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Abstract

Recently, Gautschi introduced so-called generalized Gauss-Radau and Gauss-Lobatto for-

mulae which are quadrature formulae of Gaussian type involving not only the values but also

the derivatives of the function at the endpoints. In the present note we show the positivity

of the corresponding weights; this positivity has been conjectured already by Gautschi.

As a consequence, we establish several convergence theorems for these quadrature formu-

lae.
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1 Introduction

In a recent paper [3], Gautschi considered so-called generalized Gauss-Radau and Gauss-Lobatto
formulae which are quadrature formulae of Gaussian type, i.e., having a highest possible degree
of exactness, and involving not only the values but also the derivatives of the function at the
endpoints of the interval of integration. Such formulae are of the form

∫
f(t) dλ(t) =

r−1∑

j=0

λ
(j)
0 f (j)(a) +

n∑

j=1

λjf(τj) +
s−1∑

j=0

(−1)jλ
(j)
n+1f

(j)(b) + Rn,r,s(f)

=: Qn,r,s(f) + Rn,r,s(f), (1)
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where λ is a positive measure with support being a subset of [a, b] having an infinite number of
points of increase in (a, b), and the integers r, s ≥ 0 are the multiplicities of the endpoints a and
b, respectively. In what follows we will also allow the case a = −∞ (or b = +∞) of a possibly
unbounded support in which case only r = 0 (or s = 0, respectively) is considered, that is, the
corresponding sum in Qn,r,s(f) does vanish.

It is well-known and easily verified that our requirement of highest possible degree of exactness
leads to a unique quadrature formula of the form (1) with degree of exactness being equal to
2n + r + s − 1

∀f ∈ P2n+r+s−1 : Rn,r,s(f) = 0, (2)

where here and in what follows Pm denotes the space of real polynomials of degree at most m.
Here the free nodes τj have to be chosen as to be the simple zeros of the nth orthogonal polynomial
with respect to the modified measure (x − a)r(b − x)sdα(x) on (a, b) being clearly positive, and
hence τj ∈ (a, b). Indeed, we get for Qn,0,0 the classical Gaussian quadrature rule, for Qn,1,0 and
Qn,0,1 the Gauss-Radau formulae and for Qn,1,1 the Gauss-Lobatto formula. For all these classical

quadrature formulae it is known that the weights λ1, ..., λn and possibly λ
(0)
0 , λ

(0)
n+1 are strictly

positive. The generalized Gauss-Radau (Gauss-Lobatto) formulae of [3] are obtained for s = 0
(and r = s, respectively).

Based on extensive numerical experiments for Jacobi, Laguerre and elliptic Chebyshev measures
using the numerical tools and methods described in [2], Gautschi conjectured in [3, Section 2.2
and Section 3.2] that the weights of the generalized Gauss-Radau and Gauss-Lobatto formulae are
all strictly positive. He proved himself this conjecture for the inner weights λ1, ..., λn as well as for
some boundary weights, namely λ

(r−1)
0 , λ

(r−2)
0 > 0 for the generalized Gauss-Radau formulae Qn,r,0,

and λ
(r−1)
0 , λ

(r−2)
0 , λ

(r−1)
n+1 , λ

(r−2)
n+1 > 0 for the generalized Gauss-Lobatto formulae Qn,r,r. However,

the sign of the other weights remained an open question.
The aim of this paper is to show in Theorem 1 below that Gautschi’s conjecture is true, namely,

all weights in the quadrature formulae Qn,r,s are strictly positive. For this we will show the slightly
stronger result that suitable underlying Lagrange polynomials (in the Hermite sense) do not change
sign in (a, b). As a consequence, we obtain in Corollary 4 convergence of the quadrature Qn,r,s(f)
for fixed r, s and n → ∞ for sufficiently differentiable functions f . The case of r, s, n → ∞ is
discussed in Theorem 7 where we establish a geometric rate of convergence for analytic f .

Before stating and proving our results in the next section, we should mention that generalized
Gauss-Radau and Gauss-Lobatto formulae are of major interest in different applications, and in
particular in moment preserving spline approximation on a compact interval [a, b] = [0, 1], see,

e.g., [2, § 3.3] and [3, § 4]: given a function f ∈ Cm+1([0, 1]) with moments µj =
∫ 1

0
tjf(t) dt, we

are looking for a partition 0 = τ0 < τ1 < ... < τn < τn+1 = 1 and a spline σ of class Cm−1 being
piecewise Pm on each [τj , τj+1] for j = 0, 1, ..., n and having the same moments

∀j = 0, 1, ..., N :

∫ 1

0

tjσ(t) dt = µj, (3)

with N as large as possible, or in other words, the error f −σ is orthogonal to PN with respect to
Lebesgue measure. By [2, Theorem 3.61], such a spline σ exists for N = 2n + m if and only if the
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measure dλ(t) = (−1)m+1f (m+1)(t)/(m!) dt on [0, 1] has a generalized Gauss-Radau quadrature
formula Qn,m+1,m+1 as in (1), and in this case the spline is given by the quadrature data via

σ(t) =
n∑

j=1

λj(τj − t)m
+ +

m∑

j=0

(t − 1)j

j!
[f (j)(1) + (−1)m m! λ

(m−j)
n+1 ].

2 Positivity of the weights

Theorem 1 All weights in the Gauss-type quadrature formula Qn,r,s given in (1) are strictly
positive for all integers n, r, s ≥ 0

j = 1, 2, ..., n : λj > 0, (4)

j = 0, 1, 2, ..., r − 1 : λ
(j)
0 > 0, (5)

j = 0, 1, 2, ..., s − 1 : λ
(j)
n+1 > 0. (6)

Proof. The property (4) has already been established by Gautschi [3], for the sake of complete-
ness we repeat here the proof: consider

pj(t) =
ωj(t)

ωj(τj)
, ωj(t) = (t − a)r(b − t)s

n∏

k=1,k 6=j

(τk − t)2,

then it is clear by construction that pj(τj) = 1, and pj ∈ P2n+r+s−2 is non negative on (a, b).
According to (2), we may conclude that Rn,r,s(pj) = 0, and thus

λj = Qn,r,s(pj) =

∫
pj(t)dλ(t) > 0,

as claimed in (4).
For a proof of (5), consider the polynomial

Pj(t) = Pn,r,s,a,j(t) =
(t − a)j

j!
Ωr−j−1(t)ω(t), ω(t) = (b − t)s

n∏

k=1

(τk − t)2, (7)

where Ωm denotes the mth partial sum of the Taylor expansion of 1/ω at t = a. Writing shorter

Dk
c f =

f (k)(c)

k!
,

we observe that, by construction,

∀k = 1, ..., n : D0
τk

Pj = 0, ∀k = 0, ..., s − 1 : Dk
b Pj = 0, ∀k = 0, ..., j − 1 : Dk

aPj = 0.
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Furthermore, for k = j, j +1, ..., r− 1 we find by the Leibniz product rule and by definition of Ωm

that

Dk
aPj =

k∑

ℓ=0

[
Dℓ

a

(t − a)j

j!

] [
Dk−ℓ

a (Ωr−j−1ω)
]

=
1

j!
Dk−j

a (Ωr−j−1ω) =
1

j!
δk−j,0.

Since in addition Pj ∈ P2n+r+s−1, we may conclude that

λ
(j)
0 = λ

(j)
0 j! Dj

aPj = Qn,r,s(Pj) =

∫
Pj(t) dλ(t). (8)

In order to discuss the sign of the expression on the right, we need the following auxiliary result.

Lemma 2 Let P (t) =
∏m

j=1(xj − t), with x1, ..., xm ∈ (c, +∞), then

∀ℓ = 0, 1, ... : Dℓ
c

( 1

P

)
> 0.

Proof. For m = 1 we find that Dℓ
c

(
1
P

)
= 1

(x1−c)ℓ+1 > 0. The general case follows by induction on
m using the Leibniz product rule. 2

As a consequence of the preceding lemma, we find that

Ωm(t) =

m∑

ℓ=0

(t − a)ℓDℓ
a

( 1

ω

)

is strictly positive on (a, b) for all m ≥ 0, and thus Pj defined in (7) is also non negative in (a, b).

It follows from (8) that λ
(j)
0 > 0, as claimed in (5).

Finally, for a proof of (6) we observe that the variable transformation t′ = −t allows to exchange

the roles of (r, a, λ
(j)
0 ) and (s, b, λ

(j)
n+1) in the quadrature formula (1), and in particular gives a factor

(−1)j for the jth derivative. Hence the assertion (6) follows from (5), but it is also straight forward
to give a direct proof following the above lines. 2

Remark 3 Notice that also D1
τk

Pj = 0 for k = 1, 2, ..., n. Thus, for polynomial interpolation (in
the sense of Hermite) at the node a with multiplicity r, the nodes τ1, ..., τn with multiplicity 2,
and b with multiplicity s, we have shown implicitly that the Lagrange polynomials Pj = Pn,r,s,a,j

associated with the jth derivative at a do not change sign on [a, b]. It follows by symmetry that
the Lagrange polynomial Pn,r,s,b,j associated with the jth derivative at b has constant sign (−1)j

on [a, b]. However, the Lagrange polynomials associated with τj may very well change sign on
(a, b).

The positivity of the quadrature weights is the essential key for proving the following conver-
gence result both for generalized Gauss-Radau and for Gauss-Lobatto formulae.
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Corollary 4 Let [a, b] be compact, and q := max{r − 1, s − 1}. Then for any f ∈ Cq([a, b]) we
have

lim
n→∞

Qn,r,s(f) =

∫
f(t) dλ(t).

Proof. In the sequal of this proof we suppose that r, s ≥ 1, the extension of the proof for r = 0
or s = 0 is straight forward. It is not difficult to see that the space X = Cq([a, b]) equipped with
the norm

‖f‖ = max
0≤j≤q

max
x∈[a,b]

|f(x)|

gives a Banach space: the completeness follows immediately from the well-known completeness of
the space C([a, b]) with respect to the maximum norm on [a, b], see, e.g., [6, p. 258]. Also, from [1,
Theorem 6.3.2] it follows that polynomials are dense in (X, ‖ · ‖). Hence we are prepared to apply
the Banach-Steinhaus Theorem: for f being a polynomial of degree k, we obtain from (2) that

∀n >
k − r − s

2
: Qn,r,s(f) =

∫
f(t) dλ(t),

i.e., we have convergence for a dense subset of (X, ‖ · ‖). For obtaining convergence in X it only
remains to show that the norm of the linear functionals Qn,r,s is bounded uniformly in n. Writing

more explicitly λ
(j)
0 (n), λj(n), λ

(j)
n+1(n) for the quadrature weights occurring in (1), we obtain the

simple upper bound

‖Qn,r,s‖ ≤
r−1∑

j=0

λ
(j)
0 (n) +

n∑

j=1

λj(n) +
s−1∑

j=0

λ
(j)
n+1(n), (9)

since, according to Theorem 1, all weights occurring in these sums are positive. We observe that

λ
(0)
0 (n) +

n∑

j=1

λj(n) + λ
(0)
n+1(n) = Qn,r,s(1) =

∫
dλ(t) < ∞.

For the remaining terms we consider the polynomial (not depending on n)

P (x) :=

r−1∑

j=1

P0,r,s,a,j(x) +

s−1∑

j=1

(−1)jP0,r,s,b,j(x)

of degree ≤ r+s−1, where we recall from Remark 3 that each term in the above sums, representing
up to a sign a Lagrange polynomial in the sense of Hermite at the abscissa a with multiplicity r
and b with multiplicity s, is non negative on [a, b]. Hence this polynomial P is also non negative
on [a, b], implying that, again by the positivity of the weights,

r−1∑

j=1

λ
(j)
0 (n) +

s−1∑

j=1

λ
(j)
n+1(n) ≤ Qn,r,s(P ) =

∫
P (t) dλ(t)
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for all n ≥ 0, where in the last equality we have used (2). Hence the expression on the right of (9)
is bounded uniformly in n, and the Banach-Steinhaus Theorem allows us to conclude that there
is convergence as claimed in the assertion of Corollary 4. 2

Remark 5 By using classical arguments we may also estimate the rate of convergence of our
quadrature formula: according to (2), we find the following bound for the error

|Rn,r,s(f)| ≤
(∫

dλ(t) + ‖Qn,r,s‖
)

inf
p∈P2n+r+s−1

‖f − p‖. (10)

Here we can give a quite rough explicit upper bound for ‖Qn,r,s‖ which is independent of n: by
having a closer look at the construction of the polynomials P0,r,s,a,j from (7) we see that

∀x ∈ [a, b] : 0 ≤ P0,r,s,a,j(x) ≤
(x − a)j

j!

r−j−1∑

ℓ=0

(x − a)ℓ

(b − a)s+ℓ
≤ r(b − a)r,

and a similar bound for (−1)jP0,r,s,b,j(x). Consequently, we learn from the previous proof and
especially from (9) that

‖Qn,r,s‖ ≤
(
1 + r2(b − a)r + s2(b − a)s

)∫
dλ(t). (11)

Using (10) and (11), it is possible to show also convergence for a composite quadrature rule based
on suitably shifted and scaled counterparts of Qn,r,s, and to derive an explicit rate of convergence
in terms of the size of the largest underlying subinterval.

3 Rate of convergence for analytic functions

Denote by Pf ∈ P2n+r+s−1 the polynomial interpolating f with multiplicity r in a, multiplicity
s in b and multiplicity 2 at the other abscissae τj occurring in (1) for j = 1, ..., n, then using
the Cauchy error formula for polynomial interpolation we get from (2) that the error for our
quadrature formula for f ∈ C2n+r+s([a, b]) may be written in terms of divided differences as

Rn,r,s(f) =

∫ (
f(t) − Pf(t)

)
dλ(t)

=

∫
(t − a)r(t − b)s

n∏

j=1

(t − τj)
2[a, ...a︸ ︷︷ ︸

r

, τ1, τ1︸ ︷︷ ︸
2

, ..., τn, τn︸ ︷︷ ︸
2

, b, ..., b︸ ︷︷ ︸
s

, t]f dλ(t)

= [a, ...a, τ1, τ1, ..., τn, τn, b, ..., b, ξn,r,s]f

∫
(t − a)r(t − b)s

n∏

j=1

(t − τj)
2 dλ(t) (12)

=
f (2n+r+s)(ξ′n,r,s)

(2n + r + s)!

∫
(t − a)r(t − b)s

n∏

j=1

(t − τj)
2 dλ(t)
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with ξn,r,s, ξ
′
n,r,s ∈ [a, b], since the polynomial factor in the integral is of unique sign. Denote by

pn,r,s the orthonormal polynomial with respect to the modified weight (t − a)r(b − t)s dλ(t). We
suppose that λ has the compact support [−1, 1] with a ≤ −1 < 1 ≤ b, then it is well-known from,
e.g., [5, Section 11.11] that

lim sup
n→∞

|Rn,0,0(f)|1/n ≤ 1/ρ2 < 1 (13)

provided that f is analytic in the closed ellipse Eρ with foci ±1 and half axes (ρ ± 1/ρ)/2, and
that this result is optimal for measures satisfying the Szegö condition. A similar rate is shown to
be true for fixed r, s > 0, and we are curious about the rate of convergence if r = rn and s = sn

such that rn/n → α ≥ 0, sn/n → β ≥ 0.
We first notice that ξn,r,s ∈ [−1, 1] in (12). Hence, for a (set of) contour(s) C encercling once

[−1, 1] and a, b and staying in a neighborhood of [a, b] where f is analytic, we get from the Cauchy
formula for divided differences and from (12)

Rn,rn,sn
(f) =

1

2πi

∫

C

f(z)

(z − ξn,rn,sn
)(z − a)rn(b − z)snpn,rn,sn

(z)2
dz,

and thus

lim sup
n→∞

|Rn,rn,sn
(f)|1/n ≤ lim sup

n→∞

max
z∈C

1

|z − a|α|z − b|β|pn,rn,sn
(z)|2/n

. (14)

Thus we are left with the question of nth roots asymptotics for orthogonal polynomials with
varying weights, which has been the subject of a number of publications over the last twenty
years, see, e.g., the monograph [7, Chapters III.6 and VII] of Saff and Totik or the monograph [8,
Chapter 3] of Stahl and Totik. Since the negative logarithm of the absolute value of a polynomial
is a logarithmic potential of some discrete measure, here the right tool to describe the nth root
asymptotic is to consider a weighted equilibrium problem in logarithmic potential theory: the
potential and the energy of a Borel measure µ with compact support are defined by

Uµ(y) =

∫
log(

1

|x − y|
) dµ(x), I(µ) =

∫ ∫
log(

1

|x − y|
) dµ(x) dµ(y).

Define the external field Q(x) = Uσ(x), σ = α
2
δa + β

2
δb, with δc the Dirac unit point measure at

x = c, then there exists a unique probability measure µ supported on Σ = [−1, 1] which under all
such measures has minimal weighted energy I(µ) + 2

∫
Q dµ, see [7, Theorem I.1.3]. By the same

Theorem (see also [7, Theorem I.5.1]) we also have the equilibrium conditions that Uµ(x) + Q(x)
is equal to some constant F on the support of µ, and ≥ F in [−1, 1]. Then according to [4] (see
also [8])

(
lim sup

n→∞

max
z∈C

1

|z − a|α|z − b|β |pn,rn,sn
(z)|2/n

)
≤ exp

(
2 sup

z∈C

(
Uµ(z) + Q(z) − F

))
, (15)

with equality iff the starting measure of orthogonality λ is sufficiently regular.
For our external field, the extremal measure may be found explicitly: since Q is convex on

[−1, 1], it follows from [7, Theorem IV.1.11] that the support of µ is an interval of the form [A, B],
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with −1 ≤ A < B ≤ 1, and also a < A and B < b since Q becomes +∞ at a, b and thus in a
neighborhood of these points we may not have equality in the equilibrium condition.

Lemma 6 Denoting by z 7→ φ(z) = (2z − A − B + 2
√

(z − A)(z − B))/(B − A) the conformal
Riemann map sending the exterior of [A, B] onto the exterior of the complex plane minus the
closed unit disk, then we have for z ∈ C

exp(2(Uµ(z) + Q(z) − F )) =
1

|φ(z)|2

∣∣∣
1 − φ(z)φ(a)

φ(z)(φ(z) − φ(a))

∣∣∣
α∣∣∣

1 − φ(z)φ(b)

φ(z)(φ(z) − φ(b))

∣∣∣
β

, (16)

where −1 ≤ A < B ≤ 1 are defined by the system

α

2
(

√
A − a

B − a
− 1) +

β

2
(

√
b − A

b − B
− 1)

{
= 1 if B < 1,
≤ 1 if B = 1,

α

2
(

√
B − a

A − a
− 1) +

β

2
(

√
b − B

b − A
− 1)

{
= 1 if A > −1,
≤ 1 if A = −1.

Proof. Denote by σ̂ the balayage measure of σ onto [A, B], then by [7, Theorem II.4.4], µ + σ̂
is a positive measure of total mass (1 + α

2
+ β

2
) supported on [A, B], and from the equilibrium

conditions we know that its potential is constant quasi everywhere on [A, B]. However, by, e.g., [7,
Theorem I.1.3], the only measure satisfying this relation is (1+ α

2
+ β

2
)ω[A,B], with ω[A,B] the Robin

measure of [A, B], i.e., the equilibrium measure with external field 0 on [A, B]. Hence from [7,
Eqns. (II.4.32) and (II.4.35)] and the fact that Uµ +Q−F equals zero on [A, B] we may conclude
that

Uµ(z) + Q(z) − F =
α

2
g[A,B](z, a) +

β

2
g[A,B](z, b) − (1 +

α

2
+

β

2
)g[A,B](z,∞),

where by x 7→ g[A,B](x, y) we denote the Green function of the domain C \ [A, B] with pole at
y 6∈ [A, B]. Taking into account the link [7, Eqn. (II.4.45)] between the Green function and the
Riemann map, relation (16) follows. Finally, the so-called F-functional of [7, Theorem IV.1.5]

F (A, B) = log(
B − A

4
) −

1

π

∫ B

A

Q(x) dx√
(x − A)(B − x)

= (1 +
α

2
+

β

2
) log(

B − A

4
) +

α

2
g[A,B](a,∞) +

β

2
g[A,B](b,∞)

must take its global maximum on −1 ≤ A < B ≤ 1 at the endpoints of the support of the extremal
measure µ. Taking partial derivatives, we arrive at the given system of equations and inequalities
for A, B as in [7, Theorem II.4.4 and Lemma II.1.15], compare with [7, Example II.1.17] for the
special case a = −1 and b = 1 of Jacobi weights. 2

In order to exploit Lemma 6, we have to consider for ρ > 1 the (closed) level sets Eρ(a, α, b, β)
being the complement of the set of z ∈ C \ [A, B] where the right-hand side of (16) is < ρ−2 < 1.
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Figure 1: Level curves for different choices of the parameters a, α, b, β: on the left we find the
classical case α = β = 0, here [A, B] = [−1, 1] and the level lines are ellipses. On the right
α = β = 1 and b = −a = 1, the endpoints of the support of orthogonality, here the level sets for
ρ > 1 are connected with connected complement, in this case B = −A ≈ 0.86603.
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Figure 2: Level curves for different choices of the parameters α = β: in both cases, a = −1.5, b = 1,
but on the left we find α = β = 0.2, on the right α = β = 1, leading to [A, B] = [−1, 1] in both
cases. In particular, for small ρ > 1 we find three connected components for our level sets.
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Figure 3: Level curves for different choices of the parameters β: in both cases, a = −1.5, b = 1,
α = 1, but β = 1 on the left (leading to [A, B] = [−1, 0.8402]), and β = 1.2 on the right (leading
to [A, B] = [−1, 0.79334]). Here for small ρ > 1 we find two connected components for our level
sets.

Notice that for α = β = 0 we have [A, B] = [−1, 1], and we obtain for the complement the
reqirement |φ(z)| > ρ, that is, Eρ(a, 0, b, 0) coincides with the ellipses Eρ considered before. Also,
by the equilibrium conditions, [−1, 1]∪{a, b} ⊂ Eρ(a, α, b, β) for all ρ > 1, and from the maximum
principle for analytic functions we may conclude that Eρ(a, α, b, β) has a connected complement
containing a neighborhood of infinity, and at most three connected components, one of them
containing a (if α > 0), a second b (if β > 0), and the third the interval [−1, 1], see Figure 2.
Moreover, if A > −1 (and similarly B < 1), then µ is also an extremal measure if we replace
Σ = [−1, 1] by the larger set [a, 1], and hence [a, 1] ⊂ Eρ(a, α, b, β), showing that there are only at
most two connected components (see Figure 3).

If we choose as C the boundary of some level set Eρ(a, α, b, β) for some ρ > 1, this (set of)
contour(s) encircles once a, b, and the interval [−1, 1]. A combination of (14), (15), and (16) leads
to the following result.

Theorem 7 Suppose that rn/n → α ≥ 0, sn/n → β ≥ 0, and let f be analytic in Eρ(a, α, b, β)
for some ρ > 1, then

lim sup
n→∞

|Rn,rn,sn
(f)|1/n ≤ ρ−2.

One may show that again this estimate is best possible if the orthogonality measure λ is
sufficiently regular. In addition, if λ satisfies the Szegő condition, then following [9] we may
obtain strong asymptotics for the orthonormal polynomials pn,rn,sn

, and hence with help of steepest
descend an asymptotic equivalent of |Rn,rn,sn

(f)|.
Different examples for the level sets of the preceding theorem are given in Figure 1, Figure 2,

and Figure 3. Though the shapes of these sets are quite different depending on the parameters,
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there seem to be clearly an indication: if the function f is regular in larger neighborhoods around
a and b, but not in such a large neighborhood around for instance 0 (which is true for instance
for the function f(z) = 1/(1 + z2)), then by the choice of larger α, β one improves the rate of
geometric convergence of our generalized Gauss-Lobatto quadrature formula.
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