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1 Introduction

Multiple orthogonal polynomials are a generalization of orthogonal polyno-
mials in the sense that they satisfy orthogonality conditions with respect to
r ∈ N measures µ1, . . . , µr [3,11,22]. In this paper r will always represent the
number of weights. Multiple orthogonal polynomials arise naturally in the
theory of simultaneous rational approximation, in particular in Hermite-Padé
approximation of a system of r (Markov) functions [6,7,20].

There are two types of multiple orthogonal polynomials. In the present paper
we only consider multiple orthogonal polynomials of type II. Let N0 = N∪{0}
and ~n = (n1, n2, . . . , nr) ∈ Nr

0 be a vector of r nonnegative integers, which
is called a multi-index with length |~n| := n1 + n2 + · · · + nr. Furthermore let
Γ1, . . . ,Γr be the supports of the r measures. A multiple orthogonal polynomial
P~n of type II with respect to the multi-index ~n, is a (nontrivial) polynomial
of degree ≤ |~n| which satisfies the orthogonality conditions

∫

P~n(z)z
m dµj(z) = 0, 0 ≤ m ≤ nj − 1, j = 1, . . . , r. (1.1)

Notice that the measures in (1.1) are not necessarily supposed to be positive.
In case of a complex orthogonality relation, one usually refers to P~n as a formal
multiple orthogonal polynomial.

Equation (1.1) leads to a system of |~n| homogeneous linear relations for the
|~n| + 1 unknown coefficients of P~n. A basic requirement in the study of such
multiple orthogonal polynomials is that there is (up to a scalar multiplica-
tive constant) a unique solution of system (1.1). We call ~n a normal index
for µ1, . . . , µr if any solution of (1.1) has exactly degree |~n| (which implies

uniqueness). Let m
(j)
k =

∫

Γj
zk dµj(z) be the kth moment of the measure µj.

Further set

D~n =
(

D
(1)
~n · · ·D(r)

~n

)T
, (1.2)

where

D
(j)
~n =













m
(j)
0 m

(j)
1 . . . m

(j)
nj−1

m
(j)
1 m

(j)
2 . . . m(j)

nj

...
...

...

m
(j)
|~n|−1 m

(j)
|~n| . . . m

(j)
|~n|+nj−2













is an |~n| × nj matrix of moments of the measure µj. Then D~n is the matrix
of the linear system (1.1) without the last column. It is known and easily
verified that the multi-index ~n = ~n = (n1, n2, . . . , nr) is normal if and only
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if this matrix has rank |~n| [22]. When every multi-index is normal we call
the system of measures a perfect system. For perfect systems, the multiple
orthogonal polynomials of type II satisfy a recurrence relation of order r + 1.
The proof is similar to the proof of the three-terms recurrence relation satisfied
by a sequence of orthogonal polynomials, see for instance [3]. Because of this
recurrence relation, formal multiple orthogonal polynomials are a useful tool
in the spectral theory of non-symmetric linear difference operators [14].

In the literature one can find some examples of multiple orthogonal polyno-
mials with respect to positive measures on the real line which have the same
flavor as the classical orthogonal polynomials. Two classes of measures have
been analyzed in more detail and are known to form a perfect system, see for
instance the monograph [22] or the survey given in [11]. The first class consists
of Angelesco systems where the supports of the measures are disjoint inter-
vals. In the second class of so-called AT systems, the supports of the r mea-
sures coincide, and the Radon-Nikodym derivatives dµj/ dµ1 for j = 1, . . . , r
form an algebraic Chebyshev system [22, Section IV.4] on the convex hull of
the support. In the continuous case (where the measures can be written as
dµj(zx) = wj(x) dx, with wj the weight function of the measure µj) there
are multiple Hermite, multiple Laguerre I and II, Jacobi-Piñeiro, multiple
Bessel, Jacobi-Angeleso, Jacobi-Laguerre and Laguerre-Hermite polynomials,
see [4,11,22] and the references therein. Some discrete examples are multiple
Charlier, multiple Kravchuk, multiple Meixner I and II and multiple Hahn [5].
All these examples have the same flavor as the classical orthogonal polyno-
mials as there exists a first-order raising operator, based on the differential
operator D or the difference operators ∆ and ∇, and a Rodrigues formula.
Moreover, there exist differential or difference equations of order r + 1 (with
polynomial coefficients) [4]. So, they can be called classical. The recurrence
relations of order r + 1 are known explicitly for these examples in the case
r ≤ 2. Finally we mention that there also exist some examples of multiple
orthogonal polynomials associated with modified Bessel functions [12,13,26]
which can be called classical.

In Subsection 3.1 we recall the definition of one of these examples, namely
Jacobi-Piñeiro polynomials P

(~α,β)
~n , which are orthogonal with respect to the

weights wj(x) = xαj (1 − x)β on [0, 1], αj, β > −1. These polynomials reduce
to the classical Jacobi polynomials (shifted to the interval [0, 1]) for r = 1.
We show in Subsection 2.1 that Jacobi polynomials remain formal orthogonal
polynomials for complex parameters α1, β, the corresponding complex orthog-
onality relation being obtained via an analytic extension of the Beta function
in both variables. As we show in Subsection 3.1, also Jacobi-Piñeiro polyno-
mials with complex parameters are formal multiple orthogonal polynomials of
type II.

In Subsection 3.2 we then introduce the formal multiple Wilson polynomials
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p~n(·; a,~b, c, d), which give a new example of formal multiple orthogonal poly-
nomials of type II. They are an extension of the formal Wilson polynomials
pn(·; a, b, c, d) [27,28] for which we recall the definition in Subsection 2.2. We
also mention that, with some conditions on the complex parameters a, b, c, d,
we find the Wilson and Racah polynomials on the top of the Askey scheme
which have real orthogonality conditions.

The formal multiple Wilson polynomials satisfy complex orthogonality condi-
tions with respect to r Wilson weights

w(z; a, bj, c, d)

=
Γ(a+ z)Γ(a− z)Γ(bj + z)Γ(bj − z)Γ(c + z)Γ(c− z)Γ(d+ z)Γ(d− z)

Γ(2z)Γ(−2z)
,

(1.3)

j = 1, . . . , r, where we integrate over the imaginary axis deformed so as to
separate the increasing sequences of poles of these weight functions from the
decreasing ones. Note that the parameters a, b1, . . . , br, c, d can take complex
values. There are some additional conditions on these complex parameters in
order to ensure that the Wilson weights have only simple poles. We prove in
Theorem 3.3 that the weight functions (1.3) form a perfect system if bi−bj /∈ Z

whenever i 6= j. In the same theorem we show that, for <(c + d) > 0 and
0 < |<(z)| < <(a), the formal multiple Wilson polynomials can be written as
the Jacobi-Piñeiro transform

p~n(z2; a,~b, c, d) = κ~n

∫ 1

0
P

(~α,β)
~n (u)w(a−1,β)(u)K(u, z; a, 0, c, d) du, (1.4)

where ~α = (a+b1−1, . . . , a+br−1) and β = c+d−1. Here κ~n is a normalizing
constant, w(α,β)(u) = uα(1 − u)β the Jacobi weight and

K(u, z; a, b, c, d) =
u−b−z

Γ(a− z)Γ(a+ z)Γ(c + d)
2F1

(

c− z, d− z

c+ d

∣
∣
∣
∣
∣
1 − u

)

(1.5)

is a kernel function, independent of ~n. We use the notation

pFq





~f
~φ

∣
∣
∣
∣
∣
∣

z



 =
∞∑

k=0

∏p
`=1(f`)k

∏q
`=1(φ`)k

zk

k!
,

where ~f ∈ Cp, ~φ ∈ Cq, which is a hypergeometric function. In the scalar
case (r = 1) the formula (1.4) reduces to a Jacobi transform for the Wilson
polynomials which was already found by Koornwinder [18, (3.3)]. We recall
this Jacobi transform in Subsection 2.3 and give a short proof.

The Jacobi-Piñeiro transform (1.4) is the key formula of this paper. In Sub-
section 3.1 we obtain two new hypergeometric representations for the Jacobi-
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Piñeiro polynomials starting from the Rodrigues formula. Applying the Jacobi-
Piñeiro transform (1.4) we then also find two explicit formulas for the formal
multiple Wilson polynomials (see Subsection 3.2). One of them is in terms of
Kampé de Fériet series [24].

In Section 4 we only consider the cases where we obtain real orthogonality con-
ditions, namely multiple Wilson and multiple Racah. Using appropriate limit
relations we then recover hypergeometric representations for the examples of
multiple orthogonal polynomials of type II, mentioned above. We also intro-
duce some new examples like multiple dual Hahn, multiple continuous dual
Hahn, and multiple Meixner-Pollaczek. As a result, we finally construct a (still
incomplete) multiple AT-Askey table which extends the well known Askey
scheme for classical orthogonal polynomials to multiple orthogonal polynomi-
als.

2 Jacobi and Wilson polynomials

2.1 Formal Jacobi polynomials

The (shifted) Jacobi polynomials P (α,β)
n are a classical example of continuous

orthogonal polynomials. Suppose α, β > −1, then these polynomials are or-
thogonal with respect to the Jacobi weight function w(α,β)(x) = xα(1−x)β on
the interval [0, 1]. These polynomials have the explicit expressions [8]

P (α,β)
n (z) =

(α + 1)n

n!
2F1

(

−n, α + β + n+ 1

α + 1

∣
∣
∣
∣
∣
z

)

, (2.1)

=
(α + 1)n

n!
(1 − z)−β

2F1

(

α + 1 + n,−β − n

α + 1

∣
∣
∣
∣
∣
z

)

, (2.2)

where the second expression is obtained by Euler’s formula [1, 15.3.3],[15]. We
claim that the (shifted) Jacobi polynomials P (α,β)

n are still formal orthogonal
polynomials if we allow complex parameters α, β, α+β+1 ∈ C\{−1,−2, . . .}
in formula (2.1). This was already mentioned in [19, Theorem 2.1], but we give
a different proof.

In order to prove this claim, we require an integral representation for the
meromorphic continuation in both variables of the Beta function. Recall, e.g.,
from [15, § 1.1] that the Gamma function Γ has no zeros and is meromorphic
in C with simple poles at 0,−1,−2, .... Hence the Beta function [15, § 1.5]

B(z, w) =
Γ(z)Γ(w)

Γ(z + w)
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Fig. 1. The contour Σ on the appropriate Riemann surface for ζ z−1(1 − ζ)w−1.

is meromorphic both in z and w, with simple poles at z, w = 0,−1,−2, ....
From [15, § 1.5] we have the integral representation

B(z, w) =
∫ 1

0
tz−1(1 − t)w−1 dt, <(z) > 0,<(w) > 0. (2.3)

In order to obtain a representation valid for general z, w ∈ C \ Z (compare
with the Pochhammer formula [15, 1.6.(7)]), we follow [16, § 3.4] and consider
three sheets S1, S2 and S3 of the appropriate Riemann surface for the function
ζz−1(1 − ζ)w−1 (in the variable ζ) so that







−π < arg(ζ) < π, −π < arg(1 − ζ) < π, for ζ ∈ S1 \ {(−∞, 0] ∪ [1,+∞)} ,
0 < arg(ζ) < 2π, π < arg(1 − ζ) < 3π, for ζ ∈ S2 \ {[0,+∞) ∪ [1,+∞)} ,
π < arg(ζ) < 3π, 0 < arg(1 − ζ) < 2π, for ζ ∈ S3 \ {(−∞, 0] ∪ (−∞, 1]} .

Furthermore we choose a closed contour Σ as in Figure 1 where σ1, σ2, σ3

are the transition points between the three sheets. Note that the function
ζz−1(1 − ζ)w−1 is analytic on Σ. For the Beta function we then have

B(z, w) = (1−e2πiz)−1(1−e2πiw)−1
∫

Σ
ζz−1(1−ζ)w−1 dζ, z, w ∈ C\Z. (2.4)

Indeed, if <(z) > 0,<(w) > 0 then the path of integration in (2.4) can be
deformed via the usual ”shrinking” method in order to approach the interval
[0, 1], leading to formula (2.3). In particular, if z and/or w is a strictly positive
integer, we can obtain B(z, w) by taking limits in (2.4).

Now we prove our claim that (shifted) Jacobi polynomials with complex pa-
rameters are formal orthogonal polynomials.

Theorem 2.1 Let α, β, α+β+1 ∈ C \ {−1,−2, . . .}, and consider the (com-
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plex) measure µ(α,β) defined by

∫

h dµ(α,β) = lim
z→α,w→β

(1 − e2πiz)−1(1 − e2πiw)−1
∫

Σ
h(ζ)ζz(1 − ζ)w dζ.

Then µ(α,β) forms a perfect system, with the corresponding nth formal orthog-
onal polynomial given by the (shifted) Jacobi polynomial P (α,β)

n .

Proof. From (2.4) we obtain for the kth moment

∫

zk dµ(α,β)(z) = B(α + 1 + k, β + 1).

The restrictions on the parameters α and β guarantee that the determinant
of the moment matrix,

det
(

B(α+ s+ t− 1, β + 1)
)

1≤s,t≤n

=
n∏

`=1

Γ(α + `)Γ(β + `)

Γ(α + β + n + `)

∏

1≤s<t≤n

(t− s),

is different from zero. A proof for this formula uses Theorem 1 and 2 in [9,10]
(the moment matrix in the non-shifted case can be found in [25, 6.71.5]). Thus
µ(α,β) forms a perfect system. Moreover, for 0 ≤ m ≤ n− 1 we have according
to (2.1) and (2.4)

∫

(1 − z)mP (α,β)
n (z) dµ(α,β)(z)

=
(α + 1)n

n!

n∑

k=0

(−n)k(α+ β + n + 1)k

k!(α+ 1)k

B(α + k + 1, β +m+ 1)

=
(−1)nΓ(α + n+ 1)Γ(β +m+ 1)

Γ(α + β + n+ 1)

n∑

k=0

(−1)n−k

k!(n− k)!

n∏

`=m+2

(α + β + k + `).

The sum on the right hand side is the divided difference gm,n[0, 1, ..., n] of
the polynomial gm,n(z) =

∏n
`=m+2(α + β + z + `) of degree n −m − 1. Since

n−m− 1 < n, this is equal to 0, which proves that the Jacobi polynomial is
a formal orthogonal polynomial with respect to µ(α,β). 2

2.2 Formal Wilson polynomials

In [27] Wilson introduced the (formal) Wilson polynomials

pn(z2; a, b, c, d)

= (a+b)n(a+c)n(a+d)n 4F3

(

−n, a + b+ c+ d+ n− 1, a− z, a + z

a+ b, a + c, a+ d

∣
∣
∣
∣
∣
1

)

.

(2.5)
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By using Whipple’s identities [2, Theorem 3.3.3], one can show that these for-
mal Wilson polynomials are symmetric in all four complex parameters a, b, c, d.
Furthermore, with some conditions on these four parameters, the polynomials
satisfy a complex orthogonality with respect to the Wilson weight function

w(z; a, b, c, d)

=
Γ(a+ z)Γ(a− z)Γ(b + z)Γ(b− z)Γ(c + z)Γ(c− z)Γ(d+ z)Γ(d− z)

Γ(2z)Γ(−2z)
.

Suppose that

2a, a+ b, a+ c, a+ d, 2b, b+ c, b+ d, 2c, c+ d, 2d /∈ {0,−1,−2, . . .}, (2.6)

so that the Wilson weight has only simple poles, and that

a+ b + c+ d /∈ {0,−1,−2, . . .}. (2.7)

Furthermore let C denote the contour obtained by deforming the imaginary
axis so as to separate the increasing sequences of poles ({a + k}∞k=0, {b +
k}∞k=0, {c+ k}∞k=0, {d+ k}∞k=0) from the decreasing ones ({−a − k}∞k=0, {−b−
k}∞k=0, {−c− k}∞k=0, {−d− k}∞k=0), and define the Wilson measure µ(a,b,c,d) by

∫

h dµ(a,b,c,d) =
∫

C
h(z2)w(z; a, b, c, d) dz. (2.8)

Wilson [27] proves the complex orthogonality relations

∫

pm(z; a, b, c, d)pn(z; a, b, c, d) dµ(a,b,c,d)(z) = δm,n2iMn,

where

Mn = 2πn! (a+ b + c+ d+ n− 1)n Γ(a + b+ n)

× Γ(a + c+ n)Γ(a+ d+ n)Γ(b + c+ n)Γ(b + d+ n)Γ(c + d+ n)

Γ(a+ b + c+ d+ 2n)
.

The singleton system µ(a,b,c,d) is perfect; this will follow from Lemma 3.4 below.

In some cases we obtain real orthogonality conditions with respect to positive
measures on the real line [27]. If <(a),<(b),<(c),<(d) > 0 and a, b, c and d
are real except possibly for conjugate pairs, then C can be taken to be the
imaginary axis and we obtain the real orthogonality

∫ ∞

0
pm(−x2; a, b, c, d)pn(−x2; a, b, c, d)

×
∣
∣
∣
∣
∣

Γ(a+ ix)Γ(b + ix)Γ(c + ix)Γ(d+ ix)

Γ(2ix)

∣
∣
∣
∣
∣

2

dx = δm,nMn.
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Another case is when a < 0 and a + b, a + c, a + d are positive or a pair
of complex conjugates occurs with positive real parts (where the condition
2a /∈ {0,−1,−2, . . .}, following from (2.6), is removable). We then get the
same positive continuous weight function where some positive point masses
are added. In these cases we obtain the Wilson polynomials Wn(z2; a, b, c, d) :=
pn(−z2; a, b, c, d) (see, e.g., [17]), which are real when z2 is real.

Finally in the case that one of a+ b, a+ c, a+ d is equal to −N + ε, with N a
nonnegative integer, one obtains a purely discrete orthogonality after dividing
by Γ(−N + ε) and letting ε → 0. Taking the substitution z → z + a and the
change of variables α = a + b − 1, β = c + d− 1, γ = a + d− 1, δ = a− d we
then establish the Racah polynomials up to a multiplicative constant:

Rn(λ(z);α, β, γ, δ) = 4F3

(

−n, n + α + β + 1,−z, z + γ + δ + 1

α + 1, β + δ + 1, γ + 1

∣
∣
∣
∣
∣
1

)

,

where λ(z) = z(z + γ + δ + 1) and α + 1 = −N or β + δ + 1 = −N or
γ+1 = −N . (Here we assume a translation of the conditions (2.6) and (2.7)).
The Racah polynomials satisfy the discrete orthogonality

N∑

k=0

(α + 1)k(γ + 1)k(β + δ + 1)k(γ + δ + 1)k((γ + δ + 3)/2)k

(−α + γ + δ + 1)k(−β + γ + 1)k((γ + δ + 1)/2)k(δ + 1)kk!

× Rn(λ(k);α, β, γ, δ)Rm(λ(k);α, β, γ, δ) = 0,

m 6= n. Necessary and sufficient conditions for the positivity of the weights are
quite messy. An example of sufficient conditions is given in [27, (3.5)], namely

β + δ + 1 = −N, γ + δ + 1 > −1, α > −1, γ + δ + 1 > −α

and either

γ + 1 > −N or δ + 1 > −N.

The formal Wilson polynomials contain as limiting cases several families of
orthogonal polynomials like Hahn, dual Hahn, Meixner, Krawtchouk, Charlier,
continuous Hahn, continuous dual Hahn, Meixner-Pollaczek, Jacobi, Laguerre
and Hermite polynomials [27, Section 4][17, Chapter 2]. Together they form
the Askey scheme of hypergeometric orthogonal polynomials. Moreover, there
exist q-analogues [17] for all these polynomials.

2.3 Formal Wilson polynomials as a Jacobi transform

We now recall an integral relation between the Jacobi and the formal Wilson
polynomials. We also give a short proof which will help us to find explicit
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expressions for the formal multiple Wilson polynomials in the next section.

Theorem 2.2 ((Koornwinder)) Suppose that the conditions (2.6) and (2.7)
hold, and that <(c+ d) > 0, 0 < |<(z)| < <(a). Then we have

pn(z2; a, b, c, d) = κn

∫ 1

0
P (α,β)

n (u)w(α,β)(u)K(u, z; a, b, c, d) du, (2.9)

with α = a + b− 1 and β = c+ d− 1, the Jacobi weight function w(α,β)(u) =
uα(1−u)β, the constant κn = n! Γ(a+ c+n)Γ(a+d+n) and the kernel (1.5).

Remark 2.3 Koornwinder mentioned this Jacobi transform for the Wilson
polynomials in [18, (3.3)]. One can show that our representation coincides
with that of Koornwinder by making suitable parameter changes and the
substitution 1 − tanh2 s → u. Notice also that (2.9) is a particular case of a
formula due to Meijer [21, p.103].

Proof. By comparing the explicit formulas (2.1) and (2.5) we see that it is
sufficient to prove that, for ` ∈ N,

∫ 1

0
u`w(a−1,c+d−1)(u)K(u, z; a, 0, c, d) du =

(a− z)`(a+ z)`

Γ(a + c+ `)Γ(a+ d+ `)
. (2.10)

By definition of the kernel (1.5) we have

K(u, z; a, 0, c, d) = (a− z)`(a + z)` K(u, z; a+ `, 0, c, d),

and u`w(a−1,c+d−1)(u) = w(a+`−1,c+d−1)(u). So, by replacing a + ` by a, we see
that it remains to show that, for 0 < |<(z)| < <(a) and <(c+ d) > 0,

∫ 1

0
w(a−1,c+d−1)(u)K(u, z; a, 0, c, d) du =

1

Γ(a+ c)Γ(a+ d)
. (2.11)

Euler’s formula gives the symmetry K(u,−z; a+`, 0, c, d) = K(u, z; a+`, 0, c, d).
So, it is enough to prove (2.11) for 0 < <(z) < <(a) and <(c+ d) > 0.

Denoting the left hand side of (2.11) by Z, we have by definition of the kernel

Z =
1

Γ(a− z)Γ(a + z)Γ(c + d)

×
∫ 1

0
w(a−z−1,c+d−1)(u) 2F1

(

c− z, d− z

c+ d

∣
∣
∣
∣
∣
1 − u

)

du.

In order to exchange the order of summation and integration, we notice that,
if <(C − A− B) > 0,

lim
y↑1

max
v∈[0,1]

∣
∣
∣
∣ 2F1

(
A,B

C

∣
∣
∣
∣ yv

)

− 2F1

(
A,B

C

∣
∣
∣
∣ v
)∣
∣
∣
∣ = 0,
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which follows by observing that

Γ(A+ k)Γ(B + k)

Γ(C + k)Γ(1 + k)
= kA+B−C−1(1 + O(k−1)), k → ∞,

by Stirling’s formula. Consequently, using the assumptions <(2z) > 0, <(a−
z) > 0, <(c+ d) > 0 together with (2.3) we obtain by uniform convergence

Z =
1

Γ(a− z)Γ(a + z)Γ(c + d)

× lim
y↑1

∫ 1

0
w(a−z−1,c+d−1)(u) 2F1

(

c− z, d− z

c+ d

∣
∣
∣
∣
∣
y(1 − u)

)

du

= lim
y↑1

∞∑

k=0

(c− z)k(d− z)k y
k

Γ(a− z)Γ(a + z)Γ(c + d+ k)k!

∫ 1

0
w(a−z−1,c+d+k−1)(u) du

= lim
y↑1

1

Γ(a+ z)Γ(a + c+ d− z)
2F1

(

c− z, d− z

a+ c+ d− z

∣
∣
∣
∣
∣
y

)

.

The assumption on the parameters ensures that <(a+c+d−z−(c−z+d−z)) >
0, and hence we get from the Gauss formula [2, Theorem 2.2.2],[1, 15.1.20]

Z =
1

Γ(a+ z)Γ(a + c+ d− z)
2F1

(

c− z, d− z

a+ c+ d− z

∣
∣
∣
∣
∣
1

)

=
1

Γ(a+ d)Γ(a+ c)
,

as claimed in (2.11). 2

3 Formal multiple Wilson as a Jacobi-Piñeiro transform

3.1 Jacobi-Piñeiro with complex parameters

The Jacobi-Piñeiro polynomials are defined by a Rodrigues formula

P
(~α,β)
~n (z) =

1

~n!
(1 − z)−β

r∏

j=1

(

z−αj
dnj

dznj
znj+αj

)

(1 − z)|~n|+β, (3.1)

where ~n! =
∏r

j=1 nj!. It is well known [23] that, provided that αj > −1, β >
−1 and αi − αj 6∈ Z for i 6= j, the Jacobi-Piñeiro polynomials are multiple
orthogonal polynomials of type II with respect to the (positive) Jacobi weights
w(αj ,β), j = 1, . . . , r, on the interval [0, 1]. Notice that these weights form an
AT system, see e.g. [22], and hence we obtain a perfect system of measures.
Similar to Theorem 2.1, we show that for complex parameters we keep formal
multiple orthogonal polynomials of type II. Here we use the measures µ(αj ,β)

of Theorem 2.1 which have as support the contour Σ, but can be reduced
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to complex Jacobi weights w(αj ,β) on the interval [0, 1] in the case <(αj) >
−1,<(β) > −1.

Theorem 3.1 Let αj, β, αj + β ∈ C \ {−1,−2, ...} and αi −αj 6∈ Z for i 6= j.
Then the measures µ(αj ,β), j = 1, ..., r, defined as in Theorem 2.1, form a
perfect system. The corresponding formal multiple orthogonal polynomial of
type II with respect to the multi-index ~n is given by (3.1).

Proof. From Theorem 1 and 2 in [9,10] we obtain for the determinant of the
matrix of moments (1.2) the expression

D~α,β
~n =





|~n|
∏

`=1

Γ(β + `)









r∏

j=1

nj∏

`=1

Γ(αj + `)

Γ(αj + β + ~n+ `)





×




r∏

j=1

∏

1≤s<t≤nj

(t− s)








∏

1≤i<j≤r

ni∏

s=1

nj
∏

t=1

(αj − αi + t− s)



 .

For our choice of parameters, this expression is different from zero, and hence
every multi-index is normal.

Our claim on the (formal) orthogonality of Jacobi-Piñeiro polynomials will
be shown by induction on r. For r = 1, equation (3.1) reduces to (2.1), and
the claim follows from Theorem 2.1. For r > 1, we observe first that, by the
Rodrigues formula (3.1),

P
(~α,β)
~n (z) =

z−α1(1 − z)−β

n1!

dn1

dzn1

(

zα1+n1(1 − z)β+n1P
(~α(1),β+n1)

~n(1) (z)
)

, (3.2)

where we denote by ~v (j) the vector ~v without the jth component. By the

induction hypothesis, P
(~α(1),β+n1)

~n(1) is a polynomial of degree |~n| − n1, and thus
there exist scalars c` with

P
(~α(1),β+n1)

~n(1) (z) =
|~n|−n1∑

`=0

c` P
(α1+n1,β+n1)
` (z).

From the Rodrigues formula for r = 1 and (3.2) we then conclude

P
(~α,β)
~n (z) =

|~n|−n1∑

`=0

(

n1 + `

`

)

c` P
(α1,β)
`+n1

(z),

which implies that P
(~α,β)
~n is a polynomial of degree |~n| for which

∫

zmP
(~α,β)
~n (z) dµ(α1 ,β)(z) = 0, 0 ≤ m ≤ n1 − 1,

by Theorem 2.1. The other orthogonality conditions are obtained by observing
that (3.1) remains invariant if one changes the order in the product. 2
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With help of the Leibniz rule applied to the Rodrigues formula, the authors
in [11] derive for r = 2 an explicit expression in terms of 2 sums. We now give
a generalization of this formula for r ≥ 2, using the notation

Mp;m
q,~n





~f ;~g1 : · · · : ~gm

~φ; ~ψ1 : · · · : ~ψm

∣
∣
∣
∣
∣
∣

~z



 :=
n1∑

k1=0

· · ·
nr∑

kr=0
︸ ︷︷ ︸

r sums

p∏

`=1
(f`)|~k|

q∏

`=1
(φ`)|~k|

×

m∏

i=1
(gi,1)|~k|−k1

(gi,2)|~k|−k1−k2
· · · (gi,r−1)kr

m∏

i=1
(ψi,1)|~k|−k1

(ψi,2)|~k|−k1−k2
· · · (ψi,r−1)kr

r∏

j=1

(−nj)kj

z
kj

j

kj!
, (3.3)

where ~k = (k1, . . . , kr), ~n ∈ Nr
0 = (N ∪ {0})r, ~g1, . . . , ~gm, ~ψ1, . . . , ~ψm ∈ Cr−1

and ~f ∈ C
p, ~φ ∈ C

q. We also give in (3.5) another new explicit expression for
the formal Jacobi-Piñeiro polynomials which reduces to (2.2) if r = 1.

Theorem 3.2 Let ~e = (1, . . . , 1) be a multi-index of length r and s(~n) =
(n1, n1 + n2, . . . , |~n|). Denote by ~v (j) the vector ~v without the jth component.
For the Jacobi-Piñeiro polynomials we have the hypergeometric representations

P
(~α,β)
~n (z) =

(~α + ~e)~n

~n!

×M1;2
1,~n

(

(α1 + β + n1 + 1); (~α + ~n+ ~e)(r) : (~α + s(~n) + (β + 1)~e)(1)

(α1 + 1); (~α+ ~e)(1) : (~α + s(~n) + (β + 1)~e)(r)

∣
∣
∣
∣
∣
z ~e

)

(3.4)

and

P
(~α,β)
~n (z) =

(~α + ~e)~n

~n!
(1 − z)−β

r+1Fr

(

~α + ~n + ~e,−β − |~n|
~α + ~e

∣
∣
∣
∣
∣
z

)

, (3.5)

where ~n! =
∏r

j=1 nj! and (~α+ ~e)~n =
∏r

j=1(αj + 1)nj
.

Proof. We prove (3.4) and (3.5) by induction on r. For r = 1, equations
(3.4) and (3.5) reduce to (2.1) and (2.2), respectively.

In the case r ≥ 2, we use formula (3.2), where the induction hypothesis enables

us to express the right hand polynomial P
(~α(1),β+n1)

~n(1) as a hypergeometric sum.
After exchanging the order of summation and differentiation (which is only

13



possible for |z| < 1 in case of formula (3.5)), we apply the formulas

z−α1(1 − z)−β dn1

dzn1

(

zα1+n1+|~k(1)|(1 − z)β+n1

)

= (α1 + 1)n1

n1∑

k1=0

(α1 + β + n1 + 1)|~k|
(α1 + 1)|~k|

(α1 + n1 + 1)|~k|−k1

(α1 + β + n1 + 1)|~k|−k1

(−n1)k1 z
|~k|

k1!

(3.6)

and

z−α1
dn1

dzn1
zα1+n1+k =

(α1 + 1)n1(α1 + n1 + 1)k

(α1 + 1)k

zk (3.7)

to obtain the right-hand expressions of (3.4), and (3.5), respectively. It remains
to prove the claims (3.6) and (3.7), the second one being obvious. We observe
that the left-hand side of (3.6) can be transformed using the Rodrigues formula
for r = 1 and (2.1), leading to the expression

z|
~k(1)|(α1 + |~k(1)| + 1)n1 2F1




−n1, α1 + |~k(1)| + β + n1 + 1

α1 + |~k(1)| + 1

∣
∣
∣
∣
∣
∣

z





= (α1 + |~k(1)| + 1)n1

n1∑

k1=0

(−n1)k1(α1 + |~k(1)| + β + n1 + 1)k1

(α1 + |~k(1)| + 1)k1

z|
~k|

k1!

= (α1 + 1)n1

n1∑

k1=0

(α1 + β + n1 + 1)|~k|
(α1 + 1)|~k|

(α1 + n1 + 1)|~k|−k1

(α1 + β + n1 + 1)|~k|−k1

(−n1)k1z
|~k|

k1!
,

as claimed in (3.6). 2

In the above proof we have shown implicitly that the right hand side of (3.5)
is a polynomial of degree ≤ |~n| in z.

Multiple orthogonal polynomials satisfy a recurrence relation of order r + 1,
see, e.g., [20, §24] and [3]. With the explicit formula (3.4) it is possible to
compute the recurrence coefficients by comparing the highest coefficients in
the recurrence relation, see [4,11] for r = 2.

3.2 Formal multiple Wilson polynomials

We now consider r Wilson weights

w(·; a, bj, c, d), j = 1, . . . , r, bi − bj 6∈ Z, i 6= j, (3.8)

defined as in (1.3), that is, we change only one parameter (recall the symmetry
of the Wilson weights in all four parameters). As in the scalar case, which is
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the family of Wilson polynomials, we suppose that for j = 1, . . . , r

2a, a+bj, a+c, a+d, 2bj, bj +c, bj +d, 2c, c+d, 2d /∈ {0,−1,−2, . . .}, (3.9)

so that the r Wilson weights have only simple poles, and that

a+ bj + c + d /∈ {0,−1,−2, . . .}. (3.10)

As in the scalar case, we write µ(a,bj ,c,d) for the resulting measures, where it is
possible to choose a joint contour C which is the imaginary axis deformed so as
to separate the increasing sequences of poles ({a+k}∞k=0, {b1+k}∞k=0, . . . , {br +
k}∞k=0, {c+ k}∞k=0, {d+ k}∞k=0) from the decreasing ones ({−a− k}∞k=0, {−b1 −
k}∞k=0, . . . , {−br − k}∞k=0, {−c− k}∞k=0, {−d− k}∞k=0).

Let us show that the (possibly complex) Wilson measures µ(a,bj ,c,d) form a
perfect system. The corresponding multiple orthogonal polynomials will then
be referred to as formal multiple Wilson polynomials. A basic observation in
what follows is that, under some additional conditions, the formal multiple
Wilson polynomials can be written as a Jacobi-Piñeiro transform, similar to
(2.9).

Theorem 3.3 Suppose that (3.9) and (3.10) hold and that bi − bj 6∈ Z, i 6=
j. The Wilson measures µ(a,bj ,c,d), j = 1, . . . , r, then form a perfect system.
Furthermore, if <(a) > 0 and <(c + d) > 0, the formal multiple Wilson
polynomial with multi-index ~n can be written as

p~n(z2; a,~b, c, d) = κ~n

∫ 1

0
P

(~α,β)
~n (u)w(a−1,β)(u)K(u, z; a, 0, c, d) du, (3.11)

for 0 < |<(z)| < <(a), where ~α = (a + b1 − 1, . . . , a + br − 1) = (a− 1)~e+~b,
with ~e = (1, . . . , 1) ∈ Rr, and β = c + d − 1. The normalizing constant
κ~n = ~n! Γ(a+ c+ |~n|)Γ(a+ d+ |~n|) is chosen so that it corresponds with (2.9)
in the case r = 1 and the kernel K(u, z; a, b, c, d) is defined as in (1.5).

Before we prove this theorem we need some technical lemmas.

Lemma 3.4 A system of r measures µ1, . . . , µr is perfect if and only if, for
every multi-index ~n, there exists a polynomial P~n of exactly degree |~n| such
that

∫

P~n(z)z
m dµj(z) = 0, 0 ≤ m ≤ nj − 1, j = 1, . . . , r, (3.12)

and
∫

P~n(z)z
nj dµj(z) 6= 0, j = 1, . . . , r. (3.13)

In this case, P~n is the (up to normalization unique) multiple orthogonal poly-
nomial of type II with respect to ~n.
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Proof. Suppose first that µ1, ..., µr is perfect, and take as P~n the multiple
orthogonal polynomial of type II with respect to ~n. Then it only remains to
verify (3.13). Suppose the contrary, that is,

∫

P~n(z)znj dµj(z) = 0 for some j.
Then P~n is also a multiple orthogonal polynomial of type II with respect to
~n + ~ej, in contrast to the normality of the multi-index ~n + ~ej. Here ~ej is the
jth unit vector in Rr.

We will prove the other implication of this lemma by showing that every ~n is
normal by induction on the length |~n|. The multi-index ~0 is always normal,
suppose therefore that ~n is of length ≥ 1, with its jth component strictly
greater than 0. Let R~n be a multiple orthogonal polynomial for ~n. If R~n would
have degree strictly less than |~n|, then it would be a multiple orthogonal
polynomial for the multi-index ~n − ~ej with length |~n| − 1. By normality of
~n−~ej we then have that there exists a nonzero constant c so that R~n = cP~n−~ej

.
Thus

∫

R~n(z)znj−1 dµj(z) 6= 0 by (3.13), in contradiction to the orthogonality
relation (3.12) for R~n. As a consequence, R~n has the precise degree |~n|, and
thus ~n is normal. 2

Lemma 3.5 Suppose that the singleton systems µj form perfect systems for
j = 1, ..., r, with corresponding orthogonal polynomials {P (j)

n }n. Then the sys-
tem of r measures µ1, . . . , µr is perfect if and only if, for every multi-index ~n,
there exists a polynomial P~n and scalars c

(j)
~n,k so that

P~n(z) =
|~n|
∑

`=nj

c
(j)
~n,` P

(j)
` (z), c

(j)
~n,nj

6= 0, c
(j)
~n,|~n| 6= 0, j = 1, . . . , r. (3.14)

In this case, P~n is the (up to normalization unique) multiple orthogonal poly-
nomial of type II with respect to ~n.

Proof. If ~n is normal and P~n is the corresponding multiple orthogonal poly-
nomial, then (3.14) follows by taking

c
(j)
~n,` =

∫

P~n(z)P
(j)
` (z) dµj(z)

∫ (

P
(j)
` (z)

)2
dµj(z)

, (3.15)

where we observe that the denominator is not zero according to (3.13) for the

singleton system µj. In addition, c
(j)
~n,` = 0 for ` < nj by (3.12), c

(j)
~n,nj

6= 0 by

(3.13), and c
(j)
~n,|~n| 6= 0.

Conversely, (3.14) plus the perfectness of the singleton system µj implies
(3.12),(3.13), and hence the system µ1, . . . , µr is perfect by Lemma 3.4. 2

We now prove Theorem 3.3 by showing that (the analytic extension of) the
integral expression (3.11) is a possible candidate for a formal multiple Wilson
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polynomial.

Proof of Theorem 3.3. According to the assumptions (3.9) and (3.10) of
Theorem 3.3, we find that αj, β, αj + β + 1 ∈ C \ {−1,−2, . . .}, j = 1, . . . , r,
and αi − αj 6∈ Z whenever i 6= j. It follows from Theorem 3.1 that the
Jacobi-Piñeiro system µ(αj ,β), j = 1, ..., r, is perfect. From Lemma 3.5 we
may conclude that there exist scalars c

(j)
~n,` so that

P
(~α,β)
~n (z) =

|~n|
∑

`=nj

c
(j)
~n,` P

(αj ,β)
` (z), c

(j)
~n,nj

6= 0, c
(j)
~n,|~n| 6= 0,

j = 1, . . . , r. From, e.g., (3.4) we see that Jacobi-Piñeiro polynomials are
rational functions in each of the parameters αj or β. Taking into account (2.4)

and (3.15), we may conclude that any of the coefficients c
(j)
~n,` is a meromorphic

function in each of the parameters αj or β. We now introduce

q~n(z2; a,~b, c, d) = κ~n

∫ 1

0
P

(~α,β)
~n (u)w(a−1,β)(u)K(u, z; a, 0, c, d) du.

This function is well defined for 0 < |<(z)| < <(a) if <(a) > 0 and <(c+d) > 0.
However, using (2.9), we obtain for every j = 1, . . . , r that

q~n(z2; a,~b, c, d) = κ~n

|~n|
∑

`=nj

c
(j)
~n,`

∫ 1

0
P

(αj ,β)
` (u)w(αj ,β)(u)K(u, z; a, bj, c, d) du,

=
|~n|
∑

`=nj

~n!

`!

Γ(a+ c+ |~n|)Γ(a+ d+ |~n|)
Γ(a+ c + `)Γ(a+ d+ `)

c
(j)
~n,` p`(z

2; a, bj, c, d),

and thus

q~n(z2; a,~b, c, d) =
|~n|
∑

`=nj

~n!

`!
(a+ c+ `)|~n|−` (a + d+ `)|~n|−` c

(j)
~n,` p`(z

2; a, bj, c, d)

=
|~n|
∑

`=nj

d
(j)
~n,` p`(z

2; a, bj, c, d). (3.16)

Observing that the expressions on the right-hand side of (3.16) are polynomials

in z and meromorphic in any of the parameters a,~b, c, d, we see that the right
hand expression of (3.16) is well defined and independent of j for any choice of

z and the parameters a,~b, c, d, as long as (3.9) and (3.10) hold and bi− bj 6∈ Z,

i 6= j. Moreover, the new coefficients d
(j)
~n,nj

and d
(j)
~n,|~n| are different from zero.

Thus, q~n(·; a,~b, c, d) defined by (3.16) is a suitable candidate for a formal mul-
tiple Wilson polynomial, and the system of Wilson measures is perfect by
Lemma 3.5. 2
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We now want to deduce explicit expressions for the formal multiple Wilson
polynomials based on the explicit expressions (3.4) and (3.5) for the Jacobi-
Piñeiro polynomials. Here we use the Kampé de Fériet series [24]

F p:p1;p2
q:q1;q2





~f : ~g;~h
~φ : ~ψ; ~ξ

∣
∣
∣
∣
∣
∣

z1, z2



 :=
∞∑

k=0

p∏

`=1
(f`)k

q∏

`=1
(φ`)k

k∑

j=0

p1∏

`=1
(g`)k−j

p2∏

`=1
(h`)j

q1∏

`=1
(ψ`)k−j

q2∏

`=1
(ξ`)j

zk−j
1

(k − j)!

zj
2

j!
,

(3.17)

which are a generalization of the 4 Appell series in 2 variables. Notice that,
for p = q = 0, the Kampé de Fériet series is a product of two hypergeometric
series. Also, in the case r = 2, our functions Mp;m

q,~n defined in (3.3) are (finite)
Kampé de Fériet series

Mp;m
q,(n1,n2)





~f ; g1 : · · · : gm

~φ;ψ1 : · · · : ψm

∣
∣
∣
∣
∣
∣

(z1, z2)





= F p:1;m+1
q:0;r





~f : (−n1); (−n2, g1, ..., gm)
~φ : (); (ψ1, ..., ψm)

∣
∣
∣
∣
∣
∣

z1, z2



 . (3.18)

In what follows the parameters in the Kampé de Fériet series will always be
chosen so that the sum in (3.17) is finite, and hence we are not concerned with
convergence problems.

Corollary 3.6 Let ~e = (1, . . . , 1) be a multi-index of length r, s(~n) = (n1, n1+
n2, . . . , |~n|) and σj = a+ bj + c+ d− 1, j = 1, . . . , r. Denote by ~v (j) the vector
~v without the jth component. For the multiple Wilson polynomials we have the
hypergeometric representations

p~n(z2; a,~b, c, d) = (a~e +~b)~n(a + c)|~n|(a+ d)|~n|

× M3;2
3,~n




(a− z, a + z, σ1 + n1); (a~e +~b+ ~n)(r) : (~σ + s(~n))(1)

(a+ c, a + d, a+ b1); (a~e+~b)(1) : (~σ + s(~n))(r)

∣
∣
∣
∣
∣
∣

~e





(3.19)

and

p~n(z2; a,~b, c, d) = (a~e +~b)~n(a + c)|~n|(a+ d)|~n|

×F 2:1;r+1
2:0;r




(a− z, a + z) : (c+ d− 1); (a~e+~b+ ~n, 1 − c− d− |~n|)

(a + c, a+ d) : (); (a~e+~b)

∣
∣
∣
∣
∣
∣

1, 1





(3.20)

where (a~e +~b)~n =
∏r

j=1(a + bj)nj
.
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Proof. First note that (1 − z)−β =
∑∞

`=0(β)l
z`

`!
, which converges in the unit

disk, so that the expression (3.5) can then be written as

P
(~α,β)
~n (z) =

(~α+ ~e)~n

~n!
F 0:1;r+1

0:0;r

(

− : (β); (~α+ ~n+ ~e,−β − |~n|)
− : −; (~α + ~e)

∣
∣
∣
∣
∣
z, z

)

. (3.21)

Then start from the Jacobi-Piñeiro transform (3.11) and replace the Jacobi-

Piñeiro polynomial P
(~α,β)
~n by its explicit expressions (3.4) and (3.21), respec-

tively. Since the sums are finite, we can interchange the integral with the sums.
Applying (2.10) then completes the proof. 2

Remark 3.7 For r = 2, we may apply (3.18) to (3.19), leading to a repre-
sentation as a Kampé de Fériet series of type F 3:1;3

3:0;2 . It seems to be non-trivial
to derive from this formula the representation as a Kampé de Fériet series of
type F 2:1;3

2:0;2 as in (3.20).

4 Limit relations

In this section we consider some cases in which the orthogonality conditions
of the formal multiple Wilson polynomials reduce to orthogonality conditions
with respect to a positive measure on the real line. We then recover multi-
ple Wilson and multiple Racah polynomials. Next we use the limit relations
between the orthogonal polynomials in the Askey table [17] to obtain some
new examples of multiple orthogonal polynomials of type II and some known
examples. In particular we look at what happens with the explicit expressions
(3.19) and (3.20) after applying these limit relations, where we use the no-
tation ~e = (1, . . . , 1) ∈ Rr and s(~n) = (n1, n1 + n2, . . . , |~n|). Most of these
examples are known to be AT systems, see [5,11], which implies that every
multi-index is normal .

4.1 Multiple Wilson

With some restrictions on the parameters the orthogonality conditions of the
formal multiple Wilson polynomials reduce to real orthogonality conditions
with respect to positive measures on the real line. Let bj > 0, j = 1, . . . , r,
bi − bj 6∈ Z whenever i 6= j, <(a),<(c),<(d) > 0 and a, c, d be real except for
a conjugate pair. In that case the imaginary axis can be taken as the contour
C. The multiple Wilson polynomials

W~n(z2; a,~b, c, d) := p~n(−z2; a,~b, c, d) (4.1)

19



then satisfy the real orthogonality relations

∫ ∞

0
(x2)mW~n(x2; a,~b, c, d)

∣
∣
∣
∣
∣

Γ(a+ ix)Γ(bj + ix)Γ(c + ix)Γ(d+ ix)

Γ(2ix)

∣
∣
∣
∣
∣

2

dx = 0,

0 ≤ m ≤ nj − 1, j = 1, . . . , r. If a < 0, a+ bj > 0, j = 1, . . . , r, and a+ c, a+d
are positive or a pair of complex conjugates with positive real parts, then we
obtain the same orthogonality conditions but with some extra positive point
masses.

4.2 Multiple Racah

As in the scalar case it is also possible to obtain a purely discrete orthogonality.
The multiple Racah polynomials R~n(·; ~α, β, γ, δ), where we only change the
parameter α with αi−αj 6∈ Z whenever i 6= j, satisfy the discrete orthogonality

N∑

k=0

(αj + 1)k(γ + 1)k(β + δ + 1)k(γ + δ + 1)k((γ + δ + 3)/2)k

(−αj + γ + δ + 1)k(−β + γ + 1)k((γ + δ + 1)/2)k(δ + 1)kk!

R~n(λ(k); ~α, β, γ, δ) (λ(k))m = 0,

0 ≤ m ≤ n− 1, j = 1, . . . , r, where

λ(z) = z(z + γ + δ + 1) and β + δ + 1 = −N or γ + 1 = −N.

They can be found by applying the substitution z → z + a and the change of
variables αj = a+bj−1, β = c+d−1, γ = a+d−1, δ = a−d on the polynomials

p~n(z2; a,~b, c, d)/((a~e+~b)~n(a+ c)|~n|(a+ d)|~n|) and we need a translation of the
conditions (3.9) and (3.10). For the multiple Racah polynomials we then have
the expressions

R~n(λ(z); ~α, β, γ, δ)

= M3;2
3,~n

(

(−z, z + γ + δ + 1, σ1 + n1); (~α + ~n+ ~e)(r) : (~σ + s(~n))(1)

(β + δ + 1, γ + 1, α1 + 1); (~α+ ~e)(1) : (~σ + s(~n))(r)

∣
∣
∣
∣
∣
~e

)

with σj = αj + β + 1, j = 1, . . . , r, and

R~n(λ(z); ~α, β, γ, δ)

= F 2:1;r+1
2:0;r

(

(−z, z + γ + δ + 1) : (β); (~α+ ~n+ ~e,−β − |~n|)
(β + δ + 1, γ + 1) : (); (~α + ~e)

∣
∣
∣
∣
∣
1, 1

)

.

An example of sufficient conditions to have positive weights is

β + δ + 1 = −N, γ + δ + 1 > −1, αj > −1, γ + δ + 1 > −αj,
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j = 1, . . . , r, and either

γ + 1 > −N or δ + 1 > −N.

Remark 4.1 Recall that the Wilson weight is symmetric in the four param-
eters so that we can switch these parameters in the change of variables. We
then obtain multiple Racah polynomials where we change other parameters.
For example we have multiple Racah polynomials R~n(·;α, ~β, γ, δ) where we
only change the parameter β in the weights (βi − βj 6∈ Z whenever i 6= j). In
that case we have that α + 1 = −N or γ + 1 = −N . As a second example
it is possible to change the parameters β, γ and δ in such a way that δj + γj

and δj + βj do not change and γi − γj 6∈ Z whenever i 6= j. Here we assume
that α + 1 = −N or βj + δj + 1 = −N for every j. We then denote these

multiple Racah polynomials by Rn(·;α, ~β,~γ, ~δ). However, this does not give
another family of polynomials because

R~n(λ(z);α, ~β, γ, δ) = R~n(λ(z); ~β + δ~e, α− δ, γ, δ) (4.2)

and

R~n(λ(z);α, ~β,~γ, ~δ) = R~n(λ(z);~γ, α + βj − γj, α, γj + δj − α). (4.3)

These relations will help us in some of the examples of the subsections below
to find explicit expressions for the polynomials.

4.3 Some new examples

4.3.1 Multiple continuous dual Hahn

Let bi − bj 6∈ Z whenever i 6= j. The multiple continuous dual Hahn polyno-
mials satisfy the orthogonality conditions of the multiple Wilson polynomials
where we let d → +∞ (after dividing by Γ(d)2). Similarly we obtain real or-
thogonality conditions with respect to a positive measure if bj > 0 and a, c are
positive or a pair of complex conjugates with positive real parts. We then de-
note the ~nth multiple continuous dual Hahn polynomial by S~n(·; a,~b, c). These
polynomials satisfy the orthogonality conditions

∫ ∞

0
(x2)m S~n(x2; a,~b, c)

∣
∣
∣
∣
∣

Γ(a+ ix)Γ(bj + ix)Γ(c+ ix)

Γ(2ix)

∣
∣
∣
∣
∣

2

dx = 0,

0 ≤ m ≤ nj − 1, j = 1, . . . , r. It is clear that

S~n(z2; a,~b, c) = lim
d→+∞

W~n(z2; a,~b, c, d)

(a+ d)|~n|
(4.4)
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so, by

lim
α→+∞

(c+ d− 1)k−j (1 − c− d− |~n|)j

(a+ d)k

= (−1)j, 0 ≤ j ≤ k,

the multiple continuous dual Hahn polynomials have the explicit expressions

S~n(z2; a,~b, c)

= (a~e+~b)~n(a+ c)|~n| M2;1
2,~n




(a− iz, a + iz); (a~e +~b + ~n)(r)

(a+ c, a+ b1); (a~e+~b)(1)

∣
∣
∣
∣
∣
∣

~e



 ,

= (a~e+~b)~n(a+ c)|~n| F
2:0;r
1:0;r




(a− iz, a + iz) : (); (a~e+~b + ~n)

(a + c) : (); (a~e+~b)

∣
∣
∣
∣
∣
∣

1,−1



 .

4.3.2 Multiple dual Hahn

Consider γj, δj, j = 1, . . . , r, so that γj, δj > −1 or γj, δj < −N for each j
and that γj + δj is independent of j. Suppose also that γi − γj 6∈ Z whenever

i 6= j. The multiple dual Hahn polynomials, denoted by R~n(·;~γ, ~δ, N), satisfy
the system of discrete orthogonality conditions

N∑

k=0

(2k + γj + δj + 1)(γj + 1)k(−N)kN !

(−1)k(k + γj + δj + 1)N+1(δj + 1)kk!
R~n(λ(k);~γ, ~δ, N) (λ(k))m = 0,

0 ≤ m ≤ n− 1, j = 1, . . . , r, where λ(z) = z(z+ γ+ δ+ 1). The multiple dual
Hahn polynomials are related to the multiple Racah polynomials by

R~n(λ(z);~γ, ~δ, N)

= lim
α→+∞

R~n(λ(z);α,−~δ − (N + 1)~e, ~γ, ~δ) (4.5)

= lim
α→+∞

R~n(λ(z);~γ, α− γj − δj −N − 1, α, γj + δj − α), (4.6)

where we use (4.3). Note that

lim
α→+∞

(α− γj − δj −N − 1)k−j (−α + γj + δj +N + 1 − |~n|)j

(α + 1)k

= (−1)j,

0 ≤ j ≤ k, so that the multiple dual Hahn polynomials then have the explicit
expressions

R~n(λ(z);~γ, ~δ, N) = M2;1
2,~n

(

(−z, z + γj + δj + 1); (~γ + ~n+ ~e)(r)

(−N, γ1 + 1); (~γ + ~e)(1)

∣
∣
∣
∣
∣
~e

)

= F 2:0;r
1:0;r

(

(−z, z + γj + δj + 1) : (); (~γ + ~n+ ~e)

(−N) : (); (~γ + ~e)

∣
∣
∣
∣
∣
1,−1

)

.
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4.3.3 Multiple Meixner-Pollaczek

The multiple Meixner-Pollaczek polynomials P
(λ)
~n (·; ~φ) are multiple orthogonal

polynomials (of type II) associated with the system of weights e(2φj−π)x|Γ(λ+
ix)|2 on the positive real axis, where λ > 0, 0 < φj < π, j = 1, . . . , r, and
the φ1, . . . , φr are different. These weights form an AT system, see [22, p.141].
The multiple Meixner-Pollaczek polynomials satisfy the conditions

∫ ∞

0
xm P

(λ)
~n (x; ~φ)e(2φj−π)x|Γ(λ+ ix)|2 dx = 0, 0 ≤ m ≤ nj − 1,

j = 1, . . . , r. Similar as [17, (2.3.1)] it is easy to check that

P
(λ)
~n (z; ~φ) = lim

t→+∞

S~n((z − t)2;λ+ it, t cot ~φ, λ− it)

(t csc ~φ)~n ~n!
, (4.7)

where t cot ~φ = (t cotφ1, . . . , t cotφr) and t csc ~φ = (t csc φ1, . . . , t cscφr). The
multiple Meixner-Pollaczek polynomials then have the explicit expression

P
(λ)
~n (z; ~φ) =

(2λ)|~n|
∏r

j=1 e
injφj

~n!
M1;0

1,~n

(

(λ+ iz);−
(2λ);−

∣
∣
∣
∣
∣
~e− e−2i~φ

)

,

where e−2i~φ = (e−2iφ1 , . . . , e−2iφr). Here we do not have a Kampé de Fériét
representation such as in (3.20).

4.3.4 Formal multiple continuous Hahn

Similar as in [17, (2.1.2)] we can use the limit relation

P~n(z; a,~b, c, d) = lim
t→∞

p~n((z + t)2; a− t,~b + t~e, c− t, d+ t)

(a+ c− 2t)|~n| ~n!
(4.8)

in order to find the formal continuous Hahn polynomials. They have the ex-
plicit expressions

P~n(z; a,~b, c, d)

(a~e+~b)~n(a+ d)|~n|

= M2;2
2,~n




(a+ z, σ1 + n1); (a~e+~b + ~n)(r) : (~σ + s(~n))(1)

(a + d, a+ b1); (a~e +~b)(1) : (~σ + s(~n))(r)

∣
∣
∣
∣
∣
∣

~e





= F 1:1;r+1
1:0;r




(a+ z) : (c+ d− 1); (a~e+~b+ ~n, 1 − c− d− |~n|)

(a+ d) : (); (a~e +~b)

∣
∣
∣
∣
∣
∣

1, 1



 ,

where σj = a + bj + c + d − 1, j = 1, . . . , r. If the parameters satisfy (3.9)
and (3.10) and bi − bj 6∈ Z whenever i 6= j, then these polynomials satisfy the
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orthogonality conditions

∫

C
P~n(z; a,~b, c, d)Γ(a+ z)Γ(bj − z)Γ(c + z)Γ(d− z)zm dz = 0, (4.9)

0 ≤ m ≤ nj − 1, j = 1, . . . , r, where C is a contour which is the imagi-
nary axis deformed so as to separate the increasing sequences of poles ({b1 +
k}∞k=0, . . . , {br+k}∞k=0, {d+k}∞k=0) from the decreasing ones ({−a−k}∞k=0, {−c−
k}∞k=0).

Remark 4.2 In the scalar case (r = 1) it is possible to obtain real orthogo-
nality relations with respect to a positive measure if we suppose <(a), <(b),
<(c), <(d) > 0 and a = b̄, c = d̄. This is not possible in this multiple case.
For that one needs another family of multiple continuous Hahn polynomials
in which one changes both the parameters a and b.

4.4 Some classical discrete multiple orthogonal polynomials

In this section we obtain hypergeometric formulas for the classical discrete
examples of multiple orthogonal polynomials of type II, introduced in [5],
which are all examples of AT systems. In particular we use the limit relations
between these polynomials and the Racah polynomials [17]. Their Mp;r

q,~n rep-
resentation is already known in the cases r = 1, 2. Where it exists, the explicit
expression in terms of a Kampé de Fériét series is new. We denote by δk the
Dirac measure at the point k.

4.4.1 Multiple Hahn

These multiple orthogonal polynomials (of type II) satisfy orthogonality con-
ditions with respect to m hypergeometric distributions

µj =
N∑

k=0

(αj + 1)k

k!

(β + 1)N−k

(N − k)!
δk, αj > −1, β > −1,

αi−αj /∈ {0, 1, . . . , N−1}, i 6= j, on the integers 0, . . . , N . They can be found
from the multiple Racah polynomials taking γ + 1 = −N and δ → +∞, so
that

Q~α;β;N
~n (z) = M2;2

2,~n

(

(−z, σ1 + n1); (~α + ~n+ ~e)(r) : (~σ + s(~n))(1)

(−N,α1 + 1); (~α+ ~e)(1) : (~σ + s(~n))(r)

∣
∣
∣
∣
∣
~e

)

= F 1:1;r+1
1:0;r

(

(−z) : (β); (~α+ ~n + ~e,−β − |~n|)
(−N) : (); (~α+ ~e)

∣
∣
∣
∣
∣
1, 1

)

,
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where σj = αj + β + 1, j = 1, . . . , r. Changing only the parameter β does not

give another family of polynomials because of Qα;~β;N
~n (x) = C Q

~β;α;N
~n (N − x)

with C some constant (depending on ~n, α and ~β). However, we will need
an explicit formula in powers of x for these polynomials to obtain multiple
Meixner I and multiple Laguerre II. Using (4.2) and the limits we mentioned
above, we find that

Qα;~β;N
~n (z) = M2;2

2,~n




(−z, α + β1 + n1 + 1); (~β + s(~n) + (α + 1)~e)(1)

(−N,α + 1); (~β + s(~n) + (α + 1)~e)(r)

∣
∣
∣
∣
∣
∣

~e



 .

4.4.2 Multiple Meixner I

In this case we consider r negative binomial distributions

µj =
∞∑

k=0

(β)k c
k
j

k!
δk, 0 < cj < 1, β > 0,

with all the cj, j = 1 . . . , r, different. We get these polynomials from the

multiple Hahn polynomials Qα;~β;N
~n replacing α = β − 1, βj = N

1−cj

cj
and

letting N → +∞. We then obtain

Mβ;~c
~n (z) = M1;0

1,~n

(

(−z); ()
(β); ()

∣
∣
∣
∣
∣

~c− ~e

~c

)

,

where ~c−~e
~c

=
(

c1−1
c1
, . . . , cr−1

cr

)

.

4.4.3 Multiple Meixner II

In the case of multiple Meixner II polynomials we only change the parameter
β in the negative binomial distributions, so that

µj =
∞∑

k=0

(βj)k c
k

k!
δk, 0 < c < 1, βj > 0,

with βi − βj 6∈ Z whenever i 6= j. Taking αj = βj − 1, β = N 1−c
c

and letting

N → +∞ in the explicit formulas for the multiple Hahn polynomials Q~α;β;N
~n ,

we obtain

M
~β;c
~n (z) = M1;1

1,~n




(−z); (~β + ~n)(r)

(β1); (~β)(1)

∣
∣
∣
∣
∣
∣

c− 1

c
~e





= F 1:0;r
0:0;r




(−z) : (); (~β + ~n)

() : (); (~β)

∣
∣
∣
∣
∣
∣

c− 1

c
,
1 − c

c



 .
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4.4.4 Multiple Kravchuk

These polynomials satisfy the orthogonality conditions (1.1) with the r bino-
mial distributions

µj =
N∑

k=0

(

N

k

)

pk
j (1 − pj)

N−kδk, 0 < pj < 1,

where all the pj, j = 1 . . . , r, are different. They are related to the multiple

Hahn polynomials Q~α;β;N
~n replacing β = t, αj → pj

1−pj
t and letting t → +∞.

We then get

K~p;N
~n (z) = M1;0

1,~n

(

(−z); ()
(−N); ()

∣
∣
∣
∣
∣

1

~p

)

,

where 1
~p

=
(

1
p1
, . . . , 1

pr

)

.

4.4.5 Multiple Charlier

In the case of multiple Charlier we consider r Poisson distributions

µj =
∞∑

k=0

ak
j

k!
δk, aj > 0,

with all the aj, j = 1 . . . , r, different. The corresponding multiple orthogonal
polynomials (of type II) can be found from the multiple Meixner I polynomials
taking cj = aj

aj+β
and letting β → +∞. The multiple Charlier polynomials then

have the explicit expression

C~a
~n(z) = M1;0

0,~n

(

(−z); ()
(); ()

∣
∣
∣
∣
∣
− 1

~a

)

,

where 1
~a

=
(

1
a1
, . . . , 1

ar

)

.

4.5 Some classical continuous multiple orthogonal polynomials

In this section we recall some classical continuous examples of multiple orthog-
onal polynomials of type II where the measures (or weight functions) form an
AT system and obtain hypergeometric formulas for these polynomials. Their
Mp;r

q,~n representation is already known in the cases r = 1, 2. The explicit ex-
pression in terms of a Kampé de Fériét series is new (if it exists). For an
overview of these polynomials and their properties we recommend [4,11].
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4.5.1 Jacobi-Piñeiro

In Subsection 3.1 we recalled the Jacobi-Piñeiro polynomials P ~α,β
~n , which,

in the case αj, β > −1, are the multiple orthogonal polynomials (of type
II) with respect to the Jacobi weights wαj ,β(x) = xαj (1 − x)β, j = 1, . . . , r,
on the interval [0, 1]. Here αi − αj 6∈ Z whenever i 6= j. For the explicit
formulas see Theorem 3.2. Similar as in the multiple Hahn case we have that

P
(α,~β)
~n (z) = (−1)|~n|P

(~β,α)
~n (1 − z). So, changing only the parameter β does not

give another family of polynomials. For these polynomials we have

P
(α,~β)
~n (z)

= lim
N→+∞

(α + 1)|~n|
~n!

Qα;~β:N
~n (Nz)

=
(α+ 1)|~n|

~n!
M1;1

1,~n




(α + β1 + n1 + 1); (~β + s(~n) + (α+ 1)~e)(1)

(α + 1); (~β + s(~n) + (α + 1)~e)(r)

∣
∣
∣
∣
∣
∣

z~e



 .

4.5.2 Multiple Laguerre I

The multiple Laguerre I polynomials L~α
~n are orthogonal on [0,+∞) with re-

spect to the r weights wj(x) = xα
j e

−x, where αj > −1, j = 1, . . . , r, and
αi − αj 6∈ Z whenever i 6= j. They can be found from the Jacobi-Piñeiro

polynomials P ~α,β
~n substituting z → z

β
and letting β → ∞. We then obtain the

hypergeometric expressions

L~α
~n(z) =

(~α+ ~e)~n

~n!
M0;1

1,~n

(

(); (~α+ ~n + ~e)(r)

(α1 + 1); (~α+ ~e)(1)

∣
∣
∣
∣
∣
z~e

)

=
(~α+ ~e)~n

~n!
ez

rFr

(

~α+ ~n + ~e

~α + ~e

∣
∣
∣
∣
∣
− z

)

.

4.5.3 Multiple Laguerre II

In this case the polynomials L
(α,~c)
~n have the orthogonality conditions (1.1) with

respect to the weight functions wj(x) = xαe−cjx, j = 1, . . . , r, on [0,+∞),
where α > −1, cj > 0 and all the cj different. They can be obtained from the

Jacobi-Piñeiro polynomials P
(α,~β)
~n by the substitutions z → z

t
, taking βj = cjt

and letting t→ ∞. We then get

L
(α,~c)
~n (z) =

(α+ 1)|~n|
~n!

M0;0
1,~n

(

(); ()

(α + 1); ()

∣
∣
∣
∣
∣
z~c

)

.
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Fig. 2. An (incomplete) multiple AT-Askey scheme

4.5.4 Multiple Hermite

In the multiple Hermite case we consider the type II multiple orthogonal
polynomials H~c

~n with respect to the weights wj(x) = e−x2+cjx, j = 1, . . . , r,
on (−∞,+∞). Here the cj are different real numbers. These polynomials can

be obtained from the Jacobi-Piñeiro polynomials P ~α,β
~n taking αj = β + cj

√
β,

the substitution z → (z +
√
β)/(2

√
β) and letting β → +∞ after multiplying

with some constant depending on ~n and β.

5 Conclusion

In Figure 2 all the limit relations mentioned in Section 4 (and some extra) are
combined. This scheme extends the Askey scheme for the classical orthogonal
polynomials to multiple orthogonal polynomials. In each of the examples of
this scheme the measures have the same support. Although for multiple Wil-
son, multiple Racah, multiple continuous dual Hahn and multiple dual Hahn it
is still an open question, we believe that they are all examples of AT systems,
which is the reason we call it the multiple AT-Askey scheme.

This scheme does not contain all the possible examples of multiple orthogonal
polynomials generalizing the classical orthogonal polynomials of the Askey
scheme. In [11] the authors also mentioned some examples of Angelesco sys-
tems (with their hypergeometric expression). It is also possible to change more
than one parameter in the Wilson weight (maybe with some correlation) in
order to find other examples of multiple Wilson polynomials. Then it is for
example possible to obtain (other kinds of) multiple continuous Hahn poly-
nomials corresponding to positive measures on the real line, using some limit
relations.
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