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Abstract. Given integers N > n > 0, we consider the least squares prob-
lem of finding the vector of coefficients P with respect to a polynomial basis
{po,...,pn}, degp; = j, of a polynomial P, deg P < n, which is of best approx-
imation to a given function f with respect to some weighted discrete norm,
i.e., which minimizes Zj\;o wn(2;)%|f(2;) — P(z;)|*. Here a perturbation of
the values f(z;) leads to some perturbation of the coefficient vector P. We
denote by k5, the maximal magnification of relative errors, i.e., the Euclidean
condition number of the underlying weighted Vandermonde-like matrix.

For the basis of monomials (pj(z) = z7), the quantity &, equals one
when the abscissas are the roots of unity; however, it is known that k, in-
creases exponentially in the case of real abscissas. Here we investigate the
nth-root behavior of &, for some fixed basis and a fixed distribution of (com—
plex) abscissas. An estimate for the nth-root limit of &, is given in terms of
the solution to a weighted constrained energy problem in complex potential
theory.

Key words: Least squares polynomial approximation, Condition number, Vander-
monde matrices, complex potential theory.

Subject Classifications: AMS(MOS): 15A12, 31A15, 65F35; CR: G1.3, GL.6.

1. Introduction

Given a sequence of polynomials (p;);>0, degp; = j for all j, some integers N >
n >0, E, := {z0,...,28} C C, and a weight function w,, taking only positive
values on F,,, the corresponding weighted Vandermonde-like matriz V,, (wy,, E,) of

size (N 4+ 1) x (n+ 1) is defined by

O)P (Zo) 'wn(Zo)P1 (Zo) wn(zo)Pz(Zo) wn(ZO)pn (Zo)

wn( 0
1)])0(21) 'wn(Zl)P1(Z1) wn(zl)Pz(Zl) ce wn(zl)pn (21)

wy (2
wn(en)polzn)  wn(en)pi(zn) wn(zn)pa(en) -+ wa(en)pa(en)
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In this paper we will be interested in determining the size of the Euclidean condi-
tion number &(V;, (wn, Fp)) of Vi, (wy, Ey), which equals the square root of the ratio
of the largest and the smallest eigenvalue of the Hermitian positive definite matrix
Vi (wn, E)H -V (wn, Ey), where Vi, (wn, E,)H denotes the Hermitian counterpart
of Vi, (wn, Ey). Tt is well known that the Euclidean condition number is a measure
for the relative distance to matrices not having full rank [GoVL93, p.80]. More-

over, writing || -|| for the Euclidean vector and matrix norm, and V = V,, (w,, E,),
we have [GoVL93, Subsection 2.7.2]
V.z
(V) = max 1 g L= o v, )

- max

20 [[Vy|| w20 |[z]|
where Vt = (VHV)=1VH denotes the pseudoinverse of V. The study of the
condition number of weighted Vandermonde-like matrices is very much related
to a study of the condition number of more general classes of structured matrices
such as (modified) Gram matrices, positive definite Hankel matrices, or (modified)
Krylov matrices (see, e.g., [Tay78, Tyr94, Bec96, Bec97, BeSt98]).

The quantity &(V,(wn, Fy)) may serve to measure the sensitivity of least
squares polynomial approximation: Given some function f defined on E,, consider
the problem of finding a polynomial P of degree at most n with minimal deviation
from f with respect to some discrete Ly norm. Writing P= (ag, ..., an)T for the
polynomial P = Z?:o a;p;, we are left with the problem of determining ay, ..., a, €
C minimizing the expression

> wn(a)?1f(z) = D apj(a) [,

j=0
with its unique solution given by

P =V (wn, Bn)t(wn(20)f(20), ... wa(zn) f(2n)T

Suppose now that the vector b = (wy(20)f(20), ..., wa(2n)f(2zn))T is perturbed
slightly; what happens to the vector of coefficients of the corresponding best ap-
proximant? The factor of magnification of the corresponding relative errors is given

by

[V (wn, En)* (b + Ab) — Vi (wn, En)*b]| [llAbll}‘1
Vo (10, En) 01 ol
for some vectors of weighted data values b, Ab. Suppose now that b is the vector
of weighted data values resulting from some polynomial of degree at most n, i.e.,
b=V, (wn, Ey) . P with deg P < n, which is perturbed by an arbitrary Ab € CV+1,
From (1) we may conclude that the maximal factor of magnification of relative
errors is just given by &(V,, (wn, Eyn)).

For given bases of polynomials and a given sequence of weights and of abscis-
sas, one observes quite often that the quantity &(V, (w,, E,)) grows exponentially
in n. In the present paper we provide a lower bound of the nth-root limit in
terms of complex potential theory, and describe necessary and sufficient condi-
tions for the data in order to insure subexponential growth. In the case of square
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Vandermonde-like matrices, such a study may be based on properties of an under-
lying weighted Lebesgue function (see, e.g., [Bec96, Appendix B]). Here we will be
interested in the more involved case where #E, /n tends to some constant larger
than one, a rather typical situation for least squares approximation.

We conclude this section by describing our assumptions on the input data (or
for some subsequence) which are appropriate for describing the nth-root behavior
of k(Viy (wn, Ep)):

(i) FE is some compact subset of the complex plane C, and E,, C E for all
n > (0. Furthermore, there exists some finite positive Borel measure o

with finite logarithmic energy, supp(o) = E, such that
. 1
lim — Z flz) = /f(z) do(z)
z€EE,
for all functions f continuous on F.

.. 1 o .
(ii) wy : B — (0,00), and (wn/n)nzo converges to some positive continuous

function w uniformly in F.

(i) Let p,(2) := \/Ipo(2)[> + [p1(2)]2 + ... 4 [pn(2)]?, then (p,l/n)nzo tends

to some function p uniformly on compact subsets of C.

Examples of polynomials satisfying assumption (iii) include monomials, Chebyshev
polynomials or other suitable sequences of orthonormal polynomials, see also the
more detailed discussion in Section 4.

The rest of this paper is organized as follows: We recall in Section 2 some
related recent estimates for special structured matrices. Subsequently, we state our
main results: on the one hand we obtain in Theorem 2.1 exponentially increasing
condition numbers for most of the configurations described in (i)—(iii). In contrast,
we give in Theorem 2.2 necessary and sufficient conditions on the data for insuring
subexponential growth. The proofs of these properties are given in Section 3.
Section 4 is devoted to studying an illustrating example.

2. Statement of our main results and related estimates

The numerical condition of (weighted) Vandermonde(-like) matrices has received
much attention in the past 25 years. In a number of papers [Gau75a, Gau75b,
Gau90, Galn88], Gautschi investigated the condition number of square Vander-
monde matrices (i.e., pj(z) = 2/, w, = 1) with real abscissas, showing that r,(
Va(1, E,)) is bounded from below by some function increasing exponentially in n.
Further results in this area have been given in [Tay78, Tyr94, Bec96]; it is shown
in [Bec97, Theorem 4.1] that for all n > 2

(Vo (1, En)) > ,/ni“-(u\/ﬁ)”—l if £, CR, #E,=n+1, (2)
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and that this bound may be improved at most by a factor (n+ 1)3/2. Similar results

may be stated for nonnegative abscissas [Bec97, Theorem 4.1]. It is important to
notice that the choice of real abscissas is not appropriate for the basis of monomials:
If E, is the set of (N 4 1)st roots of unity, then obviously «(V,(1, E,)) = 1.
Similarly, if E,, results from a Van der Corput enumeration of particular roots of
unity, then &(V, (1, E,)) < v/2(n + 1) [CGRY0, Corollary 3].

The condition number of (unweighted) Vandermonde-like matrices has also
been investigated for other bases of polynomials, e.g., the basis of Newton polyno-
mials [FiRe89, Rei90], the basis of Faber polynomials of some ellipses [ReOp91],
or the basis of a family of orthogonal polynomials [Gau90, ReOp91]. Here, in
general, subexponential growth of (k(V; (1, Ep)))n>o0 is established; however, each
time the choice of the abscissas was motivated by asymptotic properties of the
corresponding basis.

One might expect to be able to decrease the condition number by allowing
for an additional weight function — such a (in general unknown) weight occurs
naturally in the context of Krylov or Gram matrices (see [Bec96, Bec97, BeSt98]).
However, for the basis of monomials it is shown in [Bec97, Theorem 3.6] that for
all n > 2

~" 2Catalan .
n(Wn, Bn)) > —/——, v := — | & 1.7192if E, R,
Valon, ) 2 e 5= exp (228 92 B, R, (3)

and that this bound may be improved at most by a factor v - (8n + 8)1/2. Similar
results are given in [Bec97, Corollary 3.2, Remark 3.4 and Remark 3.5] for the case
of abscissas located in some real interval.

The numerical condition of weighted Vandermonde-like matrices for arbitrary
“admissible” bases (p;);>o0 (see assumption (iii) above) is discussed in [BeSt98,
Theorem 1.2 and Theorem 1.3]. In order to describe their findings and the find-
ings of the present paper, we will need some facts from complex potential theory.
Here we follow [SaTo97]; however, for ease of presentation, we will impose some
quite strong regularity assumptions which simplify some of the characterization
statements.

For an arbitrary finite Borel measure g with compact support supp(p), the
logarithmic potential of y is defined by

1
UHt(z) = [ log —— du(t).
(2) = | log 7 dutt)
Let E and w satisfy assumptions (i),(ii), and suppose in addition that E is regular,
i.e., the connected components of C\ E are regular with respect to the Dirichlet
problem. We denote by M(E) the set of all positive unit Borel measures, and
define for yu € M(E) the weighted energy integral

1
L (1) 3://10gmdﬂ(t) dp(z).
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Then there exists a unique extremal measure A, € M(E) with I, (Ay) = inf{I, (u) :
u € M(E)} (see [SaTo97, Theorem 1.1.3]). According to our regularity assump-
tions, we know from [SaTo97, Theorem 1.4.8 and Theorem 1.5.1] that the potential
U*w is continuous in C. Moreover, by [SaTo97, Theorem I.1.3] there exists a con-
stant F' =: F,, such that for p = A,

>F forallzeFE
K _ . = )
U¥(2) — logw(z) { =F forall z € supp(u). (4)
In addition [SaTo97, Theorem 1.3.1], if u € M(E) satisfies (4), then necessarily
(u, F') coincides with (Ay, Fiy). We refer the reader to [SaTo97] for various ap-
plications of the weighted energy problem. For regular compact sets £ and for
admissible bases, it is shown in [BeSt98, Theorem 1.2 and Theorem 1.3] that

liH_l)inflog inf{& (Vi (wn, Ey)) : E, C E, w, positive on E,} (5)

> s [0P0() + logp(2)] — inf [P (2) + log p(2)],
z€supp(X;/,) 2€C

with p as in (iii). Also, various bases are discussed where actually equality holds
(e.g., the basis of monomials, compare with (3)). Notice that the term on the right—
hand side is necessarily nonnegative by (4), and that only a careful choice of a basis
in terms of F (as well as of w, and E,) will enable us to obtain subexponential
growth of (k(Vy, (wn, En))n>o0-

In the present paper we derive similar estimates for the case where the basis
as well as a configuration of abscissas (and possibly the weights) are given. We
will show that the constrained weighted energy problem plays an important role
[Rak96, DrSa97]: here one tries to minimize I, (x) with respect to all p € M(E)
satisfying the additional constraint g < o. Recently, this energy problem has
been introduced by Rakhmanov and further studied by several other authors
[DaSa98, KuRa98, KuVA98] for describing the asymptotic behavior of so—called
ray sequences of orthonormal polynomials with respect to some discrete measure
(such as discrete Chebyshev or Krawtchouk polynomials). Let E, w, and o be
as in assumptions (i),(ii), with ¢(C) > 1 (the case o(C) = 1 is also allowed but
trivial). We denote by M? the set of all positive unit Borel measures satisfy-
ing the additional constraint g < o, that is, ¢ — p is a positive Borel measure.
Then there exists again a unique constrained extremal measure A, € M° with
Iy (A9) = inf{l, (p) : p € M7} (see [DrSa97, Theorem 2.1]).

We shall prove the following:

Theorem 2.1. Let E,, E, 0, pn, p be as in (i),(iil). Then

lim inflog & (V;, (wn, Ea))/™ > (6)
n— o0

sup [U)‘(z) + log p(z)] — inf [U)‘(z) + log p(2)]
z€supp(}) z€C
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with A = A9

. If in addition wy,w are as in (ii), then

/e
lim inflog & (V}, (wn, En))l/” > sup [UA(Z) — log w(z)] (7)
n—oo z€supp(A)
— inf [0 (2) + log p(2)] + maxlog w(2) + log p(2)]
with A = A

Conversely, provided that the additional assumptions (iv),(v) described below
hold, and supp(A3) Nsupp(o — AG) is nonempty, the limit of the sequence on the
left-hand side of (7) exists and coincides with the right-hand side of (7).

The proof of Theorem 2.1 is based on several observations: first we notice
that for a polynomial P = agpg + - - - + anpn we have P= (ag, ..., an)T, and from
the Cauchy-Schwarz inequality we get |P(z)] < ||P|| - pn(2) for all z € C. This
inequality enables us to relate the norm of the pseudoinverse of V, (wy, E,) to
some polynomial extremal problem as described in Lemma 3.1 below. However,
we may only expect to have equality in (7) provided that

(iv) lim en(H)l/" =1 for some H C C being compact,
n— 00

_ 1Pl
U = B TPl 2
where || - ||z denotes the usual supremum norm on H.

A second key observation is that ||V, (wy, E,)T|| approximately equals the
norm of the inverse of the square submatrix of order n + 1 which has maximal
determinant. This submatrix is given by V,, (w,, E}), where E7 is the set of the n+1
weighted Fekete points out of E,,. Asymptotic properties of weighted Fekete points
formed from discrete sets have been described in [Bec98]. Here one necessarily
requires an additional separation property for the sets F,: we denote the scaled
counting measure of some finite A C C by

1
vn(A) = - Z O,
acA

where §, denotes the usual Dirac measure at a. Notice that (v,(E,))n>0 has the
weak* limit o by assumption (i). Here, following [DrSa97], we will have to add the

property

(v) for any sequence ((n)n>0, ¢n € Ep, with limit ¢, there holds
lim g EMED(G) = U7(¢) < oo,

Sequences of sets F, as described in (i) satisfying condition (v) are described in
[DrSad7, Lemma 3.2]; examples are equidistant nodes, or sets of zeros of polynomi-
als orthogonal with respect to some measure in the class Reg on an interval.! One

! Abscissas satisfying both (i),(v) are for instance given by En = {f(j/Nn) : 5 = 0,--+ , Ny, 1=
#FE, — 1}, where f :[0,1] = C is continuous and injective, and f~! € Lip, for some 0 < a < 1.



Sensitivity of Polynomial Approximation 7

may easily construct? sets E,, satisfying (i) even with continuous U%, where (v)
is violated (and the last part of Theorem 2.1 does not remain valid). We should
however mention that we may relax (v) by allowing for an exceptional set of capac-
ity zero (see [DaSa98, KuVA98]). Also, following [Bec98], it is possible to replace
condition (v) by the regularity assumption

(v") U°? is continuous, and

.1 1 1
nlgr;o 3 Z log = //log Tl do(z)do(y),

z,yEEn z#y |I B y|

as conjectured by Rakhmanov [KuRa98] to be sufficient for establishing the asymp-
totic behavior of related discrete orthogonal polynomials. Note that condition (v’)
has an interpretation in terms of the asymptotic behavior of the determinants of
square Vandermonde matrices of order #FE),.

Theorem 2.1 is of some theoretical interest for detecting configurations of
data where the condition number grows exponentially in n. Of more practical
interest, however, is the case where we observe subexponential growth. Here we
have the following result.

Theorem 2.2. Let E,, E,0,wp, n,pp, p be as in (i),(il),(iil),(v), with supp(A7) N
supp(o—A7,) being nonempty. We have subexponential growth of (k(Vy, (wn, £r)))n>0
if and only if

(a)  log[w(z) - p(2)] = maxloglw(t) - p(t)] =: I for all z € supp(A},);
(b) U*e +logp equals some constant F* in C;
(c) condition (iv) holds.
In this case, we have the implications
(d) A9 = Ay and F* — F' = Fy, (and thus Ay, < 0);
(e) For the leading coefficient b; of p;, there holds nlgrQlQ |bn|1/" = exp(F*);

. , n n _ —
() nlLrI;O [rznezgdw(z) Pn(z)” =exp(—Fy), Pn:=pn/bn.

For numerical reasons, in general one also wants that ||V;, (wn, En)|[}/™ — 1,
and hence the constant F’ in Theorem 2.2(a) should be equal to 0.

Following [SaTo97, Chapter II1.4], we may conclude from Theorem 2.2(f) that
P, are asymptotically extremal monic polynomials. For such polynomials, many
results about zero distributions in terms of A, = A, are known.

To conclude this section, we mention that many of the above results remain
valid in the case of an unbounded set F = supp(c). Here one requires a par-
ticular decay rate of w at infinity, and a suitable reformulation of assumptions
(1),(i1),(v’) to insure that the corresponding weighted Fekete points remain uni-
formly bounded. For further details we refer the reader to [KuVA98, KuRa98,
DaSa98, Bec98].

?Take, e.g., En = {j/n,j/n —6n :7=1,2,..,n}, where §, tends rapidly to zero.
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3. Proofs

In all of this section we will assume that E,,, E, o, p,, p are as in (i),(iii), and wy, :
E — (0, 00). Further assumptions will be mentioned explicitly. A basic observation
in our proofs of Theorems 2.1 and 2.2 is that condition numbers of weighted
Vandermonde-like matrices are closely related to some weighted extremal problems
for polynomials, as shown in the following result.

Lemma 3.1. Let H C C be compact, and define

6n(wn;En,H) :—= maXx M
deg P<n ||w, Pl|&,

Then, with N + 1 := #FE, and €, (H) as defined in (iv), there holds

K (Vi (wn, En))

Vn naEn N+1> nFn nan naEn;H Z N 8

(Valwn, En)) VN HT 2 llwnpnlli,0a (s Bn H) 2 £ 200, ()
lwnpn e, 0n(wn, En, H) 2 60 (1/ pn, En, H). (9)

Furthermore, if we denote by E}, C E, a set of weighted Fekete nodes, i.e., a sel
where the mazimum is attained in max{|det V,,(w,, E.)| : B!, C E,, #E! = n+1},
then

(n+ 1) -8 (wn, Bn, H) > 80 (wn, EX, H) > 6 (wn, Bn, H).  (10)

Proof: Writing E,, = {zo, ..., zn}, we first notice that w,(2;) - pn(2;) equals
the Euclidean norm of the jth row of V,, (wy, Fy,). Consequently,

N
1/2
ewnpal . < 1[Va(wn, BNl < [3 walz)?pn(z)?] " < VN1 ||wnPn||E(n- )
j=0 11

Also, for any polynomial P of degree at most n and for any z € C there holds
[P < Pl pn(2), NwnPlle, < |[Va(wn, En)Pl| < VN + 1 |[wnPl|g,.
Thus we get, using (1) and (11), that

I2sl 5 Mwnpalle,  [P(2)/pa(2)]
[[Va(wn, E.)P|l = VN+1  [[waPllg, ’
as required for the first part of (8). The other part follows by observing that

en(H) - 8y (wn, By, H) > max 121l > £V (W, Bn)) ,
deg P<n ||wnP||En V N + 1- ||wnpn||En
where for the second step we have applied (1) and (11). The inequality (9) is
trivial. It remains to show (10). Here the inequality 6, (wy, £, H) > 6, (wn, En, H)
is a trivial consequence of the fact that £} C E,. In order to obtain the other
inequality of (10), let E* := {&o, ..., £n}, and consider the corresponding Lagrange

polynomials
E'(z)—llz_xk j =0 n
&) =11 = j=0,..,n.
k#j

&(Va(wn, En)) 2 [|wnpnlle, -
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By the triangle inequality

|[wn Plle,
ma .
deg P<n ||wnP||E; z2€E, i=o wn(x])

and it is sufficient to show that the right-hand side is < n + 1. This, however, is
an immediate consequence of the construction of E} since for any z € F,, and for
any 0 < j < n there holds

| wn(z) . ( )| — |det Vn('wn,{l‘o,...,Ij_1,2,l‘j+1,..-,In})| <1
wn(aj]) ’ |detvn('wn,{$0,...,Ij_l,l‘j,l‘j+1,...,In})| - (12)
O
We see from Lemma 3.1 that — at least for bases satisfying (iv) — the as-

ymptotic behavior of (k(Vy, (wn, En))/™)nea is completely determined by that of
(0n (wn, En, H)l/")nEA (or of (0, (wn, E, H)l/”)nEA) since the asymptotic behav-
ior of (||'wnpn||11g/nn)nEA is known according to assumptions (i)—(iii). Also, though
the determination of a weight w, minimizing &(V,, (wy,, E,)) in general is a non-
trivial task (see, e.g., [Bau63]), the simpler expression ||wnpn||E, - On(Wn, En, H)
is clearly minimized for the choice w, = 1/p, by (9). Finally, the occurrence of
weighted Fekete points is quite natural since, as in the proof of Lemma 3.1, one
shows that

Vo (wn, En) ¥ < (Vo (wn, E)7HE S (N 4 1) - [[Va(wn, En) ¥

In other words, the sensitivity of polynomial least squares approximation is closely
related to the sensitivity of polynomial interpolation at a suitable subset of ab-
scissas.

Taking into account Lemma 3.1, it remains to discuss the asymptotic behavior
of (8, (wn, EY, H)l/")nzo. Here the constrained energy problem with external field
plays an important role.

Lemma 3.2. Let R > 0 and Ap := {z € C : |z| < R}. Furthermore, suppose
that assumption (ii) holds, and denote by A = A7, the extremal measure of the
constrained weighted energy problem as introduced before Theorem 2.1. Then

lim inflog &, (wn, B, Ag)*™ > sup [U*(z)~log w(z)]— min [U*(z)+log p(2)].
n—0o00 zEsupp()\) 2€EAR

Proof: We write more explicitly E} = {20, ..., £n n} for the set of weighted
Fekete points as introduced in Lemma 3.1, denote by g ,,, .., £, , the corresponding
Lagrange polynomials, and consider the measures y;, = vo(E; \ {2 n}), ttn =
vn(EY%), 0 < j < n. First, as in the proof of Lemma 3.1, one shows that

3n(wn, B2, AR) = max Z M
— zj
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Taking into account that log|¢; ,(2)|/" = Ukin(z;,) — Ulin(z) and writing
ajn = Ul (2)) = logwn (zj,2)"/"
tain

, 0 £ < n, a, := maxo<;<n djn, We ob-

1
—log d, (wn, Er, AR)
n

n

1
= — - log max exp (n . (ajyn — Utin(z) —log Pn(Z)l/n))
n 2€AR =0
_ logmnn fiim 1/n
= =+ max max (aj, — U (2) —log pa(2)'/7) (13)

for some n, € [1, (n + 1)].
Since supp(pn) C E, Helly’s theorem asserts that, given some infinite set
Ag of integers, we may find Ay C Ag such that (u,)nea, converges weak* to
a probability measure y. One easily verifies, using assumption (i), that g € M?.
Moreover, for any 0 < j, < n, the sequence (1, n)nea, also has the weak* limit p.
By construction, for any z € supp(¢) we may find a sequence (z;, n)nea, tending
to z, and therefore
UH(z) =1 < liminf a;_ , < liminf a, 14
() ~logulz) < JRad, @nn < J0NE )
for all z € supp(u) by the principle of descent (see, e.g., [SaTo97, Theorem 1.6.8])
and assumption (ii). Also, the closed disk Ag has the K—property, and thus
i . B . 1/n _ : H
Lo dim - min [UF5een (z) 4 log pa (2)' 7] = min [U%(2) +log p(2)]
(15)
for any 0 < j, < n according to [NiSo88, Theorem V.4.3, p.182] and assump-
tion (iii). Combining (13),(14), and (15), we obtain

1
liminf —logd,(wn, E;, AR)

n—oco,n€AL N
> sup [U*(z) —logw(z)] — min [U¥#(z) + log p(z)].
z€supp(u) 2€AR
Since the choice of Ay was arbitrary, the assertion of Lemma 3.2 now follows by
showing that for all z € C we have
Ut(z) < sup [U“(t) — log 'w(t)] +UMz)—  sup [U)‘(t) — log w(t)].
tesupp(u) tesupp(A) (16)

In fact, from [DrSa97, Theorem 2.1.(c)] we know that there exists a set K C
with (o — A)(K) = 0 such that

U*z) —logw(z) >  sup [U)‘(t) — log 'w(t)], z €supp(c —A) \ K.
tesupp()) (17)

Denote by p’ the restriction of u to supp(c — A). If g/ = 0 then necessarily A = u
(cf. [DrSa97, Lemma 5.1]), and thus (16) trivially holds. Also, (16) trivially is
true if sup{[U*(t) — logw(?)] : t € supp(u)} = +oo, the latter being equivalent
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to sup{U¥(t) : t € C} = 400 by the maximum principle for potentials [SaTo97,
Corollary I1.3.3]. It therefore remains to discuss the case where p # 0 has a finite
potential, and thus g’ # 0 has both a finite potential and finite logarithmic energy.
Then one verifies using Fubini’s Theorem that also p/(K) = 0. Furthermore, from
(17) we obtain for z € supp(p') \ K C supp(u)

i

Uk (z) < sup [U¥(t) — logw(t)] + logw(z) — U“_“I(z)

tesupp(u)

< sup [U“(t) — log 'w(t)] — sup [U)‘(t) — log 'w(t)]
tesupp(u) te€supp(X)
+UMNz) = U (2). (18)

Also, with S := E'\supp(c—A) we have by construction p—p' = pls < ols = Als,
showing that A—p+p’ is a nonnegative finite Borel measure with compact support,
with its total mass not exceeding that of u'. From the principle of domination
[SaTo97, Theorem I1.3.2] we may conclude that (18) holds for all z € C, as claimed
in (16). O

Observe that, for z — oo, inequality (16) provides a new characterization of
the extremal measure A, in the case of compact supp(c) and continuous w which
is complementary to [DrSa97, Theorem 2.1.(e)]. Here the uniqueness result follows
from the unicity theorem [SaTo97, Theorem 2.1] and the maximum principle for
subharmonic functions.

Corollary 3.3. We have for A = A7,

sup [U*t) —logw(t)] = min  sup [U*(t) —logw(t)]. (19)
tesupp(X) HEM® tesupp(u)
If, in addition, the polynomial conver hull of supp(Ay) is of two-dimensional
Lebesgue measure zero, then any measure X € M satisfying (19) necessarily co-
incides with A7,.

For the second part of Theorem 2.1 we need a sharper version of Lemma 3.2
which is attainable if we add some separation property such as assumption (v)
or (v’). In fact, it follows from [Bec98, Theorem 1.5(a),(c)] that equality holds in
Lemma 3.2 provided that £ = supp(o) is connected and (v’) holds, and that this
result may even be generalized for measures ¢ with unbounded support. Here we
will restrict ourselves to the simpler condition (v)

Lemma 3.4. Under the assumptions of Lemma 3.2, suppose in addition that (v)
holds, and that supp()\) Nsupp(o — A) is nonempty, where X\ = \S,. Then3

lim logd, (wn, B, Ag)*/™ = sup [U)‘(z) —logw(z)]— min [U)‘(z)—i—log p(z)].
n— 00 zEsupp()\) 2EAR

3The set Agr in Lemma 3.2 and Lemma 3.4 may be replaced, e.g., by any compact set having
an empty intersection with F.
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Proof:  Let fin, fijn,an, @5 n, Ao, A1, pt be as in the proof of Lemma 3.2. We
choose k, € {0,...,n}, ¢ € supp(c — p), and Ay C Ay with

limsup a, = lim  ag, n,
n—o00,n€EA; n—00,nEA2
and min  [U*(t) —logw(t)] = U#(¢) — logw(¢).

tesupp(o—p)
By assumption (i), we may find ¢, € E, \ E} with ({s)nea, tending to {. Set
o) = ftk, ny On = Vn(En \{(n}) — 0,. Then the sequence (7] )nea, has the weak*

limit ¢ — g > 0. Applying twice the principle of descent and assumption (v), we
obtain

UA(C) < liminf U ((y)

T n—=oo,n€A;

< limsup U%(Cy) =U%(¢) — liminf U%((,) < UH(C).

n—00,nEA3 n—00,n€EA;

With (12) and assumption (ii) taken into account, it follows that
UF(C) —logw(¢) =  lim  [U%(¢) —logwa ()] > Him ak, m,

n—oco,n€Az n—oco,n€Az
and a combination with (14) leads to

min [U“(t)—log'w(t)] > limsup a, > liminf a,

tesupp(o—pu) n—oo,n€A; n—oo,n€EA;
> max [U*(t) — logw(t)]. (20)
tesupp(u)

In particular, the equilibrium condition (17) holds for the measure pu € M7 with
K being empty. From the uniqueness result [DrSa97, Theorem 2.1(d)] we may
conclude that g = A. Recalling that the set Ay was arbitrary, we may conclude that
the sequence of normalized counting measures of Fekete points (,un)nZO has the
weak* limit A (see also [Bec98, Theorem 1.5(a)]). Also, since supp(A) Nsupp(o —A)
is nonempty, we obtain from (20) the convergence® of (a,),>0, with limit described
in (20). Finally, the assertion of Lemma 3.4 now follows from (13) together with
(15). O

We are now prepared to establish our main theorems.
Proof of Theorem 2.1: In order to establish (6), recall from (8), (9), and
(10) that

1 1
JEL. 0n(1/pn, En, AR) > (n—i—l)—\/#—En

for every R > 0, where EX* is an (n 4 1)-point Fekete set for the weight 1/p,.
Thus, it just remains to apply Lemma 3.2 with w,, = 1/p,. Similarly, for a proof

K& (Va(wn, Bn)) 2 0n(1/pn, 7, AR)

4Using [DrSa97, Example 2.4] one may construct examples where p = A, but (an)n>o does not
necessarily converge.
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of (7) we apply (8), (10), and Lemma 3.2, and observe that
. 1
Jim —log [|wnpnl|e, = max[logw(z) +log p(2)]

by assumptions (i), (ii), and (iii).

Now let (iv) and (v) hold, and let supp(A7) Nsupp(c — A) be nonempty.
We choose a sufficiently large R > 0 such that the set H of assumption (iv) is
contained in the disk Ag. Since €,(H) > €,(Agr) > 1 by construction, we may
conclude that (iv) is also true for H = Ag. Thus we obtain from (8) and (10)

lim sup log & (V, (wn, En))l/”
n— 00
< maﬁ([log w(z) + log p(z)] + limsuplog d,, (wy,, E, H)l/",
zZ€ n—0oo

with the right-hand side being computed in Lemma 3.4. Letting B — oo and
combining with (7) yields the final claim of Theorem 2.1. O

Proof of Theorem 2.2: In the first part of the proof we assume that there
is subexponential growth, and write A = AJ. First, recalling the inequalities of
Lemma 3.1, we have

1B lwapalle
1< ) < E ) = n
S en(B) S enlBn) = 3% 1570 2, Tlwnpallo.

< 21| - llwnpnl £,

< #En -k(Vo (wn, Br)),
~ degP<n ||wnP||En - ( ( ))

and thus (iv) holds with H = E, as claimed in part (c). Moreover, because of the
subexponential growth, the right-hand side of (6) has to be < 0. In particular,
the function f(z) := U*(z) + log p(z) has to be equal to some constant F* on
supp(A), and f(z) > F* for z € C \ supp(A). One verifies (see, e.g., [BeSt98,
Lemma 2.1]), using assumption (iii), that log p is continuous and subharmonic in C,
and log p(z) —log |z| is bounded above around infinity. It follows from the principle
of continuity [SaTo97, Theorem I1.3.5] that U* is continuous in C. Consequently, f
is subharmonic in C\ supp(A), continuous in C, bounded above by F* on supp(A),
and bounded above around infinity. From the maximum principle for subharmonic
functions it follows that f(z) < F*, and thus f(z) = F* for all z € C, which yields
property (b). In addition, since the right-hand side of (7) has to be < 0, we get
sup [U)‘(Z) — log w(z)] + max[log w(z) — U)‘(z)] <0,
z€supp(X) 2€k

that is, U*(z) — logw(z) — F* = —logw(z) — log p(z) is equal to some constant
—F" in supp(A), and > —F’ in E \ supp(}), as claimed in part (a).

Conversely, if (a),(b) and (c) hold, then subexponential growth follows from
the second part of Theorem 2.1. Part (d) now is an immediate consequence of

(a),(b), and [SaTo97, Theorem 1.3.1] (see equation (4)), with F*—F’ = F,,. In order

to show part (e), define p,(z) := maxo<;j<n|p;(2)]. Then log ﬁ,ll/n tends to log p
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uniformly on compact subsets of C by assumption (iii). Furthermore, log ﬁ,ll/n +U*
is subharmonic in (C U {co}) N {|z| > R}, for R large enough. Consequently, we
get from the maximum principle for subharmonic functions

Z|—00 z|=

with the right-hand side tending to F* for n — co. Thus, limsup,, _, ., log |b,|'/"* <
F*. On the other hand, we may conclude from assumptions (i)-(iii) and (a) that
log ||Vi(wn, En)||M™ tends to F' (see (11)), and thus log||V; (wn, En)T||Y/™ tends
to —F'. Furthermore, for any monic polynomial P of degree n there holds |b,] -
||P|| > 1, and by [SaTo97, Theorem 111.3.1]

lim [ min [Jw"P||g]"" = exp(—F.,). (21)

n—oo P(z):z"+

Therefore, using again assumption (ii), we obtain
|
<liminf —log max

1 bal - ||P bal - ||P
F,, <liminf—log max M < M
n—o0o N deg P=n ||w"P||E n—o00 1N deg P=n ||wnP||En

< liminf|log [b, /" + log ||Va (wn, En)*||'V/"| = lim inflog |b, ['/" — F,
n— 00 n—r00

showing that lim inf,, o, log |b,|'/" > F,, + F' = F*, as required for part (e).

In order to establish part (f), notice first that |P,(2)| < pn(2)/|bn], and thus
by (21), assumption (ii), part (a), and part (e),
}E/n = e_F*"'FI = e,

e~ Fv < liminf ||w” Po|[4™ < Liminf by |7 - ||wnpn|
n— 00 n— 00

O

We complete this section by discussing two special cases of Theorem 2.2
which are of major interest for applications: let w = 1 and denote by H the
polynomial convex hull of E. From Theorem 2.2(d) we may conclude that A =
A1 =: wg, the equilibrium measure of F, and Theorem 2.2(b) implies that logp
is the Green function for the unbounded component of C\ E (or of C\ H), with
pole at infinity, denoted by gg(z, c0). Conversely, these data satisfy parts (a),(b)
of Theorem 2.2 (provided of course that wg < o). As a second case, suppose
that log p(z) = gm (z, 00) for some compact set H of positive logarithmic capacity
having a connected complement. Then Theorem 2.2(b) may be equivalently written
as A, = wy. We summarize our findings in

Corollary 3.5. Let E,, E,0,wn,n,pn, p be as in (i),(ii),(iil),(v), with supp(Ag) N
supp(o — Ag) being nonempty.

(a) In the case w =1 (e.g., w, = 1 for all n > 0), we have subezponential growth
of (K(Va(Wn, En)))n>o if and only if wg < o, logp = g(-, ), and condition (iv)
holds. -

(b) Let logp(z) = gu(z,00) with some compact set H of positive logarithmic ca-
pacity having a connected complement. Then we have subexponential growth of
((Va(wn, Ep)))n>o if and only if wy < o, condition (iv) holds, w equals some
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constant exp(F') on the boundary 0H of H, and w - p is less than or equal to
exp(F') in E\ OH. O

4. Examples

In order to illustrate our main results, we will restrict ourselves to the case of
an asymptotically trivial weight w = 1, and consider only real abscissas with
E = supp(c) = [—1, 1]. Furthermore, in order to be able to give some integral rep-
resentation for the constant occurring in Theorem 2.1, we wish to restrict ourselves
to measures o having a even potential which is concave on (—1,1).

Let us first describe how to obtain the corresponding equilibrium measure A =
A{ of the constrained energy problem as described before Theorem 2.1. According
to [DrSa97, Corollary 2.15], the probability measure 7 := (o — A)/(o(F) — 1) is
the solution to the (unconstrained) weighted energy problem on E with weight
v(z) = exp(U?(z)/(0(F)—1)). Since log(1/v) is convex and even, by assumption,
we may conclude from [SaTo97, Theorem IV.1.10] that supp(r) is an interval® of
the form [—r,r]. Having determined the shape of the support, we may find the
corresponding parameter r by maximizing the Mhaskar—Saff functional [SaTo97,

Theorem IV.1.5]

F(r) = —log(cap([—r,7]) — /g[_m] (t,00) do(t).

The equation F’(r) = 0 allows us to determine r as the unique solution of

Lot
According to [DrSa97, Corollary 2.15], we have 0 — X\ = ¢ —w(_, ], where ¢ is the
balayage measure of o onto [—r, r]. By [SaTo97, Section 1.4, Eqn. (4.47)], & may
be rewritten as ¢ = o|_, ] + p, with

d 2 ! W2 — 72
o=z R !
dz T ) (12— 2%) Vr?— 22
and thus
d\ d(wWi—pr] — 1) 1 L oy 72 _ 22
E(z)_idm (I)—;/r s U3 do(t), =€ [-r 7],

(23)
whereas dA(z) = do(z) for z € E\ [—r,7].

We now turn our attention to suitable bases of polynomials. Let H be some
compact set with connected complement and positive logarithmic capacity. It is
shown in [Rei90] that the basis (pj)n>0 of Newton polynomials at Leja points of
H satisfies both assumptions (iii) and (iv) provided H has capacity 1, with p =

5This property can also be derived under weaker assumptions on U7} see, e.g., [SaTo97, Theo-
rem IV.1.10], [SaTo97, Corollary IV.1.10] or [Rak96, Theorem 4].
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g (-, 00) (this result remains valid in the case of capacity different from one if one
divides the jth Newton polynomial by its maximum norm on H). More generally
[Bec96, Theorem 2.11], provided H is regular with respect to the Dirichlet problem,
we may replace Leja points by any other sequence of points if the weak* limit of
the corresponding sequence of normalized zero counting measures coincides with
the equilibrium measure of H, e.g., we may take a Van der Corput enumeration
of Fejer points [FiRe89]. Another family of polynomials satisfying (iii),(iv) with
log p = gu (-, 00) for some domain is given by the corresponding sequence of Faber
polynomials [Bec96, Section 2.4.3].

As a final class of polynomialslet u be some positive Borel measure with com-
pact support, and denote by p, the corresponding nth orthonormal polynomial.
Then condition (iv) holds with H being the polynomial convex hull of supp(u).
To see this, notice that for a polynomial P of degree at most n there holds

B2 = / ()2 du(z) < 1P/pnlly - / pu(2)2 dp) < (n+ 1) - 1P/ pul 2,

and thus e, (H) < v/n+ 1. Now if H is regular, then assumption (iii) holds with
logp = gu (-, 00) iff u € Reg (see [StTo92, Theorem 3.2.3] where further equivalent
descriptions are given). Examples include the sequences of monomials (H = :=
{z € C:|z| < 1}) and the sequence of Chebyshev polynomials (H = [—1, 1]).

Let us now determine the constants occurring in Theorem 2.1 for the special
case w = 1 and log p = gy for some compact set H D E = [—1, 1]. First notice that
log w+log p equals zero on E. Also, U* + gg is superharmonic in (CU{c0})\ 8H,
and thus

T(o,H):= sup [U)‘(z) — log w(z)]
z€supp(A)

— inf [0 (2) + log p(2)] + max[log w(z) + log p(2)]

A : A
e U%(z) = inf U"(z),
in accordance with the observations of Corollary 3.5. Recall from (23) that we
have at our disposal an integral representation for the potential U*. From (4) we
know that that U°~* is constant on [—7, r]. Furthermore, U°~* is convex outside
the support of o — A. Using the representation U* = U? — U°~*, we may conclude
that U?* is concave on [—1,1], decreasing on [1,+oc), and even. Consequently,
[(o, H) = U*0) — U*(e), with ¢ = max(|al, |b]) in the case of a real interval
H =Ja,b] D E, and ¢ = i in the case H = D.

To be more concrete, consider the case ¢ = a -wg + - 7 with «, 8 some
nonnegative real constants, and dr(z) = dz on [—1,1], with ¢(E) = a4+ 25 > 1.
One easily verifies that U7 is concave on E, and so is U?. In the case a > 1 we
have wg < o, and thus T'(c, H) = gg(c,0), which is obviously equal to 0 in the
case H = [—1,1] and equal to log(1 ++/2) in the case H =D. Otherwise, we may
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determine r via (22), and obtain the equation
1
at Gt
1=2 + dt=a+28-/1—r2
/r |:7r\/t2—r2\/1—t2 V2 —r2 o

that is, r = /1 — ((1 — @)/(2/))2. The integral occurring in (23) may be calculated
explicitly; for the sake of simplicity we will restrict ourselves to the case a = 0.
Then for z € [—r, 7] (compare with [DrSa97, Example 4.1])

dA 6: IEE\[—T’,T’],
E(ﬁ) R arctan 1r ), x€[-rr7]
m Vriog2 /s » Tls

leading to

1 CZ
T(o, H) = U*0) —U*ec) =8 / log ‘1 -

_}_% /71 1 i t 7@—7’2 d:
) og 7| arctan N z.

In the case H = [—1,1] (i.e., ¢ = 1) of, e.g., Chebyshev polynomials, we obtain
a function decreasing in 3 (see Figure 1), which for 8 — oo tends to zero (then
we obtain Fekete nodes which approximately are distributed like the arcsin mea-
sure), and for # — 1/2 (the case of square Vandermonde-Chebyshev matrices with
equidistant nodes) tends to log2 & 0.693, describing the classical behavior of the
Lebesgue constant for equidistant nodes on [—1, 1].

In contrast, in the case H = D (i.e., ¢ = i) of, e.g., monomials we obtain a
function decreasing in # (see Figure 1), which for # — co tends to log(1 + v/2) ~
0.881 (Vandermonde-matrices with optimal choice of abscissas in [—1, 1] being
distributed like the arcsin measure [Bec96, Bec97]), and for § — 1/2 (the case of
square Vandermonde matrices with equidistant nodes) tends to log(v/2) 4+ 7/4 ~
1.132, confirming a result of Gautschi [Gau90, Example 3.3].

dz
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