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Abstract

For operators generated by a certain class of infinite band matrices we establish a char-
acterization of the resolvent set in terms of polynomial solutions of the underlying higher
order recurrence relations. This enables us to describe some asymptotic behaviour of the
corresponding systems of vector orthogonal polynomials. Finally we provide some new con-
vergence results for Matrix-Padé approximants.
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1 Introduction

One of the main tools in the spectral analysis of nonsymmetric difference operators generated by
infinite band matrices (band operators) is the study of the behaviour of polynomials defined by
a systems of orthogonality relations and connected to Hermite-Padé approzimants [9] or Matrix
Padé approximants. In case of tridiagonal band matrices (so-called complex Jacobi matrices),
this link has been successfully exploited in the last years not only to provide new characteri-
zations of the resolvent set, but also to derive new convergence results for Padé approximants
in terms of their J continued fraction coefficients, see for instance the survey paper [6] and the
references therein. In this paper we generalize some results of [9, 2, 4, 5] to the case of a band op-
erator of arbitrary order which is not assumed to be bounded. We mention here the importance
of such studies to the spectral theory of differential operators. For example, various classes of
such operators in L?(—o00, 00) with polynomial coefficients admit a band matrix representation
in the basis of Hermite polynomials [11].

Consider some infinite nonsymmetric band matrix A = (A;;)%,_, with complex entries
satisfying for all k and forall { < k —sor £ >k +r
(1) Ape=0, Appyr #0, Apisp #0.

That is, A takes the form

Ao,o ... Ao,r 0 0
Arg  App cor Arppr O
a- | : : : . .
Aso  Asi Asz oo i Aggi 0
0 Agp1n Asy12 Asy13 - oo Asiisirst
0 0 ) ) )
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with s+ 74 1 nontrivial diagonals, where r and s are some fixed natural numbers. To the matrix
A we assign finite-difference equations

(2) Apg—sYhos + App—sy1Yiosi1 + o + Ap ppr Yegr = AV,

(3) YV Ap vk + Y A rpip o+ Y Ak =AY

where k& > 0, A € C is some parameter, and the quantities Ay, with negative indices are
arbitrary numbers satisfying assumption (1). We consider some particular fundamental systems

of solutions { PZ()), Q¥ (A\)} of (2), and {PE()), QE(N)} of (3), respectively, with elements being
polynomials with respect to A: Denote by

QY (N = (QFANZs = (@ (N, QR )2
PEO) = (BEOR s = (B V), - B ()R

solutions of (2) satisfying the initial conditions

L L L -1 L
QO:rfl = I1'7 Qfs:fl = 08)(1”7 Pfs:—l = (AOZS—I,—S:—I) ; P():'r—l = O’I‘XS'

Furthermore, denote by

o0 o

QO
Q") = : , PR\ =

QrtN /. OV

P

solutions of the dual recurrence relation (3) satisfying the initial conditions

R R R -1 R
QO:s—l = I, —ri—1 — Osxr, P—r:—l = (A—r:—l,O:r—l) ’ Po:r—l = Orxs-

Here and in what follows we use the following notations: ka (and Qﬁ'k, respectively) for the
stacked matrix with rows Qé, L=73,7+1,...,k (with columns Qf, L=j4,5+1,...,k), etc; I;,0;;
for the identity and zero matrices of sizes 4 and i X j. We shall also use Aj.j, 1., for the submatrix
of A composed of its rows labeled j to k, and its colums labeled m to n. Finally, we use block
matrix notations like [M N|.

Algebraic aspects of these vector-valued polynomials have been discussed in detail by Sorokin
and Van Iseghem [13, 14], see also the unpublished manuscript [3]. By the matrix version of
the Shohat-Favart Theorem [13, Theorem 6], the systems Q¥()\) and Q¥()\) are satisfying the
biorthogonality relation < Q%()), QF(X\) >= 6, with respect to some bilinear form < -,- >,
see also Remark 1 below. In [14, §6, Eqn (11)] it is shown that the quantities

(4) Te(A) = Qkprr— 1N T Plpir1(A) = Pl 1N Qi s (V)7

are convergents of a matrix continued fraction. These convergents are shown in [14, Theorem 1]
to be Matrix Padé approximants of order k of some formal power series F' at infinity with r x s—
valued coefficients (with respect to so-called regular multi-indices), the power series F' being
weakly perfect by [14, Theorem 6]. The above-mentioned authors finally show in [14, Theorem 5]
that (PE,QE) may be considered as vector Hermite-Padé approximants of F, including the
classical Hermite-Padé approximants of type 1 for » = 1 and of type 2 for s = 1.

Duality relations like (4) or the Christoffel-Darboux formula of [13, Section 7] are closely
connected to the fundamental work of Mahler [12] on duality between Hermite-Padé approx-
imants of the types 1 and 2. In our setting the complete duality relations can be written as
follows.



Lemma 1. Forall k >0

PR .
Ir+s — [ ,32 rik+s—1
k—r:k+s—1
. Orxs _Ak:—'r:k—l,k:k—i—r—l . [ QL _PL ]
Akkts—1k—sk—1 Os5r ksthpr—lr T kosiktrl

This lemma is proved by induction with respect to k using (2) and (3).

In the present paper, we are less interested in algebraic aspects but more in analytic aspects
of band operators and their associated polynomial solutions of the recurrence relations (2) and
(3). We show in §2 by generalizing previous work [9, 5] for 7 = 1 that these vector polynomials
enable us to derive a criterion for the resolvent set (see Theorem 1). As a consequence, we
obtain in Theorem 2 some asymptotic behavior of vector orthogonal polynomials outside the
spectrum of A. Section 3 is devoted to some convergence result for Matrix Padé approximants
generalizing results for scalar Padé approximation from [2, 4].

2 Band operators and their resolvent

Denote by ¢? the set of quadratic summable sequences, by (en)n>0 its usual canonical basis, and
by L(#?) the set of bounded operators acting on £2. In what follows we will identify the (possibly
unbounded) matrix A with the closure of the (densely defined) operator acting on finite linear
combinations of the basis vectors e; by the formula

k+s
Aek = Z ejAj,k, k > 0.
max{0,k—r}

We notice that the action of this operator A is described via matrix calculus.

Recall that A is an element of the resolvent set Q(A) if there exists an operator R(\) =
(A — A)~! € L(£?) (I being the identity in L(£?)) referred to as the resolvent of A such that
AR(MN)X = X and R(A\)AY =Y for any X € ¢2 and Y € D(A), the domain of A. In [9],
Kaliaguine considered the particular case r = 1 of bounded band operators. He showed that
A € Q(A) if and only if there is some exponential decay rate for particular fundamental systems
of solutions of (2) and (3). In the present paper we consider the case of possibly unbounded
general band operators A, with (aj)x>o defined by

ag ‘= max{'|Akfr:k71,k:k+r71||a ||Ak:k+sfl,kfs:k71||}a k>0,

containing a sufficiently dense bounded subsequence. Generalizing [5, Theorem 2.1] for the case
r = s = 1 of a complex Jacobi matrix, we may establish the following criterion for Q2(A) together
with an exponential decay rate.

Theorem 1. Suppose that the band operator A with matriz representation (1) satisfies the fol-
lowing condition: there exists a > 0, p € N and a strictly increasing sequence of nonnegative
integers (kn)n>0 such that

(5) knt1—kn<p and ap, <a, n>0.

Then X € C belongs to the resolvent set of A if and only if there exist positive constants C, q < 1
and a matriz M = (?JJTZ-,J-)JZI""’S € C*% such that

i=1,...,7

Cq" % 0<k<n+r
Cd"™ 0<n<k+s kmnecZ,,

[473032:550N]
(6) IREN)QE(MN)]

n

<
<



where RE(X) = QLN — PL(X) and RE(N) = MQE(N) — PE(X). In this case, the matriz
M = M(N) is unique, and its elements are calculated by the formula

(7) Mi;(A) = (R(Nej-1, €i1).
Proof. First of all, consider an arbitrary matrix 9t € C"**. For k,n € Z we define

QEMRE(N), 0<k<n+r,
(8) ko —

Ry(NQR(N), 0<n<k+s
(notice that the two different definitions for n — s < k < n+r give the same value by Lemma 1,

see also formula (15) below). We claim that for the infinite matrix R = (Ryn)55,—o We have the
matrix identities (formal products between infinite matrices)

(9) (M —-AR=1I, RAM-A) =1

By symmetry (replace A by its transposed), it is sufficient to show the first identity. Since
(QL(X\))n>0 is a solution of (2), we have

Ok—s)x1
(10) (M — A) |:R0:k—1,n:| _ | Ak—rk—1kkrr—1Rikar—1n  s<k<n
00,1 —Apikts—1,k—sh—1Rr—sk—1,n
Oooxl

Similarly, (R%(X))n>0 is a solution of (2), and hence we have the (formal) identity

O(H—S)Xl
0 1 _An—r:n—l n:n+r—1Rn:n+r—1 n
11 M- A o = ’ ’
( ) ( ) |:Rn:oo,n:| An:n—}—s—l,n—s:n—lRﬁ_s;n_l(A)Qﬁ(/\)
Oc>o><1

Combining identity (10) for ¥ = n with (11) leads to the (formal) identity

Onxl
()‘I - A)RO:oo,n = An:n—{—sfl,nfs:nfl[Rﬁfs;nfl(A)Qﬁ(k) - Rnfsznfl,n] = €n,
Oooxl

(here we used that RX_(MQE(N\) — QE_ . (MRE(N) = A,_L;L,S, following again from Lemma 1).
This shows claim (9). Notice that in the above reasoning we require that n > s. A proof for the
case 0 < n < s is similar, we omit the technical details.

Now let A € Q(A) and M(A) as in (7). From the resolvent identity (AI — A)R(\) = I together
with (9) we see that the first s columns of the matrix representation of R(A) and of the matrix
R satisfy the same recurrence relation and the same initializations (7); hence

R = (R(Neg,ej), j>0, 0<k<s.

In other words, the first s terms in corresponding rows of both matrices are equal. Observing
that the recurrence relations for the corresponding rows also coincide, we may conclude that R
is the matrix representation of R()). It remains to show the exponential decay rate (6) which
for bounded operators has been established already in [8]. By symmetry it is sufficient to show
again only the first part. Define

(12) Wi = || Rp—sibr—1all> < RN, 0<k <.



By noticing that the vector on the left-hand side of (10) is a finite combination of the basis
elements ey, ..., ;1 and hence an element of D(A), we obtain from (10) the inequality

k—1
ij,n < (3 + 7') : (”}20:19—1,11.”2 + wk,n) < a';c *Wgn, S <k <m,
Jj=s

where a}, := (s +7) - (a2 - ||R(N)||* + 1). Recall that, because of (5), the sequence (kny1 — k) is

bounded by p and the sequence (aﬁcn) is bounded by some «'. Therefore, according to [5, Lemma,

2] there exist C > 0 and § € (0,1) depending only on a}, but not on the wy,, such that
s<j<k<n: wjn<C-§7-al-wpn

Since for each n we find an k € {n —p+1,...,n} being an element of (k,), we may deduce that
for s < j < n — p there holds

Rij—sul® Swjn < C-37 - -wppn < (C-d - [[RN)P-§777%) -V,

where for the last estimate we have used (12). On the other hand, for j = n—s—p+1,...,n+r—1
we obtain directly from (12) that

|[Rjnl? < max{wn_p s wnn} < (IR -¢°7) - "7

Therefore the claimed relation (6) is true with ¢> = ¢ and a suitable constant C' > 0. Hence the
necessity of Theorem 1 is proved.

Now let (6) be fulfilled. We build up the infinite matrix R = (Rk,n)ﬁn:oa where Ry, are
defined by (8). Then as in Theorem 2 from [9] we obtain that such a matrix generates a (minimal)
bounded operator (also denoted by R) with domain D(R) = #2. From the second identity of
(9) it follows that R(AI — A)Y =Y for any finite linear combination Y of the basis vectors,
and hence also for any Y € D(A) by definition of the operator A. Therefore R is a bounded
left inverse operator for A\I — A. We also have that Im(AI — A) is closed as the preimage of
the closed set D(A) under the continuous mapping. Hence A € Q(A) together with the relation
R = R()) follow by showing that Re, € D(A) and (A — A)(Re,) = e, for all n > 0. In order
to show this latter claim, we observe first that, similarly to the reasoning of (10) and (11), one
finds that

Ok—s)x1
(AI o A)Uk — Akfr:kfl,k:k+r71Rk:k+rfl,n + e Uk .— |:R0:k1,n:| k> n.
_Ak:k:—|—sfl,kfs:k71kas:k71,n ’ 000,1 ’
Oooxl

Here U*¥ € D(A) as a finite combination of basis elements, with U* — Re,, € £2 for k — oo,
and ||(AI — A)U* — e,|| < ag||Rk_s:k+r—1x|| tending to zero for k = kj, j — oc. Therefore,
Re, € D(A) = D(M — A), with (\I — A)Re,, = e,. Consequently, A\ € Q(A4), and R = R(}\).
In particular, the matrix 91 being the r x s principal submatrix of the matrix R needs to be
unique, and formula (7) follows. O

Corollary 1. If A € Q(A) and A satisfies the conditions of Theorem 1, then

(13) limsup [|[RE(V)||* < 1, limsup ||[REQ)||» < 1.
k—o0 n—00
The matrix I = M(A) of Theorem 1 is called the Weyl matriz of the band operator A. For
the particular case r = s = 1 of a Jacobi matrix A we recover the classical Weyl function as
introduced by Berezanskii [7]. From (7) we see that 9t is analytic in Q(A).



Remark 1. It is not difficult to show that the power series F' mentioned in the introduction in
the context of formula (4) coincides with the formal asymptotic expansion at infinity

o0
My (A) = z_l_k(Ake- €; )
OO( ) k:ZO ( 7 Z) 1=0,...,r—1;5=0,...,s—1
coinciding with the Laurent expansion of 9t at infinity in case of bounded A. As a consequence,
the quantity m, of (4) gives a Matrix Padé approximant of 9, at infinity of order n. Moreover,
the bilinear form

< P,Q >= coeff(A", PO)Mo(M)Q(N), P eC* ], QeC™[)

is easily shown to verify the biorthogonality relations < Q% QR >= 0n i as required for the ma-
trix version of the Shohat-Favard Theorem mentioned in the introduction. Following Kishakevich
[10] who discussed the case of block tridiagonal matrices, we call such a bilinear form a gen-
eralized spectral function of A. Notice also that the knowledge of 91, allows to reconstruct
the operator A (up to normalization) either by using the orthogonalization procedure described
in [16] or by expansion into a matrix continued fraction as proposed in [14].

Remark 2. Using the Cauchy formula, it is possible to give some analytic formulas, at least in
the case of bounded operators A: for instance, the bilinear form is given by

<PQ>= [ PymQ)ax

where C be some contour in 2(A) surrounding once oo in a clockwise direction. Furthermore,
for the resolvent we have the following integral representation

L/ ! R/
(R(Nex, en) = 2—71m /C On(A )?TEAA),Q’“ () dN, XeQ(A)

where the contour C C Q(A) surrounds once oo and A. This latter formula includes for k£ =
0,....,5s — 1 (and for n = 0,...,7 — 1) the classical integral representation for functions of the
second kind RZ () (and RE()), respectively). More generally, for any function 1 being analytic
in some neighborhood of the spectrum of A we deduce the following matrix representation

¥4 = (55 [ QEOMNQEOH() ar)

00
n,k:O.

Remark 3. As mentioned in [6, Section 2.1], we may identify the infinite matrix A via matrix
calculus with possibly two closed and densely defined operators acting on ¢2. Let us write
more explicitly [A]nin for the closure of the (densely defined) operator acting on finite linear
combinations of the basis vectors ey as considered before. The operator [A]max with domain of
definition D([A]max) = {y € £2, Ay € £?} is easily seen to be the maximal closed operator acting
via matrix calculus, and hence a closed extension of [A]min. Writing A¥ = (Al,k)fl:o for the
conjugate matrix, one may show [6, Lemma 2.1] that ([A]min)* = [A%¥]max, and ([A¥]pax)* =
[A]min- The matrix A is called proper if the operators [A]min and [A]max coincide. We refer
the reader to [6, Section 2.2] for further details and especially for the link between proper and
determinated Jacobi matrices.

It is possible to show following the reasoning of [6, Example 2.7] that the divergence of
> i 1/a) implies that A is proper. Thus for instance bounded A or more generally the matrices
considered in Theorem 1 are proper. Indeed, it is possible to show by generalizing the reasoning
of [6, Theorem 2.10] that A € Q(A) if and only if A is proper, and there exists a bounded
operator within the set of some formal left inverses built with help of the fundamental solutions
(which are given in (8) and (9)). In this case, the corresponding formal left inverse is the matrix
representation of the resolvent of A.



Theorem 2. If A € Q(A) and A satisfies the conditions of Theorem 1, then for i = 1,...,r,
and 7 =1,...,s there holds

(14) limsup |QEE(A\)|% > 1, limsup|QPF(N)|F > 1.

k—00 k—o00

Proof. Multiplying the equation of Lemma 1 on the left and on the right with

I, -9 I, M
0 I, |’ 0 I

gives
—RE e
(15) Iys = [ Qfgc reks—l
k—r:k+s—1
] Orxs —Ak—r:k—l,k:k+r—1 . [ QL RL ]
Ak'k—l—s—l b—sik—1 Og5cr k—s:k+r—1""k—s:k+r—1
and hence in particular
ngg i L Orxs _Ak:—'r':k—l,k:k:—i—r—l . R]% . L= I
" _ . _q1 = lg.
rikts Ak:k+s—1,k—s:k—1 Osxr skt

Hence for any vector a,||a|| > 1 of size s and for indices k = k,, where the above coefficients are
bounded in norm

||0,H2 < ||aTQI€z—T:k+s—1|| *af - ||R£—s:k+r—la’||'

Since ||Rl€—s:k+r—la’|| S ||R£—5:k—|—r—1” ' ||(J,H, we deduce that

1 < liminflla” - QF L, poms I5" - [|RE, gl
< Timinf [l QF g 4ot VI T sup||RE o[
n o
< diminflla” - QF . oot VIIMA < limsuplla” - QN[

k—00

Taking as a a unit vector, we get asymptotics for each component. A similar result is obtained
for the Qﬁ O

Consider as an example for some 8 > 0 the operator A? generated by the matrix A? with
s = 2,7 =1, and two nonzero diagonals:

(A o ns0 = (1,1,29,29,1,1,3%,3°,1,1,4% 4% ),

(Ag,n-i—l)nzo = (la L1, (1/2)/3)’ 11,1, (1/3)/35 1,11, (1/4)ﬂa <o )
Notice that A® = DA°D™', with the diagonal matrix D = diag(dg, d1,...), and dyy, = dapr1 =
dapro = dagy3 = ((k + 1))P for k > 0, such that

Qak+1 = maX{HAfk,zka”’ ||A§k+1:4k+2,4k—1:4k||} =1, k=1

At first, let 8 = 0. The operator A° is bounded, with two nonzero diagonals consisting of ones.
It is known for instance from the theory of Toeplitz operators that the resolvent set of A° is the

domain
Q(AO) ={A:|jwi(A)] > 1, |we(N)| < 1, |ws(A)] < 1}



N

Figure 1: Spectrum of A°

where wi()), w2(A),ws(\) are the branches of the algebraic function w® — Aw? + 1 = 0 in the
complex plane A with cuts along the segments [0,w], [0,wexp(27i/3)], and [0, w exp(47i/3)],
w= 41%, such that |wi(A)| > |wa(N)|, |wi(A)| > |ws(A)|. Thus the spectrum of A° is a three-
petal rose, see Figure 1. Now consider the case 8 > 0. In order to make the dependence on
B more explicitly, we write qi:g()\) = QIIC’R()\). The reader can easily check by recurrence on k
that q,ﬁ:g(z\) = q,ﬁ”g()\) /di. From (3) one easily sees that q,if(/\) grows at most exponentially in
k for any A € C, whereas di grows faster than exponentially. Hence the second condition of (14)
is not fulfilled for qizg()\) for any A € C, implying that the spectrum of A? is the whole plane C
for all # > 0. We have therefore found a proper matrix A® with empty resolvent set.

3 Convergence of Matrix Padé approximants

Once having established a criterion of the resolvent set similar to the case of complex Jacobi
matrices, we now show that known convergence results of scalar Padé approximants in terms of
the corresponding difference operator like [2, Theorem 3.11] or [4, Theorem 3.1 and Theorem 4.1]
can be generalized to the matrix setting.

Theorem 3. Let A be bounded. Then the sequence of Padé approzimants (my)g>o from (4)
converges in capacity to the Weyl function in compact subsets of the unbounded component of the
resolvent set of A. Moreover, the convergence is uniform in compact subsets of the complement
of the numerical range of A.

Proof. Suppose that s < r (the case r < s is similar). We first notice that the sequence of
matrices

Rl NQfn 1N = (M = A ensy entr))

is uniformly bounded on compact subsets of Q(A). According to the expansion of the resolvent
at infinity, we obtain for such matrices the following expansion at infinity

7,k=0,...,s—1

Rinis 1NQints 1(0) = A7+ 02,

Consequently, the sequence of functions

hn()‘) = det(Rg:n—ks—l(A)Q'r}}:n—l—s—l (A))



forms a normal family in Q(A), with h,(\) = A=+ O(XA7*!). This shows that any accumulation
point of A, in the unbounded component of the resolvent set is different from the function 0.
Following [4, Lemma 2.4(c)], we may deduce that for any compact F' a subset of the unbounded
connected component of the resolvent set there exist constants C1, Cs > 0 and monic polynomials
p; of degree bounded by Cy such that |hy(A)| > Ci - |pp(A)| for all n > 0 and for all A € F. By
noticing that the matrix of cofactors of RS, .. 1(AN)QE, . ;(}) is also bounded uniformly on
F', we find a constant C3 such that

sup sup [pn (N)| - [|[Rlss1 (N Qprts—1 (W] | < Cs.
n>0 AeF

On the other hand, it is easy to show that the constants C = C(\) and ¢ = g(\) of Theorem 1
may be chosen to be continuous as a function of A. Hence the limit relations of Corollary 1 are
true uniformly in F', that is,

limsup sup ||R£:n+571(>‘)||1/n < 17 lim Sup sup ||R7}LG+sfl(>‘)||1/n <1
n—00 AeF n—00 AEF

Consequently,

lim sup sup||pn (A)] - [19M() = Qfigr—1 (V)™ Plipgr 1 VN7

n—oo M\eF

< Timsupsup [| R,y IIY™ - 1B sy VI < 1,

n—o00 AeF

implying convergence in capacity in F' (compare with the proof of [4, Theorem 3.1]). In order to
establish the second part of the assertion, it is possible to show following the lines of the proof
of Theorem 1 that m,()) is the Weyl function of the (finite dimensional) operator Ag.,—1,0:n—1-
Since the numerical range of this operator is included in the numerical range of A, we may
conclude that , is analytic outside the numerical range of A. Thus, the uniform convergence
follows from the convergence of capacity and the Lemma of Gonchar (see, e.g., [4, Section 4]). O

Remark 4. It seems that only few results on the convergence of Matrix-Padé approximants
have been established so far. In case of a symmetric operator with » = s > 1, one may easily
show that our Theorem 3 contains a matrix version of the Markov convergence theorem since
here the numerical range of A coincides with the convex hull of the union of the supports of the
underlying measures of the (matrix—valued) Markov function.

Another class of bounded operators leading to so-called Stieltjes systems has been discussed
in [1] for » = 1 and in [15] for general r, s (the proof in the latter paper is only given for r = 2
and s = 3). This subclass of operators (1) is described by the requirement that Ay ;4. > 0,
Apysr > 0 for all & > 0 and Ay = 0 else. Here one may establish uniform convergence in
some set which in general is shown to be larger than the complement of the convex hull of the
spectrum.

We finally mention that the results given in this paper can be generalized to study spectra
of operators generated by band matrices with operator elements.
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