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ABSTRACT. Recently, some sufficient and necessary conditions have been given on the
convergence of the so-called vector Stieltjes continued fraction of dimension p in terms
of the coefficients. In the present paper we aim to continue this study for the case of
dimension 2. In particular, we show that here the convergence is determined by the
asymptotics of solutions of a particular three-term recurrence relation, which is closely
analyzed.

As a consequence, several new results on the convergence problem for two-dimensional
Stieltjes continued fractions are obtained. We finally describe the link to a vector moment
problem.
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approximation.
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1. INTRODUCTION

The results of this paper are essentially motivated by the convergence problem for the
vector Stieltjes continued fraction (VSCF). In the simplest vector case, a VSCF is a vector
continued fraction of the form

(15 1) ‘ (11 _a'l) ‘ (11 _a'2) ‘ (1, _a3) ‘ (1, _a4) ‘ (15 _a5) ‘
(02 [ @) [@) [ @2 [ @) [ @)

(1)

where the division of vectors is defined according to the Jacobi-Perron rule. Vector Stieltjes
continued fractions were introduced in [2] in connection with the study of non symmetric
difference operators (see also [11] for general matrix continued fractions). If all a, > 0 then
the convergents of the VSCF (1) give a local approximation (at infinity) of two Stieltjes
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type formal power series

X g . )
Sj(z) ~ Z zn"—fl, where S, ; :/ z"dpi(z), j=1,2

n=0 0
and p; are positive measures with a common support on [0,00). The convergence problem
for vector Stieltjes continued fractions is whether the VSCF converges everywhere in the
complex plane outside the common support of the measures u; provided that all a, are
positive. Detailed analysis of the convergence problem (see [5] and Theorem 3.1 below)
shows that the convergence of a VSCF at one point z € (—o0, 0) is equivalent to a particular
asymptotic behavior of the solutions of the following recurrence equation

(2) Yn + ColYn—1+ Cyn—2=0, n >1,

where ¢, = ¢,(z) € (0,1) are given real numbers. More precisely, the convergence of a
VSCF is equivalent to the following property of the solutions of the recurrence equation
(2)
Property (P): for any initial values yg,y—1 one has lim,, . ¥, = 0.
We should mention in this context that, by Lemma 2.6, any solution of (2) is bounded.
The recurrence equation (2) can be written in the following equivalent form

Yn Yn—1 | —¢h —Cp
& P bet i
We notice that a fundamental solution of (3) is given by the columns of the matrix T}, :=
Tp-Th—1-...-T1. Hence property (P) is equivalent to the question whether the unique
fixed point (0,0)7 of the dynamical system (3) is an attractive point, i.e., HTnH — 0 for
n — oo. In the latter case, the determinant of 7, (which is easily calculated) needs to
tend to zero. This gives the necessary condition

(4) (P) = Jlew=0 <= > (1-c)=+c.
n=1 n=1

As we will see in Corollary 2.3, this necessary condition (which using different techniques
has been discovered earlier in [5]) turns out to be not sufficient. In the same paper [5],
one of the authors has established the sufficient condition

() (P) = Y (1—ca)(l—cpp1) = +o0

n=1
(see also Subsection 3.2 below). In particular,
(6) (P) <= supec, <Ll

Here we will establish another sufficient condition, namely » (1 — max{cp, cpt1, Cny2}) =
+00, see Theorem 2.1 below. The analysis of property (P) seems to be quite difficult if
the sequence (c,) tends to 1. However, under the additional condition sup(c, +¢p41) < 2,
we will show in Theorem 2.2 that (P) holds if and only if > (1 — |¢;, — cpt1]) = 0.

The paper is organized as follows. Section 2 is devoted to the analysis of the recurrence
relation (2). We first present in two Theorems some necessary and/or sufficient conditions



A RECURRENCE RELATION CONNECTED TO THE CONVERGENCE OF VECTOR S-FRACTIONS 3

on (c,) in order to insure that property (P) holds. Subsequently, some illustrating ex-
amples as well as the proofs for these statements are given. One ingredient in our proofs
are techniques known from the study of trace class perturbations of three term recurrence
relations [4, 8].

Finally, in Section 3 we discuss the application of our results to the convergence of
a VSCF. We show in detail how the convergence of such vector continued fractions is
connected to the property (P) for recurrence equation (2). Then we use our findings
of Section 2 in order to give answers to some open problems related with [3, 5], and to
present some new sufficient conditions for the convergence of a VSCF. Finally we discuss
the connection between the convergence of the VSCF and the determinacy of the vector
Stieltjes moment problem.

2. THE PROPERTY (P)

2.1. The statements. As a complement of (5), we have the following sufficient condition
for property (P).

Theorem 2.1. If

o0
(7) Z(l — max{¢y, Cp+1,Cnt2}) = +00
n=1
then (P) holds true. If in addition
1-— 1-—-
(8) inf =~ 50 or supicn<oo
1-— Cn+1 1-— Cn+1

then condition (7) is also necessary for property (P).

In the next theorem we give a necessary condition for property (P) complementing (4).
This condition turns out to be also sufficient under some additional assumption.

Theorem 2.2. If property (P) holds then

o
(9) D (1= fen = ental) = 00
n=1
If in addition
(10) Sup{cn + Cn+1} <2
neN

then (9) implies (P).

Before turning to the proof of these statements, let us shortly discuss some examples.
For the sequence ¢, = 1 — 1/n, we obtain property (P) from Theorem 2.1 (but by none
of the other necessary or sufficient criteria mentioned in this paper). Counsidering the two
sequences ¢, = 1 — 1/n% and cop = 1 —copy1 = 1 — 1/(k + 1)%, we see that the two
necessary conditions of (4) and of Theorem 2.2 do not imply each other.

Theorem 2.2 is best illustrated by considering asymptotically periodic sequences: sup-
pose that

lim cop =1, lim cop41 =7y < 1,
k—00 k—00
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i.e., assumption (10) holds. Again, none of the previously found criteria (4), (5), (6), or
(7) enable us to decide whether property (P) holds. If v € (0,1) then the sum in (9)
diverges, showing that (P) holds (indeed, we could also give a direct proof based on
Perron’s Theorem). If v = 0, we may simplify the sum occurring in (9), leading to the
following statement

Corollary 2.3. Suppose that (cor) tends to 1, and (cop41) tends to 0. Then

o0 o0
(P) = Z(l — Cok) = 00 OT Ec%_l = o0.
k=1 k=1

Taking cg, = 1 — 1/(k 4+ 1)%/2 and cyg41 = 1/(k + 1), we know from Corollary 2.3 that
(P) holds. Consequently, none of the sufficient conditions (5), (6), or (7) are necessary.
Finally, the example cg;, = 1 — cg541 = 1 — 1/(k + 1)? without property (P) shows that
the converse of (4) is not true. Moreover, we also see that a Stieltjes—type condition of
the form

(11) Y V(I —en)d = enp1) =+
n=1

weakening (5) does no longer imply property (P).

2.2. Some preliminary results. Beside the application for vector continued fractions,
the study of the recurrence relation (2) also attracted our attention since any solution (yy,)
of (2) has the remarkable property that the sequence (d,), defined by

— — J |yn—1l + |n| if yn - yn—1 >0,
(12) on = On(yo,y1) == { max{[yn_1, [yn|} if Yn - Yn_1 < O,
is decreasing for all values of yg,y_1, and thus has a limit §(yp,y—1) > 0, see Lemma 2.6
below. Hence (P) is equivalent to the fact that d(yg,y—1) = 0 for all yy,y_1 € C. Notice
that y_1 = yo = 0 gives the trivial solution y, = 0. Hence, in our further analysis this
case will be excluded.

By definition (12), the quantity &, equals one of the three quantities |y,—_1|, |yn| or
|Yn| + |Yyn+1|- A key observation in our proofs of Theorem 2.1 and Theorem 2.2 is that
any of these three cases occur in a quite regular manner while varying n; indeed, there are
cycles of length 2 and 3, see Lemma 2.5. This will enable us to estimate in Lemma 2.6
and Lemma 2.7 the quantity J,, in terms of the coefficients c; and the previous quantities
0 for k < n. However, since the above three cases are not mutually exclusive, we need to
consider separately the cases where y, = 0 or y,_1 = 0.

Definition 2.4. We define the three sets A1, As, and A3 as follows
A ={n €N:ypyn_1 <0, |yn| > [yn-1l},
Ay ={n € N:ypyn—1 <0, |yn| <[yn—1|} U{n: yn =0},
As={n€N:yyyn—1 >0}U{n: yp—1 = 0}.
Clearly, these three sets form a partition of N, and é,, = |y,,| if n € Ay, 6, = |yn—1] if

n € Ay, and 6, = |yp_1| + |yn| if » € A3. The following result shows that there are indeed
cycles of length 2 or 3.
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Lemma 2.5. The following implications hold
neAN] = n+1le€lAy, and bpy1 = op,
nely = mn+1eAs;,
n€lAs = n+1€eAUAs.
Proof: Let n € A;. Then ypyn—1 <0, |yn| > |yn—1|, and from (2) we get

Yn+1Yn = ~Cnt1(|Ynl” + Yn-19s) <0
If yp+1yn = 0 then y,+1 = 0 implying n + 1 € Ag and 0,41 = 0, = |yn| as claimed above.
If yp+1yn < 0 then writing

[Ynt1] = [ent1(Un + Yn—1)| = ent1([yn| — [yn-1]) < cnt1|ynl
we obtain ép41 = 0, = |yn|, hence n + 1 € Ay and the first implication is proved.
Now suppose that n € As. If y, = 0 then clearly n + 1 € A3. Otherwise, we have

YnYn—1 < 0 and |yp—1| > |yn|, implying that

Yn+1Yn = _Cn+1(|yn|2 + Yn—1Yn) > 0,

and thus n + 1 € Ag.
In order to prove the last implication, we take n € Az for which y,y,—1 > 0 and y,, > 0.
Hence

YnYn+1 = —Cns1(Ya + Yn—1yn) <0,
showing that n +1 € Ay U As. O

We are now prepared to show that the sequence (d,),>0 is decreasing, and hence has a
limit 6 = d(yo,y—1) > 0.

Lemma 2.6. If (y,)n>—1 is a solution of (2) then the sequence (6n)n>0 defined by (12) is
decreasing for any value of the initial conditions yg,y—1.

Proof: Letn € N. If n € A; then d,41 = &, by Lemma 2.5. If n € Ay then y,yn4+1 > 0.
Without loss of generality, we may suppose that y, > 0. Hence, in this case y,—1 <
0, ynt+1 > 0 and we obtain

5n—|—1 =Yn + Yn+1 = |yn| - Cn—|—1(yn—1 + yn) = Cn—|—1|yn—1| + (1 - Cn—|—1)|yn| < |yn—1| =y
Finally, if n € A3 then §,41 = max{|yn|, |yn+1|} according to Lemma 2.5. Since
‘yn—|—1| = Cn+1|yn + yn—1| <n
and y, < d,, we obtain d, 11 < 4. O
We terminate this subsection by establishing the following inequalities.

Lemma 2.7. Ifn € Ay then

(13) 6n < Cn—l(sn—Qa
with equality if in addition n — 1 € Ay. If n € A3 then we have the estimation
(14) Op < cpbp—1 + (1 - cn)cn—lén—Q,

with equality if n — 2 € As.
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Proof: Let n € Ag. Then 8, = |yn—1| = cn-1|yn—2 + Yn—3| < cn—16p—2. fn—1 € Ay,
we get n — 2 € Ag by Lemma 2.5, and hence 6,2 = |yn—2 + Yn_3|-

Now let n € A3, and thus n — 1 € Ay by Lemma 2.5. We suppose without loss of
generality that y, > 0. Then y,_1 > 0 and y,_2 < 0. Furthermore,

op = Yn + Yn—1 = (1 - Cn)yn—l —CpYn—2 = _(1 - Cn)cn—l(yn—Z + yn—3) + cn|yn—2|a
implying that
(571 < cn—l(l - Cn)(sn—Z + Cn(sn—l

If n —2 € Az then §, 2 = —(yn_2 + yn_3) and thus equality holds. O

2.3. Proof of Theorem 2.1. We first show that (7) implies (P), that is, given some
complex numbers g, y_1, we need to show that the corresponding quantity § = §(yo, y—1)
equals zero. The case yop = y—1 = 0 is trivial. Otherwise, define A;, A, and A3 as in
Definition 2.4, and write more explicitly Ay := {ng,n1,n2,...} with increasing n;. From
Lemma 2.5 we know that n;_; € {n; —2,n; — 3} for all j > 1; in particular, Ay contains
an infinite number of elements. Inequality (13) tells us that

6nj < an—lénj—Z < an—l(snj_p

the latter inequality being trivial if n;_1 = n; — 2, and else following from Lemma 2.6.
Hence,

k
(15) 5nk < 6n0 H Cnj—1,

=1

and 6(yo,y—1) = 0 provided that the product on the right-hand side tends to 0 for £k — oo.
On the other hand,

k k
[H enj—1]® < H[cnj_ﬂ"j“_"j

k n]‘fl ni—1
< H H max{cn, Cn+1, Cn+2} = H max{cn, Cn+1, Cn+2},
Jj=1ln=n;_1 n=no

where the right-hand side tends to zero for k — oo by (7). Hence 6(yo,y—1) = 0.
In order to show that, under under assumption (8), condition (7) becomes also necessary,
notice first that, for all n,

1-¢
mi=inf—" >0 = 1- max{cy, Cni1,Cnyz} > min{l,m*}(1 — cyy2),
ko 1—cppn
1-— Ck . 1
M:=sup—— < o0 = 1—max{cp,cni1,Cpy2} > min{l, —}(1 — ¢y,).
k1 —Cka M?

Hence, in both cases described in (8), relation (7) holds if and only if > (1 — ¢,) = oc.
However, according to (4), the latter condition is necessary for (P). O
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2.4. Proof of Theorem 2.2. Qur proof for Theorem 2.2 is divided into several parts.
One implication is shown in the following Lemma. Here we apply classical techniques from
operator theory where we adapt arguments used in the study of trace class perturbations
of three term recurrence relations (see for instance [8] or [4, Section 3.5]).

Lemma 2.8. Let the sequence (c,)n>1 be such that
o0
Z(l —len —eny1]) < +o0
n=1

Then property (P) does not hold.

Proof: The aim of the following considerations is to construct explicitly a solution
of (2) with ((—1)*yar1q) tending to some constant § > 0 different from zero for a fixed
a € {0,1}.

In a first step we will show that our convergence assumption implies that

(16) lim copyq =1 and lim copyar1 =0, for a fixed o € {0,1}.
k—o0 k—00

Indeed, we have lim |c, — ¢p41| = 1. Fixing an arbitrary € > 0, there exist an N(e) € N
n—o0

such that |¢, — ¢p41] > 1 — € for n > N. Since in addition ¢, € (0,1), we get ¢, €
(0,e)U(1 —¢,1) for n > N, and more precisely, cy € (0, ¢) implies that cyior € (0,€) and
cnt2k-1 € (1 —¢,1) for all £ > 1. Since € is arbitrary, we obtain (16).

As a consequence, we may rewrite the assumption of the Lemma as

o o
(17) Zc2k+a+l < oo, and Z 1 — copta < 00.

k=1 k=1
Since we are only interested in the asymptotic behavior of a solution of (2), we may drop
without loss of generality the first terms in the recurrence relation (2), in particular we
may assume without loss of generality that o = 0, and that

(18) max{sup|cog—1|, supk|car — 1|} < 1/12.
Consider the infinite tridiagonal matrix
¢ 1 0o --- \
(6] C2 1/2 0 .
0 203 C3 1 0
C = 0 C4 C4 2 0 - s
0 205 Cy 1 0 e
0 Ce Ce 1/2 0

then a solution of (2) is given by
Yn = (—1)" det(Cpn),
where we adopt the convention that A, denotes the principal submatrix of order n of

some infinite matrix A (the scaling factors 2 and 1/2 are introduced in order to obtain
later bounded operators).
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Consider a second sequence of recurrence coefficients, namely ¢op = 1, ¢o 1 = 0 for
k > 0. The corresponding (block upper triangular) infinite matrix is given by

D H 0

- O b H 0 --- 0 0 0 1
C=|l o o D H 0 - | H=<1/2 0), Dz(1 1)-

Notice that @k is invertible. More precisely, its inverse is given by By, with the infinite
matrix

D-! —_D-'HD-! D-YHD'? —D-Y(HD)3
0 D1 ~D'HD! D (HD!)?

B = : 0 D1 —-D'HD™!

where

_ _9-—n —-n
Dl:( ! é) and DI(HDI)"Z( R ) for n>1.

Moreover, we have
yor, = det(Car) = det(Cax) - det(Zox + (Cox — Cok)Cyp')
= (—1)* - det(Zok + (Cor — Cox)Bax),

and it remains to discuss the asymptotic of the determinant.
Let us shortly recall some notation and results concerning infinite matrices and opera-
tors. Given an infinite matrix A define the quantity

[|A]] == sup [ An]|-
n>0

It is well known that a infinite matrix A with ||A|| < oo can be identified with a bounded
operator A acting on ¢2 via matrix calculus, and ||A]| = ||A||. We recall the known
estimate (see [7, Example I11.2.3])

o0 o0
(19) > < [supZ\aj,H] sng\aj,k\
J =0

k=0

Write Z for the infinite identity matrix. We will also use the fact that, provided that the
operator A associated to A is of trace class (see [7, Section X.1.3]) and of norm less than
1, then det(I + A) # 0 is defined, and (see [6, Lemma XI 9.16])

det(I + A) = nlgrolo det(Z, + Ay).

Finally, we recall from [7, Section X.1.3] that a composition of a bounded operator and a
trace class operator is of trace class.
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Notice that the bidiagonal infinite matrix

cp—1 0 0
C2 C2 0 0
0 263—2 03—1 0 0
C-C= 0 c4 c4 0 0 |---
0 205—2 C5—1 0 0
0 Cg Cg 0 0

represents a trace class operator C — C since, by (17), the sum of the absolute value of
the entries is finite. According to (18) and (19), we know that
10 = Cll = lIc —CI| < 3~ max{supg|can—1|, suplear — 1|} < 1/4,

and one easily verifies that || B|| = ||B|| < 4. Hence (C—C)B is in fact a trace class operator
of norm smaller than 1. Noticing that, according to its block triangular structure,

(Car — Cox) Bar = ((C = C)B)ax,
we may conclude that

lim (—1)*yg = det(I — (C — C)B) £ 0,

k—o0

and hence property (P) does not hold. O

In the proof of the second part of Theorem 2.2, we will make use of some further
observations. Denote by card(A) the cardinal of some set A. From Lemma 2.5 one can
conclude that card(Ag) = card(As) = co. However, card(A;) = oo (or, in other words, the
existence of an infinite number of cycles of length 3) may already imply that (P) holds.

Lemma 2.9. Under the assumption (10), if card(A1) = oo then property (P) holds true.
Proof: We suppose that (P) does not hold, and that card(A;) = oo. Then

H cp—1>0
neAs
by (15). We conclude using condition (10) that

sup cp—2 < 1.
nEAs

sup ¢, < 1,
neAs

lim ¢, 1 =1
neAs ’

Also, from (5) we know that
Z (1 —cp—2)(1 —cp_3) < o0, and hence lim c¢,_3 = 1.
nehs neAsy
Recall from Lemma 2.5 that n — 1 € Ay implies that n — 2 € A3, and n,n — 3 € Ay. Thus

lim ¢, 3= lim ¢, 3=1.
n—leA " neMs "

On the other hand, (¢,_3)n—1ea, is a subsequence of (¢p)nen,, the latter having a supre-
mum strictly smaller than 1, a contradiction. O
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We are now prepared to show the second part of Theorem 2.2.

Proof of Theorem 2.2:  The fact that (P) implies (9) follows directly from Lemma 2.8
proved above. It remains to show that (10) and (9) imply property (P). Let y_1,y0 be
fixed. For the corresponding solution (y,),>—_1 of the difference equation (2) we may
suppose that card(A;) < oo, otherwise property (P) follows directly from Lemma 2.9.

Thus there exists kg € N and a € {0,1} such that Vk > ko there holds 2k + o € A3
and 2k + 1+ a € Ay. Without loss of generality we may suppose that & = 0. Then for all
k> ko

dok+1 = |y2x| and ok = |yox| + |y2x—1]
with
Yok+1Y2k <0 and  yoryor—1 > 0.

Furthermore, from assuption (9) we know that

o o
2202k+1 + 22(1 —cok) >
k=1 k=1

oo
> 2(1 = len = cpy1l) = oo,
n=2

o0

(o]
(1 —cop + cor1) + Z(l — Cok42 + Cok+1)
k=1 k=1

and thus
o0 [o¢]
(20) H cor, =0 or H (1 —copt1) = 0.
k=ko k=ko
We write
[Yok+1| = Cok41|y2k + Yor—1| = Cok4102%-
Consequently,
(21) Ook+2 = [Y2k+2| + |Yor+1| = O2k+3 + Cop102k

Taking into account (14) (recall that 2k, 2k + 2 € A3), we obtain for dax o the following
identity

okt2 = Copy202k+1 + (1 — Copro)caki102k-
Hence, substituting the previous equality in (21) we obtain
O2k+3 = Cok+202k+1 — Cok+1C2k+202k
Since dog+1 < dok, we get for all k& > ko the following estimate
dok13 < copya(l — copq1)02k41-

Using (20), we may conclude that dox11 — 0 for £ — o0, as required for the assertion of
Theorem 2.2. O
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3. VECTOR STIELTJES CONTINUED FRACTIONS.

A Vector Stieltjes continued fraction (VSCF) of dimension p is a vector continued
fraction of the form

(1,,1) | (1,.1,—a1)] (1, 1, =ap) | (1,01, —ap11) |

(22) [(0,..,0,2) " [ (0,...,0,1) +"'+\ (0,...,0,1) +\ ©,..0,2)

where a1, as, ... are complex numbers different from zero, and the product and the quotient
of two vectors ¢,b € CP are defined according to the Jacobi-Perron rule by the formulas

1 1 c Cp
C'b: (clbl""’cpbp)v E = <c_ac_1,-.-7 pc 1)
P P D

The finite sections of the fraction (22) are usually called convergents; they give a local
approximation at infinity of the formal power series

(23) S](z) ~ Z Zfr::,_]l’ j = ]‘727 "'1p'

n=0

We recall from [2] that the coefficients S, ; of these formal power series have the following
genetic sum’s representation

J i1+p i2+p In—1+D
(24) Sn,j = E agq E a;, E ai3 e E (07 S(),j =1.
11=1 ia=1 i3=1 in=1

In this paper we will always suppose that a, > 0 for all n. Under this condition, it is
shown in [2] that there exists a vector of positive measures (p1, p2, .., ttp) With a common
support on [0, 00) such that

(25) S = [ adita),i=12m

This allows to associate with a vector continued fraction (22) and formal power series (23)
a Stieltjes system of functions

o0
(26) SJ(Z) = / M j = 1’2’ ""p
0 Zz—X
The convergence problem for a VSCF is whether the fraction converge everywhere in the
complex plane outside the interval [0, 00), and in this case to characterize its limit.

In this section we will first explain how the convergence problem is linked to the re-
currence equation (2). Then we give some applications of the results of Section 2 for the
case p = 2. At the end we present some general results on the convergence of VSCF in
connection with the determinate vector Stieltjes moment problem.

We note that, after some equivalence transformation, the fraction (22) takes a following
form

1,..,1)

© 0 - (1""’1’1)‘+---+ 1,..,1,1) | a,.,1,1) |
y ey Uy =012

(0""50’[)2) ‘ (O""’Oa bp+1) ‘ (07"'507 _bp+2z)

(27) ‘+ |
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where b, > 0 are related with a, by the equations
(28) an(bpbpi- - bpyp) =1, n>1 and by =by=---=b,=1.

The vector continued fractions (22) and (27) are equivalent in the sense that their nth
convergents coincide for all n > 1 (see the proof of Theorem 3.1 below). For the case
p = 1 we obtain from (27) the classical Stieltjes continued fraction in the form preferred
by T. Stieltjes [12].

3.1. Recurrence relations associated to a VSCF. We establish in this subsection
the connection between our convergence problem and the recurrence equation (2). For
fixed z € (—00,0), we define the sequence (c,), ¢, = cy(2), by

(29) an—p(l —cnp)(l —cnpt1) (1 —cn) =(=2)cn, n>p
with ¢; = ¢y = -++ = ¢, = 0. Since a, > 0, one can verify by induction that 0 < ¢, < 1
for all n > p.

Theorem 3.1. For a given sequence (ay) and z € (—00,0), let the sequence (cy,) be defined
by (29). Then the vector continued fraction (22) converges at the point z if and only if
the property (P) holds, this is, any solution of the recurrence equation

(30) Yn = _Cn(yn—l +Yn—2+...+ yn—p)a n>p

tends to zero.

Proof:  'We proceed in two steps: first we recall the (p + 2) term recurrence relations
connected to a vector continued fraction (see [9, Section IV.5] and [2, Section 4]), and
show that the fractions (22) and (27) are equivalent. Subsequently, we provide a proof for
the assertion of Theorem 3.1.

By definition of a vector continued fraction, the numerators A, ; (j = 1,2,...,p) and
denominator A, o of the nth convergent of the fraction (22) satisfy the recurrence equation

(31) An—|—1,j = enAn,j - anfp—}—lAn*p,ja .7 = Oa ]-a 25 —Py, M 2D,
where
[z ifn=k(p+1)
(32) €n = { 1 otherwise,
with the following matrix of initial conditions
n=0 n=1 n=2 ... n=p

Any 1 z z ... z
(33) Ap 0 1 1 e 1

Ap o2 0 0 1 e 1

Anp 0 0 0 e 1

For what follows it is suitable to consider a different normalization: we define sequences
(An,j) by
An,j = (d1d2 .- dn)An,]‘, n>1, Ao,j = Ao,j.
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For A, ;j we have the following recurrence relations
(34) Apti1,j = dnt16nBn 5 — an—p+1(dn—p+1dn—p+2 T dn—f—l)An—;m n 2 p.
Now we choose d,, so that
an—p+1(dn—p+1dn—p+2 cedpg1) = =1, n>p.
It follows that the recurrences for A, ; take the form
Ant1,j = dpy1enlnj + Dnpj, 1 2>p.

Choosing di = —1, dy =1, ..., d, = 1, we notice that d, < 0 for n =1+ (p + 1)k, and
dy, > 0 otherwise. Hence the quantities b,, defined by (28) satisfy

b — —dp, n=1+k(p+1)
L d,, otherwise,

and in particular they are strictly positive. Introducing €, = —z for n = k(p + 1), and
€n = 1 otherwise, we may rewrite (34) as follows
(35) An—l—l,j = bn—HgnAn,j + An—p,ja n 2> p.

By construction, the quantities A, j, 7 = 1,2, ...,p, and A, o, respectively, are the numera-
tors and the denominator of the nth convergent of the continued fraction (22). According
to (35), they are also the numerators and denominator of the n-th convergent of the
continued fraction (27), and hence these two vector continued fractions are equivalent.

Using (28) and (35) one may easily check that the quantities ¢, defined in (29) are equal
to

Anp-10(2)

(36) Cn Arol)

Using again (35) we obtain the following recurrence relation for the convergents of the
VSCF

(37) Hn,j = (1 - Cn)Hn—l,j + Can—p—l,j, n>p,j=1..p.

n>p, and cp=cp=--=¢,=0.

This convexity relation discovered first in [5] has been the starting point for several results
on the convergence of the VSCF [3, 5]. Notice that the matrix of initial conditions for
II,;, 7 = 1,2,...,p, n = 1,2,...,p is nonsingular. This implies that the convergence of
a VSCF at the point z is equivalent to the existence of the limit for any solution of the
recurrence equation (37).

Now we are prepared to finish the proof of Theorem 3.1. Suppose that the VSCF
converges at the point z, and let (y,) be a solution of the recurrence relation (30). Then
the sequence (Y},) defined by Y;, = yo + ... + yn, n > 0, is a solution of (37), and hence has
a limit. Consequently, v, =Y, — Y,—1 — 0 for n — oo, as required for property (P).

Suppose now that property (P) holds, and let (Y;,) be a solution of the equation (37).
Then the sequence (yy) defined by y, =Y, — Y,_1 is a solution of (30), and hence tends
to zero by assumption. The convexity relations (37) imply that for the sequences

M, = max{Y,,Y,_1,....,Ynp}, mp=min{Y,, Y, 1,.... Y5 p}
one has

My < Mpy1 < Mypp1 < My,
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From limy,, = 0 we conclude that lim M,, = limm,,, and therefore the limit of (Y,) exists.
As mentioned above, this implies in particular that any sequence (I, ;(z)) admits a limit
for n — o0, in other words, we obtain convergence pointwise of the VSCF. O

Remark 3.2. Instead of fixing first the sequence (ay,), we could also define first a sequence
(cn) withey =cg =+ =¢, =0, and ¢, € (0,1) for all n > p, fix a z € (—0,0), and
define the positive quantities a1, a2, ... by (29). Hence, property (P) for a given sequence
(cn) is indeed equivalent to the convergence of a VSCF at a fized z € (—00,0).

As a byproduct of the proof of Theorem 3.1, we should mention that any solution of the
recurrence (30) is bounded provided that ¢, € (0,1) for n > p. Notice that, for p = 2,
equation (30) coincides with the basic recurrence relation (2) of Section 2.

Remark 3.3. For positive ay,as,... it is known (see [2, Section 6.1] and [5, Proof of
Theorem 1)) that, for all j, the sequences (Il j)n>1 of a VSCF form a normal family in
C\ [0,400). Taking into account the Theorem of Vitali we see that for establishing local
uniform convergence of the VSCF in C\ [0,+00) it is sufficient to show that the VSCF
converges pointwise for all z € (—00,0) (or some smaller interval).

According to (29), the sequence (c,) and hence the property (P) depends on the point
z € (—00,0) under consideration. In the scalar case p = 1 it is known that the Stieltjes
CF converges at one point z < 0 if and only if it converges for all z < 0. It would be quite
interesting to know whether a similar result remains valid in the vector case p > 1: is it
true that property (P) holds at z = —1 if and only if (P) holds for all z € (—o00,0)? In this
context it could be helpful to use the fact that, for fized n, the function c,(z) is increasing
in z € (—00,0) (see the Proof of Theorem 3.5).

3.2. Convergence results for a VSCF for p = 2. In order to relate more explicitly
our findings of Section 2 to the problem of convergence of a VSCF, we will study in this
subsection the case p = 2. From [5, Theorem 1] it is known that the VSCF of dimension
p = 2 converges provided that

> 1
38 — = 400.
( ) kgl ar + a1

In particular, the latter relation is true if (a,,) is bounded (this case was already covered
by [2, Section 6.2]).
For our case p = 2, the relations (29) take the form

(39) an—2(1 —cp—2)(1 — cp—1)(1 — cp) = (—2)cp.

It is easy to see from (39) that (a,) is bounded if and only if sup,, ¢, < 1, which in the
sequel will be excluded. Let us recall the following two results from [5]: it is shown in [5,
Proof of Theorem 1] that condition (5) is sufficient for the convergence of a VSCF at z.
Moreover, from [5, Lemma 3] we know that

(40) Ybp=o0 & > (l-c)=00

In the classical case p = 1, the Stieltjes Theorem tells us that the continued fraction (27)
converges if and only if Y b, = oco. For p > 1, this condition remains necessary but is
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no longer sufficient, as conjectured already in [3, Remark 2]. Indeed, take for instance
cor = 1/(k + D)7 copg = 1 —1/(k + 1)1 for some 7 > 0, and z = —1, then clearly
> n(1 —¢p) = 0co. On the other hand, from Theorem 2.2 together with Theorem 3.1 we
know that the corresponding VSCF does not converge at z = —1. Notice that, by (39),
the recurrence coefficients for this example behave like ag;, — 1 and agg_1/ E2+21 5 1 for
k — oo. Also, the same example with 7 = 0 allows us also to conclude that condition (38)
is not necessary for the convergence of the VSCF at z = —1.
As a further application of Section 2 we have the following theorem.

Theorem 3.4. Suppose that sup agk114+q < 00 for some fized a € {0,1}. If
keN

o
1
41 = 400
( ) ; V a2k 4o

then the VSCF converges uniformly on every compact subset of C\ [0, 00).

Proof: As mentioned in Remark 3.3, it is sufficient to prove pointwise convergence for
any z € (—o0,0). Moreover, since the assumptions on (a, ) remain valid after replacing a,
by a,/(—2z), we see from (39) and Theorem 3.1 that it is sufficient to show that property
(P) holds for z = —1.

Without loss of generality we take o = 0. From (39) we see that supycy cop+1 < 1. If
there exists a subsequence (k;) such that sup;cy cor; < 1 then from (5) we know that the
VSCF converges. Hence we may suppose that

limy, _ocop = 1

Thus, the sequence (c,)n>1 satisfies the hypothesis of Theorem 2.2, and one concludes
that the continued fraction converges if and only if

o0 o
ZC%H =400 or Z(l — c9) = +o0.
k=1 k=1
Rewriting (39) for n = 2k + 1 we obtain
l—cy 1 1

cok+1 Gop—1 (1 —cop—1)(1 — cop41)

which implies

.. L—cy
inf > 0.
keN  Cog41

Thus we have limy_,cop+1 = 0, and the equivalence

(42) (P) & D (1—cu) =+
k=1

Substituting n = 2k in (39) we get
1 Cok

T —co)(l —cop2) =
( ) ) agk—2 (1 — cop—1)
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Since limy =25— = 1, we obtain that (41) implies ;% V(1 = car)(1 — cop—2) = +oo,

which at the same time implies the divergence of the serie on the right hand side of (42).
Thus we obtain (P) and the theorem is proved. O

Comparing the assertion of Theorem 3.4 with the example mentioned just before, it
seems that condition (41) cannot be improved.

For sequences of coefficients (a,) having some regular behavior we may even be much
more precise.

Theorem 3.5. Suppose that the sequence (ay,) satisfies the following convezity condition

> an110

+10n—1
§:|1—%|<00a
n=2

and suppose that inf a,, > 0. Then the VSCF converges uniformly on every compact subset
of C\ [0,00) if and only if

(43) i by, = o0
n=1

Proof: We start by establishing the equivalence (43). By assumption, the expression

ﬁ Ak4+10k—1 _ Gny1 @1
- =
paie ay, ap a9
converges to some constant different from zero. Similarly, using (28) we know that, for
a € {0,=£1}, the expression
n n

H a3k41— aa3k 1-a H b3k—ab3ki2-a _ b3ni2 b3 o
- b3k—1-ab3ki3—a  banti-ab2-a

k=1 a3k —«
converges to some constant different from zero. In particular we may conclude that there
exists a finite positive constant v with

1 b b
(44) — <inf ntl < sup ntl <%
v n n n  bn
Injecting this information in (28) we conclude that
b, b 1
an - b = — —"e[—3,73],

bnt1bni2 Ty
showing the equivalence (43). Since in addition infa, > 0 by assumption, we may also
conclude that the sequence (b,) is bounded.

We now turn to the proof of convergence. Notice first that, as mentioned in (40), the
divergence property (43) is necessary for the convergence. In order to prove the converse,
suppose for the sequel of the proof that (43) holds. The aim of the following considerations
is to show pointwise convergence of the VSCF at z = —1. We start by establishing the
property

1 —cpy1(=1)

45 sup ———— < 0.
( ) np 1_Cn(_1)
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Writing shorter Fy, := Ay o(—1)/Ap41,0(—1) and recalling from (36) that 1 — c,41(—1) =
bpi1Fy,, we see from (44) that it is sufficient to show the existence of some ¢ > 0 such
that F,, € [e,1/€] for sufficiently large n. Using (35) one easily verifies the following
development into a VSCF

B} Ly |

= > 2 i, = (F, F.F _
o ‘(Oabn+1)+ﬁn—1, n22 = (P o),

implying that

(1,1) ‘+ (1’1)‘+ (1,1) |

Up = +ﬁn— = Tn’ljn_ ,Tnﬂ'n_ ,
‘(O,bn-l—l) ‘ (0,by,) ‘(Oabn—ﬂ 3 = (T1,n(n-3), Ton(Uin—3))

where
T+ ybn + bnbnfl
Tl,n(xa y) = )
1+ bp1% + by 1bny + bpy1bnby 1
+ by
TZ,n(xay) = Y nl

1+ bn1Z + bpi1bpy + by 1bpby—1 '
Notice that T3 ,(z,y) is increasing in z and in y, whereas T ,,(z,y) is decreasing in z and
increasing in y. We now heavily use (44) for showing that

Tin(lz, 7, [y,9]) Clz, 7], z=€ T=

— — — N
TQ,”([Qa .’L‘], [gv y]) C [g’ y]’ Y= 7623 Yy=—

2

€
with a suitable € > 0. Indeed the inclusions are true provided that (B denoting the upper
bound for (b))

Tin(z,y) >z < ~yz’=yand (y+B)zy* <1,
T\n(Z7,9) <T <= <7 and 7z > 77,
Ton(Ty) >y <= ~ylT+By+B]<1,
Ton(z,]) <7 <= z7=7"

The reader may check that indeed all four sufficient conditions are true for sufficiently
small e. Since in addition @1, s, 43 € [z,Z] X [y,7y] for sufficiently small € > 0, we have
shown our claim (45). -

We recall from (40) that our assumption (43) together with (45) implies that

S 11— max{en (1), enr1(~1), caga(~1)}] = +oo.
n=1

Hence Theorem 2.1 together with Theorem 3.1 gives convergence of the VSCF at z = —1.
It is now possible to deduce immediately pointwise convergence for all z < —1 (and
hence locally uniform convergence) of the VSCF. Indeed, we show below that the function
¢n(7) increases in z for any fixed n. Therefore, for any z < —1,
o0 o
> [1 —max{ea(2), enr1(2), cnra(2)}] > D [1 — max{en(—1), cus1(=1), crrz(—1)}] = +oo
n=1

n=1
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and again Theorem 2.1 together with Theorem 3.1 gives convergence of the VSCF at z.
In order to show our final claim, recall from [2, Lemma 7] that the zeros of A,  and
Apipt+1,0 = Apy3,o are simple, positive, and interlace. Hence we have the partial fraction

decomposition
m

cn(z) =
j=1

Tn,j
7
$n,j —Z

where the residuals 7y 1, ..., Yn,m have all the same sign. Since z, ; > 0 and c,(—1) > 0,
we may conclude that all 7, 1, ..., Yn,m are positive, and hence ¢,(z) is increasing in z for
fixed n. This shows our theorem. O

Remark 3.6. We have shown implicitly in the proof of Theorem 3.5 that, provided that
(bn) is a bounded sequence satisfying (44), the VSCF (27) for p = 2 converges uniformly
on every compact subset of C\ [0,00) if and only if > b, = +0o0.

The reader may easily check that the assumptions of Theorem 3.5 are verified for the
following coefficients.

Corollary 3.7. For some A > 0 and some polynomial P with P([0,1]) C (0,+o00),
let a, = n* - P(1/n), n > 1. Then we have convergence of the VSCF if and only if

>on 1/ Yan = .
Consequently, convergence takes place if a, = n* with 0 < XA < 3 (but not for X > 3).

3.3. The vector moment problem and the convergence of the VSCF. The clas-
sical Stieltjes theorem for the case p = 1 states that a scalar Stieltjes continued fraction
converges if and only if the associated moment problem (25) is determinate, i.e., there
exists one and only one measure p with support on [0,00) such that S, = [5° z"du(z).
The limit function in this case is the Stieltjes type function S(z) defined by (26). The
situation in the vector case seems to be much more involved.

Definition 3.8. We call vector Stieltjes moment problem the task of finding a vector of
measures (f1, ..., ftp) from a given sequence of moment vectors ((Sp,1,.-.s Snp))n>0 such
that the integral representation (25) holds. The vector Stieltjes moment problem is said to
be determinate if it admits only one solution, and otherwise non determinate.

It is clear that the vector Stieltjes moment problem is determinate if and only if, for
any j = 1,2,...,p, the scalar moment problem for (S, j)n>0 is determinate. An interesting
open question in this context is whether the determinacy of the vector Stieltjes moment
problem is equivalent to the convergence of the corresponding VSCF as in the classical
case. We are able to show the following partial result.

Theorem 3.9. If the scalar Stieltjes moment problem (25) is determinate for some j for
the moments defined by (24) then the jth component of VSCF (22) converges uniformly
on compact subsets of the C\ [0,00) to the function S;(z) of (26).

As a corollary of Theorem 3.9 we get the following sufficient condition of Carleman type
for the convergence of a VSCF.
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Corollary 3.10. If

(46) =0

00
Z max a;
n=1 1<i<pn

then the VSCF (22) converges uniformly on every compact subset of C\ [0, 00) to the vector
of functions (26).

In particular, if (a,) is an increasing sequence then the condition

(47) > ==

is sufficient for the convergence of the VSCF. Note that, for p = 1, equation (47) becomes
the well-known Carleman condition for the convergence of the scalar Stieltjes continued
fraction (see for instance [1] or [9, Theorem I1.7.3]). The question whether the convergence
of a VSCF implies a determinate vector Stieltjes moment problem remains still open.

The rest of this subsection is devoted to the proof of the results.

Proof of Theorem 3.9:  We are using some basic facts from [2] and some weak conver-
gence arguments. Since a1, ao, ... > 0, we have for the jth component of the nth convergent
I, = (An,1/An0, - Anp/Anp) of (22) the following representation (see [2, Theorem 7])

(45) M) = 340 = Y s s

i=1 ~ In Z)

where m = m(n) is the degree of the denominator Ay, Zpn1,...,Znm € [0,00) are the
zeros of A, o, and (what is important) g/, ; > 0. At the same time,

(49) 8j(2) — Iy j(2) = O(1 /2™ Fhi(m+1),

where h;(n) > 0. We construct a sequence of discrete measures v, ; with masses “Zz,i at
the points zp,;, ¢ = 1,...,m. Then (48) can be then written as

I, () = /Ooo dvng(@)

Z—X

The approximation property (49) gives

[ee]
(50) Sk,j = / t*dvy j(z), k=0,1,..,m(n)
0

Now suppose that that some subsequence of II, ;(z) is convergent at some fixed point
z € C\ [0,00). By Helly’s theorem (see [10, p. xii]) we can extract from the sequence of
measures vy, ;j a weakly convergent subsequence, with limit measure v. From (50) it follows
that this limit measure is a solution of the same moment problem as the measure 1, and
hence v = p1; by assumption. Consequently, the sequence (u;,), converges weakly to p;.
In particular, for any z < 0 we get

lim Hn]( ) = lim wwz/wwzsj(z).
0

n—00 n—o0 [, zZ—x zZ—
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Finally, the claimed uniform convergence follows from the pointwise convergence on (—o0, 0)
together with the normality of (II, ;(z)). O

Proof of Corollary 3.10: ~ From the genetic sum’s representation (24) of moments it
follows that

0<8,1<Sp2<---<Spp.
On the other hand, from the same representation we get the estimates
Snp < My[max{ai,ag, ...,apn }]"

where M, is the number of monomials in the sum (24). From [2, Lemma 8] it is known
that

1
My < Ma", a=(p+ 1)1+ )"

This implies the relation

2\n/ Sn,p < M1/2na1/2 [ma‘x{ala a, ..., a’np}]l/2'

Consequently, we obtain for j = 1, ..., p the implications

> 1 1
—_— 0 = X — =X — — — Q.
2 N Z V" np 2 s

By the classical Carleman condition [13, Theorem 88.1(b)], we may conclude that the
scalar Stieltjes moment problem for each sequence of moments (Sy ;)n, 7 = 1,2,...,p, is
determinate. Hence Theorem 3.9 gives the claimed convergence. O
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