A lenticular version of a von Neumann inequality

Bernhard Beckermann* and Michel Crouzeix

Abstract

We generalize to lens-shaped domains the classical von Neumann inequality for the disk.

1 Introduction

We will say that L is a convex lens-shaped domain of the complex plane, with vertices σ and σ^{\prime}, if

- either there exist two disks
$D_{1}:=\left\{z \in \mathbb{C} ;\left|z-\alpha_{1}\right|<r_{1}\right\}$ and $D_{2}:=\left\{z \in \mathbb{C} ;\left|z-\alpha_{2}\right|<r_{2}\right\}$
such that $L=D_{1} \cap D_{2}, \sigma \neq \sigma^{\prime}$ and $\left\{\sigma, \sigma^{\prime}\right\}=\partial D_{1} \cap \partial D_{2}$,
- either there exist a disk and a half-plane
$D_{1}:=\left\{z \in \mathbb{C} ;\left|z-\alpha_{1}\right|<r_{1}\right\}$ and $\Pi_{2}:=\left\{z \in \mathbb{C} ; \operatorname{Re} e^{i \theta}(z-\sigma)<0\right\}$
such that $L=D_{1} \cap \Pi_{2}, \sigma \neq \sigma^{\prime}$ and $\left\{\sigma, \sigma^{\prime}\right\}=\partial D_{1} \cap \partial \Pi_{2}$.
We will denote by $2 \alpha \in] 0, \pi]$ the angle of the lens L at the vertices. We will consider also as a lens the limit case where $L=D_{1}=D_{2}$ is a disk. Then, any point of the boundary may be considered as a vertex and $\alpha=\frac{\pi}{2}$.

Now let us consider a bounded linear operator $A \in \mathcal{B}(H)$ on a complex Hilbert space H. We will say that the operator A is of the lenticular L-type if we have

- $\left\|A-\alpha_{1} I\right\| \leq r_{1}$ and $\left\|A-\alpha_{2} I\right\| \leq r_{2}, \quad$ if $L=D_{1} \cap D_{2}$,
- $\left\|A-\alpha_{1} I\right\| \leq r_{1}$ and $\operatorname{Re} e^{i \theta}((A-\sigma) v, v) \leq 0, \forall v \in H, \quad$ if $L=D_{1} \cap \Pi_{2}$.

[^0]In this paper, the norm used for a linear operator on a Hilbert space H (as well as for a matrix) is always the operator norm induced by the hilbertian structure.

The aim of this paper is to prove the following result.
Theorem 1. Let L be a convex lens-shaped domain of the complex plane with angle 2α. There exists a best constant $C(\alpha) \in \mathbb{R}$ such that the inequality

$$
\begin{equation*}
\|p(A)\| \leq C(\alpha) \sup _{z \in L}|p(z)| \tag{1}
\end{equation*}
$$

holds for all polynomials $p: \mathbb{C} \rightarrow \mathbb{C}$, for all linear operators $A \in \mathcal{B}(H)$ of L type and for all Hilbert spaces H. Furthermore this constant, which is only depending on the angle α, is a continuous decreasing function of $\alpha \in\left(0, \frac{\pi}{2}\right]$ and we have the estimate

$$
\begin{equation*}
\frac{\pi}{2 \alpha} \sin \alpha \leq C(\alpha) \leq \min \left(2+2 / \sqrt{3}, \frac{\pi-\alpha}{\alpha}\right) \tag{2}
\end{equation*}
$$

Note that for $\alpha=\frac{\pi}{2}$, which corresponds to the case where L is a disk, we have $C\left(\frac{\pi}{2}\right)=1$ and we recover a famous von Neumann inequality [4]. Theorem 1 can be generalized in several directions. For instance, by Mergelyan's Theorem, the inequality (1) remains valid if instead of polynomials we take p holomorphic in L and continuous in \bar{L}. The theorem is also valid in a completely bounded form. More precisely, there exists a continuous decreasing function $C_{c b}(\alpha)$ (which satisfies the bounds (2)) such that the inequality

$$
\|P(A)\| \leq C_{c b}(\alpha) \sup _{z \in L}\|P(z)\|
$$

holds for all polynomials with matrix values $P: \mathbb{C} \rightarrow \mathbb{C}^{n, n}$, for all $n \geq 1$, for all linear operators $A \in \mathcal{B}(H)$ of type L and for all Hilbert spaces H.

Except for the value $\alpha=\frac{\pi}{2}$, we do not know the exact values of $C(\alpha)$ and $C_{c b}(\alpha)$. Even more, we do not know if $C(\alpha)=C_{c b}(\alpha)$ or not... A small improvement

$$
C_{c b}(\alpha) \leq \frac{\pi-\alpha}{\pi}\left(2-\frac{2}{\pi} \log \tan \left(\frac{\alpha \pi}{4(\pi-\alpha)}\right)\right)
$$

of the upper bound in (2) can be deduced from Theorem 4.2 in [1].
We should mention that a preliminary version of this theorem, in the particular case where L has a straight face, has been implicitly used in [2] to study the convergence of the GMRES method.

2 The proof

Our proof of Theorem 1 is heavily based on the result of the paper [3], that we recall now. Let S_{α} be a convex sector of the complex plane with angle 2α. An operator $B \in \mathcal{B}(H)$ is said S_{α}-accretive iff $(B v, v) \in \overline{S_{\alpha}}$, for all $v \in H$ satisfying $\|v\|=1$. The result proved in [3] is
there exists a best constant $C_{\alpha} \in \mathbb{R}$ such that the inequality

$$
\begin{equation*}
\|r(B)\| \leq C_{\alpha} \sup _{z \in S_{\alpha}}|r(z)| \tag{3}
\end{equation*}
$$

holds for all rational functions bounded in S_{α} and for all S_{α}-accretive operators B (it is easily seen that this definition is not depending on the particular choice of the sector). Furthermore this constant C_{α} is a continuous and decreasing function of α and it satisfies the estimates

$$
\frac{\pi}{2 \alpha} \sin \alpha \leq C_{\alpha} \leq \min \left(2+2 / \sqrt{3}, \frac{\pi-\alpha}{\alpha}\right) .
$$

Therefore it is sufficient to prove that $C_{\alpha}=C(\alpha)$ for getting the theorem.
We turn now to the proof of this equality. Without loss of generality, we can assume that the vertices of L are $\sigma=0$ and $\sigma^{\prime}=1$, and that $\operatorname{Im} \alpha_{1}<0$. We introduce the rational function $g(z):=\frac{z}{z-1}$. It is easily seen that g is an involution and that g realizes a bijection of the disk $D_{j}:=\left\{z \in \mathbb{C} ;\left|z-\alpha_{j}\right|<\right.$ $\left.\left|\alpha_{j}\right|\right\}$ onto the half-plane $P_{j}:=\left\{z \in \mathbb{C} ; \operatorname{Re} \bar{\alpha}_{j} z<0\right\}$. In the case where the lens has a straight face $L=D_{1} \cap \Pi_{2}$ with $\Pi_{2}:=\{z \in \mathbb{C} ; \operatorname{Re} i z<0\}$, we remark also that g realizes a bijection of the half-plane Π_{2} onto the halfplane $P_{2}:=\{z \in \mathbb{C} ; \operatorname{Re} i z>0\}$. Therefore g is a bijection of the lens L onto the sector $S_{\alpha}=P_{1} \cap P_{2}$. Note that the sector and the lens have the same angle 2α and that $1 \notin S_{\alpha}$.

Let us consider now a linear operator A such that 1 does not belong to its spectrum $\sigma(A)$, and we set $B=g(A)=A(A-I)^{-1}$. It is easily seen that $(B-I)(A-I)=I$, thus $1 \notin \sigma(B)$, and $A=g(B)$.

Using that $\operatorname{Re} \alpha_{j}=\frac{1}{2}$, we remark by setting $v=(A-I) w$ that

$$
\begin{array}{ll}
& \left|\alpha_{j}\right|^{2}\|w\|^{2}-\left\|\left(A-\alpha_{j} I\right) w\right\|^{2} \geq 0, \forall w \in H, \\
\Longleftrightarrow & \|A w\|^{2}-2 \operatorname{Re} \bar{\alpha}_{j}(A w, w) \leq 0, \forall w \in H, \\
\Longleftrightarrow & 2 \operatorname{Re} \bar{\alpha}_{j}(A w,(A-I) w) \leq 0, \forall w \in H, \\
\Longleftrightarrow & \operatorname{Re} \bar{\alpha}_{j}(B v, v) \leq 0, \forall v \in H .
\end{array}
$$

Therefore if the linear operator A is of L-type, then the operator B is $S_{\alpha^{-}}$ accretive. Conversely if B is S_{α}-accretive then $1 \notin \sigma(B)$ (since $1 \notin S_{\alpha}$) and $A=g(B)$ is of L-type.

Let us consider now a polynomial p and set $r(z)=p(g(z))$, then we have $p(A)=r(B)$ and $\sup _{z \in S_{\alpha}}|r(z)|=\sup _{\zeta \in L}|p(\zeta)|$. We deduce from (3) that $\|p(A)\| \leq C_{\alpha} \sup _{\zeta \in L}|p(\zeta)|$.
Note that, if $1 \in \sigma(A)$, then for $0<\varepsilon<1$, the operator $A_{\varepsilon}:=(1-\varepsilon) A$ is of L-type and $1 \notin \sigma\left(A_{\varepsilon}\right)$, which shows that the previous inequality is still valid by using a limit argument. Therefore we have $C(\alpha) \leq C_{\alpha}$.

Conversely if we consider a rational function r bounded in $S_{\alpha}, p(z)=$ $r(g(z))$ is a rational function bounded in L, therefore we deduce from (1) (which is valid for such rational functions) that

$$
\|r(B)\| \leq C(\alpha) \sup _{z \in S_{\alpha}}|r(z)|
$$

which implies $C(\alpha) \geq C_{\alpha}$, and thus finally $C(\alpha)=C_{\alpha}$.
The proofs would be the same for the completely bounded form of our estimates.

References

[1] C. Badea, M. Crouzeix, B. Delyon, Convex domains and K-spectral sets, preprint
[2] B. Beckermann, S.A. Goreinov, E.E. Tyrtyshnikov, Some remarks on the Elman estimate for GMRES, preprint.
[3] M. Crouzeix, B. Delyon, Some estimates for analytic functions of strip or sectorial operators, Arch. Math., 81, 553-566, 2003.
[4] J. von Neumann, Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachrichten 4 (1951) 258-281.
e-mail: Bernhard.Beckermann@univ-lille1.fr,
Address: Laboratoire de Mathématiques Paul Painlevé, umr cnRs 8524, Bâtiment M2 - Cité Scientifique,
Université des Sciences et Technologies de Lille, F-59655 Villeneuve d'Ascq cedex, France
e-mail: michel.crouzeix@univ-rennes1.fr,
Address: IRMAR, UMR CNRS 6625, Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes cedex, France

[^0]: *Supported in part by INTAS network NeCCA 03-51-6637, and in part by the Ministry of Science and Technology (MCYT) of Spain and the European Regional Development Fund (ERDF) through the grant BFM2001-3878-C02-02.

