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Abstract. In this paper we suggest a new formula for the residual of Galerkin projection onto
rational Krylov spaces applied to a Sylvester equation, and establish a relation to three different
underlying extremal problems for rational functions.

These extremal problems enable us to compare the size of the residual for the above method
with that obtained by ADI. In addition, we deduce several new a priori error estimates for Galerkin
projection onto rational Krylov spaces, both for the Sylvester and for the Lyapunov equation.
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1. Introduction. Given two square matrices A ∈ CM×M , B ∈ CN×N , not nec-
essarily of the same size, with disjoint spectra Λ(A), Λ(B), the Sylvester equation

SA,BX := AX −XB = C(1.1)

has a unique solution X = S−1
A,BC ∈ CM×N for all C ∈ CM×N . One obtains for the

special case B = −A∗ and C = C∗ the so-called Lyapunov equation. Here the star
denotes complex conjugation and transposition.

Sylvester equations appear frequently in many areas of applied mathematics, see
for instance the survey [10] and the references therein. For instance, Sylvester equa-
tions occur naturally in matrix eigendecompositions [22], control theory [14], model
reduction [1, 2, 33], but also numerical solutions of Riccati equations [18], or image
processing [12]. In many of these applications, A,B are fairly large and sparse, and
C is of low rank d�M,N , so that direct methods for solving (1.1) are not suitable.
In this case we will use a full rank factorization of the right-hand side

C = ab∗, a ∈ CM×d, b ∈ CN×d.

In order to simplify presentation, we will deal in this paper with the case d = 1, the
statements for the case d > 1 are similar, but since some tangential interpolation
problems are involved we leave this for another paper.

The aim of this paper is to compare error estimates for two popular iterative
methods for solving (1.1). The ADI iteration due to Peaceman and Rachford [27] has
been adapted by Wachspress [35, 36] for solving (1.1), see also related work by Birkhoff
and Varga [11]. Roughly speaking, this method requires parameters zA,1, ..., zA,n ∈
C \Λ(A) and zB,1, ..., zB,n ∈ C \Λ(B) and computes an approximation XADI

n of rank
nd by solving shifted systems with coefficient matrices (zA,jI − A) and (zB,jI − B).
Two aspects make the ADI method particularly attractive. First, it is possible to
implement the method through full rank decompositions of the iterates XADI

n , and
thus it essentially remains to solve 2n shifted systems with d right-hand sides, see [9]
and the references therein. Another attractive aspect is that the ADI error X−XADI

n
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2 B. Beckermann

and the ADI residual SA,B(X − XADI
n ) can be described via very simple formulas,

namely

X −XADI
n = RADI(A)−1XRADI(B),(1.2)

SA,B(X −XADI
n ) = RADI(A)−1ab∗RADI(B),(1.3)

with the rational function

RADI(z) =

n∏
j=1

z − zA,j
z − zB,j

.

It turns out that with a “nearly” optimal choice of parameters the ADI error is small
even for modest values of n, but this is no longer true if the parameters are not well
chosen, and here it makes sense to consider instead projection methods.

Given matrices with orthonormal columns

U ∈ CM×m, U∗U = I, V ∈ CN×n, V ∗V = I,(1.4)

for the Galerkin approach one looks for an approximant of the form XG
m,n = UY GV ∗

with Y G ∈ Cm×n by requiring that the residual satisfies the orthogonality conditions

U∗SA,B(X −XG
m,n)V = 0.

Introduce the projected Rayleigh matrices

Am := U∗AU ∈ Cm×m, Bn := V ∗BV ∈ Cn×n,(1.5)

and suppose that Λ(Am) ∩ Λ(Bn) is empty. Then it is not difficult to check the
following formula for the Galerkin approximant

XG
m,n = UY GV ∗, Y G = S−1

Am,Bn
(amb

∗
n),(1.6)

where

am := U∗a, bn := V ∗b.(1.7)

Here we suppose that m,n�M,N , making it possible to solve the Sylvester equation
SAm,BnY = AmY − Y Bn = amb

∗
n by, e.g., some direct method, and to compute the

above quantities Am, U, am, Bn, V, bn in reasonable time. One big advantage of such
projection methods is that for the fields of values we have the inclusions W (Am) ⊂
W (A), and W (Bn) ⊂W (B).

For parameters zA,1, ..., zA,m ∈ C\Λ(A) and zB,1, ..., zB,n ∈ C\Λ(B), C denoting
the extended complex plane C ∪ {∞}, we introduce the polynomials

QA(z) =

m∏
j=1,zA,j 6=∞

(z − zA,j), QB(z) =

n∏
j=1,zB,j 6=∞

(z − zB,j),(1.8)

and denote by Pk the space of polynomials with complex coefficients of degree at most
k. The rational Krylov spaces

KA,m = {RA(A)a : RA ∈ Pm−1/QA},
KB∗,n = {RB(B)∗b : RB ∈ Pn−1/QB},

(1.9)
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built with help of rational functions of fixed denominator play a particular role in the
construction of the ADI method, indeed in the case m = n we find that

colspan(XADI
n ) ⊂ KA,n, colspan((XADI

n )∗) ⊂ KB∗,n,

where up to some degenerate cases there holds equality in both inclusions. Hence
in what follows we will always suppose that the columns of U , and of V , form an
orthonormal basis of KA,m, and of KB∗,n, respectively, which makes sense to compare
the errors for ADI and for Galerkin projection onto rational Krylov spaces (or shorter
rational Galerkin).

The original idea of projecting onto polynomial Krylov spaces (all parameters
zA,j , zB,j = ∞) probably goes back to Saad [29], the case of rational Krylov spaces
has been considered subsequently by many authors, see for instance [19, 20, 21] and
the references therein. However, to our knowledge, until recently little was known
about a priori error estimates in the spirit of the famous CG estimate in terms of the
condition number. We found first results in this direction by Penzl [28], followed by
Druskin and Simoncini [32] and by Kressner and Tobler [25]. The work of [32, 25] is
based on an integral representation for the solution X of the Sylvester equation (1.1)
in terms of the exponential function. There exists another integral representation in
terms of resolvents

X =
1

2πi

∫
Γ

(zI −A)−1ab∗(zI −B)−1 dz,(1.10)

the curve Γ encircling once the eigenvalues of A but not those of B. This integral
formula has been the starting point for similar a priori error estimates for so-called
extended Krylov spaces (all parameters zA,j , zB,j ∈ {0,∞}) in [24], see also [25]. The
case of arbitrary rational Krylov spaces was considered by Druskin, Knizhnerman and
Simoncini in [16] using elegant but deep tools from complex approximation theory like
Takenaka-Malmquist orthogonal rational functions and Faber-Dzhrbashyan rational
functions; we will summarize all these findings in §2.4 below. The results in [16] are
more general but weaker than those of [32, 25, 24] in the sense that the authors only
obtain nth root asymptotic upper bounds for the error, with an explicit convergence
factor given in terms of the parameters zA,j and the fields of values of the matrices A
and B.

Tools from approximation theory also have been an important argument in [25,
Theorem 4.3 and Eqn. (39)] where the authors suggest for the Lyapunov equation
with selfadjoint positive definite A = −B∗ to consider a bivariate polynomial approx-
imation problem.

Our approach is based on an orthogonal decomposition of the residual for rational
Galerkin in Theorem 2.1 below, which to our knowledge is new, and which conceptu-
ally differs from the one given for instance in [17, Proposition 4.1], the latter being
an immediate consequence of the representation of AU − UAm for rational Krylov
projections. Each of the three terms in our new representation of the residual can be
related to some extremal problem for (univariate) rational functions with prescribed
poles. The starting point for this new residual formula is the observation that enforc-
ing the residual to be orthogonal reminds of the well-known FOM method for solving
systems of linear equations. Thus we may use in (1.10) a well-known formula for the
FOM error for shifted systems, given, e.g., in [5].

As a consequence, we are able to relate in Corollary 2.2 the residual norms of
both ADI and the rational Galerkin method. We obtain in Theorem 2.3 an explicit a
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priori estimate for the rational Galerkin residual for couples A,B having disjoint field
of values, and state an improved formula for A,B being selfadjoint. The particular
case of a Lyapunov equation is studied in Corollary 2.5, which enables us to compare
in §2.4 the upper bounds proposed in this paper to existing work. In particular, our
upper bounds describe a geometric convergence behavior, with the same convergence
factor as that discussed in [16].

The rest of the paper is organized as follows. Section 2 contains further definitions
and the statements of our main results, together with motivating remarks. The proofs
for these statements can be found in Section 3. In particular, good candidates for
our rational and matrix-valued extremal problems are constructed in Theorem 3.4,
generalizing previous work [4] for polynomial matrix–valued extremal problems like
matrix Chebyshev polynomials.

Notation. In what follows, ‖ · ‖ denotes the Euclidian vector norm and the
spectral matrix norm, whereas by ‖ · ‖F we denote the Frobenius norm. The field
of values of a square matrix A is defined by W (A) = {y∗Ay : ‖y‖ = 1}, which is
known to be always convex and compact. By stacking the columns of X,C in a large
column vector, one may rewrite (1.1) as an ordinary system of equationsMx = c with
M = IN ⊗A−BT ⊗ IM . It is not difficult to show that W (M) = W (A)−W (B), see
for instance [16, Proof of Theorem 4.2]. As a consequence, in the case W (A)∩W (B)
being empty, we may give simple estimates for the norm of our Sylvester operator and
its inverse

‖SA,B‖ = sup
C

‖SA,BC‖F
‖C‖F

= ‖M‖ ≤ 2 diam(W (A),W (B)),(1.11)

‖S−1
A,B‖ = sup

C

‖C‖F
‖SA,BC‖F

= ‖M−1‖ ≤ 1

dist(W (A),W (B))
(1.12)

where diam(W (A),W (B)) := max
x∈W (A)
y∈W (B)

|x− y|.(1.13)

2. Statement of results.

2.1. A new formula for the residual for rational Galerkin. In order to
state our main results, we need to introduce some particular rational functions

RGA(z) =
det(zI −Am)

QA(z)
∈ Pm/QA, RGB(z) =

det(zI −Bn)

QB(z)
∈ Pn/QB ,(2.1)

where QA, QB are as in (1.8). From the theory of rational Krylov spaces it is known
that

U∗RGA(A)a = 0, V ∗RGB(B)∗b = 0,(2.2)

in other words, RGA(A)a ∈ KA,m+1 together with the columns of U form an orthogonal
basis of KA,m+1, and, similarly RGB(B)∗b ∈ KB∗,n+1 together with the columns of V
form an orthogonal basis1 of KB∗,n+1.

Notice that, by construction, the residual ρ = SA,B(X − XG
m,n) has columns in

KA,m+1, and its adjoint has columns in KB∗,n+1. The following result tells us how to
represent the residual in these orthogonal bases.

1We keep the same denominators in the rational Krylov spaces, or, equivalently, we take the new
poles zA,m+1 = zB,n+1 =∞.
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Theorem 2.1. Let d = 1, and write shorter ρ = SA,B(X−XG
m,n) for the rational

Galerkin residual. Then ρ = ρ1,2 + ρ2,1 + ρ2,2, with

ρ1,2 = U
1

RGB
(Am)amb

∗RGB(B), ρ2,1 = RGA(A)ab∗n
1

RGA
(Bn)V ∗,(2.3)

ρ2,2 =
RGA(A)ab∗RGB(B)

RGA(∞)RGB(∞)
,

and in particular

‖ρ‖2F = ‖ρ1,2‖2F + ‖ρ2,1‖2F + ‖ρ2,2‖2F .(2.4)

If W (A) ∩W (B) is empty, each term is the minimal value of some extremal problem

‖ρ2,2‖F = inf
RA∈

Pm
QA

RB∈
Pn
QB

∥∥∥RA(A)ab∗RB(B)

RA(∞)RB(∞)

∥∥∥
F

= ‖(I − UU∗)ab∗(I − V V ∗)‖F ,(2.5)

‖ρ1,2‖F = min
RB∈ Pn

QB

[∥∥∥ 1

RB
(Am)amb

∗RB(B)
∥∥∥
F

+ c0

∥∥∥ 1

RB
(Am)amb

∗
nRB(Bn)

∥∥∥
F

]
,(2.6)

‖ρ2,1‖F = min
RA∈Pm

QA

[∥∥∥RA(A)ab∗n
1

RA
(Bn)

∥∥∥
F

+ c0

∥∥∥RA(Am)amb
∗
n

1

RA
(Bn)

∥∥∥
F

]
,(2.7)

where c0 := 2 diam(W (A),W (B))/dist(W (A),W (B)). For each extremal problem
(2.5), (2.6), and (2.7), the minimum is attained for RA = RGA and RB = RGB.

From (2.5) we see that ρ2,2 = 0 provided that one of the poles zA,j or zB,j is
chosen to be ∞ (as for instance in [24, 25, 32] where zA,1 = zB,1 = ∞), since then
either a ∈ KA,m or b ∈ KB∗,n.

2.2. Rational Galerkin versus ADI. By comparing the expression (1.3) with
Theorem 2.1 it is not difficult to see that XADI

n = XG
n,n provided that the poles

zA,j , and zB,j , coincide with the nth Ritz values of B and A, respectively (i.e., the
eigenvalues of Bn and An), since then RADI = RGB = 1/RGA. This observation was
already mentioned, e.g., in [16, Theorem 3.4]. However, it is quite difficult to choose
such poles since of course the Ritz values depend on the poles.

Theorem 2.1 allows us to compare the size of the residual for the ADI method
with that of rational Galerkin for arbitrary poles. A weaker result in this direction
can be found in [16, Theorem 4.2] where the authors show that the rational Galerkin
error is always smaller than a (classical) upper bound for the ADI error.

Corollary 2.2. Provided that W (A)∩W (B) is empty, we have for the residuals

‖SA,B(X −XG
n,n)‖F ≤ C ‖SA,B(X −XADI

n )‖F ,

with a constant C ≤ 3 + 2c0 with c0 from Theorem 2.1 independent of the parameters
zA,j , zB,j.

We do not claim of having found the optimal value of the constant C. However, it
becomes clear from Corollary 2.2 that, even for optimal poles, ADI cannot give much
better results as rational Galerkin. Recall that for poor poles ADI is known to give
much larger residuals [9].
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2.3. Explicit bounds for the residual of rational Galerkin. We now state
some a priori upper bounds for the residual of the rational Galerkin method in terms
of the fields of values of A and B. In case of selfadjoint A, recall that W (A) =
[λmin(A), λmax(A)], and that ‖f(A)‖ ≤ ‖f‖L∞(W (A)) for any function f analytic on
W (A). Crouzeix [13] showed recently the deep result that there exists a universal
constant CCrouzeix ≤ 11.08 (he conjectures that CCrouzeix = 2) such that ‖f(A)‖ ≤
CCrouzeix ‖f‖L∞(W (A)) for any matrix A and any function f analytic on W (A). This
makes the field of values quite attractive for matrix function analysis, though in
general field–of–value estimates may be pessimistic.

Theorem 2.1 tells us that for upper bounds of the rational Galerkin residual it is
useful to have upper bounds for the matrix-valued rational extremal problem

Em(A,QA, z) := min
P∈Pm

‖ PQA
(A)‖

| PQA
(z)|

, z ∈ C,(2.8)

which for z = ∞ and zA,j → ∞ is related to a matrix Chebyshev extremal problem
studied by several authors, see, e.g., [34] and the references therein. Indeed, according
to (2.5), for ρ2,2 we require Em(A,QA,∞) and En(B,QB ,∞), whereas, according to
(2.7), for bounding ρ2,1 (and similarly ρ1,2) we can use the upper bound

min
P∈Pm

‖ P
QA

(A)‖ ‖QA
P

(B)‖ ≤ CCrouzeix max
z∈W (B)

Em(A,QA, z).

Notice that such kind of estimates are potentially not very sharp, though (up to the
factor CCrouzeix) there exist sequences of normal matrices for which asymptotically
equality is attained. Again using the Crouzeix estimate we may relate (2.8) with the
quantity

Em(E, QA, z) := min
P∈Pm

‖ PQA
‖L∞(E)

| PQA
(z)|

, z ∈ C, E ⊂ C,(2.9)

here for E = W (A). As we will see in Theorem 3.4 below, it is possible for convex E and
in particular for E = W (A) to give an explicit upper bound both for Em(A,QA, z)
and for Em(E, QA, z) which (knowing only W (A)) can be at most improved by a
modest factor. Notice that lower bounds for Em(E, QA, z) and arbitrary E are easily
obtained by the rational version of the Bernstein-Walsh inequality due to Gonchar
[23], see also [16, Lemma 4.4], and Theorem 3.4 below.

In order to describe the rate of convergence, we denote by gA(·, ζ) the Green
function of C \W (A) with pole at ζ ∈ C, see [31], and define

uA,m(z) = exp
(
−

m∑
j=1

gA(z, zA,j)
)
.

Recall from [31, §I.1.4] that Green functions satisfy gA(z, ζ) > 0 for z, ζ 6∈ W (A),
and gA(z, ζ) = 0 else. If we disregard the particular case zA,1, ..., zA,m ∈ W (A), we
may conclude that 0 ≤ uA,m(z) < 1 for all z 6∈ W (A) including z = ∞, and that
uA,m(zA,j) = 0 if zA,j 6∈W (A).

Similarly, we define

uB,n(z) = exp
(
−

n∑
j=1

gB(z, zB,j)
)
.
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We remark that in case of selfadjoint matrices we may make the expressions for uA,m,
and uB,n, more explicit: the Green function g for a real interval [α, β] is known to be

g(z, ζ) = log
∣∣∣
√

z−β
z−α

√
ζ−α
ζ−β + 1√

z−β
z−α

√
ζ−α
ζ−β − 1

∣∣∣
with the principal branch of the square root,

√
1 = 1, and thus

uA,m(z) =

m∏
j=1

∣∣∣
√

z−λmax(A)
z−λmin(A)

√
zA,j−λmin(A)
zA,j−λmax(A) − 1√

z−λmax(A)
z−λmin(A)

√
zA,j−λmin(A)
zA,j−λmax(A) + 1

∣∣∣.(2.10)

We have the following result.
Theorem 2.3. Let d = 1 and W (A) ∩W (B) be empty, and define2

γA,B := max
z∈W (B)

uA,m(z), γB,A := max
z∈W (A)

uB,n(z),

then we have for the rational Galerkin residual and for general A,B,

‖SA,B(X −XG
m,n)‖F

‖a‖ ‖b‖
≤ 4c1 max{γA,B , γB,A}+ c2

( 2γA,B
1− γA,B

+
2γB,A

1− γB,A

)
,

where

c1 = min
j=1,...,m
k=1,...,n

1

(1− exp(−gA(zA,j ,∞)))(1− exp(−gB(zB,k,∞)))

measuring how far the “furthest” pole is from the fields of values, and c2 = (1 +
c0)CCrouzeix with c0 from Theorem 2.1. For selfadjoint A,B and {zA,1, ..., zA,m},
{zB,1, ..., zB,n} closed under complex conjugation, we have the improvement

‖SA,B(X −XG
m,n)‖F

‖a‖ ‖b‖
≤ 4 max{γA,B , γB,A}+ c3(γA,B + γB,A)

with

c3 = 2

√
2

max{|λmin(B)− λmax(A)|, |λmin(A)− λmax(B)|}
min{|λmin(B)− λmax(A)|, |λmin(A)− λmax(B)|}

.

Remark 2.4. We learn from the upper bounds of Theorem 2.3 that we should
keep both γA,B and γB,A small. Optimizing γA,B can be done by choosing zA,j, and
optimizing γB,A can be done by choosing zB,j. We claim here without proof (being a
consequence of [31, Theorem VIII.2.3]) that

γ
1/m
A,B ≥ R(W (A),W (B))−1, γ

1/n
B,A ≥ R(W (A),W (B))−1,

2For simplifying notation we do not display the dependency on m,n which in what follows are
always supposed to be fixed. However, all appearing explicit constants c0, c1, c2 do not depend on
m and n.
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with R(W (A),W (B)) the Riemann modulus of the doubly connected domain C \
(W (A) ∪W (B)), and that both inequalities are asymptotically sharp, since they can
be attained by appropriate choices of the poles. 2

It is worthy to write down the bounds of Theorem 2.3 for the special case B = −A∗
of a Lyapunov equation and m = n. We will make some simplifying assumptions.

Corollary 2.5. Consider a Lyapunov equation (B = −A∗) with d = 1 and
m = n and W (A) ∩ (−W (A)) being empty. We suppose in addition that A has real
entries, and that the poles are chosen such that zA,j = −zB,j occur in conjugate pairs.
Then with c0, c2 as before

‖SA,B(X −XG
n,n)‖F

‖a‖ ‖b‖
≤ (4 + 4c2)

γA,B
(1−√γA,B)2

.

If in addition A is selfadjoint (and hence positive or negative definite) then we have
the improvement

‖SA,B(X −XG
n,n)‖F

‖a‖ ‖b‖
≤ (4 + 4

√
2 cond(A)) γA,B .

Proof. Since A has real entries, we get that W (A) is symmetric with respect to the
real axis, and thus W (B) = W (−A∗) = −W (A). Also, by our symmetry assumptions
on the poles,

uA,n(z) = uA,n(z) = uB,n(−z), γA,B = γB,A.

Therefore, as in the proof of the first part of Theorem 2.3 we conclude that uA,n(∞) =
uB,n(∞) ≤ √γA,B , and we may relate ‖ρ2,2‖F to γA,B without introducing c1. Ob-
serving that (1−√γA,B)2 ≤ 1−γA,B , we arrive at the first claim. The second follows

by observing that c3 = 2
√

2 cond(A).
Notice that one may improve slightly all upper bounds in Theorem 2.3 and Corol-

lary 2.5 (namely, drop each time the first of the two or three terms on the right) if one
of the poles zA,j or zB,j is chosen to be∞ (since then ρ2,2 = 0). Also, we should men-
tion that each upper bound also implies an upper bound for the error ‖X−XG

m,n‖F by
using (1.12). Finally, comparing with Theorem 3.4 it is possible to get upper bounds
if one replaces W (A) and W (B) in the definition of uA,m, uB,n, γA,B , γB,A by larger
convex sets.

2.4. Comparison with existing work. We have not seen elsewhere in the
literature a priori upper bounds for rational Galerkin applied to a Sylvester equation
as in Theorem 2.3. Let us therefore compare the findings of Corollary 2.5 for the
Lyapunov equation with other results from the literature. In what follows we suppose
that A is real, and α := λmin((A + A∗)/2) > 0. Also, we denote by φ the Riemann
map of W (A).

We first have a look at polynomial Galerkin, that is, all zA,j = zB,j = ∞. Then
uA,n(z) = 1/|φ(z)|n. Since with W (A) also its level lines (where |φ(z)| is constant)
are convex, we see that the first level line hitting −W (A) passes through −α, and
thus γA,B = 1/|φ(−α)|n. Druskin and Simoncini [32, Proposition 3.1] and Kressner
and Tobler [25, Corollary 4.4] consider the particular case A = A∗, here α = λmin(A),
and we find using (2.10) that

γA,B =
(√κ− 1√

κ+ 1

)n
(2.11)
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with

κ =
λmax(A) + λmin(A)

2λmin(A)
,

the same rate of convergence as that found by these authors. However, our constant
in front is somehow different. For not necessarily selfadjoint A, if W (A) is included in
some ellipse E then the level lines are explicitly known and γA,B can be computed. In
this case we find the rates of convergence of [32, Corollary 4.5] and [25, Theorem 4.8],
though it seems that our constants are somehow better. In particular, compared to
[24, Remark 3.3] we gain a factor n.

The case of extended Krylov spaces, that is, even n, and half of the poles zA,j being
0 and the other half being∞, has been discussed in [25, Lemma 6.1] and [24, Section 4]
for selfadjoint A. The authors find the rate given in (2.11) with κ =

√
cond(A), in

accordance with (2.10). For general A, we have that

γA,B =
(

max
z∈−W (A)

√∣∣∣ 1

φ(z)

φ(z)− φ(0)

1− φ(0)φ(z)

∣∣∣)n,
which at least for disks has been computed in [24, Proposition 5.1]. In the general
case the authors show in [24, Theorem 3.2] that the error is bounded by C nγA,B
with a not explicitly given constant C depending on all the data but not on n. We
are able to drop this factor n.

Finally, the only result which we are aware of for general rational Galerkin is
[16, Proposition 4.5]: for infinite dimensional matrices (operators) A the authors
show that the limsup of the nth root of the error is bounded above by the limsup
of [γA,B ]1/n. They conclude in [16, Theorem 4.6 and Proposition 4.7] that if the
poles are distributed asymptotically like the equilibrium measure of the condenser
consisting of the plates W (A) and W (−A) then the nth root of the error behaves at
worst like R(W (A),W (−A))−1, where R(W (A),W (−A)) is the Riemann modulus of
this condenser. This is exactly the classical upper bound for ADI with poles which
are optimal for W (A).

We recall the conformal invariance

R(W (A),W (−A)) = R(φ(W (A)), φ(W (−A))) = R(D, φ(W (−A))),

the latter being related to some classical well-studied Zolotarev problem. In what
follows we use some results from [5, Section 6.2], we refer the reader to the references
of that paper for more details. According to [5, Eqn. (6.9)] one has

γA,B ≥
1

R(W (A),W (−A))n
(2.12)

for any choice of the poles.

For the particular case W (A) ⊂ (0,∞) a real interval and hence also φ(W (−A))
an (explicitly given) interval ⊂ (−∞,−1), one may give an explicit expression of
R(W (A),W (−A)) in terms of the condition number of A, a formula which involves
elliptic integrals. Moreover, it is known that there are poles achieving the lower
bound up to a factor 2: according to [5, Proof of Theorem 6.6], one should take as
φ(zA,j) ∈ φ(W (−A)) the elliptic points of the two intervals φ(−W (A)), φ(−W (A))−1,
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that is, the zeros of the explicitly known rational function solving the corresponding
Zolotarev problem

Zn,n(E,F) := min
P,Q∈Pn

‖P
Q
‖L∞(E) ‖

Q

P
‖L∞(F), E = φ(−W (A)) = F−1.(2.13)

It is known that this extremal rational function is a Blaschke product, and hence
γA,B =

√
Zn,n(E,F) ≤ 2/R(W (A),W (−A))n.

For not necessarily selfadjoint A, in general the shape of φ(W (−A)) might be
complicated, and hardly any results on the solution of (2.13) are known. However,
“good” poles with small γA,B are obtained by the same principle to choose as φ(zA,j) ∈
φ(W (−A)) the zeros of a Blaschke product P/Q giving a small value in (2.13), the
choice of poles suggested in [16, Theorem 4.6 and Proposition 4.7].

2.5. Linear versus superlinear convergence. For selfadjoint A,B we have
used in this paper the simple upper bound ‖r(A)‖ ≤ ‖r‖L∞(W (A)) for rational func-
tions r. This sometimes severe overestimation might be acceptable for many applica-
tions. However, for instance for a cyclic choice of a few multiple poles this leads to
upper bounds describing a linear convergence behavior, that is, we consider a “worst
case” eigenvalue distribution.

The authors in [3] work instead with discrete maximum norms on Λ(A). For
sequences of selfadjoint matrices A = A(N) of order N , which for N →∞ have a joint
eigenvalue distribution, they are able to quantify superlinear convergence behavior for
the (nth root of the) error after n CG iterations applied to A(N) for n,N →∞ such
that n/N tends to some t > 0.

Recently, the asymptotic behavior of rational Ritz values and thus the nth root
behavior of |RGn (z)|/‖RGn (A)‖ has been found in [7] in a similar setting, if one sup-
poses in addition that also the sets of poles have some joint distribution (such as a
cyclic repetition of few multiple poles). A nice Buyarov–Rakhmanov type formula for
this expression in terms of marginal condition numbers can be found in [8]: roughly
speaking, instead of uA,m one takes a mean of the formula of uA,m over a family of
decreasing sets instead of the fixed set W (A). Inserting these formulas directly in
(2.4) allows us to describe superlinear convergence for rational Galerkin applied to a
Sylvester or a Lyapunov equation. However, in order to make such a formula more
explicit, one has to solve some extremal problems in logarithmic potential theory,
involving the asymptotic distribution of eigenvalues and of poles.

In such an (asymptotic) superlinear convergence theory, in order to find opti-
mal poles for ADI or rational Galerkin one should solve (approximately) the discrete
Zolotarev problem Zn,n(Λ(A),Λ(B)) instead of the continuous Zn,n(W (A),W (B)).
The nth root asymptotics for the corresponding optimal rate of convergence can be
found in [6].

3. Proofs.

3.1. Proof of Theorem 2.1. For a proof of Theorem 2.1, we need three auxil-
iary results, which we state each time for KA,m and for KB∗,n (however, the second
statement follows from the first by taking adjoints). The first and the third property
are classical facts for rational Krylov spaces.

The first property is usually referred to as the exactness property of rational
Krylov spaces, a proof may be found in [5, Proof of Theorem 5.2] for zA,1 =∞, or in
[15, Lemma 3.1] for general poles and selfadjoint A. For the sake of completeness we
add a proof.
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Lemma 3.1. For any RA ∈ Pm−1/QA we have that RA(A)a = URA(Am)am.
Similarly, for any RB ∈ Pn−1/QB we have that b∗RB(B) = b∗nRB(Bn)V ∗.

Proof. By linearity, it is sufficient to consider RA(z) = 1/(z−zj)` ∈ Pm−1/QA for
some integer ` ≥ 1 (and RA(z) = z` ∈ Pm−1/QA in case degQA < m). By definition
of KA,m and U , there exists a vector c ∈ Cm such that

RA(A)a = (A− zjI)−`a = Uc.

In case ` = 1 we multiply on the left by U∗(A− zjI), leading to am = U∗a = U∗(A−
zjI)Uc = (Am−zjI)c, or c = (Am−zjI)−1am, as required. In case ` > 1 we argue by
recurrence on `, and obtain (Am − zjI)c = U∗(A− zjI)−`+1a = (Am − zjI)−`+1am,
again as required. The analysis for RA(z) = z` for ` ≥ 0 is similar, we omit details.

The second property is required for the second part of Theorem 2.1.
Lemma 3.2. For any RA ∈ Pm/QA we have that

(I − RA(A)

RA(z)
)(zI −A)−1a = U(I − RA(Am)

RA(z)
)(zI −Am)−1am.

Similarly, for any RB ∈ Pn/QB,

b∗(zI −B)−1(I − RB(B)

RB(z)
) = b∗n(zI −Bn)−1(I − RB(Bn)

RB(z)
)V ∗.

Proof. It is sufficient to observe that, for fixed z, the function

x 7→ 1−RA(x)/RA(z)

z − x

is an element of Pm−1/QA, and to apply Lemma 3.1.
Our third property is the classical representation of the FOM error for shifted sys-

tems in terms of the rational functions (2.1). It follows immediately from Lemma 3.2
by observing that RGA(Am)am = 0, b∗nR

G
B(Bn) = 0.

Lemma 3.3. We have that

(zI −A)−1a− U(zI −Am)−1am =
RGA(A)

RGA(z)
(zI −A)−1a.

Similarly,

b∗(zI −B)−1 − b∗n(zI −Bn)−1V ∗ = b∗(zI −B)−1R
G
B(B)

RGB(z)
.

Proof of the first part of Theorem 2.1. Write shorter x = (zI − A)−1a, x̃ =
(zI − An)−1an, y = b∗(zI − B)−1, ỹ = b∗n(zI − Bn)−1, then according to (1.6) and
(1.10)

X −XG
m,n =

1

2πi

∫
ΓA

(
xy − Ux̃ỹV ∗

)
dz

where the compact contour ΓA encircles once in mathematical positive orientation
Λ(A) and Λ(Am), but not Λ(B) and Λ(Bn). We also consider ΓB , a compact contour
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encircling once in mathematical positive orientation Λ(B) and Λ(Bn), but not Λ(A)
and Λ(Am). Then we can write using Lemma 3.3

X −XG
m,n =

1

2πi

∫
ΓA

(
(x− Ux̃)y + x(y − ỹV ∗)− (x− Ux̃)(y − ỹV ∗)

)
dz

=
1

2πi

∫
ΓA

(RGA(A)

RGA(z)
xy + xy

RGB(B)

RGB(z)
− RGA(A)

RGA(z)
xy
RGB(B)

RGB(z)

)
dz.

Let us integrate each term separately. For the first term, observing that the integrand
is O(z−2)z→∞, we replace ΓA by ΓB which by the residual theorem gives a change of
sign, and thus

1

2πi

∫
ΓA

RGA(A)

RGA(z)
Axy dz − 1

2πi

∫
ΓA

RGA(A)

RGA(z)
xyB dz = I1,1 − I1,2,

I1,1 :=
1

2πi

∫
ΓB

RGA(A)

RGA(z)
ab∗(zI −B)−1 dz, I1,2 :=

1

2πi

∫
ΓB

RGA(A)

RGA(z)
(zI −A)−1ab∗ dz,

where, again by the residual theorem, I1,2 vanishes.
Similarly, we obtain for the second term the expression −I2,1 + I2,2, with

I2,1 :=
1

2πi

∫
ΓA

ab∗(zI −B)−1R
G
B(B)

RGB(z)
dz, I2,2 :=

1

2πi

∫
ΓA

(zI −A)−1ab∗
RGB(B)

RGB(z)
dz,

and here the first integral I2,1 vanishes by the residual theorem. Finally, for the third
term we get −I3,1 + I3,2, with

I3,1 :=
1

2πi

∫
ΓA

RGA(A)

RGA(z)
ab∗(zI −B)−1R

G
B(B)

RGB(z)
dz,

I3,2 :=
1

2πi

∫
ΓA

RGA(A)

RGA(z)
(zI −A)−1ab∗

RGB(B)

RGB(z)
dz,

where by the residual theorem

I3,2 =
RGA(A)

RGA(∞)
ab∗

RGB(B)

RGB(∞)
− 1

2πi

∫
ΓB

RGA(A)

RGA(z)
(zI −A)−1ab∗

RGB(B)

RGB(z)
dz.

By putting the three terms together and applying twice Lemma 3.3, we find that

SA,B(X −XG
m,n)− RGA(A)

RGA(∞)
ab∗

RGB(B)

RGB(∞)

=
1

2πi

∫
ΓB

RGA(A)

RGA(z)
ab∗(zI −B)−1(I − RGB(B)

RGB(z)
) dz

+
1

2πi

∫
ΓB

(I − RGA(A)

RGA(z)
)(zI −A)−1ab∗

RGB(B)

RGB(z)
dz

=
1

2πi

∫
ΓB

RGA(A)

RGA(z)
ab∗n(zI −Bn)−1V ∗ dz +

1

2πi

∫
ΓA

U(zI −Am)−1amb
∗R

G
B(B)

RGB(z)
dz

= RGA(A)ab∗n
1

RGA
(Bn)V ∗ + U

1

RGB
(Am)amb

∗RGB(B),
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as claimed in (2.3). Introducing the orthogonal projectors

ΠA = UU∗, ΠB = V V ∗,(3.1)

we know from (2.2) that ΠAρ(I−ΠB) = ρ1,2, (I−ΠA)ρΠB = ρ2,1, and (I−ΠA)ρ(I−
ΠB) = ρ2,2, from which (2.4) follows. 2

Proof of equation (2.5) of Theorem 2.1. For any RA ∈ Pm/QA there exists cA ∈ C
such that

RA − cARGA ∈ Pm−1/QA,
cA

RA(∞)
=

1

RGA(∞)
.

Taking into account the definition of U , (2.2), and Lemma 3.1, we conclude that

(I −ΠA)
RA(A)

RA(∞)
a =

RGA(A)

RGA(∞)
a

and, similarly, for RB ∈ Pn−1/QB ,

b∗
RB(B)

RB(∞)
(I −ΠB) = b∗

RGB(B)

RGB(∞)

implying the first part of (2.5). For the second part one has to distinguish two cases:
if RGA(∞) = ∞ (at least one of the zA,j equals ∞) then a ∈ KA,m and the property

is trivially true. Otherwise,
RG

A(z)

RG
A(∞)

− 1 ∈ Pm−1/QA which together with Lemma 3.1

implies that

RGA(A)

RGA(∞)
a = (I −ΠA)

RGA(A)

RGA(∞)
a = (I −ΠA)a.

By the same argument, b∗
RG

B(B)

RG
B(∞)

= b∗(I −ΠB), as claimed in (2.5). 2

Proof of equations (2.6), (2.7) of Theorem 2.1. We only show (2.6), the proof of
(2.7) is obtained by exchanging the roles of A and B. Since ρ1,2 = ΠAρ(I −ΠB), we
find that ‖ρ1,2‖F = ‖U∗ρ1,2‖F . Let us show that, for any RB ∈ Pn/QB ,

‖U∗ρ1,2‖F ≤
∥∥∥ 1

RB
(Am)amb

∗RB(B)
∥∥∥
F

+ c0

∥∥∥ 1

RB
(Am)amb

∗
nRB(Bn)

∥∥∥
F
.(3.2)

Since RGB(Bn) = 0 by (2.1), we see from (2.3) that there is equality in (3.2) for
RB = RGB , and hence (2.6) follows.

We have

U∗ρ1,2 =
1

RGB
(Am)amb

∗RGB(B) =
1

2πi

∫
ΓA

(zI −Am)−1amb
∗R

G
B(B)

RGB(z)
dz

=
1

2πi

∫
ΓA

(zI −Am)−1am

(
b∗(zI −B)−1 − b∗n(zI −Bn)−1V ∗

)
(zI −B) dz

= I1 − I2,

I1 :=
1

2πi

∫
ΓA

(zI −Am)−1am

(
b∗(zI −B)−1RB(B)

RB(z)

)
(zI −B) dz,

I2 :=
1

2πi

∫
ΓA

(zI −Am)−1am

(
b∗n(zI −Bn)−1RB(Bn)

RB(z)
V ∗
)

(zI −B) dz,
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where we have applied first Lemma 3.3 and then Lemma 3.2. Notice that if one
of the roots of RB coincides with one of the eigenvalues of Am then we adapt the
convention that ‖ 1

RB
(Am)‖ has norm ∞. Otherwise, we may deform ΓA such that it

encircles Λ(Am) but not the roots of RB . In this case, I1 = 1
RB

(Am)amb
∗RB(B), and

it remains to show that

‖I2‖F ≤ c0 ‖
1

RB
(Am)amb

∗
nRB(Bn)‖F .(3.3)

By (1.10) and the Cauchy residual formula,

S−1
Am,B

I2 =
1

2πi

∫
ΓB

(ζI −Am)−1 1

2πi

∫
ΓA

(zI −Am)−1am(
b∗n(zI −Bn)−1RB(Bn)

RB(z)
V ∗
)

(zI −B) dz (ζI −B)−1 dζ

=
1

2πi

∫
ΓB

(ζI −Am)−1 1

2πi

∫
ΓA

(zI −Am)−1am(
b∗n(zI −Bn)−1RB(Bn)

RB(z)
V ∗
)

(z − ζ) dz (ζI −B)−1 dζ

=
1

2πi

∫
ΓB

1

2πi

∫
ΓA

(
(ζI −Am)−1 − (zI −Am)−1

)
am(

b∗n(zI −Bn)−1RB(Bn)

RB(z)
V ∗
)
dz (ζI −B)−1 dζ

= − 1

2πi

∫
ΓA

(zI −Am)−1amb
∗
n(zI −Bn)−1RB(Bn)

RB(z)
V ∗ dz.

As above we deduce that

SAm,Bn

(
S−1
Am,B

I2

)
= − 1

2πi

∫
ΓA

(zI −Am)−1amb
∗
n

RB(Bn)

RB(z)
V ∗ dz

= − 1

RB
(Am)amb

∗
nRB(Bn)V ∗.

Hence

‖I2‖F ≤ ‖S−1
Am,Bn

‖ ‖SAm,B‖ ‖
1

RB
(Am)amb

∗
nRB(Bn)‖F ,

and our claim (3.3) follows from (1.11) and (1.12). 2

3.2. Proof of Corollary 2.2. Comparing (1.3) with Theorem 2.1 for m = n,
we may choose RADI = RB = 1/RA in (2.5), (2.6), and (2.7).

Then RA(∞)RB(∞) = 1, and thus by (2.5)

‖ρ2,2‖F ≤ ‖RA(A)ab∗RB(B)‖F = ‖SA,B(X −XADI
n )‖F .

For the upper bound for ‖ρ1,2‖ given in (2.6), we first observe that RA − RG
A

RG
A(∞)

∈
Pm−1/QA, and hence by Lemma 3.1, (2.1), (2.2), and (3.1),

ΠARA(A)a = UU∗RA(A)a = URA(An)an,
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and similarly b∗RB(B)ΠB = b∗nRB(Bn)V ∗. Hence by (2.6)

‖ρ1,2‖F ≤ ‖RA(An)anb
∗RB(B)‖F + c0 ‖RA(An)anb

∗
nRB(Bn)‖F

≤ (1 + c0) ‖SA,B(X −XADI
n )‖F .

The same conclusion is obtained for ‖ρ2,1‖, and thus Corollary 2.2 holds.

3.3. Proof of Theorem 2.3. We start by giving a result related to the extremal
quantities E(A,QA, z) and E(W (A), QA, z) defined in (2.8), and (2.9), respectively.
In our proof of Theorem 3.4 we do not use field–of–value estimates of Crouzeix [13],
but merely generalize the techniques from [4].

Theorem 3.4. Let E ⊂ C be some convex compact set (not a single point), and
A a square matrix with W (A) ⊂ E. For all RA ∈ Pm/QA and for all z 6∈ E

‖RA‖L∞(E)

|RA(z)|
≥ u(z) := exp

(
−

m∑
j=1

g(z, zA,j)
)
,

with g(·, ζ) the Green function of C \ E with pole at ζ. This inequality is sharp up to

some modest constant in the sense that there exists R#
A ∈ Pm/QA having m zeros in

E with

‖R#
A‖L∞(E) ≤ 2, ‖R#

A(A)‖ ≤ 2,

∀z 6∈ E :
1

|R#
A(z)|

≤ u(z)

1− u(z)
.

Proof. The first inequality is known as the rational version of the Bernstein–Walsh
inequality due to Gonchar [23]. For a proof, it is sufficient to notice that the function
f(z) = log |RA(z)u(z)| is subharmonic in C \E, and to apply the maximum principle
for subharmonic functions, leading to f(z) ≤ ‖f‖L∞(∂E) ≤ ‖ log |RA| ‖L∞(E).

For showing the second part, we denote by φ the Riemann conformal mapping of
C\E onto C\D, D the closed unit disk, with φ(∞) =∞ and φ′(∞) > 0. Also, denote
the inverse map by ψ = φ−1. If all zA,j ∈ E, then u(z) = 1 (all Green functions

vanish), and the second statement is trivially true. Otherwise, we may choose R#
A by

prescribing as roots all zA,j ∈ E. Since the corresponding terms in u vanish, we may

suppose without loss of generality for our construction of R#
A that all roots zA,j of

QA are outside E. Then it is known that one can write the function u in terms of
Blaschke products

1

u(z)
= |h(φ(z))|, h(w) =

m∏
j=1

1− φ(zA,j)w

w − φ(zA,j)
.

Notice that h is analytic in D, and meromorphic outside of D.
The Faber map F identifies functions analytic in D with functions analytic in E

via the formula

z ∈ Int(E) : F(p)(z) =

∫
|w|=1

p(w)
wψ′(w)

ψ(w)− z
dw

2πiw
,

in particular F(Pm) = Pm, and F(Pm/Q) = Pm/QA, withQ(z) =
∏m
j=1(w−φ(zA,j)),

see for instance [5] and the references therein. In particular,

R#
A(z) := F(h)(z) + h(0) ∈ Pm/QA.
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By deforming the path of integration towards ∞ we also see that∫
|w|=1

h(w)
wψ′(w)

ψ(w)− z
dw

2πiw
=

∫
|w|=1

1

h(w)

wψ′(w)

ψ(w)− z
dw

2πiw
=

1

h(∞)
= h(0)

since 1/h is analytic outside D. Thus

R#
A(z) =

∫
|w|=1

h(w)Re
(

2
wψ′(w)

ψ(w)− z

) dw

2πiw
.(3.4)

Since the real part is positive for all z ∈ Int(E), we obtain

‖R#
A‖L∞(E) ≤ ‖h‖L∞(D) sup

z∈Int(E)

∫
|w|=1

Re
(

2
wψ′(w)

ψ(w)− z

) dw

2πiw
= 2.

As explained in more detail, e.g., in [5, Proof of Theorem 2.1], the above reasoning
remains true after replacing the scalar argument z by the matrix A, leading to the
similar conclusion ‖R#

A(A)‖ ≤ 2. Finally, for |v| < 1, we have the Poisson kernel
formula

h(v) =

∫
|w|=1

h(w)Re
(w + v

w − v

) dw

2πiw
,(3.5)

which can also be shown directly as in (3.4). The above convexity argument shows
that

Re
(

2
wψ′(w)

ψ(w)− ψ(v)
− w + v

w − v

)
is ≥ 0 for |v| = 1 = |w|, v 6= w, and thus also for |v|, |w| ≥ 1 by the maximum
principle. Combining the two integrals (3.4) and (3.5), we conclude that

‖R#
A ◦ ψ − h‖L∞(D) ≤ lim

ε→0
sup
|v|=1

∫
|w|=1+ε

Re
(

2
wψ′(w)

ψ(w)− ψ(v)
− w + v

w − v

) dw

2πiw
≤ 1.

Finally, the maximum principle applied to the function v 7→ R#
A(ψ(v))−h(v) analytic

in C \ D tells us that, for all z 6∈ E,

|R#
A(z)| ≥ |h(φ(z))| − 1 =

1

u(z)
− 1 > 0,

as required for the assertion of Theorem 3.4.
We learn from Theorem 3.4 that, for convex compact E and for matrices A with

W (A) ⊂ E, z 6∈ E,

1 ≤ Em(E, QA, z)
u(z)

≤ 2

1− u(z)
,

Em(A,QA, z)

u(z)
≤ 2

1− u(z)
,

where we may construct (diagonal) matrices A with Em(A,QA, z) ≤ Em(E, QA, z)
arbitrarily close to Em(E, QA, z). In the particular case QA = 1 and thus zA,1 = ... =
zA,m =∞, our assertion reduces to

1 ≤ Em(E, 1, z)
|φ(z)|−m

≤ 2

1− |φ(z)|−m
,

Em(A, 1, z)

|φ(z)|−m
≤ 2

1− |φ(z)|−m
,
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the left–hand inequality being known as the classical Bernstein–Walsh inequality.
With the notations of the proof of Theorem 3.4, we get h(w) = wm, and hence

R#
A(z) = F(wm)(z) = Fm(z), the mth Faber polynomial. The inequalities ‖Fn(A)‖ ≤

2 and the slight improvement Em(A, 1, z) ≤ 2|φ(z)|−m/(1 − |φ(z)|−m−1) have been
established already in [4, Théorème 1 and Théorème 2].

The following example shows that, in special cases, we have even found the solu-
tion of the extremal problem Em(E, QA, z).

Example 3.5. For the particular case of E = [α, β] a real interval (and hence
A selfadjoint), z ∈ R \ E, and {zA,1, ..., zA,m} closed under complex conjugation, it is
known that, for |w| ≥ 1,

ψ(w) =
β + α

2
+
β − α

2

w + w−1

2
, F(P )(ψ(w)) = P (w) + P (

1

w
)− P (0).

Hence here, for |w| ≥ 1,

R#
A(ψ(w)) = h(w) + h(

1

w
) = h(w) + 1/h(w),

and it is not difficult to see that ‖R#
A‖L∞(E) = 2 and, more precisely, R#

A has the
alternation property of oscillating m+ 1 times between the values ±2 on E. One may
deduce [26] that R#

A is the extremal function of the extremal problem Em([α, β], QA, z)
for z ∈ R \ [α, β], i.e.,

Em([α, β], QA, z)

u(z)
=

2

u(z)|R#
A(z)|

=
2

1 + u(z)2
∈ [1, 2].

Hence it is quite unlikely that Theorem 3.4 can be essentially improved, even for
selfadjoint A. 2

We are now prepared to proceed with our proof.

Proof of Theorem 2.3 for general A,B. Since W (Am) ⊂W (A), W (Bn) ⊂W (B),
each of the terms occurring in equations (2.5), (2.6), and (2.7) of Theorem 2.1 can be
bounded from above in terms of (2.8), Theorem 3.4, and the field–of value estimate
of Crouzeix.

For (2.6), taking into account that the matrix ab∗ is of rank 1, we have that

‖ρ1,2‖F
‖a‖ ‖b‖

≤ min
RB∈ Pn

QB

‖ 1
RB

(Am)am‖
‖a‖

‖b∗RB(B)‖
‖b‖

+ c0
‖ 1
RB

(Am)am‖
‖a‖

‖b∗nRB(Bn)‖
‖b‖

≤ CCrouzeix (1 + c0) max
z∈W (A)

2uB,n(z)

1− uB,n(z)
= CCrouzeix (1 + c0)

2γB,A
1− γB,A

,

and similarly

‖ρ2,1‖F
‖a‖ ‖b‖

≤ CCrouzeix (1 + c0)
2 γA,B

1− γA,B
.

For (2.5) we obtain

‖ρ2,2‖F
‖a‖ ‖b‖

≤ inf
RA∈

Pm
QA

RB∈
Pn
QB

‖RA(A)a‖ ‖b∗RB(B)‖
‖a‖‖b‖|RA(∞)RB(∞)|

(3.6)
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≤ Em(W (A), QA,∞)En(W (B), QB ,∞)

≤ 2uA,m(∞)

1− uA,m(∞)

2uB,n(∞)

1− uB,n(∞)
.

≤ 4 c1 uA,m(∞)uB,n(∞),

the last inequality following immediately from the definition of c1, uA,m, uB,n by taking
into account that Green functions are nonnegative. In order to relate this last quantity
to max{γA,B , γB,A} < 1, we notice that z 7→ log(uA,m(z)uB,n(z)) is subharmonic in
C \ (W (A) ∪W (B)). Hence using the maximum principle

log(uA,m(∞)uB,n(∞)) ≤ max
z∈W (A)∪W (B)

log(uA,m(z)uB,n(z))

= log max
{

max
z∈W (B)

uA,m(z), max
z∈W (A)

uB,n(z)
}

= log max{γA,B , γB,A}.

Thus we have established the first estimate of Theorem 2.3. 2

Proof of Theorem 2.3 for selfadjoint A,B. We closely follow the proof above, but
here we may slightly change some arguments in order to improve our constants. By
assumption, W (A),W (B) are disjoint real intervals, and we may suppose without loss
of generality that W (A) lies on the left of W (B) (otherwise we pass to the adjoint
equation).

First of all, from Example 3.5 we have the slightly sharper bounds

Em(A,QA, z) ≤ Em(W (A), QA, z) ≤ 2uA,m(z),

En(B,QB , z) ≤ En(W (B), QB , z) ≤ 2uB,n(z).

Comparing with the above proof, we may therefore drop the constant c1 and conclude
that ‖ρ2,2‖F ≤ 4 max{γA,B , γB,A}.

Concerning ‖ρ2,1‖F , we will return to the proof of Theorem 2.1 since on the
real line we may exploit another extremal property, namely that the nth orthogonal
polynomial for some discrete measure is a kernel polynomial of a modified measure,
and hence solution of some L2 extremal problem.

Write more explicitly RGA(z) = pm(z)/QA(z), then (2.2) tells us that, for all
p ∈ Pm−1, ∫

p(z)pm(z) dµ(z) = 0,

∫
PQdµ := [

P

QA
(A)a]∗

Q

QA
(A)a

and hence pm is a monic mth orthogonal polynomial with respect to the positive
discrete measure µ with real support ⊂ Λ(A). Consider now for some σ > λmax(A)
the modified positive measure dν(x) = dµ(x)/(σ− x), together with the orthonormal
polynomials q0, ..., qm+1. Then qm+1(z)−qm(z)qm+1(σ)/qm(σ) = (z−σ)q(z) for some
q ∈ Pm. The ν–orthogonality conditions for (z−σ)q(z) allow us to conclude that q is
µ–orthogonal to Pm−1 and hence a non–trivial multiple of pm. Taking into account
the Rodriguez formula for orthogonality on the real line, we conclude that pn(z) is a
non–trivial multiple of the kernel polynomial

m∑
j=0

qj(σ)qj(z).

Since this latter is known to be extremal, we conclude that

min
p∈Pm

∫
|p(z)|2 dν(z)

|p(σ)|2
=

∫
|pm(z)|2 dν(z)

|pm(σ)|2
=

∫
|pm(z)|2 dµ(z)

σ−z
|pm(σ)|2

.
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In terms of linear algebra, this implies that

1

σ − λmin(A)

‖RGA(A)a‖2

|RGA(σ)|2
≤ (RGA(A)a)∗(σI −A)−1RGA(A)a

|RGA(σ)|2

= min
RA∈Pm/QA

(RA(A)a)∗(σI −A)−1RA(A)a

|RA(σ)|2

≤ ‖a‖2

σ − λmax(A)
Em(A,QA, σ)2.

Hence by (2.3)

(‖ρ2,1‖F
‖a‖ ‖b‖

)2

≤
(‖RGA(A)ab∗n

1
RG

A

(Bn)‖F
‖a‖ ‖b‖

)2

≤ max
σ∈Λ(Bn)

‖RGA(A)a‖2

‖a‖2 |RGA(σ)|2

≤ max
λ∈Λ(Bn)

λ− λmin(A)

λ− λmax(A)
max

σ∈Λ(Bn)
Em(A,QA, σ)2

≤ 4
λmin(B)− λmin(A)

λmin(B)− λmax(A)
γ2
A,B

and similarly (‖ρ1,2‖F
‖a‖ ‖b‖

)2

≤ 4
λmax(B)− λmax(A)

λmin(B)− λmax(A)
γ2
B,A.

Thus our claimed estimate follows from (2.4). 2

The arguments used in the second part of the preceding proof can also be used
to show that, for systems of equations with a Hermitian positive definite matrix of
coefficients, the FOM method is mathematically equivalent to CG. Indeed, Kressner
and Tobler in [25, Section 4.1] used for the Lyapunov equation an expression remind-
ing of the A–norm of the error of CG, by exploiting bivariate polynomial extremal
problems.
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