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Abstract

Given a convex domain Ω ⊂ C with conic boundary, a linear operator A with numerical
range contained in Ω, and a rational function bounded on Ω, we are interested in estimating
the norm of r(A) in terms of the supremum of r in Ω. In particular, we show that ellipses,
hyperbolas and parabolas are K-spectral sets with K = 2 + 2/

√
3 ≤ 3.16.

2000 Mathematical subject classifications : 47A12 ; 47A25

Keywords: Numerical range, field of values, spectral sets.

1 Introduction

Let H be a complex Hilbert space with inner product 〈·, ·〉 and induced norm ‖·‖. The numerical
range (or field of values) of a linear operator A acting on H is the set

W (A) := {〈Av, v〉 ; v ∈ H, ‖v‖ = 1},

a subset of the complex plane C, which by the Toeplitz-Hausdorff Theorem is known to be
convex. In this paper we are concerned with the following problem: given a convex open set
Ω ⊂ C, find upper bounds for the smallest constant C(Ω) depending only on Ω such that for
any bounded linear operator A on H with W (A) ⊂ Ω and for any rational function r there holds

‖r(A)‖ ≤ C(Ω) sup
z∈Ω

|r(z)|. (1)

John von Neumann [8] has shown that C(Ω) = 1 if Ω is a half-plane, or equivalently, along his
terminology, a half-plane is a spectral set for any operator with numerical range contained in it.
More generally [7], if (1) holds for every rational function r with C(Ω) replaced by K, then Ω is
called a K-spectral set for A. Thus Ω is an C(Ω)-spectral set for any operator with W (A) ⊂ Ω.

Starting with the paper [6] showing the finiteness of C(Ω) for bounded Ω, there were a
number of publications [1, 2, 3, 4, 5] over the last years dealing with the problem of estimating
C(Ω). The general bound C(Ω) ≤ 11.1 has been established in [5]. This bound is considered to
be pessimistic: for instance, for a disk D it is known [1] that C(D) = 2, and Crouzeix conjectures
in [3] that C(Ω) ≤ 2 for any open convex set Ω.

Estimates of type (1) have various applications. In numerical analysis for instance, they are
useful for the convergence theory of Krylov subspace methods in numerical linear algebra, or for
studying the time discretization of partial differential equations. Here one often requires sharp
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estimates for C(Ω) for particular sets Ω. Using techniques different from those in [5], it is shown
in [4] that C(Ω) ≤ 4.75 for a parabolic domain Ω, and in [1, 2] that

C(Sα) ≤ min
(

2 +
2√
3
,
π − α

π

(

2 − 2

π
log tan

( απ

4(π−α)

)

)

(2)

for a sector

Sα := {z ∈ C ; z 6= 0, | arg(z)| < α}

including the limiting case S0 of a strip.
In the present paper we are concerned with convex domains with conic boundaries. By

definition, the constant C(Ω) is invariant under displacement or scaling of the set Ω, and thus
our bounds will only depend on the eccentricity of the conic domain under consideration: we
will show in Theorem 1 that for the interior Eα of an ellipse with eccentricity e = 1/ chα, α > 0
there holds

C(Eα) ≤ 2 +
2√

4 − e2
(3)

and hence C(Eα) ≤ 2 + 2/
√

3. As a limiting case, we obtain in Corollary 4 the bound C(P) ≤
2 + 2/

√
3 ≤ 3.16 for a parabola, which improves [4]. Secondly, we consider the case where

the convex domain Hα has a boundary given by the branch of a hyperbola with eccentricity
e = 1/ cosα, α ∈ (0, π/2), and thus with asymptotics forming an angle 2α. Using the same
techniques of proof as in the case on an ellipse, we will show in Theorem 5 that

C(Hα) ≤ 2
π − α

π
+ µ(α), µ(α) :=

sin 2α

π

∫ ∞

0

dy

y2 cosα− 2 y cos 2α+ cosα
. (4)

As shown in Corollary 6 via a limiting argument, we obtain the same upper bound for the sector
Sα, which is an improvement of (2) as long as 0 < α < .22π.

The paper is organized as follows: Section 2 deals with the case of ellipses/parabolas whereas
in Section 3 we discuss the case of a hyperbola. Finally we compare in Section 4 our findings
for a sector with those from [1, 2].

Applying the same arguments as in [5, Section 2], one may show that the bound (1) remains
valid (with the same constant) for a closed linear and not necessarily bounded operator A
satisfying σ(A) ⊂ W (A) ⊂ Ω, and for functions r which are holomorphic in Ω, and continuous
and bounded on the closure Ω. Also, in this paper, we do not consider the completely bounded
version Ccb(Ω) of our constants (see for instance [1] for the definition), but the reader familiar
with this notion will easily notice that all our estimates are still valid with Ccb(Ω) in place of
C(Ω).

2 The case of an ellipse or a parabola

The aim of this section is to show the following result.

Theorem 1. Let Eα be the interior of an ellipse with eccentricity e = 1/ chα, α > 0. Then

C(Eα) ≤ 2 + 2/
√

4 − e2.

Proof. Since C(Ω) is invariant under displacement and scaling, we may suppose that the ellipse
is defined by

Ω = Eα = {x+iy ;
x2

ch2α
+

y2

sh2α
< 1}.
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Let r be a rational function bounded by 1 in Ω and let A be a linear operator with W (A) ⊂ Ω.
Then we may represent r(A) via the Cauchy formula

r(A) =
1

2πi

∫

∂Ω
r(σ) (σ −A)−1 dσ.

Following [1, 2, 4, 5], we rewrite r(A) using the splitting

r(A) =

∫

∂Ω
r(σ)µ(σ,A) ds +

1

2πi

∫

∂Ω
r(σ) (σ −A∗)−1 dσ, (5)

where in the first integral σ = σ(s) is an arclength parametrisation of ∂Ω, and

µ(σ,A) =
1

2π

(

ν(σ−A)−1 + ν̄(σ̄−A∗)−1
)

, ν =
1

i

dσ

ds
.

Based on the observation that W (A) ⊂ Ω implies that µ(σ,A) is self-adjoint and positive definite
for any σ ∈ ∂Ω, we have for the first term the estimate

∥

∥

∥

∫

∂Ω
r(σ)µ(σ,A) ds

∥

∥

∥
≤

∥

∥

∥

∫

∂Ω
µ(σ,A) ds

∥

∥

∥
= 2,

see [1] or [5]. Thus it suffices to show that
∥

∥

∥

1

2πi

∫

∂Ω
r(σ) (σ −A∗)−1 dσ

∥

∥

∥
≤ 2√

4−e2
.

For that we remark that the points σ = x+iy on the boundary of the ellipse satisfy the equation

x2

ch2α
+

y2

sh2α
= 1, or, equivalently, σ2 − 2 ch(2α)σ σ + σ2 + sh2(2α) = 0.

Let ∆ = (−1, 1) be the focal axis. Denoting by
√
z2 − 1 the continuous determination of the

square root in C \ ∆ with value z +O(z−1) as z → ∞, we obtain the formula

σ = g(σ) := ch(2α)σ − sh(2α)
√

σ2 − 1 for σ ∈ ∂Eα.

Note that the function g is analytic in C \ ∆, and admits the boundary values

g(x± i0) = g±(x) = ch(2α)x ∓ i sh(2α)
√

1 − x2

for σ approaching the cut ∆ from above or from below. A simple calculation shows that, for
β, θ ∈ R,

g(ch β cos θ + i shβ sin θ) = ch(2α − β) cos θ − i sh(2α − β) sin θ.

Since the point ch β cos θ+i shβ sin θ belongs to Eα\∆ if and only if 0 < β < α, we conclude that
g maps Eα \∆ into the exterior of Eα, and thus the function r(·)(g(·)−A∗)−1g′(·) is holomorphic
in Eα \ ∆. This justifies to deform the path of integration from ∂Eα to ∆

1

2πi

∫

∂Eα

r(σ) (σ −A∗)−1 dσ =
1

2πi

∫

∂Eα

r(σ) (g(σ) −A∗)−1 g′(σ) dσ

= −
∫ 1

−1
r(x)ψ(x,A∗)−1 dx,

where

ψ(x,A∗)−1 =
1

2πi

(

g′+(x)(g+(x) −A∗)−1 − g′−(x)(g−(x) −A∗)−1
)

.
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Notice for later use that ψ(·, A∗)−1 is continuous in (−1, 1), and that

ψ(0, A∗)−1 =
sh(2α) ch(2α)

π
(−i sh(2α) −A∗)−1(i sh(2α) −A∗)−1

is clearly invertible. Hence ψ(x,A∗) is continuous in x = 0.
Simple calculations give, setting a = ch(2α) and b = sh(2α),

ψ(x, z) = −2πi

[

g′−(x)

g−(x) − z
− g′+(x)

g+(x) − z

]−1

= −2πi

[

a− i bx√
1−x2

ax+ ib
√

1 − x2 − z
−

a+ i bx√
1−x2

ax− ib
√

1 − x2 − z

]−1

= −π (z − ax)2 + (1 − x2)b2

(z − ax)b x√
1−x2

− ab
√

1 − x2

= −π
√

1 − x2

bx

(z − ax)2 + (1 − x2)b2

z − a/x

= −π
√

1 − x2

bx

[

(z − a/x) + 2a
1 − x2

x
+

1 − x2

x2

a2 − x2

z − a/x

]

. (6)

We observe that Theorem 1 follows provided that

∥

∥

∥

∥

∫ 1

−1
r(x)ψ(x,A∗)−1 dx

∥

∥

∥

∥

≤ 2√
4 − e2

. (7)

In what follows we will write ReM = 1

2 (M+M∗) for the self-adjoint part of M , and ImM =
1

2i(M−M∗). The two basic ingredients of our proof of (7) are stated in the following two lemmas,
where for the second result the numerical range assumption W (A) ⊂ Eα is used in a crucial way.

Lemma 2. Suppose that Reψ(x,A∗) is positive definite and |r(x)| ≤ 1 for all x ∈ (c, d), then

∥

∥

∥

∥

∫ d

c
r(x)ψ(x,A∗)−1 dx

∥

∥

∥

∥

≤
∥

∥

∥

∥

∫ d

c

(

Reψ(x,A∗)
)−1

dx

∥

∥

∥

∥

. (8)

Lemma 3. If W (A) ⊂ Eα then for all m < − chα there holds

Re((A∗ −m)−1) ≥ m2 − ch2α

m2 − 1
(ReA−m)−1. (9)

Before giving a proof of these two lemmas, let us first show how to deduce the bound (7).
Writing B = ReA, we get from (6)

Reψ(x,A∗) = −π
√

1−x2

bx

(

(B − a
x) + 2a

1−x2

x
+

1−x2

x2
(a2−x2)Re((A∗ − a

x)−1)
)

.

For x ∈ (−1, 0), we set m = a/x and deduce from (9) that

Reψ(x,A∗) ≥ −π
√

1−x2

bx

(

(B − a
x) + 2a

1−x2

x
+

1−x2

x2
(a2−x2 ch2α)(B − a

x)−1
)

= π

√
1−x2

b
(a− xB)−1(B2 − 2a xB + a2 − (1−x2) ch2α).
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Notice that W (A) ⊂ Eα implies W (−A) ⊂ Eα. Hence after substitution of x and A by −x and
−A, respectively, we find that the the previous inequality is also valid for x ∈ (0, 1), and, by
continuity, it still holds for x = 0. We set now

φ(x, λ) :=
π
√

1−x2

b(a− λx)
(λ2 − 2aλx+ a2 − (1−x2) ch2α),

and note that (recall that a = ch(2α) > chα)

φ(x, λ) =
π
√

1−x2

b(a− λx)

(

(λ−ax)2 + (1−x2)(a2−ch2α)
)

> 0, ∀x ∈ ∆, ∀λ ∈ (− chα, chα).

Thus the self-adjoint operator φ(x,B) is well defined and positive definite for x ∈ ∆. We have
proved that Reψ(x,A∗) ≥ φ(x,B) > 0, therefore we can apply (8) and obtain

∥

∥

∥

∥

∫ 1

−1
r(x)ψ(x,A∗)−1 dx

∥

∥

∥

∥

≤
∥

∥

∥

∥

∫ 1

−1
Reψ(x,A∗)−1 dx

∥

∥

∥

∥

≤
∥

∥

∥

∥

∫ 1

−1
φ(x,B)−1 dx

∥

∥

∥

∥

.

In order to evaluate the integral on the right-hand side, let us show that, for λ ∈ (− chα, chα),

∫ 1

−1

dx

φ(x, λ)
=

b
√

a2 − ch2α
, (10)

and thus this integral is independent of λ. Since the spectrum of our self-adjoint operator B
satisfies σ(B) ⊂ (− chα, chα), the relation (10) implies that

∫ 1

−1
φ(x,B)−1 dx =

sh(2α)
√

ch2(2α) − ch2α
=

2√
4 − e2

,

which shows that (7) holds. For proving (10), we write

1

φ(x, λ)
=

b

π
√

1−x2

a− λx

(a−λx)2 − (1−x2)(ch2α‘ −λ2)
,

and use the change of variables x = cos t, λ = chα cos u in order to obtain

1

φ(x, λ)
=

b

π sin t

a− chα cos u cos t

(a−chα cos u cos t)2 − sin2t ch2α sin2u)

=
b

2π sin t

( 1

a−chα cos(u+ t)
+

1

a−chα cos(u− t)

)

.

This yields
∫ 1

−1

dx

φ(x, λ)
=

b

2π

∫ π

0

dt

a−chα cos(u+ t)
+

b

2π

∫ π

0

dt

a−chα cos(u− t)

=
b

2π

∫ π

−π

dt

a−chα cos(u+ t)
=

b
√

a2 − ch2α
,

which completes the proof of (7) and thus of Theorem 1.

We still have to give a proof for the two assertions of Lemma 2 and Lemma 3.
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Proof of Lemma 2. By assumption, the operators Reψ(x,A∗) and M(x) := (Reψ(x,A∗))−1 are
self-adjoint and positive definite. This allows us to write

ψ(x,A∗) = M(x)−1/2(I+iE(x))M(x)−1/2 ,

with

E(x) := M(x)1/2 Imψ(x,A∗)M(x)1/2.

Let us consider u and v ∈ H. Since E is self-adjoint, we have ‖(I+iE(x))−1‖ ≤ 1, and thus

|〈ψ(x,A∗)−1 u, v〉| = |〈(I+iE(x))−1M(x)1/2u,M(x)1/2v〉|
≤ 〈M(x)u, u〉1/2〈M(x) v, v〉1/2.

Using the assumption |r(x)| ≤ 1 and the Cauchy-Schwarz inequality we get

∣

∣

∣

〈

∫ d

c
r(x)ψ(x,A∗)−1 dxu, v

〉

∣

∣

∣
≤

(

∫ d

c
〈M(x)u, u〉 dx

)1/2(
∫ d

c
〈M(x) v, v〉 dx

)1/2

≤
(

〈

∫ d

c
M(x)dxu, u

〉

)1/2(
〈

∫ d

c
M(x)dx v, v

〉

)1/2

≤
∥

∥

∥

∫ d

c
M(x) dx

∥

∥

∥
‖u‖ ‖v‖.

This yields

∥

∥

∥

∫ d

c
r(x)ψ(x,A∗)−1 dx

∥

∥

∥
≤

∥

∥

∥

∫ d

c
M(x) dx

∥

∥

∥
,

and completes the proof.

The numerical range assumptionW (A) ⊂ Eα is used in a crucial way in the proof of Lemma 3.

Proof of Lemma 3. The point m < − chα is exterior to the ellipse Eα. Thus there exists a
smallest angle θ ∈ (0, π/2) such that the sector m + Sθ = m + {z ∈ C ; z 6= 0, | arg z| < θ}
contains the ellipse, m+ Sθ ⊃ Eα. Since B−m is positive definite, we can set

D = (B−m)−1/2(ImA) (B−m)−1/2.

Notice that D is self-adjoint, and A−m = (B−m)1/2(I+iD)(B−m)1/2. The condition W (A) ⊂
Eα ⊂ m+ Sθ yields

〈(I+iD)(B−m)1/2u, (B−m)1/2u〉 ∈ Sθ, ∀u ∈ H, u 6= 0.

Setting v = (B−m)1/2u we deduce that ‖Dv‖ ≤ tan θ ‖v‖, ∀v ∈ H, and thus ‖D‖ ≤ tan θ.
Consequently,

Re(I + iD)−1 ≥ inf
λ∈σ(D)

Re
1

1 + iλ
≥ min

λ∈[− tan θ,tan θ]
Re

1

1 + iλ
= cos2 θ,

and thus

Re
(

(A−m)−1
)

= Re
(

(B−m)−1/2(I + iD)−1(B−m)−1/2
)

≥ cos2 θ (B−m)−1.

The value of θ may be obtained by writing that the straight line y = tan θ (x−m) is a tangent
of the boundary ∂Eα = {(chα cos t, shα sin t) ; t ∈ [0, 2π]}, and hence

shα sin t− tan θ (chα cos t−m) = 0, shα cos t+ tan θ chα sin t= 0.
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This implies

shα+m tan θ sin t = 0 and chα = m cos t,

and finally

cos2 θ =
1

1 + tan2θ
=

m2 sin2t

m2 sin2t+ sh2α
=
m2−ch2α

m2−1
.

It remains to discuss the case of a parabola.

Corollary 4. Denote by P the unbounded domain with boundary given by a parabola. Then

C(P) ≤ lim infα→0+C(Eα) ≤ 2 + 2/
√

3.

Proof. Since C(Ω) is invariant under displacement and scaling, we may suppose that

P = {x+ iy : x, y ∈ R, 2x > y2}.
Notice that the ellipses

Ωα = {x+ iy : x, y ∈ R, th2(α)x2 + y2 − 2x < 0} =
1

th2(α)
+

ch(α)

sh2α
Eα

for α > 0 are decreasing in α, and Ωα ⊂ P,
⋃

α>0 Ωα = P. Let r be a rational function bounded

by 1 in P and let A be a bounded linear operator satisfying W (A) ⊂ P. Since W (A) is a
compact subset of P, there exists an α′ > 0 with W (A) ⊂ Ωα for all α ∈ (0, α′], and

‖r(A)‖ ≤ C(Ωα) sup
z∈Ωα

|r(z)| ≤ C(Ωα) = C(Eα) ≤ 2 +
2√
3
,

the last inequality following from Theorem 1. Hence the assertion follows for α→ 0+.

We notice that we could have given also a proof for Corollary 4 following the lines of the
proof of Theorem 1, with g(σ) = σ − 2 + 2

√
1 − 2σ and ∆ = (1/2,+∞).

3 The case of a hyperbola

We now turn to the case where the boundary of the convex domain is a branch of a hyperbola with
asymptotics forming an angle 2α, or, equivalently, with an eccentricity e = 1/ cosα, α ∈ (0, π/2).
We have

Theorem 5. Let Hα be a convex domain with boundary given by a branch of a hyperbola with

asymptotics forming an angle 2α. Then we have

C(Hα) ≤ 2
π − α

π
+ µ(α), µ(α) :=

sin 2α

π

∫ ∞

0

dy

y2 cosα− 2 y cos 2α+ cosα
.

Proof. Without loss of generality, we may suppose that the domain Hα is given by

Hα := {x+iy ;
x2

cos2α
− y2

sin2α
> 1, x > 0}.

We follow the lines of the proof of Theorem 1 (i.e., formally we replace α by iα in this proof
and change some signs). For σ ∈ ∂Hα we have σ2 − 2 cos(2α)σ σ + σ2 = sin2(2α). We set ∆ =
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(1,+∞). Denoting by
√

1 − z2 the continuous determination of the square root in C \ (∆∪−∆)
with value 1 for z = 0, we obtain the formula

σ = g(σ) := cos(2α)σ + sin(2α)
√

1 − σ2, if σ ∈ ∂Hα.

The function g is analytic in Hα \ ∆, and admits the boundary values

g(x± i0) =: g±(x) = cos(2α)x ∓ i sin(2α)
√

x2 − 1,

for σ approaching the cut ∆ from above or from below. Let r be a rational function bounded
by 1 in Hα and let A be a bounded operator with W (A) ⊂ Hα. We have to show that

‖r(A)‖ ≤ 2
π − α

π
+ µ(α).

We first remark that it is sufficient to prove this estimate for rational functions satisfying fur-
thermore the condition r(∞) = 0. Indeed, otherwise we can introduce, with ε > 0, the function
rε(z) = r(z)/(1+εz). We still have rε bounded by 1 in Hα and the result then follows from
r(A) = limε→0 rε(A).

Thus we assume from now that r(∞) = 0 and r is bounded by 1 in Hα. We represent r(A)
via the Cauchy formula

r(A) =
1

2πi

∫

∂Hα

r(σ) (σ−A)−1 dσ.

With the same notation as in the proof of Theorem 1 we have the splitting

r(A) =

∫

∂Hα

r(σ)µ(σ,A) ds +
1

2πi

∫

∂Hα

r(σ) (σ−A∗)−1 dσ,

but for our unbounded domain Hα containing the sector cos(α)+Sα we have the refined estimate
∥

∥

∥

∫

∂Hα

r(σ)µ(σ,A) ds
∥

∥

∥
≤

∥

∥

∥

∫

∂Hα

µ(σ,A) ds
∥

∥

∥
= 2

π − α

π
,

compare with [1, Section 3]. Thus it is sufficient to show that
∥

∥

∥

1

2πi

∫

∂Hα

r(σ) (σ−A∗)−1 dσ
∥

∥

∥
≤ µ(α).

Deforming the path of integration from ∂Hα to ∆ and using that r(∞) = 0 we get

1

2πi

∫

∂Hα

r(σ) (σ −A∗)−1 dσ = −
∫ ∞

1
r(x)ψ(x,A∗)−1 dx,

where

ψ(x, z) = −2πi

[

g′−(x)

g−(x) − z
− g′+(x)

g+(x) − z

]−1

.

Simple calculations give, setting a = cos(2α) and b = sin(2α),

ψ(x, z) = 2πi

[

a+ i bx√
x2−1

ax+ ib
√
x2−1 − z

−
a− i bx√

x2−1

ax− ib
√
x2−1 − z

]−1

= π

√
x2−1

b

(z−ax)2 + (x2−1)b2

zx−a

= π

√
x2−1

bx

[

(z−a/x) − 2a
x2−1

x
+
x2−1

x2

x2−a2

z−a/x

]

.
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This yields, with B := ReA,

Reψ(x,A∗) = π

√
x2−1

bx

(

(B − a
x) − 2a

x2−1

x
+
x2−1

x2
(x2−a2)Re((A∗ − a

x)−1)
)

.

We admit for a while that for all −1 < m < cosα we have

Re((A∗ −m)−1) ≥ cos2α−m2

1 −m2
(ReA−m)−1. (11)

Using this inequality with m = a/x we get, for x > 1,

Reψ(x,A∗) ≥ π

√
x2−1

bx

(

(B − a
x) − 2a

x2−1

x
+
x2−1

x2
(x2 cos2α−a2)(B − a

x)−1
)

≥ π

√
x2−1

b
(xB − a)−1(B2 − 2a xB + a2 + (x2−1) cos2α).

We now set

φ(x, λ) :=
π
√
x2−1

b(λx− a)
(λ2 − 2aλx+ a2 + (x2−1) cos2α)

=
π
√
x2−1

b

(λx−a)2 − (x2−1)(λ2−cos2α)

λx− a
.

In case x > 1 and λ > cosα we use the change of variables x = ch t, λ = cosα ch u, and obtain

1

φ(x, λ)
=

b

π sh t

cosα ch u ch t− a

(cosα ch u ch t−a)2 − sh2t cos2α sh2u)

=
b

2π sh t

( 1

cosα ch(u− t)−a +
1

cosα ch(u+ t)−a
)

. (12)

This yields for λ > cosα
∫ ∞

1

dx

φ(x, λ)
=

b

2π

∫ ∞

0

dt

cosα ch(u− t)−a +
b

2π

∫ ∞

0

dt

cosα ch(u+ t)−a

=
b

2π

∫ ∞

−∞

dt

cosα ch(u+ t)−a = µ(α),

where in the last equality we have used the substitution y = exp(t+u). Thus, as in the proof of
Theorem 1, the above integral does not depend on λ.

We now observe that the spectrum of the self-adjoint operator B satisfies σ(B) ⊂ Hα ∩R =
(cosα,+∞). Using (12) and the relations cosα > 0, cosα > cos(2α) = a, we conclude that
the self-adjoint operator φ(x,B) is well defined and positive definite for x > 1. Therefore, by
Lemma 2,

∥

∥

∥

∥

∫ ∞

1
r(x)ψ(x,A∗)−1 dx

∥

∥

∥

∥

≤
∥

∥

∥

∥

∫ ∞

1
Reψ(x,A∗)−1 dx

∥

∥

∥

∥

≤
∥

∥

∥

∥

∫ ∞

1
φ(x,B)−1 dx

∥

∥

∥

∥

= µ(α),

as claimed in Theorem 5.

It remains to show (11). For m < cosα there exists a smallest angle θ such that Hα ⊂ m+Sθ.
Then, as in the proof of Lemma 3, the assumption W (A) ⊂ Hα ⊂ m+Sθ infers

Re((A∗−m)−1) ≥ cos2θ (ReA−m)−1.

The same calculations (mutatis mutandis) as in the proof of this lemma give the formula

cos2θ =
cos2α−m2

1 −m2
, if 0 < m < cosα,

9



old bound

new bound

C(Sα) bound
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π
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√

3
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Figure 1: The new bound versus the old one (2) for the sector Sα.

which shows (11) in this case. If −1 < m ≤ 0, it is easily seen that θ = α and then the inequality
(11) follows from cos2α ≥ (cos2α−m2)/(1 −m2).

4 The case of a sector

Corollary 6. For each α ∈ (0, π/2) there holds C(Sα) ≤ C(Hα).

Proof. We argue as in the proof of Corollary 4: the sets Ωq := qHα are decreasing in q > 0,
and

⋃

q>0 Ωq = Sα. Let r be a rational function bounded by 1 in Sα and let A be a bounded

operator such that W (A) ⊂ Sα. By compactness of W (A) there exists a q > 0 with W (A) ⊂ Ωq,
and thus

‖r(A)‖ ≤ C(Ωq) sup
z∈Ωq

|r(z)| ≤ C(Ωq) = C(Hα).

In order to compare our findings of Corollary 6 (and Theorem 5) with the bounds (2) obtained
in [1, 2], we have drawn in Figure 1 the curve α 7→ 2 − 2α

π + µ(α) together with the bound

α 7→ min
(

2 +
2√
3
,
π − α

π

(

2 − 2

π
log tan

( απ

4(π−α)

)

)

of (2). We observe that the new bound is sharper for α ≤ .22π.
Finally we notice that the quantity µ(α) of (4) can be written in a more explicit form in

terms of the eccentricity e = 1/ cosα. We have

µ(α) =
2√

4−e2
(

1 − 1

π
arccos( 2

e−e)
)

, if 0 < α ≤ π
3 ,

10



and

µ(α) =
2

π
√
e2−4

log
(e2−2+

√
e2−4

√
e2−1

e

)

, if π
3 < α < π

2 .
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