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Abstract. Starting from a GMRES error estimate proposed by Elman in terms of the ratio
of the smallest eigenvalue of the hermitian part and the norm of some non-symmetric matrix, we
propose some asymptotically tighter bound in terms of the same ratio. Here we make use of a recent
deep result of Crouzeix et al. on the norm of functions of matrices.
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1. Introduction. A popular method for solving non-hermitian systems Ax = b
is given by GMRES [13]. Provided that A has a positive definite hermitian part
(A + A∗)/2, Elman [9] (see also [8]) pointed out the following upper bound for the
norm of the kth residual rk of GMRES for every k ≥ 0

||rk ||
||r0||

≤ sink(β), where cos(β) :=
λmin((A + A∗)/2)

||A|| (1.1)

with β ∈ [0, π/2). Here and hereafter we use ‖ ·‖ to denote the Euclidean vector norm
or spectral matrix norm. Recall that the field of values (or numerical range)

W (A) := {(Ay, y) : y ∈ C
n, ||y|| = 1}

of a matrix is bounded by the rectangle defined by the extremal eigenvalues of the
hermitian and the skew-hermitian parts of A. Hence λmin((A + A∗)/2) bounds from
below the distance between the origin and W (A). More generally, since W (A) is
convex by the Hausdorff Theorem, one may show in the case 0 6∈ W (A) that there is a
t ∈ R with dist(0, W (A)) = λmin((e

itA + (eitA)∗)/2), and t ∈ {0, π} for real matrices
A. Since ||rk|| does not change after multiplying Ax = b by some number of modulus
1, we may rewrite in the case 0 6∈ W (A) the Elman bound (1.1) as

k ≥ 0 :
||rk ||
||r0||

≤ sink(β), cos(β) =
dist(0, W (A))

||A|| , (1.2)

where we recall that (1.2) can be sharper than (1.1).
Estimates (1.1) or (1.2) are obtained by iterating the inequality for k = 1 cor-

responding to a one-dimensional minimization problem, which should allow for some
improvements (compare for instance the approach in [7, Theorem 6.1] in terms of an-
gles between subspaces). Here we propose some asymptotically sharper bounds only
in terms of the above angle β ∈ (0, π/2) which to our knowledge seems to be new.
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59655 Villeneuve d’Ascq CEDEX, France, e-mail: bbecker@math.univ-lille1.fr. Supported in part by
INTAS network NeCCA 03-51-6637, and in part by the Ministry of Science and Technology (MCYT)
of Spain and the European Regional Development Fund (ERDF) through the grant BFM2001-3878-
C02-02.,

†Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkina Street, 8, Moscow,
119991, Russia, e-mail: serge@inm.ras.ru. Supported in part by RFBR grant No. 02-01-00590a.

‡Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkina Street, 8, Moscow,
119991, Russia, e-mail: tee@inm.ras.ru. Supported in part by RFBR grant No. 02-01-00590a.

1



0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

angle β

as
ym

pt
ot

ic
 c

on
ve

rg
en

ce
 fa

ct
or

Elman
γβ

Fig. 1. Elman’s asymptotic convergence factor sin(β) (dashed) versus the new asymptotic
convergence factor γβ of Theorem 2.1 (solid).

2. Main result. Theorem 2.1. Let A be a matrix with 0 6∈ W (A), and let
β ∈ (0, π/2) be as in (1.2). Then for the kth relative residual, k ≥ 1, of GMRES we
have

||rk||
||r0||

≤ (2 + 2/
√

3) (2 + γβ) γk
β , (2.1)

where

γβ := 2 sin(
β

4 − 2β/π
) < sin(β).

All convergence bounds (1.1), (1.2), (2.1) are of the form C γk, where we will call
C the constant factor, and γ the asymptotic convergence factor. We have drawn in
Figure 1 the two different asymptotic convergence factors of (1.1) and of Theorem 2.1.
Especially for β close to π/2 (i.e., the critical case where the origin is close to the field of
values), the asymptotic convergence factor of Theorem 2.1 is clearly more interesting.
However, the constant factor of (2.1) (which can be shown to be not optimum) slightly
deteriorates the sharpness of the new convergence bound, see Figure 2. Notice that
bounds of type (2.1) do not capture the range of superlinear convergence of GMRES.

Before entering in the proof of Theorem 2.1, let us briefly recall some well-known
facts on the convergence of GMRES. Starting from the observation

||rk ||
||r0||

≤ min{||p(A)|| : p a polynomial of degree ≤ k, p(0) = 1},

there are many classical GMRES estimates not involving special properties of the
right-hand side b of the system, see for instance [14, Chapter 6.11] or [10, Chapter 3].
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Fig. 2. Upper bounds for the relative residuals of the kth iterate (k = 1, ...,20) of GMRES for
β = π/12, β = π/4, β = π/3 (from the left to the right), the curve corresponding to Elman’s bound
is dashed, the one of Theorem 2.1 is solid.

Here usually the quantity on the right is estimated in terms of a polynomial extremal
problem: for a compact set K, consider the constrained Chebyshev approximation
problem

Ek(K) := min{||p||K : p a polynomial of degree ≤ k, p(0) = 1},

where by || · ||K we denote the maximum norm on K. For instance, for diagonalizable
A one immediately obtains the classical bound

k ≥ 0 :
||rk||
||r0||

≤ ||V || ||V −1||Ek(σ(A)) (2.2)

in terms of the spectrum σ(A) and the matrix of eigenvectors V of A. Other more
sophisticated estimates are based for instance on the pseudo-spectrum, but in general
the shape of these sets are difficult to predict. A third group of estimates are obtained
via the field of values, starting perhaps with a paper of Eiermann [6], see also [10].
These estimates are based on the observation that, given a convex set K 6= C, there
exists a constant C(K) < ∞ such that for all matrices A and for all rational functions
f having no pole in K there holds

W (A) ⊂ K =⇒ ||f(A)|| ≤ C(K) ||f ||K . (2.3)

Recently, Crouzeix and his co-workers [1, 3, 4, 5] gave quite deep results concerning
(2.3). For instance, the existence of such a finite constant in (2.3) only depending
on the set K was established in [5]. In [1, Corollary 2.3], it was shown that for the
optimal constant in (2.3) (also denoted by C(K)) one has

C(K) ≤ 2 + π +

∫ 2π

0

|ρ′(t)|
ρ(t)

dt, (2.4)
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where [0, 2π] 3 t 7→ z0 + ρ(t)eit ∈ ∂K, ρ(t) > 0, is any polar parametrization of the
boundary of K for some z0 in the interior of K (the case of a segment K is trivial,
here aI + bA is hermitian for some a, b ∈ C and thus C(K) = 1). The authors also
give improved estimates for particular K, e.g., for a sector [4]

C(Sα) ≤ 2 + 2/
√

3, Sα = {z ∈ C : 0 ≤ arg(z) ≤ α}, 0 ≤ α ≤ π. (2.5)

In some recent manuscript [3], Crouzeix showed that

C(K) ≤ 33.75 (2.6)

for any convex compact set K, independently of its shape. It is a conjecture of
Crouzeix that C(K) in (2.3) can be replaced by the number 2.

Let us return to the proof of Theorem 2.1. By possibly multiplying A with some
complex number of modulus 1, we may suppose without loss of generality that the
element of W (A) closest to 0 is real positive, and thus

W (A) ⊂ {z : Re(z) ≥ ||A|| cos(β)},

with β as in (1.2). Define Kβ to be the (convex) intersection between the closed unit
disk and the half plane {Re(z) ≥ cos(β)}. Since W (A) ⊂ {|z| ≤ ||A||}, we see that
W (A) ⊂ ||A||Kβ . Moreover, by constructing block-diagonal matrices with blocks

B(φ) =

[

cos(φ) sin(φ)
− sin(φ) cos(φ)

]

, 0 ≤ φ ≤ β,

we find unitary matrices An ∈ R2n

×2n

with W (An) ⊂ W (An+1) ⊂ Kβ, and the closure
of

⋃

n W (An) coinciding with Kβ . Hence in general the relation W (A) ⊂ ||A||Kβ

cannot be improved without further knowledge on A.
We have the following result for our constrained Chebyshev approximation prob-

lem.
Lemma 2.2. There holds for any k ≥ 1 for any β ∈ (0, π/2)

γk
β < Ek(Kβ) ≤ min{2 + γβ ,

2

1 − γk+1
β

} γk
β ,

with γβ = 2 sin( β
4−2β/π ) as in Theorem 1.

Proof. Let K be some convex compact set containing at least 2 elements, 0 6∈ K,
and denote by φ the Riemann conformal map mapping from C \ K onto the exterior
of the closed unit disk, with φ(∞) = ∞. In the first part of the proof we claim that

k ≥ 1 : γk ≤ Ek(K) ≤ min{2 + γ,
2

1 − γk+1
} γk, γ := 1/|φ(0)|. (2.7)

The inequality γk ≤ Ek(K) follows by applying the maximum principle to the function
p/φk for an arbitrary polynomial p of degree ≤ k, see also the classical Bernstein-
Walsh inequality [12]. Notice also that, again by the maximum principle, we have
γk = Ek(K) for some k > 0 if and only if φk is a polynomial of degree k or, in other
words, if K is a lemniscate, which is certainly not true for our set Kβ.

For the other inequality of (2.7) we need a good candidate p of degree k. Consider
the Faber polynomial Fk being the polynomial part of the Laurent expansion of φk

at ∞, see, e.g., [15, 16]. It is shown in [11, Theorem 2] for general convex sets K that

δk := ||Fk − φk||∂K ≤ 1. (2.8)
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From the maximum principle applied to φFk − φk+1 we know that |φ(0)| |Fk(0) −
φ(0)k| < ||φFk − φk+1||∂K ≤ δk, and hence for the polynomial depending on some
parameter v ∈ [0, 1]

pv(z) = Fk(z) + v (φ(0)k − Fk(0))

we obtain |pv(0)| ≥ |φ(0)|k − (1 − v)δk/|φ(0)|, and

||pv||K = ||pv ||∂K ≤ ||φk ||∂K + ||φk −Fk||∂K + v|φ(0)k −Fk(0)| ≤ 1 + δk + vδk/|φ(0)|,
and thus

Ek(Kβ) ≤ min
v∈[0,1]

||pv||K
|pv(0)| ≤ min

v∈[0,1]
γk 1 + δk(1 + vγ)

1 − (1 − v)δkγk+1
,

leading to the other inequality of (2.7).
Now the assertion of the Lemma follows from (2.7) once we have shown that the

Riemann conformal map φ for K = Kβ satisfies 1/|φ(0)| = γβ . Indeed, this map can
be explicitly constructed as a composition φ = T3 ◦ T2 ◦ T1, with

T1(z) =
z − eiβ

z − e−iβ
, T2(z) = (ei(π−β)z)π/(2π−β), T3(z) =

z − T2(1)

z − T2(1)
,

where T1 maps the complement of Kβ conformally onto {z ∈ C : −π + β < arg(z) <
π}, T2 maps {z ∈ C : −π + β < arg(z) < π} conformally onto the upper half plane
{z ∈ C : 0 < arg(z) < π}, and finally T3 maps the upper half plane conformally onto
the complement of the exterior of the closed unit disk. Finally, notice that

1

|φ(0)| = |
exp(iπ π+β

2π−β ) − exp(iπ π−β
2π−β )

exp(iπ π+β
2π−β ) − exp(−iπ π−β

2π−β )
| =

sin( 2β
4−2β/π )

sin(π
2 + β

4−2β/π )
= γβ ,

as required for the assertion of Lemma 2.2.
By means of elementary computations one checks that the asymptotic convergence

factor sin(β) found by Elman coincides with E1(Kβ), which by Lemma 2.2 is larger
than our constant γβ . Thus (2.1) is asympotically sharper than (1.1), (1.2), compare
with Figure 1 and Figure 2.

The second ingredient in our proof of Theorem 2.1 is the following observation.
Lemma 2.3. With β ∈ (0, π/2) as in (1.2) there holds for any polynomial p 6= 0

||p(A)|| ≤ (2 + 2/
√

3) ||p||K , K := ||A||Kβ .

Proof. Choose α ∈ (β, π/2), and consider the linear fractional transformation

r(z) =
||A|| eiα − z

z − ||A|| e−iα
.

Then f := p ◦ r−1 is a rational function with all poles at −1 6∈ Sα. Also, observe that
r(K) ⊂ r(||A||Kα) = Sα. According to the Crouzeix results (2.3) and (2.5), for the
claim of Lemma 2.3 it is sufficient to show the relation W (r(A)) ⊂ Sα. For a vector
y 6= 0, we define ỹ := (A − ||A|| e−iαI)−1y 6= 0, and consider

d :=
(r(A)y, y)

(ỹ, ỹ)
=

((A − ||A|| e−iαI)∗(||A|| eiαI − A)ỹ, ỹ)

(ỹ, ỹ)

= −||A||2 e2iα − ||Aỹ||2
||ỹ||2 + 2 ||A|| eiα Re

( (Aỹ, ỹ)

(ỹ, ỹ)

)

.
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Thus Im(d) ≥ 2 ||A||2 sin(α)[− cos(α)+cos(β)] > 0, and Im(e−iαd) = sin(α) [−||A||2+
||Aỹ||2/||ỹ||2] ≤ 0, implying that W (r(A)) ⊂ Sα.

Since the quantity Ek(K) is invariant under a scaling of the set K, we obtain
from Lemma 2.3

min{||p(A)|| : p a polynomial of degree ≤ k, p(0) = 1}
≤ (2 + 2/

√
3) Ek(||A||Kβ) = (2 + 2/

√
3) Ek(Kβ),

and Lemma 2.2 allows us to conclude the proof of Theorem 2.1.
Since the method of proof of (2.7) does not depend on the particular choice of

the shape of the domain including the field of values, we have shown implicitly the
following result complementary to Theorem 2.1 (compare with [3, Section 9]).

Corollary 2.4. Let K be some compact convex set not including the origin,
and A some matrix with W (A) ⊂ ||A||K. Then for the kth relative residual, k ≥ 1,
of GMRES we have

||rk||
||r0||

≤ [2 + γ] C(K) γk < [2 + γ] C(K) Ek(K),

where C(K) can be chosen as in (2.4) or in (2.6), and γ = 1/|φ(0)| < 1, φ denoting
the Riemann conformal map mapping from C \ K onto the exterior of the unit disk,
with φ(∞) = ∞.

In particular, we get from Corollary 2.4 that the norm of the kth relative residual
of GMRES is bounded above by 101.25 γk, with γ < 1 as before.

Note added in proof. After finishing this paper, one of the authors [2] was
able to show an improvement of Corollary 2.4: for a convex compact set E and a
matrix A with W (A) ⊂ E it is shown in [2, Theorem 1] that ||Fn(A)|| ≤ 2, where Fn

denotes the nth Faber polynomial corresponding to the set E. As a consequence [2,
Theorem 2 and Corollary 3], Corollary 2.4 remains valid after replacing the constant
C(K) by 1.
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