A lenticular version of a von Neumann inequality

Bernhard Beckermann^{*} and Michel Crouzeix

Abstract

We generalize to lens-shaped domains the classical von Neumann inequality for the disk.

1 Introduction

We will say that L is a convex lens-shaped domain of the complex plane, with vertices σ and σ' , if

- either there exist two disks $D_1 := \{z \in \mathbb{C} ; |z - \alpha_1| < r_1\} \text{ and } D_2 := \{z \in \mathbb{C} ; |z - \alpha_2| < r_2\}$ such that $L = D_1 \cap D_2, \sigma \neq \sigma'$ and $\{\sigma, \sigma'\} = \partial D_1 \cap \partial D_2$,
- either there exist a disk and a half-plane $D_1 := \{z \in \mathbb{C}; |z - \alpha_1| < r_1\}$ and $\Pi_2 := \{z \in \mathbb{C}; \operatorname{Re} e^{i\theta}(z - \sigma) < 0\}$ such that $L = D_1 \cap \Pi_2, \sigma \neq \sigma'$ and $\{\sigma, \sigma'\} = \partial D_1 \cap \partial \Pi_2$.

We will denote by $2\alpha \in]0, \pi]$ the angle of the lens L at the vertices. We will consider also as a lens the limit case where $L = D_1 = D_2$ is a disk. Then, any point of the boundary may be considered as a vertex and $\alpha = \frac{\pi}{2}$.

Now let us consider a bounded linear operator $A \in \mathcal{B}(H)$ on a complex Hilbert space H. We will say that the operator A is of the lenticular L-type if we have

- $||A \alpha_1 I|| \le r_1$ and $||A \alpha_2 I|| \le r_2$, if $L = D_1 \cap D_2$,
- $||A \alpha_1 I|| \le r_1$ and $\operatorname{Re} e^{i\theta}((A \sigma)v, v) \le 0, \forall v \in H$, if $L = D_1 \cap \Pi_2$.

^{*}Supported in part by INTAS network NeCCA 03-51-6637, and in part by the Ministry of Science and Technology (MCYT) of Spain and the European Regional Development Fund (ERDF) through the grant BFM2001-3878-C02-02.

In this paper, the norm used for a linear operator on a Hilbert space H (as well as for a matrix) is always the operator norm induced by the hilbertian structure.

The aim of this paper is to prove the following result.

Theorem 1. Let L be a convex lens-shaped domain of the complex plane with angle 2α . There exists a best constant $C(\alpha) \in \mathbb{R}$ such that the inequality

$$\|p(A)\| \le C(\alpha) \sup_{z \in L} |p(z)|,\tag{1}$$

holds for all polynomials $p : \mathbb{C} \to \mathbb{C}$, for all linear operators $A \in \mathcal{B}(H)$ of Ltype and for all Hilbert spaces H. Furthermore this constant, which is only depending on the angle α , is a continuous decreasing function of $\alpha \in (0, \frac{\pi}{2}]$ and we have the estimate

$$\frac{\pi}{2\alpha}\sin\alpha \le C(\alpha) \le \min(2+2/\sqrt{3}, \frac{\pi-\alpha}{\alpha}).$$
(2)

Note that for $\alpha = \frac{\pi}{2}$, which corresponds to the case where L is a disk, we have $C(\frac{\pi}{2}) = 1$ and we recover a famous von Neumann inequality [4]. Theorem 1 can be generalized in several directions. For instance, by Mergelyan's Theorem, the inequality (1) remains valid if instead of polynomials we take p holomorphic in L and continuous in \overline{L} . The theorem is also valid in a completely bounded form. More precisely, there exists a continuous decreasing function $C_{cb}(\alpha)$ (which satisfies the bounds (2)) such that the inequality

$$||P(A)|| \le C_{cb}(\alpha) \sup_{z \in L} ||P(z)||,$$

holds for all polynomials with matrix values $P : \mathbb{C} \to \mathbb{C}^{n,n}$, for all $n \ge 1$, for all linear operators $A \in \mathcal{B}(H)$ of type L and for all Hilbert spaces H.

Except for the value $\alpha = \frac{\pi}{2}$, we do not know the exact values of $C(\alpha)$ and $C_{cb}(\alpha)$. Even more, we do not know if $C(\alpha) = C_{cb}(\alpha)$ or not... A small improvement

$$C_{cb}(\alpha) \leq \frac{\pi - \alpha}{\pi} \Big(2 - \frac{2}{\pi} \log \tan \left(\frac{\alpha \pi}{4(\pi - \alpha)} \right) \Big),$$

of the upper bound in (2) can be deduced from Theorem 4.2 in [1].

We should mention that a preliminary version of this theorem, in the particular case where L has a straight face, has been implicitly used in [2] to study the convergence of the GMRES method.

2 The proof

Our proof of Theorem 1 is heavily based on the result of the paper [3], that we recall now. Let S_{α} be a convex sector of the complex plane with angle 2α . An operator $B \in \mathcal{B}(H)$ is said S_{α} -accretive iff $(Bv, v) \in \overline{S_{\alpha}}$, for all $v \in H$ satisfying ||v|| = 1. The result proved in [3] is

there exists a best constant $C_{\alpha} \in \mathbb{R}$ such that the inequality

$$\|r(B)\| \le C_{\alpha} \sup_{z \in S_{\alpha}} |r(z)|,\tag{3}$$

holds for all rational functions bounded in S_{α} and for all S_{α} -accretive operators B (it is easily seen that this definition is not depending on the particular choice of the sector). Furthermore this constant C_{α} is a continuous and decreasing function of α and it satisfies the estimates

$$\frac{\pi}{2\alpha}\sin\alpha \le C_{\alpha} \le \min(2+2/\sqrt{3},\frac{\pi-\alpha}{\alpha}).$$

Therefore it is sufficient to prove that $C_{\alpha} = C(\alpha)$ for getting the theorem.

We turn now to the proof of this equality. Without loss of generality, we can assume that the vertices of L are $\sigma = 0$ and $\sigma' = 1$, and that $\operatorname{Im} \alpha_1 < 0$. We introduce the rational function $g(z) := \frac{z}{z-1}$. It is easily seen that g is an involution and that g realizes a bijection of the disk $D_j := \{z \in \mathbb{C} ; |z-\alpha_j| < |\alpha_j|\}$ onto the half-plane $P_j := \{z \in \mathbb{C} ; \operatorname{Re} \bar{\alpha}_j z < 0\}$. In the case where the lens has a straight face $L = D_1 \cap \Pi_2$ with $\Pi_2 := \{z \in \mathbb{C} ; \operatorname{Re} i z < 0\}$, we remark also that g realizes a bijection of the half-plane Π_2 onto the half-plane $P_2 := \{z \in \mathbb{C} ; \operatorname{Re} i z > 0\}$. Therefore g is a bijection of the lens L onto the sector $S_{\alpha} = P_1 \cap P_2$. Note that the sector and the lens have the same angle 2α and that $1 \notin S_{\alpha}$.

Let us consider now a linear operator A such that 1 does not belong to its spectrum $\sigma(A)$, and we set $B = g(A) = A(A-I)^{-1}$. It is easily seen that (B-I)(A-I) = I, thus $1 \notin \sigma(B)$, and A = g(B).

Using that $\operatorname{Re} \alpha_j = \frac{1}{2}$, we remark by setting v = (A - I)w that

$$\begin{split} &|\alpha_j|^2 \, \|w\|^2 - \|(A - \alpha_j I)w\|^2 \ge 0, \forall \, w \in H, \\ \Longleftrightarrow & \|Aw\|^2 - 2 \operatorname{Re} \bar{\alpha}_j (Aw, w) \le 0, \forall \, w \in H, \\ \Leftrightarrow & 2 \operatorname{Re} \bar{\alpha}_j (Aw, (A - I)w) \le 0, \forall \, w \in H, \\ \Leftrightarrow & \operatorname{Re} \bar{\alpha}_j (Bv, v) \le 0, \forall \, v \in H. \end{split}$$

Therefore if the linear operator A is of L-type, then the operator B is S_{α} -accretive. Conversely if B is S_{α} -accretive then $1 \notin \sigma(B)$ (since $1 \notin S_{\alpha}$) and A = g(B) is of L-type.

Let us consider now a polynomial p and set r(z) = p(g(z)), then we have p(A) = r(B) and $\sup_{z \in S_{\alpha}} |r(z)| = \sup_{\zeta \in L} |p(\zeta)|$. We deduce from (3) that

$$||p(A)|| \le C_{\alpha} \sup_{\zeta \in L} |p(\zeta)|.$$

Note that, if $1 \in \sigma(A)$, then for $0 < \varepsilon < 1$, the operator $A_{\varepsilon} := (1-\varepsilon)A$ is of *L*-type and $1 \notin \sigma(A_{\varepsilon})$, which shows that the previous inequality is still valid by using a limit argument. Therefore we have $C(\alpha) \leq C_{\alpha}$.

Conversely if we consider a rational function r bounded in S_{α} , p(z) = r(g(z)) is a rational function bounded in L, therefore we deduce from (1) (which is valid for such rational functions) that

$$||r(B)|| \le C(\alpha) \sup_{z \in S_{\alpha}} |r(z)|,$$

which implies $C(\alpha) \ge C_{\alpha}$, and thus finally $C(\alpha) = C_{\alpha}$.

The proofs would be the same for the completely bounded form of our estimates.

References

- C. Badea, M. Crouzeix, B. Delyon, Convex domains and K-spectral sets, preprint
- [2] B. Beckermann, S.A. Goreinov, E.E. Tyrtyshnikov, Some remarks on the Elman estimate for GMRES, preprint.
- [3] M. Crouzeix, B. Delyon, Some estimates for analytic functions of strip or sectorial operators, Arch. Math., 81, 553-566, 2003.
- [4] J. von Neumann, Eine Spektraltheorie f
 ür allgemeine Operatoren eines unit
 ären Raumes, Math. Nachrichten 4 (1951) 258–281.

e-mail: Bernhard.Beckermann@univ-lille1.fr,

Address : Laboratoire de Mathématiques Paul Painlevé, UMR CNRS 8524, Bâtiment M2 - Cité Scientifique, Université des Sciences et Technologies de Lille, F-59655 VILLENEUVE D'ASCQ CEDEX, France

e-mail: michel.crouzeix@univ-rennes1.fr,

Address: IRMAR, UMR CNRS 6625, Université de Rennes 1, Campus de Beaulieu, F-35042 RENNES CEDEX, France