{η, log( 1
|x−y|

)} for R 3 η → +∞. �

Weak asymptotics of discrete Lp-extremal polynomials have been a subject of a number
of publications, see [DrSa97, Theorem 3.3] (for real compact Σ), [DaSa98, Theorem 2.5]
(for p = ∞ and real Σ), [KuVA99, Theorem 7.4 and Lemma 8.3] (for 0 < p ≤ ∞ and real
Σ), [KuRa98, Theorem 7.1] (for p = 2 and real Σ, see also [KuRa99]), and finally [Be00a,
Theorem 1.3] (for 0 < p ≤ ∞ and complex supports). We summarize these findings in
the following (a bit technical) Theorem.

Theorem 2.3.2 ([Be00a]) Let 0 < p ≤ ∞. Furthermore, let Σ, σ, Q, w = exp(−Q)
be as in Theorem 2.2.1, and t ∈ (0, ||σ||) with supp (µt,Q,σ) ∩ supp (σ − µt,Q,σ) 6= ∅.
Suppose that the sets EN ⊂ Σ and the weights wN(z) ≥ 0, z ∈ EN , N ≥ 0, satisfy the
conditions

νN (EN) →∗ σ, (2.3.1)

lim sup
N→∞

sup
z∈EN

wN(z)1/N

w̃(z)
≤ 1, (2.3.2)
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for some w̃ ∈ C(Σ) with |z|w̃(z) → 0 for |z| → ∞ and if for any compact K there holds

lim sup
N→∞

sup
z∈EN∩K

wN(z)1/N

w(z)
≤ 1, (2.3.3)

then
lim sup

n,N→∞,n/N→t

||wN · Tn,p||1/N
Lp(EN ) ≤ exp(−wt,Q,σ), (2.3.4)

and for any z ∈ C satisfying

lim
N→∞

UνN (V (z)∩EN )(z) = Uσ|V (z)(z) (2.3.5)

for some open neighborhood V (z) of z with σ(∂V (z)) = 0 there holds

lim sup
n,N→∞,n/N→t

[
min

deg P≤n

||wN · P ||Lp(EN )

|P (z)|
]1/N

≤ exp(Uµt,Q,σ(z) − wt,Q,σ), (2.3.6)

If moreover there exists some bounded open neigborhood V of supp (µt,Q,σ) with

lim
N→∞

IN(V ∩ EN , V ∩ EN ) = I(σ|V ), (2.3.7)

if for any compact K there holds

lim
N→∞

sup
z∈EN∩K

|wN(z)1/N − w(z)| = 0, (2.3.8)

and if in the case p <∞ there exists a p′ ∈ (0, p) with

lim sup
N→∞

[
||[z w]N ||Lp′(EN )

]1/N
<∞, (2.3.9)

then (2.3.4) and (2.3.6) are sharp, more precisely, we have

lim
n,N→∞,n/N→t

||wN · Tn,p||1/N
Lp(EN ) = exp(−wt,Q,σ), (2.3.10)

lim
n,N→∞,n/N→t

[
min

deg P≤n

||wN · P ||Lp(EN )

|P (z)|
]1/N

= exp(Uµt,Q,σ(z) − wt,Q,σ), (2.3.11)

with z as in (2.3.5), and finally, if the two-dimensional Lebesgue measure of Σ is zero,
there holds

νN(Tn,p) →∗ µt,Q,σ for n,N → ∞, n/N → t. (2.3.12)

The statement of this Theorem simplifies considerably for compact Σ (why?). Since then
EN has O(N) elements, we can use classical inequalities between Hölder norms showing
that Lp(EN)–norms for two different p are equivalent up to a factor being some power of
N (which of course will vanish once we take Nth roots). Therefore it is evident that the
right hand side of (2.3.4), (2.3.6), (2.3.10), (2.3.11), and (2.3.12) do not depend on p.

We will comment in Remark 2.3.5 below on the different assumptions and variations
proposed by different authors and subsequently give the main ideas of the proof of The-
orem 2.3.2 for compact Σ (for a proof for general Σ we refer the reader to [Be00a, Theo-
rem 1.3 and Theorem 1.4(c)]). Let us first have a look at the examples mentioned in the
introduction of Section 2.2.
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Example 2.3.3 [Discrete Chebyshev polynomials] After scaling (dividing the
support by N) we obtain assumption (2.3.1) with σ being the Lebesgue measure on [0, 1],
having a continuous potential. Here conditions (2.3.2), (2.3.3), (2.3.8) and (2.3.9) are
trivially true with Q = 0. The interested reader may check that also condition (2.3.7)
holds, and that, by (2.1.3),

σ(x) =

∫ 1

0

ωS(t)(x) dt, S(t) = [
1

2
−

√

1 − t2

2
,
1

2
+

√

1 − t2

2
].

Thus explicit formulas for µt,0,σ are given in Exercice 2.2.7, in particular one obtains from
(2.3.11) for p = +∞ (compare with [BeKu99, Corollary 3.2])

lim
n,N→∞,n/N→t

log(En(0, {1/N, 2/N, ..., N/N})1/N) (2.3.13)

= wt,0,σ − Uµt,0,σ(0) = −(1 + t) log(1 + t) + (1 − t) log(1 − t)

2
.

�

Example 2.3.4 [Meixner polynomials] Here, again after division of the support
by N , we obtain for σ the Lebesgue measure on [0,+∞). By Stirling’s formula, we have
for x = k/N and w(x) = exp(x log(c)/2)

wN(x)1/N

w(x)
= c−x/2[

cNxΓ(Nx + b)

Γ(Nx + 1)
]1/(2N) = 1 + o(1)N→∞

uniformly for x in some compact. Hence (2.3.2), (2.3.3), (2.3.8) and (2.3.9) are true
with Q(x) = x log(1/c)/2. The corresponding equilibrium measure µt,Q,σ has been given
in Example 2.2.4. Here we may explicitly solve the system (2.2.5), (2.2.6), of integral
equations, and a0 = (1 −√

c)/(1 +
√
c) = 1/b0. �

Remark 2.3.5 Let us shortly comment on the different assumptions of Theorem 2.3.2
and relate them with related conditions proposed by other authors. Conditions (2.3.1),
(2.3.3) and (2.3.8) allow to relate our discrete Lp norm to the extremal problem with data
σ and Q.

Conditions (2.3.2) and (2.3.9) insure the finiteness of ||wnP ||Lp(En) for a polynomial of
degree at most n, at least for sufficiently large n. Such an additional condition is required
for p <∞ for controlling the contribution to the Lp norm of in modulus large elements of
En. Stronger sufficient conditions for (2.3.9) in case of unbounded Σ have been discussed
in [KuVA99] and [Be00a, Lemma 2.7].

Finally, by considering the example EN = FN ∪ (e−N +FN ), FN = {0, 1/N, 2/N, ..., N/N}
it becomes clear that our asymptotic bounds (2.3.4), (2.3.6) cannot be sharp since they
do not take into account the clustering of points of the support, compare also the discus-
sion in [KuRa98, Section 8]. Rakhmanov [Rak96] considered the additional separation
condition

lim inf
N→∞

inf
x,y∈EN∩K,x6=y

N · |x− y| > 0

for all compact sets K. The weaker condition

lim
N→∞

max
y∈K∩EN

∣∣∣
∏

x∈EN∩K,x6=y

|y − x|1/N − exp(−Uσ|K (y))
∣∣∣ = 0
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for any compact K was proposed in [DrSa97] (see also [DaSa98, KuVA99, KuRa98] for
some generalizations). It may be shown [DrSa97, Lemma 3.2] that, e.g., sets of zeros of
suitable orthogonal polynomials satisfy this condition. One may show that any of these
two conditions imply (2.3.7). This latter separation condition (2.3.7) was conjectured
to be sufficient by Rakhmanov at the Sevilla OPSF conference [KuRa98, Conjectures 2
and 3], and proved to be sufficient later in [Be00a]. �

We terminate this section by giving the main ideas of the proof of Theorem 2.3.2 for
compact Σ, compare also with [BeKu99, Theorem 2.1 and Theorem 2.2] for Q = 0 and
[BeKu02, Theorem 2.2] for generalQ. For general Σ the reader may consult the statements
[Be00a, Theorem 1.3 and Theorem 1.4(c)] and their proofs.

Proof of (2.3.4), (2.3.6). Given ε > 0, it is sufficient to construct a sequence of
monic polynomials pN of degree n = n(N) with n(N)/N → t for N → ∞, such that

lim sup
N→∞

||wNpN ||1/N
L∞(EN ) ≤ eε−wt,Q,σ , lim

N→∞
|pN(0)|1/N = e−U

µt,Q,σ (0), (2.3.14)

where we suppose that (2.3.5) holds for z = 0 and some V (0) (notice that (2.3.5) is true
for any z 6∈ Σ by assumption (2.3.1) since then x 7→ log(|x− z|) is continuous in Σ). We
will choose the zeros of pN in EN .

First notice that, by assumption (2.3.3), it is sufficient to show (2.3.14) for wN = wN .
The main idea of the proof is that one is able to discretize µt,Q,σ with help of points in
EN : there exist sets E∗

N with

card(E∗
N ) = n(N), E∗

N ⊂ EN , νN(E∗
N ) →∗ µt,Q,σ for N → ∞, (2.3.15)

see [BeKu99, Lemma A.1] for real Σ and [Be00a, Lemma 2.1(d)]. Consider the polynomial
pN with simple zeros given by the elements of E∗

N , and the compact set

Kε = {λ ∈ Σ : Uµt,Q,σ(λ) +Q(z) ≤ wt,Q,σ − ε}, (2.3.16)

then from Theorem 2.2.1 and from the uniqueness of the extremal constant w,Q,σ we know
that µt,Q,σ(Kε) = σ(Kε) < t. Hence only o(N) elements of EN ∩Kε are not in E∗

N ∩Kε,
but more than o(N) elements lie in E∗

N \Kε. Hence, by possibly exchanging o(N) elements
we may add to (2.3.15) the additional requirement that

EN ∩Kε = E∗
N ∩Kε,

implying that

||wNpN ||1/N
L∞(EN ) = ||wNpN ||1/N

L∞(EN\Kε)
=: exp(−Q(ζN) − UνN (E∗

N )(ζN))

for some ζN ∈ EN \ Kε. By going to subsequences if necessary, we may suppose that
ζN → ζ ∈ Σ, and hence by the principle of descent (2.1.2) and by continuity of Q

lim sup
N→∞

||wNpN ||1/N
L∞(EN ) ≤ sup

ζ∈Σ\Kε

exp(−Q(ζ) − Uµt,Q,σ(ζ)) ≤ eε−wt,Q,σ

the last inequality following from the definition of Kε. We also have from the principle of
descent and from (2.3.15) that

lim sup
N→∞

|pN(0)|1/N = lim sup
N→∞

exp(−UνN (E∗
N )(0)) ≤ e−U

µt,Q,σ (0).
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The assumption σ(∂V (0)) = 0 and thus µt,Q,σ(∂V (0)) = 0 allows us to conclude that

νN (E∗
N \ V (0)) →∗ µt,Q,σ − µt,Q,σ|V (0), νN(V (0) ∩ (EN \ E∗

N )) →∗ σ|V (0) − µt,Q,σ|V (0),

and hence again by the principle of descent and by (2.3.5)

lim sup
N→∞

UνN (E∗
N )(0)

= lim
N→∞

UνN (E∗
N\V (0))(0) + lim

N→∞
UνN (EN∩V (0))(0) − lim inf

N→∞
UνN (V (0)∩(EN \E∗

N ))(0)

≥ Uµt,Q,σ−µt,Q,σ |V (0)(0) + Uσ|V (0)(0) − Uσ|V (0)−µt,Q,σ|V (0)(0) = Uµt,Q,σ(0),

showing (2.3.14). �

Proof of (2.3.10), (2.3.11). It is shown implicitly in [Be00a, Lemma 2.1(c) and
Lemma 2.2] that we may suppose that the set V in (2.3.7) satisfies σ(∂V ) = 0. Let
FN ⊂ EN with νN (FN) →∗ µ. We claim that

FN ⊂ EN ∩ V, νN(FN ) →∗ µ =⇒ lim
N→∞

IN(FN , FN) = I(µ, µ). (2.3.17)

Indeed, since σ(∂V ) = 0, we have that νN(EN ∩ V ) →∗ σ|V , and hence with F ′
N :=

(EN ∩ V ) \ FN , νN(F ′
N) →∗ σ|V − µ we have

lim sup
N→∞

IN (FN , FN) = lim sup
N→∞

(
IN(EN ∩ V,EN ∩ V ) − IN (F ′

N , F
′
N) − 2IN(FN , F

′
N)
)

≤ lim sup
N→∞

(EN ∩ V,EN ∩ V ) − lim inf
N→∞

IN(F ′
N , F

′
N) − 2 lim inf

N→∞
IN(FN , F

′
N)

≤ I(σ|V ) − I(σ|V − µ) − 2I(µ, σ|V − µ) = I(µ),

where in the last inequality we have applied Exercise 2.3.1 and (2.3.7). From Exercise 2.3.1
it also follows that lim infN IN(FN , FN) ≥ I(µ), showing that (2.3.17) holds.

Let ε > 0, and Kε as in (2.3.16). According to the equilibrium conditions in Theorem 2.2.1
and thanks to continuity we find some open set K with supp (µt,Q,σ) ⊂ K ⊂ K−ε. By
possibly replacing K by some smaller set, we may also suppose that K ⊂ V , and that
σ(∂K) = 0. Finally, notice that t′ := (σ − µt,Q,σ)(K) > 0 since for any ζ in the by
assumption non-empty set supp (µt,Q,σ)∩supp (σ−µt,Q,σ) there exists a small neighborhood
U of ζ with U ⊂ V , and thus t′ ≥ (σ − µt,Q,σ)(U) > 0 by definition of the support.

We now consider the weighted Fekete points, a set ΦN of n(N) + 1 elements of EN ∩K
which minimize the expression

IN (ΦN ,ΦN ) + 2

∫
QdνN(φN).

By discretizing µt,Q,σ as in the preceding proof with n(N) + 1 elements in EN ∩ K,
we obtain a candidate Φ∗

N with IN(Φ∗
N ,Φ

∗
N) + 2

∫
QdνN(φ∗

N) → IQ(µt,Q,σ) according to
(2.3.17). Hence

IQ(µt,Q,σ) ≥ lim sup
N→∞

IN(ΦN ,ΦN ) + 2

∫
QdνN(φN).

On the other hand, by Exercice 2.3.1 and Theorem 2.2.1,

lim inf
N→∞

IN(ΦN ,ΦN) + 2

∫
QdνN(φN) ≥ IQ(µt,Q,σ),
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which by the uniqueness of the extremal measure shows that νN (φN) →∗ µt,Q,σ.

According to (2.3.4), (2.3.6) and (2.3.8), the assertions (2.3.10) and (2.3.11) will follow
by showing that

lim inf
N→∞

[
min

deg P≤n(N)

||wN P ||L∞(ΦN )

|P (0)|
]1/N

≥ exp(Uµt,Q,σ(0) − wt,Q,σ),

lim inf
N→∞

min
deg P≤n(N)

||wN P ||1/N
L∞(ΦN ) ≥ exp(−wt,Q,σ),

However, since ΦN has n(N) + 1 elements, both expressions on the left can be written
explicitly in terms of Lagrange polynomials, a task which we leave as an exercise. Then
it is not difficult to see that the above two formulas follow from the principle of descent,
and from a fact which we will show now: for any zN ∈ ΦN with E∗

N := ΦN \ {zN} there
holds

lim sup
N→∞

UνN (E∗
n)(zN ) +Q(zN ) ≤ wt,Q,σ + ε. (2.3.18)

Write FN := (EN ∩K) \ E∗
N , with n′(N) elements, and observe that

νN (FN ∪ EN) → σ|K, νN(FN) → σ|K − µt,Q,σ,
n′(N)

N
→ t′ = (σ − µt,Q,σ)(K)

where t′ > 0, and, by (2.3.17),

lim
N→∞

IN(E∗
N , FN) = lim

N→∞

IN(E∗
N ∪ FN , E

∗
N ∪ FN) − IN(E∗

N , E
∗
N) − IN(FN , FN)

2
= I(µt,Q,σ, σ|K − µt,Q,σ).

It follows from the definition of the Fekete points (replace one element of ΦN by an element
of (EN ∩ V ) \ ΦN) that

z ∈ FN : UνN (E∗
N )(zN ) +Q(zN) ≤ UνN (E∗

N )(z) +Q(z).

Therefore, we can bound U νN (E∗
N )(zN) +Q(zN ) above by

1

n′(N)

∑

z∈FN

[UνN (E∗
N )(z) +Q(z)] =

N

n′(N)
[IN (E∗

N , FN) +

∫
QdνN(FN)],

the right-hand term tending for N → ∞ to

1

t′

(
I(µt,Q,σ, σ|K − µt,Q,σ) +

∫
Qd(σ|K − µt,Q,σ)

)
=

1

t′

∫ (
Uµt,Q,σ +Q

)
d(σ|K − µt,Q,σ)

)

which according to supp (σ|K − µt,Q,σ) ⊂ K ⊂ K−ε can be bounded above by wt,Q,σ + ε,
as claimed in (2.3.18). �

Proof of (2.3.12). See [Be00a, Theorem 1.3(b)]. �
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Chapter 3

Consequences

3.1 Applications to the rate of convergence of CG

As mentioned already in the introduction, we want to provide a better understanding
of the superlinear convergence of CG iteration, and in particular to explain the form of
the error curve as seen in Figure 1.2, and in all examples considered below. Recall from
Corollary 1.4.8 the link between the CG error of a positive definite matrix A of size N×N
having the spectrum Λ(A), and the quantity En(0,Λ(A)). We will argue that for large N ,
the error En(0,Λ(A)) in the polynomial minimization problem (1.4.5) is approximately

1

N
logEn(Λ(A)) ≈ −

∫ t

0

gS(τ)(0)dτ (3.1.1)

where t = n/N ∈ (0, 1) and S(τ), τ > 0, is a decreasing family of sets, depending on
the distribution of the eigenvalues of A. The sets S(τ) have the following interpretation:
S(τ) is the subcontinuum of [λmin, λmax] where the optimal polynomial of degree [τN ] is
uniformly small.

From Corollary 1.4.8 and (3.1.1) we find the improved approximation

‖rCG
n ‖A−1

‖rCG
0 ‖A−1

<≈ ρn
t (3.1.2)

with

ρt = exp

(
−1

t

∫ t

0

gS(τ)(0)dτ

)
(3.1.3)

depending on n, since t = n/N . As the sets S(τ) are decreasing as τ increase, their Green
functions gS(τ)(0), evaluated at 0, increase with τ . Hence the numbers ρt decrease with
increasing n, and this explains the effect of superlinear convergence (notice that log(ρn/N )
equals the slope at n of the bound on a semi-logarithmic plot).

Indeed, we will only show that (3.1.2) only holds in an asymptotic sense after taking
nth roots. However, in order to be able to take limits, we need to consider sequences of
matrices AN having a joint asymptotic eigenvalue distribution. Such sequences of matrices
occur naturally in the context of the discretization of elliptic PDEs, by varying the stepsize
or some other parameter of discretization, see Section 3.4. We have the following result
[BeKu99, Theorem 2.1].
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Theorem 3.1.1 Let (AN)N be a sequence of symmetric invertible matrices, AN of size
N ×N , satisfying the conditions

(i) There exists a compact Σ and a positive Borel measure σ such that Λ(AN) ⊂ Σ for
all N , and νN(Λ(AN)) →∗ σ for N → ∞;

(ii) σ has a continuous potential;

(iii) UνN (Λ(AN ))(0) → Uσ(0) for N → ∞.

Define S(t) := supp (σ − µt,0,σ), with the extremal measure µt,0,σ as in Theorem 2.2.1.
Then for t ∈ (0, ‖σ‖), we have

lim sup
n,N→∞
n/N→t

1

n
logEn(0,Λ(AN)) ≤ −1

t

∫ t

0

gS(τ)(0) dτ (3.1.4)

Proof. Apply Theorem 2.3.2 for p = ∞, wN = 1, and Q = 0: conditions (i), and (iii),
are corresponding to (2.3.1), and (2.3.5) for z = 0, respectively. The conditions (2.3.2)
and (2.3.3) are trivially true. Then our claim follows from (2.3.6), where according to
Remark 2.2.8 we may replace wt,0,σ − Uµt,0,σ(0) by our integral formula (2.2.9). �

Remark 3.1.2 According to Theorem 2.3.2, if we have the additional separation con-
dition (2.3.7) on the spacing of eigenvalues, then there is equality in Theorem 3.1.1. In
particular, if follows from the comments after Corollary 1.4.8 that the asymptotic CG
bound on the right-hand side of (3.1.4) cannot be improved. �

Remark 3.1.3 For determining σ, each λ in Λ(AN) is taken only once, regardless of its
multiplicity. Hence it might happen that ||σ|| < 1. However, Theorem 2.3.2 remains valid
even if one counts multiplicities, since En(·, ·) becomes larger if one adds points close
to multiple eigenvalues to Λ(A). The new conditions obtained form (i)–(iii) counting
multiplicities will be referred to as (i)’, (ii)’, and (iii)’. �

Remark 3.1.4 The condition (ii) is not very restrictive. For example, if σ is absolutely
continuous with respect to Lebesgue measure with a bounded density then (ii) is satisfied.
It is also satisfied if the density has only logarithmic-type or power-type singularities at
a finite number of points. On the other hand, condition (ii) is not satisfied if σ has point
masses.

In case of simple eigenvalues, condition (iii) may be rewritten as

lim
N→∞

| det(AN )|1/N = exp(−Uσ(0))

Comparing (iii) with the Principle of descent (2.1.2), we see that this condition prevents
too many eigenvalues close to 0. If (iii) would not hold, then the matrices AN are ill-
conditioned and the estimate (3.1.2) may very well fail. �
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Remark 3.1.5 In [BeKu00], the following strategy was considered in order to find a
polynomial pn of degree n being small on Λ(AN) and pn(0) = 1 (and thus to find an
upper bound for En(0,Λ(AN)):

Choose some fixed set S. Each eigenvalue of AN outside the set S is a zero of pn. This
determines a certain fraction of the zeros of pn. Clearly the set S has to be sufficiently
big so that the number of eigenvalues of AN outside S is less than n. The other zeros of
pn are free and they are chosen with the aim to minimize ‖pn‖L∞(S).

Though this strategy of imitating the CG polynomial seems to be natural, it depends
very much on a good choice of the set S, see also the discussion in [Gre79] and [DTT98,
Section 6]. Indeed, choosing a large set S means that there only few outliers, and their
influence on the supnorm ‖pn‖S is small. Since we only need a polynomial which is
small on the discrete set Λ(AN) but not necessarily in the gaps between the eigenvalues,
‖pn‖L∞(S) may be much bigger than ‖pn‖Λ(AN ). On the other hand, choosing a small set
S means that we fix a lot of zeros of pn and so we loose a lot of freedom in our choice for
minimizing ‖pn‖L∞(S).

The main result of [BeKu00] is that the above strategy cannot produce a better asymptotic
bound on En(0,Λ(AN)) than Theorem 3.1.1, and that (under some additional assump-
tions) S = S(t) leads to the same bound. �

Remark 3.1.6 Provided that the sets S(t) of Theorem 3.1.1 are intervals, say, S(t) =
[a(t), b(t)], we may give an interpretation of the bound (3.1.2) in terms of marginal con-
dition numbers: Since gS(t)(0) is increasing in t, we get from (3.1.3) that

log(ρn
t ) = −N

∫ n/N

0

gS(τ)(0) ≤
n−1∑

j=0

gS(j/N)(0),

and, by (2.1.3), estimate (3.1.2) can be rewritten as

‖eCG
n ‖A

‖eCG
0 ‖A

<≈
n−1∏

j=0

√
b( j

N
)/a( j

N
) − 1

√
b( j

N
)/a( j

N
) + 1

.

Hence the classical bound (1.1.1) is obtained for constant b/a, and we see that the su-
perlinear convergence behavior is obtained if the marginal condition number b( j

N
)/a( j

N
)

strictly decreases. Indeed, as we will see in Section 3.2, some extremal eigenvalues will be
matched by Ritz values, and can be disregarded for the further convergence behavior. �

Remark 3.1.7 For the moment it is not completely clear how to generalize Theo-
rem 3.1.1 to the case of matrices with unbounded spectra and asymptotic eigenvalue
distribution given by σ with unbounded support. In this case, we certainly have to im-
pose some growth condition on σ around infinity such that the constraint is active around
infinity. �

Let us give some examples illustrating Theorem 3.1.1.
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Figure 3.1: The error curve of CG (solid line) and GMRES (dotted line) versus the
classical upper bound (crosses) and our asymptotic upper bound (circles) for the system
T200x = b, with random solution x, and initial residual r0 = (1, ..., 1)T . Here TN is the
Kac, Murdock and Szegő matrix, with parameter γ ∈ {1/2, 2/3, 5/6, 19/20}.

Example 3.1.8 The case of equidistant eigenvalues Λ(AN) = {1/N, 2/N, ..., N/N}
leading to σ being the Lebesgue measure on [0, 1] has already been discussed in Ex-
ample 2.3.3, see also [BeKu99, Section 3]. For CG we obtain the error curve as well as
the bounds (1.1.1), (3.1.3) as displayed in Figure 1.1, see Section 1.1. �

Example 3.1.9 Consider the ”worst case” eigenvalues

Λ(AN) = {2 + 2 cos(π
j

N + 1
) : j = 1, ..., N},

here conditions (i)–(iii) of Theorem 3.1.1 hold with σ = ω[0,4]. Comparing with Exer-
cice 2.2.7 we see that S(t) = [0, 4] for 0 < t < 1, and thus the bound (3.1.3) is trivial.
Indeed, for this example it is known that there are starting residuals such that CG does
not lead to a small residual before reaching n ≈ N . �

Example 3.1.10 For the Toeplitz matrix AN := (γ|j−k|)j,k=1,2...,N , 0 < γ < 1, of Kac,
Murdock and Szegő [KaMuSz53, p. 783] it is shown in [BeKu99, Section 4] (see also
Section 3.3 below) that conditions (i)’,(ii)’,(iii)’ hold with

σ(x) =
1

x
ω[a,1/a](x) =

∫ 1

0

ω[a,b(t)](x) dt, a =
1 − γ

1 + γ
, b(t) =

{
1/a for t ≤ a
a/t2 for t ≥ a.
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Numerical experiments for the symmetric positive definite Toeplitz matrix T200 of order
200 of Kac, Murdock and Szegő are given in Figure 3.1. The four different plots correspond
to the choices γ ∈ {1/2, 2/3, 5/6, 19/20} of the parameter. Notice that the CG error
curve (solid line) of the last two plots is clearly affected by rounding errors leading to
loss of orthogonality, whereas the GMRES relative residual curves (dotted line) behave
essentially like predicted by our theory. In particular, the classical bound (1.1.1) (crosses)
does no longer describe correctly the size of the relative residual of GMRES for n ≥ 20 and
γ ∈ {5/6, 19/20}. Experimentally we observe that the range of superlinear convergence
starts in the different examples approximately at the iteration indices ≥ 50, 30, 20, and
10, respectively. This has to be compared with the predicted quantity N · a which for
the different choices of γ approximately takes the values 66, 40, 29, and 5, respectively.
Though theses numbers differ slightly, we observe that the new bound (3.1.3) reflects
quite precisely the shape of the relative residual curve, and in particular allows to detect
the ranges of linear and of superlinear convergence. �

Example 3.1.11 Consider the two dimensional Poisson equation

−∂
2u(x, y)

∂x2
− ∂2u(x, y)

∂y2
= f(x, y)

for (x, y) in the unit square 0 < x, y < 1, with Dirichlet boundary conditions on the
boundary of the square. The usual five-point finite difference approximation on the uni-
form grid

(j/(mx + 1), k/(my + 1)), j = 0, 1, . . . , mx + 1, k = 0, 1, . . . , my + 1,

leads to a linear system of size N ×N where N = mxmy. After rescaling, the coefficient
matrix of the system may be written as a sum of Kronecker products

AN =
(mx + 1)

(my + 1)
Bmx ⊗ Imy +

(my + 1)

(mx + 1)
Imx ⊗ Bmy (3.1.5)

where

Bm =




2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . −1

0 · · · 0 −1 2




m×m

(3.1.6)

and Im is the identity matrix of order m. It is well known and easy to verify that the
eigenvalues of Bm are

µk,m = 2 − 2 cos
πk

m+ 1
, k = 1, . . . , m,

and that the eigenvalues λj,k of AN are connected with the eigenvalues of Bm via

λj,k =
my + 1

mx + 1
µj,mx +

mx + 1

my + 1
µk,mx, j = 1, 2, . . . , mx, k = 1, . . . , my. (3.1.7)
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Figure 3.2: The CG error curve versus the two upper bounds for the system ANx = b
resulting from discretizing the 2D Poisson equation on a uniform grid with mx = my =
150. We have chosen a random solution x, and initial residual r0 = (1, ..., 1)T , and obtain
superlinear convergence from the beginning. Notice that the classical upper bound for
CG is far too pessimistic for larger iteration indices. For the new bound we have added a
factor 1/2 in front of σ since λj,k = λk,j, and we suspect that most of the eigenvalues are
of multiplicity 2.

We consider the limit relation

mx, my → ∞,
mx

my
→ δ ≤ 1,

then it is not difficult to see using (3.1.7) that condition (i)’ holds with
∫
f dσ =

∫ 1

0

dφ

∫ 1

0

dψ f(2δ(1 − cos(πφ)) + 2δ−1(1 − cos(πψ)))

=
1

π2

∫ 4δ

0

dx

∫ x+4δ−1

x

dλ
f(λ)√

x(4δ − x)(λ− x)(4δ−1 − λ+ x)
=

∫ 4δ+4δ−1

0

σ′(λ)dλ

with

σ′(λ) :=
1

π2

∫ min{4δ,λ}

max{0,λ−4δ−1}

dx√
x(4δ − x)(λ− x)(4δ−1 − λ+ x)

.

The substitution x′ = 4δ−x shows that σ′(4δ+4δ−1 −λ) = σ′(λ), and thus we only need
to consider the case where λ ≥ 2δ + 2δ−1, and hence λ ≥ 4δ. We now construct a linear
fractional transformation y = T (x) with T (0) = 0, T (4δ) = 1, T (λ) = ∞, and hence

T (x) =
x

λ− x

λ− 4δ

4δ
, γ := T (λ− 4δ−1) =

1

16
(λ− 4δ−1)(λ− 4δ) ≤ 1,
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and the substitution y = T (x) leads to

σ′(λ) =
1

4π2

∫ 1

max{γ,0}

dy√
y(1 − y)(y − γ)

=
1

π

∫ 1

0,sin(πt/2)≥γ

dy√
16 sin2(πt/2) − 16γ

.

By substituting γ, we find with ∆ := 2δ + 2δ−1

σ =

∫ 1

0

ωS(t) dt, S(t) = [∆ −
√

∆2 − 16 sin2(
πt

2
),∆ +

√
∆2 − 16 sin2(

πt

2
)],

and thus the extremal measures by Exercise 2.2.7. One may compare our findings for
δ = 25/40 with numerical experiments presented in Figure 3.11 of Section 3.5 below,
where both histograms for mx = 25 and my = 40 and the density function σ′ of the
limiting distribution are drawn. Notice that σ has the support S(0) = [0, 4δ + 4δ−1], and
that σ′ has logarithmic singularities at 4δ and at 4δ−1.

The sets S(t) have been known before only in the case δ = 1, and thus ∆ = 4 [BeKu99,
Section 5]. More precisely, we observe that λj,k = λk,j, that is, most of the eigenvalues
have multiplicity at least 2. Also, λj,m+1−j = 4 for all j = 1, . . . , m, and the eigenvalue 4
has multiplicity m. We suspect that N/2 + o(N) eigenvalues have multiplicity 2. In this
case, not only condition (i)’ but also condition (i) holds, with the new constraint being
the half of the old constraint. Since

µt,0,σ/2 =
1

2
µ2t,0,σ,

one should therefore replace in the above formula for S(t) the term t by 2t, in order to
obtain a sharper error bound. This is confirmed by our numerical experiments presented
in Figure 3.2. �

For exponentially decreasing eigencomponents, we may give an improvement of Theo-
rem 3.1.1 based on Theorem 2.3.2 for p = ∞, compact real Σ and nontrivial external
field, see [BeKu02, Theorem 2.2].

Theorem 3.1.12 Beside the assumptions of Theorem 2.3.2, suppose that there is a
sequence of starting residuals (r0,N)N and a nonnegative Q ∈ C(Σ), w(λ) = exp(−Q(λ)),
such that

(iv) if the eigenelements of AN are given by (λj,N , vj,N) with ||vj,N || = 1, then1

lim sup
N→∞

max
j

exp(Q(λj,N))
[ |(r0,N , vj,N)|

||r0,N ||
]1/N

≤ 1.

Then, for every t ∈ (0, ||σ||),

lim sup
n,N→∞
n/N→t

1

N
log

(
‖eCG

n,N‖AN

‖eCG
0,N‖AN

)
≤ Uµt,Q,σ(0) − wt,Q,σ, (3.1.8)

where µt,Q,σ and wt,Q,σ are as in Theorem 2.2.1. A similar bound is valid for the nth
relative residual of MINRES.

1In case of distinct eigenvalues, the quantity |(r0,N , vj,N )| was called before βj,N .

41



0 5 10 15 20 25 30

−12

−10

−8

−6

−4

−2

0

r=0.1

lo
g 10

( 
re

l. 
re

si
du

al
 )

0 50 100 150

−12

−10

−8

−6

−4

−2

0

N=500, r=0.3, cond. number=101726.207

0 50 100 150 200 250 300

−12

−10

−8

−6

−4

−2

0

r=0.5

lo
g 10

( 
re

l. 
re

si
du

al
 )

iterations
0 100 200 300 400

−12

−10

−8

−6

−4

−2

0

r=0.8

iterations

Figure 3.3: The one dimensional Poisson problem discretized on a uniform grid (N = 500)
for f(x) =

∑N
j=1 r

j sin(jπx), r = 0.1, 0.3, 0.5, 0.8. We find the error curve of CG (solid
blue line) and the classical bound (1.1) (black line with crosses), and our new asymptotic
bound (red line with circles). For comparison we give the MINRES relative residual curve
(dashed green line). Notice that, for r = 0.8, there is hardly any superlinear convergence
and one has to reach approximately the dimension of the system in order to achieve full
precision.

Proof. See (1.4.4) and Corollary 1.3.6, and use the fact that from condition (iii) it
follows that [minj |λj,N |]1/N → 1. �

Example 3.1.13 As a motivating model problem for Theorem 3.1.12, we consider the
one dimensional Poisson equation −u′′(x) = f(x), x ∈ [0, 1], with homogeneous Dirichlet
boundary conditions u(0) = u(1) = 0. The usual central finite difference approximation
on the uniform grid j/(N + 1), j = 0, 1, . . . , N + 1, leads to a linear system ANx = bN
with N equations and unknowns, where AN = BN of (3.1.6), and

bN = (N + 1)2 ·
[
f(1/(N + 1)) f(2/(N + 1)) f(3/(N + 1)) · · · f(N/(N + 1))

]T
.

Both the one dimensional Poisson problem and the system ANx = bN are easy to solve;
however, this toy problem can serve to explain convergence behavior observed also in less
trivial situations. From Example 3.1.9 we know that conditions (i)–(iii) are satisfied with
σ = ω[0,4], and that, for general starting residual, one obtains poor CG convergence, as
being confirmed by Figure 3.3.

Here we will be interested in what happens for the CG starting vector 0 (i.e., r0,N = bN )
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and particularly smooth functions f , namely

f(x) =

∞∑

j=1

fj sin(πjx), x ∈ [0, 1], where r := lim sup
j→∞

|fj|1/j ∈ (0, 1).

It is shown in [BeKu02, Lemma 3.1] that here condition (iv) holds with

Q(x) =
log(1/r)

π
arccos(

2 − λ

2
).

Also, the reader may verify that the assumptions of Remark 2.2.9 hold. As shown in
[BeKu02, Section 3], here the integral equations (2.2.5),(2.2.6) can be solved in terms of
the complete elliptic integral K(·) and the Jacobi elliptic functions: if k = k(r) is defined
by

log(1/r)

π
K(k) = K(

√
1 − k2),

then
a(t) = 4cn2((1 − t)K(k); k), b(t) = α(t)/dn2((1 − t)K(k); k),

and we obtain the asymptotic CG error bound of (2.2.3). �

3.2 Applications to the rate of convergence of Ritz

values

In order to approximate eigenvalues of large real symmetric matrices A of order N via
the Lanczos method with starting vector r0 ∈ RN , one computes the so-called Ritz val-
ues, namely, the eigenvalues x1,n < ... < xn,n of the (tridiagonal) matrix Jacobi matrix
Jn, see Definition 1.2.5 and Corollary1.3.3. Depending on the eigenvector components
β1, .., βN of the starting vector r0, some of the eigenvalues λ1 ≤ ... ≤ λN of A are well
approximated by Ritz values even if n is much smaller than the dimension N . Classical
results on convergence and on technical details of the Lanczos method may be found in
many textbooks. Let us cite here the well-known Kaniel-Page-Saad estimate for extremal
eigenvalues [GoVL93, PPV95, Saa96, TrBa97] being a consequence of Corollary 1.4.5 and
Lemma 1.4.6

|x1,n − λ1

λN − λ1

| ≤ 1

Tn−1(1 + 2 λ2−λ1

λN−λ2
)2

1

β2
1

n∑

j=2

β2
j , (3.2.1)

with Tn being the nth Chebyshev polynomial of the first kind. Thus one may expect geo-
metric convergence of the smallest (largest) Ritz value to the smallest (largest) eigenvalue
for a fixed matrix A, but the rate of convergence will depend on the size of the eigenvec-
tor component β1, and on the (relative) distance of λ1 to the other eigenvalues. For an
“inner” eigenvalue λk lying in the convex hull of the Ritz values, say, xκ−1,n < λk ≤ xκ,n

for some κ = κ(k), we get by combining Corollary 1.4.5 and Exercice 1.4.7

min
`

|λk − x`,n|2 ≤ |(λk − xκ−1,n)(λk − xκ,n)| ≤ 2 b2
[b/a− 1

b/a + 1

][n/2]−1 1

β2
k

n∑

j=1,j 6=k

β2
j , (3.2.2)
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where a = min{λk+1 − λk, λk − λk−1}, and b = max{λN − λk, λk − λ1}. Notice again that
we may only expect an interesting rate of convergence if λk is well separated from the rest
of the spectrum, and if |βk|/||r0|| is sufficiently large.

There exist (worst case) examples A, r0 with eigenvalue and eigenvector component dis-
tribution such that the bounds (3.2.1) or (3.2.2) are (approximately) sharp. However, for
matrices occurring in applications one observes quite often that the above bounds greatly
overestimate the actual error, even for a judicious choice of the set in Corollary 1.4.5
(for instance a finite union of intervals representing the parts of the real axis where the
spectrum of A is relatively dense).

Trefethen and Bau [TrBa97, p. 279] observed a relationship with electric charge distribu-
tions, and claimed that the Lanczos iteration tends to converge to eigenvalues in regions
of “too little charge” for an equilibrium distribution. This has been made more precise
by Kuilaars [Kui00a], who considered as in the preceding section a sequence of symmetric
matrices AN of which are supposed to have an asymptotic eigenvalue distribution

νN(Λ(AN)) →∗ σ for N → ∞. (3.2.3)

Then, following Trefethen and Bau, Kuijlaars compared ωsupp(σ) and σ, and considered
more precisely the constrained energy problem with external field Q = 0 of Section 2.2.

In the remainder of this section we will suppose that AN has N distinct eigenvalues
λ1,N < ... < λN,N contained all in some compact set Σ. Also, we suppose that the Lanczos
method is applied to matrix AN with starting vector r0,N having eigenvector components
β1,N , ..., βN,N , and we are interested in measuring the distance of an eigenvalue λj,N to
the set of Ritz values x1,n,N < ... < xn,n,N obtained in the nth iteration of the Lanczos
process. We then have the following result

Theorem 3.2.1 Suppose that the asymptotic distribution of the spectra of (AN )N is
given by σ, which has a continuous potential. Let kN be a sequence of indices such that

lim
N→∞

λkN ,N = λ (3.2.4)

and suppose that

lim
N→∞

1

N

∑

j 6=kN

log |λkN ,N − λj,N | =

∫
log |λ− λ′| dσ(λ′), (3.2.5)

lim inf
N→∞

[ |βkN ,N |
||r0,N ||

]1/N

=: ρ ∈ (0, 1]. (3.2.6)

Then

lim sup
n,N→∞
n/N→t

min
j

|λkN ,N − xj,n,N |1/N ≤ 1

ρ
exp
(
Uµt,0,σ(λ) − wt,0,σ

)
. (3.2.7)

If moreover there exists a nonnegative function Q ∈ C(Σ) with

lim sup
N→∞

sup
j

exp(Q(λj,N))
[ |βkN ,N |

||r0,N ||
]1/N

≤ 1,

then

lim sup
n,N→∞
n/N→t

min
j

|λkN ,N − xj,n,N |1/N ≤ 1

ρ
exp
(
Uµt,Q,σ(λ) − wt,Q,σ

)
. (3.2.8)
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Figure 3.4: Convergence of Ritz values for our 1D Poisson model problem with particular
smooth right hand side. Here N = 100, x0,N = 0, and f(x) =

∑N
j=1 r

j sin(jπx), r ∈
{1/4, 1/10}. The two black curves indicate the graphs of a, b. We draw in the nth
column, 1 ≤ n ≤ N , the position of the nth Ritz values within the interval [0, 4]. Here
the color/symbol indicates the distance of the Ritz value to the set of eigenvalues of AN ,
compare with (*). Notice that nearly all Ritz values are red in the range [0, a(t)], t = n/N ,
that there are no Ritz values in [b(t), 4], and that in the range [a(t), b(t)] hardly any Ritz
value converged (up to some exceptions by “accident”).

Proof. We may suppose without loss of generality that λ = 0. Using the estimate of
Corollary 1.4.5, we apply Theorem 2.3.2 for p = ∞ to the sets EN := {λj,N − λkN ,N : j 6=
kN}. �

Remark 3.2.2 Recall from Remark 2.2.8 that we may replace wt,0,σ−Uµt,0,σ (λ) in (3.2.7)
some mean of the Green functions gS(t)(λ), see (2.2.9). Hence, for ρ = 1, the right-hand
side of (3.2.7) is strictly negative for λ 6∈ ⋂τ<t supp (σ − µτ,0,σ), in correspondence with
the heuristic observation of Trefethen and Bau. �

Remark 3.2.3 In case of (3.2.8) one may observe a further phenomenon which for
the data of Example 3.1.13 is shown in Figure 3.4 and which is not fully covered by
Theorem 3.2.1: all eigenvalues in supp (µt,Q,σ)\supp (σ−µt,Q,σ) are fit by Ritz values (the
constraint is active), and there is hardly any Ritz value in supp (σ−µt,Q,σ) \ supp (µt,Q,σ).
�

Remark 3.2.4 The first condition (3.2.5) will be true if the eigenvalues λkN+j,N for
j 6= 0 do not approach “too fast” λkN ,N when N → ∞. This separation condition has
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Figure 3.5: Convergence of Ritz values for 400 equidistant eigenvalues in [−1, 1]. We
draw in the nth column, 1 ≤ n ≤ N , the position of the nth Ritz values within the
interval [0, 4]. Here the color/symbol indicates the distance of the Ritz value to the set of
eigenvalues of AN , compare with (*).

been suggested by Dragnev and Saff [DrSa97, Definition 3.1] as a sufficient condition for
insuring nth root asymptotics for discrete orthogonal polynomials. It holds if the distance
|λkN+j,N −λkN ,N | is bounded below by a constant times |j|/N [Rak96] or by some positive
power of this quantity; however, it is excluded that two neighboring eigenvalues approach
exponentially. Condition (3.2.6) means that the starting vector r0,N has a sufficiently
large eigencomponent for the eigenvalue λkN ,N . �

Remark 3.2.5 The statement of (3.2.7) can be found in [Be00b, Theorem 2.1(a)]. Be-
fore, Kuijlaars [Kui00a] had established a related inequality with ρ = 1, and the right-hand
side of (3.2.7) being replaced by its square root. As assumption, Kuijlaars imposed that
(3.2.5) and (3.2.6) for ρ = 1 hold for any set of indices verifying (3.2.4). �

Remark 3.2.6 According to the first part of Corollary 1.4.5, we learn from the proof
of Theorem 3.2.1 that the right-hand side of (3.2.7) can be replaced by its square for
extremal eigenvalues kN = 1 or kN = N .

Indeed, this is also true for more general situations: suppose that Σ = [A,B], and B ′ ∈ Σ
such that wt,0,σ − Uµt,0,σ(λ) > 0 for λ ∈ [A,B′]. Furthermore suppose that that (3.2.5)
and (3.2.6) for ρ = 1 hold for any set of indices verifying (3.2.4) and limit λ ∈ [A,B ′].
Then it is not difficult to show that |λk,N − λk+1,N |1/N → 1 for eigenvalues in [A,B ′].
Taking into account (3.2.7) and the separation property of Theorem 1.4.1(c), a little bit
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Figure 3.6: Convergence of Ritz values for the Poisson problem with mx = 9 and my = 13.
Notice that, even for large n ≈ N , hardly any eigenvalue in S(1) = [4δ, 4δ−1] = [2.77, 5.78]
is found by Ritz values.

of combinatorics shows that xj,n,N approaches λj,N exponentially for sufficiently small
j. This implies that one of the factors on the left-hand side of the second estimate of
Corollary 1.4.5 can be dropped, and we have that

lim sup
n,N→∞
n/N→t

min
j

|λkN ,N − xj,n,N |1/N = lim sup
n,N→∞
n/N→t

|λkN ,N − xkN ,n,N |1/N

≤ exp
(
2Uµt,0,σ(λ) − 2wt,0,σ

)

provided that λ ∈ [A,B′].

In the same spirit, one can show that for all but at most one exceptional eigenvalue in any
closed sub-interval of Σ with strictly positive wt,0,σ −Uµt,0,σ we have this improved rate of
convergence. Finally, there are examples where the rate of convergence for the exceptional
eigenvalue is given by (3.2.7). A detailed discussion of these exceptional indices is given
in [Be00b]. �

Example 3.2.7 If AN has equidistant eigenvalues in [−1, 1], we found in Example 3.1.8
that S(t) = [−

√
1 − t2,

√
1 − t2]. Indeed, as shown in Figure 3.5, the eigenvalues outside

the disk are found by the Lanczos method.

The numerical results displayed in Figure 3.5 as well as in subsequent experiments have
been obtained by the Lanczos method with full reorthogonalization, in order to prevent
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Figure 3.7: Bar chart for the eigenvalue distribution of 400 eigenvalues in the case α = 1
(equilibrium distribution), α = 2, and α = 1/2 (from the left to the right).

from loss of orthogonality, due to finite precision arithmetic. The following symbols/colors
are used to indicate the distance of a given Ritz value to the set of eigenvalues

Color Symbol distance between Ritz value and set of eigenvalues
Red + less than 0.5 10−14

Yellow 5 between 0.5 10−14 and 0.5 10−8

Green � between 0.5 10−8 and 0.5 10−3

Blue 4 larger than 0.5 10−3

(∗)

�

Example 3.2.8 For the Poisson problem of Exercise 3.1.11 and mx = 9, my = 13, the
Ritz values are displayed in Figure 3.6. As in the preceding example, the color/symbol is
chosen depending on the distance of the Ritz value to the set of eigenvalues, as a function
of the iteration index n = 1, 2, ..., N = 9 ∗ 13 = 117. Observe that eigenvalues outside of
the set S(n/N) described in Example 3.1.11 are well approximated by Ritz values, but
not those in S(n/N). Notice also that, even for large n ≈ N , hardly any eigenvalue in
S(1) = [4δ, 4δ−1] = [2.77, 5.78] is well approximated by Ritz values. �

Example 3.2.9 Consider the eigenvalues

λj,N = cos(π
2j − 1

2N
) · | cos(π

2j − 1

2N
)|α−1, α > 0,

and eigencomponents βj,N = 1, having clearly an asymptotic eigenvalue distribution σ
with continuous potential. As mentioned already in Example 3.1.9, no convergence of
Ritz values can be expected if α = 1. Things become more interesting for α = 2 (more
eigenvalues close to zero) or for α = 1/2 (more eigenvalues close to the endpoints ±1).
This behavior is displayed in Figure 3.7.

In the case α = 2 one may show that for 0 < t ≤ 1/
√

2 we obtain S(t) = [−1, 1],
and there is no geometric convergence of Ritz values. For t ∈ (1/

√
2, 1), the sets are

strictly decreasing and of the form S(t) = [−b(t), b(t)], but the resulting formulas for b(t)
are complicated, we omit details. The convergence behavior of the corresponding Ritz
values can be found in Figure 3.8, indeed, for n ≤ N/

√
2 hardly any eigenvalue is well

approximated by a Ritz value.
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Figure 3.8: Convergence of Ritz values for “squares” of 100 Chebyshev eigenvalues in
[−1, 1] (α = 2).

For the case α = 1/2 it is shown in [Be00b] that

S(t) = [−1,−r(t)] ∪ [r(t), 1], r(t) =
1 − cos(πt/2)

1 + cos(πt/2)
.

Notice that the eigenvalues (and the eigenvector components) are symmetric with re-
spect to the origin. Thus p2n−1,N is odd, and p2n,N is even. Moreover, λN+1,2N+1 =
xn+1,2n+1,2N+1 = 0, and thus here is a perfect rate of convergence. However, the eigen-
value λN+1,2N+1 is approached by the Ritz values xn+1,2n,2N+1 = −xn,2n,2N+1. Comparing
with Remark 3.2.6 we get an ”exceptional” eigenvalue with a smaller rate of conver-
gence. In contrast, for even N no exceptional eigenvalue occurs, even if the Ritz value
xn+1,2n+1,2N = 0 is not close to the spectrum. This last example contradicts the widely
believed fact that first extremal eigenvalues are found by Ritz values. �

3.3 Circulants, Toeplitz matrices and their cousins

A circulant matrix of order N generated by some exponential polynomial φ(θ) := φ0 +
φ1e

iθ + ...+ φN−1e
(N−1)iθ are defined by

CN(φ) =




φ0 φ1 · · · φN−1

φN−1 φ0 · · · φN−2
...

...
...

φ1 φ2 · · · φ0


 , (3.3.1)
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Figure 3.9: Convergence of Ritz values for “square roots” of N ∈ {100, 101} Chebyshev
eigenvalues in [−1, 1] (α = 1/2). In the top plot (N = 100), the Ritz values xj+1,2j+1,N = 0
for odd n are not close to the spectrum. In the bottom plot (N = 101) one observes the
phenomena of exceptional eigenvalues.

i.e., CN(φ) is constant along diagonals. It is easily seen that CN(φ) is diagonalized by the
unitary FFT matrix of eigenvectors

ΩN =
1√
N

[
exp(

2πijk

N
)
]

j,k=0,1,...,N−1
,

with corresponding eigenvalues given by φ( 2πi(k−1)
N

), k = 1, ..., N . Notice also that CN(φ)
is normal, and in addition hermitian if and only if all eigenvalues are real. One easily
checks using the explicit knowledge of the eigenvalues that, if φ(N) is the partial sum of
a exponential power series φ being absolutely convergent (such symbols φ are called of
Wiener class), then

νN(CN(φ(N))) →∗ σφ for N → ∞, where

∫
f dσφ =

1

2π

∫ 2π

0

f(φ(eis)) ds, (3.3.2)
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where here and in what follows we count eigenvalues according to their multiplicities. We
speak of a circulant matrix of level two (and by iteration of level t) or a circulant-circulant
matrix of order mxmy if there is a block structure with m2

x blocks as in (3.3.1), with
each block being itself a circulant matrix. Thus such matrices are induced by a bi-variate
exponential polynomial φ with degree in x being equal to mx − 1 and degree in y being
equal to my − 1, and we write Cmx,my(φ). With the Kronecker product

A⊗ B = (Aj,kB)j,k,

we see that the matrix of eigenvectors is given by the unitary matrix Ωmx ⊗ Ωmy and the

eigenvalues by the expressions φ(exp( 2πi(j−1)
mx

), exp(2πi(k−1)
my

)), j = 1, ..., mx, k = 1, ..., my.

Thus, as in (3.3.2), if φ(mx,my) is the truncation of a bivariate exponential power series φ
being absolutely convergent, then for mx → ∞, my → ∞,

νmxmy(Cmx,my(φ
(mx,my))) →∗ σφ,

∫
f dσφ =

1

(2π)2

∫∫

[0,2π]2
f(φ(θ)) dθ. (3.3.3)

Toeplitz matrices are generated by Fourier series

TN(φ) =




φ0 φ1 · · · φN−1

φ−1 φ0 · · · φN−2
...

...
...

φ1−N φ2N
· · · φ0


 , , φ(θ) =

∞∑

j=−∞

φje
ijθ (3.3.4)

being again constant along diagonals, and hermitian if φ is real-valued. Hence any circu-
lant is Toeplitz, but not reciprocally. We also define Toeplitz-Toeplitz matrices (or level 2
Toeplitz matrices) Tmx,my(φ) induced by some bivariate Fourier series φ as a matrix with
Toeplitz block structure, each individual block being also of Toeplitz structure. Similarly,
we speak of Toeplitz-circulant matrices (Toeplitz block structure with circulant blocks)
or Circulant-Toeplitz matrices.

It is well-known that these matrices occur in the discretization by finite differences using
the five point stencil of the Poisson PDE on [0, 1]2, more precisely we have a (banded)
Toeplitz-Toeplitz matrix in case of Dirichlet boundary conditions (compare with Exam-
ple 3.1.11), and a (banded) circulant-circulant matrix in case of homogeneous Neumann
boundary conditions. Toeplitz systems arise also in a variety of other applications, such as
signal processing and time series analysis, see [ChNg96] and the references cited therein.

For Toeplitz matrices and their level 2 counterparts, it is in general impossible to give
explicit formulas for eigenvalues. However, we may find formulas for the asymptotic eigen-
value distribution, compare for instance with [GrSz84, pp. 63-65], [BoSi99, Theorem 5.10
and Corollary 5.11].

Theorem 3.3.1 Let φ be a univariate absolutely convergent Fourier series (we say that
φ is of Wiener class) and real-valued. Then νN(TN (φ)) → σφ for N → ∞, with σφ as in
(3.3.2).

If φ be a bi-variate absolutely convergent and real-valued Fourier series then for mx, my →
∞ we have that νmx my(Tmx,my(φ)) → σφ, with σφ as in (3.3.3).
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In the proof of Theorem 3.3.1 we will require the following perturbation result of Tyr-
tyshnikov [Tyr96] in a form given by Serra Capizzano [Ser02, Proposition 2.3]. See also
Tilli [Til98].

Theorem 3.3.2 ([Ser02, Proposition 2.3]) Let (AN) be a sequence of Hermitian
matrices where AN has size N ×N . Suppose for every ε > 0 there exists Nε such that for
every N ≥ Nε a splitting

AN = BN(ε) +RN(ε) + ∆N (ε)

where BN (ε), RN(ε) and ∆N (ε) are Hermitian matrices so that for N ≥ Nε,

rankRN (ε) ≤ C1(ε)N, and ‖∆N(ε)‖ ≤ C2(ε)

where C1(ε) and C2(ε) are positive constants independent of N with

lim
ε→0

C1(ε) = lim
ε→0

C2(ε) = 0.

Suppose that, for every ε > 0, the limit νN (Λ(BN(ε))) →∗ σε for N → ∞ exists, and that
the limit σε →∗ σ for ε→ 0 exists, then νN(Λ(AN)) →∗ σ for N → ∞.

Proof. Apply the Courant minimax principle and the Theorem of Bauer and Fike
[GoVL93] telling us that if A,B are two hermitian matrices with ”small” ||A−B||, then
for each eigenvalue of A there exists an eigenvalue of B which is ”close”. �

Proof of Theorem 3.3.1. We will give the main idea of proof for the case of a
Toeplitz matrix, the arguments for a level 2 Toeplitz matrix are similar. Denote by φ(N)

the Fourier sum obtained from φ by taking the [N 1/3]th partial sum. Since for the p-matrix
norm || · ||p of a matrix we have

(||A||2)2 ≤ ||A||∞ ||A||1,

and since φ is of Wiener class, we find that, for ε > 0 and sufficiently large N , we have

||φ− φ(N)||L∞([−π,π]) < ε, ||TN(φ) − TN (φ(N))|| < ε.

Then TN(φ(N)) is banded, of bandwidth ≤ N 1/3, and we need to modify at most N 2/3

entries in order to transform it into a hermitian circular matrix BN . Since the eigen-
values of this hermitian circular matrix are explicitly known, we obtain the assumptions
Theorem 3.3.2 with σε = σφ, and our claim follows from Theorem 3.3.2. �

As seen from the above proof, results similar to Theorem 3.3.1 are true for Toeplitz-
circulant or Circulant-Toeplitz matrices.

By Theorem 3.3.1 we see that condition (i)’ of Section 3.1 holds for sequences of hermitian
(level 2) Toeplitz matrices. Also, condition (ii)’ will be true for instance for continuous
symbols. Let us shortly comment of condition (iii)’ for the case of hermitian positive
definite Toeplitz matrices (and hence φ ≥ 0). A result of Szegő (see [GrSz84, p. 44 and
p. 66]) is that

lim
N→∞

det(TN (φ))

det(TN−1(φ))
= exp

(
1

2π

∫ π

−π

log φ(θ) dθ

)
(3.3.5)

52



provided that φ satisfies the Szegő condition

∫ π

−π

log φ(θ) dθ > −∞.

Notice that this condition can be rewritten as Uσφ(0) < +∞. Also recall the link to
strong asymptotics of orthogonal polynomials on the unit circle (the ratio of determinants
in (3.3.5) is linked to the leading coefficient of such orthonormal polynomials).

It follows from (3.3.5) that

lim
N→∞

log(| det |TN(φ)|1/N) =
1

2π

∫ π

−π

log φ(θ) dθ =

∫
logλ dσ(λ) ∈ R,

and the condition (iii’) is satisfied.

3.4 Discretization of elliptic PDE’s

The asymptotic eigenvalue distribution of matrices obtained by a finite difference dis-
cretization of elliptic partial differential equations has been discussed in detail by Serra-
Cappizano [Ser03]. Here we will not look for greatest generality, but just have a look
on the particular example of a 2D diffusion equation on some polyhedral domain in R2,
discretized by the classical five point stencil.

Let Ω ⊂ [0, 1]2 be some open polyhedron, and b : Ω → [0,+∞) piecewise continuous. We
solve the diffusion problem

div(b∇u) = f on Ω

plus Dirichlet (Neumann) boundary conditions via central finite differences, with stepsizes

∆x =
1

mx + 1
, ∆y =

1

my + 1
,

This leads to a system of linear equations for the unknowns uj,k ≈ u(j∆x, k∆y) with

(j, k) ∈ {(j, k) ∈ Z2 | (j∆x, k∆y) ∈ Ω},

given by

mx + 1

my + 1

[
−bj−1/2,kuj−1,k − bj+1/2,kuj+1,k + (bj−1/2,k + bj+1/2,k)uj,k

]

+
mx + 1

my + 1

[
−bj,k−1/2uj,k−1 − bj,k+1/2uj,k+1 + (bj,k−1/2 + bj,k+1/2)uj,k

]
=

fj,k

(mx + 1)(my + 1)

where bj−1/2,k = c((j − 1/2)h, kh), etc. Supposing that there are and N gridpoints in Ω,
we can write this system as ANx = bN , where it is known that (at least for b strictly
positive) cond(AN ) grows like O(N). Notice that for b = 1 and Ω = (0, 1)2 and Dirichlet
boundary conditions we recover the Toeplitz-Toeplitz matrix of Example 3.1.11. In what
follows we will not specify further the (discretisation of the) boundary conditions, since
in all cases this only leads to a small rank pertubation of order O(

√
N), and hence by

Theorem 3.3.2 does not affect the asymptotic eigenvalue distribution.
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Figure 3.10: The four different domains, referred to as b-square, b-triangle-1, b-lshape
and b-triangle2 (from the left to the right).

As in Example 3.1.11 we consider the limit relation

mx, my → ∞,
mx

my
→ δ < 1,

Again, for b = 1 and Ω = (0, 1)2, the asymptotic eigenvalue distribution has been deter-
mined in Example 3.1.11, compare also with Theorem 3.3.1 for the symbol

φ(s1, s2) = 2δ(1 − cos(s1)) + 2δ−1(1 − cos(s2)). (3.4.1)

In the general case we find the following result being a consequence of a more general
result of Serra-Cappizano [Ser03].

Theorem 3.4.1 Under the above assumptions on Ω and b, we have that, for any con-
tinuous function f with compact support,

lim
N→∞

∫
f dνN(AN) =

1

m(Ω)

∫

Ω

dx
1

(2π)2

∫∫

[0,2π]2
ds f(b(x) · φ(s))

with φ as in (3.4.1) and m(·) denoting the two-dimensional Lebesgue measure.

Proof. By covering Ω by ”small” squares Sj,N of equal size tending to zero for N → ∞,
we may replace AN by some block diagonal matrix CN where entries with row/column
index corresponding to points in squares Sj,N (for the row) and Sk,N (for the column)
will be replaced by zero if Sj,N 6= Sk,N or if Sj,N ∪ Sk,N is not a subset of Ω or if b is
not continuous on Sj,N ∪ Sk,N . By choosing a correct size of the square, we see that the
rank of AN − CN is o(N). Denote by BN the matrix obtained from CN by replacing all
b–values of a diagonal block corresponding to the square Sj,N by some constant b(ξj,N)
with ξj,N ∈ Sj,N . Then ||BN − CN || is small by continuity. Applying Theorem 3.3.1 for
each square and summing up all squares we then find that

lim
N→∞

∫
f dνN(BN) =

1

m(Ω)

∫

Ω

dx
1

(2π)2

∫∫

[0,2π]2
ds f(b(x) · φ(s)),

and our claim follows from Theorem 3.3.2. �
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Remark 3.4.2 It is interesting to observe that, for b = 1, we find the same asymptotic
eigenvalue distribution as in Example 3.1.11 independently on the domain Ω. �

Remark 3.4.3 Let M := supΩ b, then from Theorem 3.4.1 it becomes clear that the
asymptotic eigenvalue distribution is described by some measure σ with supp (σ) =
[0, (4δ + 4δ−1)M ] =: Σ. One may also prove that all eigenvalues of AN lie in Σ. Fi-
nally, defining the measure τ by

τ((−∞, r]) :=
m({x ∈ Ω : b(x) ≤ r})

m(Ω)
,

with support given by the essential range of b, and denoting the extremal measure of
Example 3.1.11 by σ0, we find that σ is obtained by taking the Mellin convolution of τ
and σ0. More precisely, if τ, σ0 have densities τ ′, σ′

0 then also σ has a density σ′, given by

σ′(y) =

∫ 4δ+4δ−1

y/M

σ′
0(x)τ

′(
y

x
)
dx

x
.

If m := infΩ b > 0, we deduce that

σ′(y) =
1

4π m(Ω)

∫

Ω

dx

b(x)
+ y

δ + δ−1

32πm(Ω)

∫

Ω

dx

b(x)2
+ O(y2)y→0.

It is interesting to compare this formula with the Weyl formula for the asymptotic distri-
bution of eigenvalues of the corresponding differential operator. �

Example 3.4.4 We consider the Poisson problem, i.e., b = 1, on four different domains
Ω ⊂ [0, 1]2 displayed in Figure 3.10. On the bottom of Figure 3.11 one may find histograms
for the eigenvalue distribution in the case mx = 15, my = 40, and hence δ = 15/40 =
0.375. In blue we have drawn the density of the asymptotic eigenvalue distribution,
which according to Remark 3.4.2 is the same for the four domains. In the upper part
of Figure 3.11 we find the convergence history of CG for random starting vector. In all
four cases, the actual CG convergence looks quite similar (notice the different scales for
the iteration index, since the number of unknowns differ depending on how many grid
points are lying in Ω. In all cases we find that the classical and our new asymptotic
bound lie above the actual CG error curve, the latter describing quite well the slope of
the convergence curve.

Here and also in the next example we proceeded as follows to compute numerically the
asymptotic convergence bound (3.1.3): first the quite complicated density of the asymp-
totic eigenvalue distribution σ of Theorem 3.4.1 was replaced around both endpoints by
the first two nontrivial terms in the Taylor expansion around the endpoints (see the red
curves). For this new constraint σ̃, we expect that S(t) is an interval. The endpoints of
this interval were obtained by solving numerically the corresponding system of integral
equations. One finds as yellow curve the density of the extremal measure µt,0,σ̃, with t
being the ratio of the last iteration index, divided by the number of unknowns. �

Example 3.4.5 As second example we consider the diffusion problem with b(x, y) =
1 + y on the same four different domains Ω ⊂ [0, 1]2 displayed in Figure 3.10. On the
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bottom of Figure 3.12 one may find histograms for the eigenvalue distribution in the case
mx = my = 40, and hence δ = 1. In blue we have drawn the density of the asymptotic
eigenvalue distribution, which has a shape depending on the domain, especially in a
neighborhood of the right end point of supp (σ). In the upper part of Figure 3.12 we find
the convergence history of CG for random starting vector. Notice that the final iteration
index divided by the number of unknowns is 0.138, 0.186, 0.158, 0.198, and thus depends
on the domain. Again our new asymptotic bound lie above the actual CG error curve,
and describes well its slope. �

3.5 Conclusions

We have seen that there is a fruitful relationship between convergence behavior of Krylov
subspace methods in Numerical Linear Algebra and logarithmic potential theory, the link
being given by asymptotics of discrete orthogonal polynomials. Thus, in a certain sense,
this manuscript contains the next 2-4 steps of the nice introduction paper [DTT98] of
Driscoll, Toh and Trefethen entitled From potential theory to matrix iteration in six steps.

The linear algebra theory described here can be found in much more details in the text-
books [Fi96, GoVL93, Gr97, Nev93, Saa96, TrBa97], see also the original articles on super-
linear convergence [AxLi86a, AxLi86b, Gre79, Mor97, NaEn00, PPV95, SlvS96, vSvV86,
Win80]. The potential theoretic tools are from [Rak96, DrSa97, BuRa99, DaSa98, KuDr99,
KuVA99, Be00a, Kui00b, KuMc00], see also the textbooks [MaFi04, SaTo97, Ran95,
NiSo88, La72]. Finally, the link between these two domains is described in [Kui00a,
BeKu99, BeKu00, BeKu02, Be00b].

There are at least two directions of current research: first it would be nice to have a
similar theory as in Section 3.4 for finite element discretization of elliptic PDEs, including
techniques of grid refinements. For P1 elements, some work of Serra-Capizzano and the
author is in progress. What is so attracting about the finite element method is that one
proceeds by projection, and therefore there are inequalities between the eigenvalues of AN

and of the continuous differential operator. Thus for instance the Weyl formula should
tell us much about superlinear convergence for CG.

In order to make CG perform better, one uses in practice the technique of precondition-
ning. A quite involved research project is to find asymptotic eigenvalue distributions for
such preconditioned matrices. For instance, there is a whole theory about how one should
precondition Toeplitz matrices with help of circulant matrices, see for instance [ChNg96].
However, for level 2 Toeplitz matrices the theory is much less developed. What may hap-
pen is that there is a clustering of many eigenvalues around some point, and we should
zoom this clustering in order to obtain more precise information abound the eigenvalue
distribution.

A different popular class of precondition techniques include the incomplete Choleski fac-
torization and its relaxed generalizations, see for instance [Saa96] or the original articles
[Ax72, Ch91, ChEl89, El86, MeVdV77, vdV89]. In [Ch91, ChEl89], the (complicated)
triangular matrices in the incomplete Choleski factorization were replaced by Circulants,
which made it possible to make a more precise analysis for the Poisson problem with
periodic boundary conditions. For the model problem of Section 3.4, the asymptotic
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eigenvalue distribution is determined in some work in progress of Kuijlaars and the au-
thor.
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Figure 3.11: Convergence rate for the diffusion problem with b = 1 on four different
domains, the b-square, b-triangle-1, b-lshape and b-triangle2. We have chosen mx = 25
and my = 40. .
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Figure 3.12: Convergence rate for the diffusion problem with b(x, y) = 1 + y on four
different domains, the b-square, b-triangle-1, b-lshape and b-triangle2. We have chosen
mx = my = 40.
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Ĵn, 7
Kn(A, c), 6
Kn,2, 9
Λ(·), 7
Lp(En), 2
Mt(Σ), 19
Mσ

t , 26
ΩN , 45
P, 8
Pn, 8
Tn,p, 2
Uµ, 19
Vn, 7
Wt,Q,Σ, 21
Wt,Q,σ, 26
cap (·), 20
gE(), 20
gE(·, ·), 25
µt,Q,Σ, 21
µt,Q,σ, 26
≺ ·, · �, 8
νN(·), 29
νN(EN ) →∗ σ, 29
ωE, 20
pn, 8
wt,Q,Σ, 21
wt,Q,σ, 26
xj,n, 12

Arnoldi basis, 7
Associated linear functional, 13

Balayage, 24
Bernstein-Walsh inequality, 22

Capacity, 20
CG, 6

Christoffel-Darboux, 13
Circulant-circulant matrix, 46
Circulants, 45
CR, 7

Energy, 19
Energy, weighted, 21
Energy, mutual, 19
Energy, discrete mutual, 29
Extremal polynomials, 2

Field of values, 17
Fouries series of Wiener class, 46

Gaussian Quadrature, 13
GMRES, 6
GMRES(1), 10
Green function, 20, 25

Interlacing property, 12

Krylov space, 6
Krylov subspace method, 5

Lanczos, 6
Level 2 circulants, 46
Linear functional, 12
Logarithmic potential, 19

MinRES, 7

Orthonormal polynomials, 8
Outlier, 4
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