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Abstract

A system of integral equations for determination of the set of equilibrium for the
constrained energy problem of the logarithmic potential with external field is obtained.
Also the continuity of the family of the equilibrium sets is studied.

1 Introduction.

We shall investigate the interval of equilibrium for the constrained energy problem in the
presence of an external field. This problem has a physical interpretation in terms of the
density of an electric charge on the line conductor in some external field. In mathematical
terms, we are looking for a measure on the interval which minimize the energy depending on
the external field. The problem with constraint has been considered first by E.A.Rahmanov in
[R], and further analyzed in [DS]. In physical terms, such a constraint corresponds to imposing
an upper bound for the maximal density for the unknown charge. An important application
of the constrained energy problems is the dispersion regularization of some hyperbolic PDEs,
see [DM], [AV].

In this section we briefly recall the classical theorems dealing with weighted energy prob-
lems and constrained energy problems in logarithmic potential theory. Subsequently, we state
our main findings.

Let Q : Σ → R be a continuous function on some compact Σ ⊂ R. We denote by M the
collection of finite Borel measures, and by Mx

Σ ⊂ M the set of measures µ with support Sµ

in Σ and total mass x. For a fixed measure σ with support Sσ = Σ let Mx,σ be the following
subset of Mx

Sσ

Mx,σ = {µ : 0 ≤ µ ≤ σ, µ(R) = x}. (1)

where µ ≤ σ means that σ − µ is a measure.
The logarithmic potential of a measure µ from M is defined by

Uµ(z) =

∫
log

1

|z − y|
dµ(y)

and the weighted energy integral is defined by

IQ(µ) =

∫ ∫
log

1

|z − y|
dµ(y)dµ(z) + 2

∫
Qdµ (2)
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and Q is called an external field.
If the weighted energy functionals are considered on an unbounded Σ j R, then the

external field Q has to satisfy the additional growth condition

lim
|z|→∞,z∈Σ

Q(z)− log(|z|) = +∞.

We shall drop the dependency on Σ in our notations in the cases not providing misunder-
standing.

Let us consider an extremal energy problem, i.e. the problem of finding a measure µx
Q ∈

Mx
Σ such that

IQ(µx
Q) = W x

Q = inf
µ∈Mx

Σ

IQ(µ). (3)

If in addition the measure σ has finite logarithmic energy (i.e. the energy integral (2) with
Q = 0 is finite) over all compact sets then σ is called a constraint. We can define a constrained
extremal energy problem in the class (1), i.e., the problem of finding a measure µx,σ

Q ∈ Mx,σ

such that

IQ(µx,σ
Q ) = W x,σ

Q = inf
µ∈Mx,σ

IQ(µ) (4)

provided that our constraint σ has a total mass > x. An introduction in the theory of
constrained extremal problems is given in the paper by Dragnev and Saff [DS]. For the
case without constraint we refer to the monograph by Saff and Totik [ST] and the references
therein. We recall here some known facts.

If W x
Q ≤ ∞ then there exists unique measure µx

Q ∈ Mx such that IQ(µx
Q) = W x

Q. Also
if W x,σ

Q ≤ ∞ then there exists unique measure µx,σ
Q ∈ Mx,σ such that IQ(µx,σ

Q ) = W x,σ
Q .

The extremal measures are called the equilibrium measures because they have the following
properties (when Uσ and Q are continuous):

Uµx
Q + Q

{
≥ F x

Q on Σ
= F x

Q on Sµx
Q

(5)

for some constant F x
Q, and correspondingly

Uµx,σ
Q + Q

{
≤ F x,σ

Q on Sµx,σ
Q

≥ F x,σ
Q on Sσ−µx,σ

Q

(6)

for some constant F x,σ
Q .

Properties (5) and (6) are sufficient conditions for being equilibrium measures, namely if
there is a constant such that the first or the second relation above holds for some measure
with total mass x then the measure is solution of the extremal problems (3) or (4) and it is
called respectively equilibrium measure associated with Q with total mass x or σ−constrained
equilibrium measure with total mass x associated with Q.

In the paper we use continuous external fields and potentials of constraints, but they may
be lower semi-continuous (see [BR, ST, DS]) and there exists similar equilibrium conditions.

There is a functional considered in [BR]

F x
Q(K) := −x log cap(K) +

∫
QdωK , (7)
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where ωK denotes the equilibrium measure associated with the regular compact set K, i.e.
the solution of the extremal problem (3) with Σ = K and Q = 0. For the first time the
functional (7) for x = 1 was introduced in [MS]. The support of the equilibrium measure in
R minimizes the functional, more precisely

F x
Q(K)

{
= F x

Q if Sµx
Q

j K j Sµx
Q

> F x
Q otherwise

(8)

were Sµx
Q = {y : (Uµx

Q + Q)(y) = F x
Q}. One can derive this by integration of the above equi-

librium conditions with respect to measure ωK . However, a similar result for the constrained
case is unknown.

In this paper we investigate the dependency on x of the set Sµx ∩Sσ−µx , where we fix the
external field Q and the constraint σ, and write shorter µx = µx,σ

Q for the extremal measure,
i.e., the solution of (4). The set Sµx ∩Sσ−µx is the set where the constraint is not hit. We will
refer to is also as the set of equilibrium, since on this set we have equality in the equilibrium
conditions (6). Here we restrict ourselves to the case where Sµx ∩ Sσ−µx is an interval. In
Theorem 1 below we describe a system of nonlinear equations for obtaining the endpoints of
the set of equilibrium. In the proof of Theorem 1, presented in Section 2, we will introduce
a generalization of the linear functional (7) in the constrained case. Secondly, we discuss in
Theorem 2 below the continuity the endpoints of the interval of equilibrium with respect to
x for fixed σ and Q. The proof of this assertion, given in Section 3, uses several results from
[K]. We finally show at the end of Section 3 that the endpoints of the interval of equilibrium
are solutions of a system of partial differential equations, the so-called continuum limit of the
Toda lattice [DM, AV].

Theorem 1. Let Q : [A, B] → R, (−∞ < A < B < +∞) be a continuous and differentiable
a. e. function on the interval [A, B], and Q

′ ∈ L∞([A, B]). Let σ be a constraint on [A, B]
([A, B] = Sσ), such that Uσ is continuous, and

∫
R

1√
|y−γ|

dσ(y) < +∞ for all γ ∈ (A, B).

Let µx = µσ,x
Q be the equilibrium measure for external field Q and constraint σ with total

mass µx(R) = x ≤ σ(R), i.e. µx is the solution of (4). If the set of equilibrium is an interval
Sµx ∩ Sσ−µx = [α(x), β(x)] =: [a, b], A ≤ α(x) < β(x) ≤ B, then∫

[A,B]\Sσ−µx

√
λ− a

λ− b
dσ(λ) +

1

π

∫ b

a

Q
′
(λ)

√
λ− a

b− λ
dλ

{
= x if b < B
≤ x if b = B

−
∫

[A,B]\Sσ−µx

√
λ− b

λ− a
dσ(λ) +

1

π

∫ b

a

Q
′
(λ)

√
b− λ

λ− a
dλ

{
= −x if a > A
≥ −x if a = A

(9)

where [A, B] \ Sσ−µx = Sµx \ Sσ−µx is the part of Sµx where the constraint is hit.

Notice that the nonlinear system of equations of Theorem 1 reduces to the one given in
[ST, Theorem IV.1.11] in the special case where the constraint is never active (that is Sσ−µx =
[A, B]). Such a system is obtained by expressing the fact that the gradient of the function
(α, β) 7→ F x

Q([α, β]) should vanish. Here additional sufficient conditions (like convexity of Q)
are known which insure that the system has a unique solution. For the more general case with
constrains, the above system of non-linear equations has been mentioned without proof in [BK,
Theorem 2.8] and [KL, Proof of Lemma 6.2] for the special case when [A, B] \ Sσ−µx = [A, a)
(the so-called left ansatz). In both papers the authors refer to [DM, Chapter 4] for a proof,
the latter reference being quite involved and requiring far more restrictive assumptions on Q
and σ compared to Theorem 1. Notice also that, for the left ansatz, sufficient conditions for

3



the existence of a unique solution of the above system are known, see [K, Proposition 4.1]
and [KL, Lemma 3.1 and Lemma 3.3].

In many cases, we were able to solve quite successfully the system of non-linear equations
resulting from Theorem 1 numerically by means of the Newton method (after a change of
variables in order to eliminate the square root singularities). However, it may happen that this
non-linear system does not have a unique solution, as for instance in the following example.

Example. Consider σ = ω[−2,2] + ω[−2,3], Sσ = [A, B] = [−2, 3], and the external field

Q(λ) = g[−2,2](λ) =

{
0 on [−2, 2],
acosh(λ/2) on [2, 3],

where g[a,b](λ) is the Green function of the interval [a, b] with pole at infinity, i.e.

g[a,b](λ) = log

∣∣∣∣∣(2λ− a− b

b− a

)
+

√(2λ− a− b

b− a

)2

− 1

∣∣∣∣∣ = log
( 1

cap([a, b])

)
−Uω[a,b](λ). (10)

Since cap([a, b]) = b−a
4

, we find that

Uω[−2,2](λ) + Q(λ) = 0 λ ∈ [−2, 3].

From (6) we conclude that the extremal measure with total mass 1 for the external field Q
and the constraint σ is the Chebyshev measure of [−2, 2], i.e.

µ1 = µ1,σ
Q = ω[−2,2], with weight

dω[−2,2]

dλ
(λ) =

1

π
√

4− λ2
,

and Sσ−µ1 = [A, B]. Here the nonlinear system of Theorem 1 has an infinite number of
solutions since for a = −2 and for any b ∈ (2, 3]

1

π

∫ b

a

Q
′
(λ)

√
λ− a

b− λ
dλ =

1

π

∫ b

2

√
λ + 2

b− λ

dλ√
λ2 − 4

= 1 = x,

1

π

∫ b

a

Q
′
(λ)

√
b− λ

λ− a
dλ =

1

π

∫ b

2

√
b− λ

λ + 2

dλ√
λ2 − 4

> 0 > −1 = −x.

Notice however that Q′ 6∈ L∞([−2, 3]) and also the assumptions of Theorem 1 on σ fail
to be true. Consider the slightly modified input data σ = ω + ω[−2,3] with ω having the

density
√

4− λ2/(2π) on Sω = [−2, 2], and Q = −Uω ∈ C1([−2, 3]), compare with [ST,
Theorem IV.5.1]. Here again µ1 = ω, the assumptions of Theorem 1 hold for x = 1, and the
nonlinear system has the solutions a = −2 and b ∈ [2, 3]. Since the underlying computations
are quite involved, we omit the details.

Concerning the continuity of the endpoints of the set of equilibrium we have the following
result.

Theorem 2. Suppose that there is an interval I ⊂ (0, σ(R)) such that Sµx,σ
Q
∩ Sσ−µx,σ

Q
is a

non-empty interval of the form [α(x), β(x)] for all x ∈ I.
Then there exists an xA such that x 7→ α(x) is decreasing and lower semi-continuous in

I ∩ (−∞, xA), and increasing and upper semi-continuous in I ∩ (xA, +∞).
Similarly, there exists an xB such that x 7→ β(x) is decreasing and lower semi-continuous

in I ∩ (xB, +∞), and increasing and upper semi-continuous in I ∩ (−∞, xB).
Finally, both functions are continuous at x ∈ I if and only if there is no point in [A, B] \

[α(x), β(x)] where we have equality in (6).
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2 Proof of Theorem 1

In this section we will fix x, consider an external field Q and a constraint σ as in Theorem 1,
and write shorter µx = µx,σ

Q for the corresponding constrained equilibrium measure.
By assumption of Theorem 1, both supports Sµx and Sσ−µx are closed subsets of the

compact interval [A, B], with their union being equal to [A, B], and their intersection given
by the compact interval [a, b] := [α(x), β(x)]. It is not difficult to check that therefore both
sets are themselves intervals with endpoints in {A, α(x), β(x), b, B}: more precisely, exactly
one of the following four cases is true

Sµx = [α(x), β(x)], Sσ−µx = [A, B], and A ≤ α(x) < β(x) ≤ B, (11)

Sµx = [α(x), B], Sσ−µx = [A, β(x)], and A ≤ α(x) < β(x) < B, (12)

Sµx = [A, β(x)], Sσ−µx = [α(x), B], and A < α(x) < β(x) ≤ B, (13)

Sµx = [A, B], Sσ−µx = [α(x), β(x)], and A < α(x) < β(x) < B. (14)

In the unconstrained case, provided that the extremal measure has the support [a, b], we
know from (8) that the function

(α, β) 7→ F x
Q([α, β]) = −x log(

β − α

4
) +

1

π

∫ β

α

Q(λ)√
(λ− α)(β − λ)

dλ

has a global minimum in A ≤ α < β ≤ B at the point (a, b). The same result can be shown
to hold true in case (11), however, in the other cases, similar (but weaker) results can only
be obtained after modifying the above function. For A ≤ α < β ≤ B, let

F (α, β) := −x log(
β − α

4
) +

1

π

∫ β

α

Q(λ)√
(λ− α)(β − λ)

dλ−
∫

I(α,β)

g[α,β](λ) dσ(λ), (15)

where I(α, β) is defined to be empty in case (11), and to be equal to the sets (β, B], [A, α)
and [A, α) ∪ (β, B], respectively, in the cases (12), (13), and (14). Notice that I(a, b) =
[A, B] \ Sσ−µx by construction.

We have the following result on local minima and maxima of F .

Lemma 1. The univariate function β 7→ F (a, β) has a minimum in (a, B] at β = b if b is an
interior point of Sσ−µx or if b = B, and a maximum else. Similarly, the univariate function
α 7→ F (α, b) has a minimum in [A, b) at α = a if a is an interior point of Sσ−µx or if a = A,
and a maximum else.

Proof. We consider only the first function, the reasoning for the second is similar.
In both cases b = B or b ∈ int(Sσ−µx) we find that one of the cases (11) or (13) is true. In

particular, I(a, β) = Sµx \ [a, b], and for all β ∈ (α, B] we have that [a, β] ⊂ Sσ−µx . Hence for
all λ ∈ [a, β] we get F x,σ

Q ≤ Uµx(λ) + Q(λ) from the equilibrium conditions for the extremal
measure µx, and thus, by applying the Fubini Theorem and (10),

F x,σ
Q ≤

∫
(Uµx + Q)dω[a,β] =

∫
Qdω[a,β] +

∫
Uω[a,β] dµx

=

∫
Qdω[a,β] +

∫ (
log(

1

cap([a, β])
− g[a,β](λ)

)
dµx(λ)

= F (a, β)−
∫ b

a

g[a,β](λ) dµx(λ) ≤ F (a, β),
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with equality if β = b, as claimed in the assertion of Lemma 1.
On the other hand, if neither b = B nor b ∈ int(Sσ−µx), then necessarily one of the cases

(12) or (14) is true, and in particular b ∈ Int(Sµx). In this case I(a, β) = Sµx \ [a, β], and
the equilibrium conditions give the relation F x,σ

Q ≥ Uµx(λ) + Q(λ) for all λ ∈ [a, β] for all
β ∈ (α, B]. Thus, again using Fubini and (10),

F x,σ
Q ≥

∫
(Uµx + Q)dω[a,β] =

∫
Qdω[a,β] − x log(

β − α

4
)−

∫
g[a,β](λ)dµx(λ)

= F (a, β) +

∫
I(α,β)

g[a,β](λ)d(σ − µx)(λ) ≥ F (a, β),

with equality if β = b.

Lemma 1 tells us that, for a, b ∈ (A, B) = int(Sσ−µx) ∪ int(Sµx),

∂F

∂α
(a, b) =

∂F

∂β
(a, b) = 0,

provided that F has partial derivatives. Notice that F is not always differentiable, for instance
in the example after Theorem 1 the reader may verify that F (−2, b) = max(− log((b+2)/4), 0),
taking its minimum at b ∈ [2, 3], but being clearly not differentiable at b = 2. In our case,
the additional smoothness assumptions of Theorem 1 on σ and Q do enable us to show in the
next two technical lemmas below the differentiability.

Lemma 2. Suppose that Q is continuous on [A, B] and differentiable almost everywhere on
[A, B], with Q

′ ∈ L∞([A, B]). Furthermore, let I1, I2 be some compact sets, and y : I1× I2 7→
[A, B], with y ∈ C1(I1 × I2). Then for all β ∈ I1

∂

∂β

∫
I2

Q(y(β, θ)) dθ =

∫
I2

Q
′
(y(β, θ))

∂y

∂β
(β, θ) dθ,

that is, the above integral is differentiable with respect to β, and the derivative is obtained by
exchanging integration and differentiation.

Proof. We first notice that β 7→ Q(y(β, θ)) is Lipschitz continuous in β ∈ I1 uniformly for
θ ∈ I2. Indeed, since Q

′ ∈ L1([A, B]), we have for [β1, β2] ⊂ I1

Q(y(β2, θ))−Q(y(β1, θ)) =

∫ β2

β1

Q
′
(y(β, θ))

∂y

∂β
(β, θ) dβ.

Consequently,

|Q(y(β2, θ))−Q(y(β1, θ))| ≤‖ Q
′ ‖L∞([A,B]) · ‖

∂y

∂β
‖L∞(I1×I2) ·|β2 − β1|.

Thus, for fixed β ∈ [A, B), the functions fn(θ) = [Q(y(β + 1
n
, θ)) − Q(y(β, θ))]/(1/n) are

bounded uniformly in n, θ, and we get for the right derivative

∂

∂+β

∫
I2

Q(y(β, θ)) dθ = lim
n→∞

∫
I2

fn(θ) dθ =

∫
I2

lim
n→∞

fn(θ) dθ =

∫
I2

Q
′
(y(β, θ))

∂y

∂β
(β, θ) dθ,

the exchange of the integral and the limit being justified by Lebesgue’s Dominated Con-
vergence Theorem. A similar argument yields the same formula for the left derivative for
β ∈ (A, B].
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The next Lemma deals with the differentiation of a Green potential of a non degenerate
interval [α, β] with respect to one of the endpoints α or β.

Lemma 3. Let ν be some measure with compact support S(ν), and α < β. Provided that∫
R

1√
|y − β|

dν(y) < ∞,

the Green potential
∫

g[α,β](y) dν(y) can be differentiated with respect to β, and

∂

∂β

∫
g[α,β](y) dν(y) =

∫
∂

∂β
g[α,β](y) dν(y)

=
−1

β − α

∫
R\[α,β]

√
y − α

y − β
dν(y).

Similarly, provided that∫
R

1√
|y − α|

dν(y) < ∞,

the Green potential
∫

g[α,β](y) dν(y) can be differentiated with respect to α, and

∂

∂α

∫
g[α,β](y) dν(y) =

∫
∂

∂α
g[α,β](y) dν(y)

=
1

β − α

∫
R\[α,β]

√
y − β

y − α
dν(y).

Proof. We will only show the first assertion of the Lemma, the second part is similar. Notice
first that, for y 6∈ [α, β],

g[α,β](y) = log
(∣∣∣2y − α− β

β − α

∣∣∣ +

√(2y − α− β

β − α

)2

− 1
)

(here we take real square roots such that
√

1 = 1), and thus

∂

∂β
g[α,β](y) = −|y − α|

β − α

1√
(y − α)(y − β)

= − 1

β − α

√
y − α

y − β
.

In the case β 6∈ S(ν), we notice that this derivative is smooth for y ∈ S(ν)\ [α, β], and clearly
we may exchange the order of differentiation and integration, see for instance the argument
used in the preceding Lemma. By splitting if necessary the Green potential into two parts,
we see that it only remains to consider the case S(ν) ⊂ [α, 3β−α

2
].

Consider the two sequences of functions

h±n (y) = ±
g[α,β±1/n](y)− g[α,β](y)

1/n
,

converging point-wise to the derivative of g[α,β](y) with respect to β for almost all y. We will
show below that, for all y ∈ S(ν) and n ≥ 1,

|h±n (y)| ≤ h(y) :=
5√

(β − α)|y − β|
. (16)
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Also,
∫

h(y) dν(y) < ∞ by assumption on ν. Thus the assertion of the Lemma and in
particular the differentiability of the Green potential follows by observing that, by Lebesgue’s
Dominated Convergence Theorem,

lim
n→∞

∫
h±n (y) dν(y) =

∫
lim

n→∞
h±n (y) dν(y).

In order to show (16), we start with the observation that, for y ∈ S(ν) \ [α, β] (and thus
2y−α−β

β−α
∈ [1, 2]),

0 ≤ g[α,β](y) ≤ 2y − α− β

β − α
− 1 +

√(2y − α− β

β − α

)2

− 1

=

√
2y − α− β

β − α
− 1

(√
2y − α− β

β − α
− 1 +

√
2y − α− β

β − α
+ 1

)
≤ 5

√
y − β

β − α
.

As a consequence, h+
n (y) = 0 for y ∈ [α, β], and for y ∈ [β, β + 1/n] we find that

|h+
n (y)| =

g[α,β](y)

1/n
≤

g[α,β](y)

y − β
≤ h(y).

Similarly, h−n (y) = 0 for y ∈ [α, β − 1/n], and for y ∈ [β − 1/n, β] we find that

|h−n (y)| =
g[α,β−1/n](y)

1/n
≤

g[α,β−1/n](y)√
y − (β − 1/n)

√
|y − β|

≤ h(y).

In order to consider the remaining part of S(ν), we observe that, for y ∈ S(ν) \ [α, β],

[
∂

∂β
]2g[α,β](y) = − ∂

∂β

1

β − α

√
y − α

y − β
=

1

(β − α)2

√
y − α

y − β

y − 3β/2 + α/2

y − β
< 0.

Consequently, the function β 7→ g[α,β](y) for fixed α, y is concave and decreasing in (α, y).
Hence for y ∈ S(ν) \ [α, β + 1/n]

|h+
n (y)| = −

g[α,β+1/n](y)− g[α,β](y)

(β + 1/n)− β
≤ −

g[α,y](y)− g[α,β](y)

y − β
≤ h(y).

Finally, for y ∈ S(ν) \ [α, β] we find again by concavity

|h−n (y)| = −
g[α,β](y)− g[α,β−1/n](y)

β − (β − 1/n)
≤ −

g[α,y](y)− g[α,β](y)

y − β
≤ h(y).

Thus inequality (16) holds.

We are now prepared to conclude the proof of Theorem 1. Let A ≤ α < β ≤ B. Notice
first that∫

Qdω[α,β] =
1

π

∫ π

0

Q(
β + α

2
+

β − α

2
cos(θ)) dθ,

and the assumptions of Theorem 1 on Q allow us to apply Lemma 2. Hence the following
derivatives exist

∂

∂α

∫
Qdω[α,β] =

1

π

∫ β

α

β − λ

β − α

Q′(λ)√
(λ− α)(β − λ)

dλ,

∂

∂β

∫
Qdω[α,β] =

1

π

∫ β

α

λ− α

β − α

Q′(λ)√
(λ− α)(β − λ)

dλ.
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Since in addition in case α = A we have I(α, β) ⊂ (β, B] and similarly for β = B there holds
I(α, β) ⊂ [A, α), we also find using the assumption of Theorem 1 on σ that the assumptions
of Lemma 3 for ν = σ|I(α,β) are satisfied. Consequently, the function F defined in (15) has
partial derivatives at the point (α, β) = (a, b), given by

∂F

∂α
(a, b) =

x

b− a
+

1

π

∫ b

a

b− λ

b− a

Q′(λ)√
(λ− a)(b− λ)

dλ−
∫

I(a,b)

√
λ− b

λ− a

dσ(λ)

b− a
,

∂F

∂β
(a, b) =

−x

b− a
+

1

π

∫ b

a

λ− a

b− a

Q′(λ)√
(λ− a)(b− λ)

dλ +

∫
I(a,b)

√
λ− a

λ− b

dσ(λ)

b− a

(more precisely the first expression is a right derivative for α = A, and the second one a left
derivative for β = B).

Recall also that I(a, b) = [A, B] \ Sσ−µx . Hence the assertion of Theorem 1 follows by
observing that either α = A and thus by Lemma 1

∂F

∂+α
(a, b) ≥ 0

or otherwise α ∈ (A, B) = Int(Sµx) ∪ Int(Sσ−µx) and thus

∂F

∂α
F (a, b) = 0.

Similarly, again by Lemma 1 we have that either b = B and ∂F
∂−β

(a, b) ≤ 0, or otherwise

b ∈ (A, B) and ∂F
∂β

(a, b) = 0, implying Theorem 1.

3 Smoothness of the endpoints of the set of equilibrium

As before we will write shorter µx = µx,σ
Q . The proof of Theorem 2 relies essentially on the

following result which has been shown first by Kuijlaars [K, Proposition 4.1(a)]. For the sake
of completeness we give an alternate shorter proof.

Lemma 4. The relation y > x implies µy − µx ≥ 0.

Proof. Consider the new constraint and external field

σ := σ − µx, Q(λ) = Q(λ) + Uµx(λ),

with extremal measure ν = µy−x,σ

Q
. We want to show that ν∗ := µx + ν is a candidate for the

solution of the extremal problem related to µy. In this case, µx + ν = µy by uniqueness of the
extremal measure, and hence the assertion of the lemma follows.

First one trivially observes that ν∗ is a positive measure of total mass y, and ν∗ ≤ σ by
definition of the constraint σ. Hence ν∗ ∈ My,σ. From the equilibrium conditions (6) for ν
we get that

U ν∗(λ) + Q(λ) = U ν(λ) + Uµx(λ) + Q(λ) ≥ F := F y−x,σ

Q
, λ ∈ Sσ−ν = Sσ−ν∗ ,

and

U ν∗(λ) + Q(λ) ≤ F, λ ∈ Sν ⊂ Sν∗ .

9



It only remains to show that the last inequality is also true in the remaining part Sν∗ \ Sν =
Sµx \Sν of Sν∗ . From (6) for µx we may conclude using the maximum principle for logarithmic
potentials [ST, Corollary II.3.3] that, for all λ ∈ Sµx \ Sν ,

U ν∗(λ) + Q(λ) = U ν(λ) + Uµx(λ) + Q(λ) ≤ F x,σ
Q + U ν(λ)

≤ F x,σ
Q + max{U ν(λ′) : λ′ ∈ Sν}

= F x,σ
Q + max{F − Uµx(λ′)−Q(λ) : λ′ ∈ Sν} ≤ F,

where in the final inequality we again have used (6) for µx and the fact that ν ≤ σ = σ− µx,
and hence Sν ⊂ Sσ−µx . Thus our candidate satisfies the equilibrium conditions (6) for µy,
and hence ν = µy.

From Lemma 4 we know in particular that µy − µx is of total mass |y − x|, and hence
µy → µx in weak∗ topology, as mentioned already in [K, Proposition 4.1(b)]. Using again
Lemma 4 we may conclude that Sµx is increasing in x, and more precisely

Sµx = Clos
(⋃

y<x

Sµy

)
, (17)

see [K, Eqn. (4.12)]. By adapting the language of continuity of families of sets parameterized
by a real parameter (see for instance [Ku, Chapter 2]), the relation (17) tells us that the
family {Sµx}x is lower semi-continuous in x, with the upper limit given by the compact set

Sµx :=
⋂
y>x

Sµy .

This last set may be larger than Sµx , we claim that

Sµx =
⋂
y>x

Sµy = {λ ∈ Sσ : Uµx(λ) + Q(λ) ≤ F x,σ
Q }, (18)

provided that Sµx ∩ Sσ−µx is non-empty. Notice that this last condition, which is true in the
setting of Theorem 2, implies that the extremal constant F x,σ

Q is uniquely determined by (6).
We should also mention that we have equality in the inequality of (18) in the special case
Sσ = Sσ−µ where the constraint is not hit: here we recover an identity given in [BR] for the
unconstrained case.

In order to show the claim (18), we recall from the proof of Lemma 4 that µy − µx is the
extremal measure with respect to the external field Q(λ) = Q(λ)+Uµx(λ) and the constraint
σ = σ − µx, with total mass y − x. In [K, Lemma 4.4.(c) ] it is shown that⋂

y−x>0

Sµy−µx =
{

λ ∈ Sσ : Q(λ) = min{Q(λ′) : λ′ ∈ Sσ}
}

,

and the minimum equals F x,σ
Q by (6). Consequently,⋂

y>x

Sµy =
⋂
y>x

Sµx ∪ Sµy−µx = Sµx ∪ {λ ∈ Sσ−µx : Uµx(λ) + Q(λ) = F x,Q
Q },

and together with (6) we arrive at (18). By recalling the duality relation following for instance
from (6) that σ−µx is extremal with respect to the constraint σ and the external field−Q−Uσ,

10



we also obtain from (17) and (18) that Sσ−µx is a decreasing family of sets, with lower and
upper limits

Sσ−µx = Clos
(⋃

y>x

Sσ−µy

)
, Sσ−µx :=

⋂
y<x

Sσ−µy = {λ ∈ Sσ : Uµx(λ)+Q(λ) ≥ F x,σ
Q }. (19)

We now are prepared to show Theorem 2: first observe that, with Sµx and Sσ−µx , also
the two sets Sµx and Sσ−µx are intervals for x ∈ I by (18), (19). Define the quantities xA, xB

as follows: if there is no x ∈ I with A ∈ Sµx (and B ∈ Sσ−µx , respectively), then put xA to
be equal to the right endpoint of I (and xB equal to the left endpoint of I), and else

xA = inf{x ∈ I : A ∈ Sµx}, xB = sup{x ∈ I : B ∈ Sσ−µx}.

For x ∈ I ∩ (−∞, xA) we have A 6∈ Sµx by definition of xA, and thus one of the cases (11) or
(12) is true. In particular, Sµx is an interval, with left endpoint α(x). Since the sets Sµx are
increasing, we therefore may conclude that x 7→ α(x) decreases in I ∩ (−∞, xA), and

α(x) = inf
y<x

α(y) = lim
y→x−0

α(y)

by (17), showing the semi-continuity claimed in Theorem 2. Notice also that the upper limit
α(x + 0) is the left endpoint of the interval Sµx or Sµx ∩ Sσ−µx by (18).

For x ∈ I ∩ (xA,∞) we have A ∈ Sµx by definition of xA, and thus either α(x) = A or
one of the cases (13) or (14) is true. In particular, α(x) is the left endpoint of the interval
Sσ−µx , and the claimed monotony and upper semi-continuity follows from Lemma 4 and (19)
as before. Here in addition the lower limit α(x− 0) is the left endpoint of the interval Sσ−µx

or Sµx ∩ Sσ−µx by (19).
Finally, for x = xA, the left endpoint for the interval Sµx ∩Sσ−µx is A by definition of xA,

and the left endpoint for the two intervals Sµx and Sσ−µx is given by the lower limit α(xA−0)
and the upper limit α(xA + 0), respectively.

Similar properties for the map x 7→ β(x) in I are established, we omit the details. The
above considerations can be summarized as follows: for x ∈ I, there is equality in the equi-
librium conditions (6) in the set

Sµx ∩ Sσ−µx = [min{α(x + 0), α(x− 0)}, max{β(x + 0), β(x− 0)}],

which coincides with [α(x), β(x)] if and only if both functions α and β are continuous in x.
Thus Theorem 2 is shown.

Let us relate the findings of Theorem 1 and Theorem 2. Revisiting the proof of Lemma 1
allows to conclude that

∂F

∂α
(a, b) =

∂F

∂β
(a, b) = 0

for a ∈ [min{α(x + 0), α(x− 0)}, α(x)] and b ∈ [β(x), max{β(x + 0), β(x− 0)}]. Thus, in case
of discontinuities of α or β, the system of nonlinear equations in Theorem 1 will not have a
unique solution.

We conclude this section by recalling the well-known relationship between intervals of
equilibrium and the so-called continuum limit of the Toda lattice, a system of hyperbolic
partial differential equations, see [DM, AV]. As in [AV], consider an external field depending
in addition on the time variable t

Q(λ, t) = Q(λ, 0)− λt

2
,
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and a constraint σ independent of t, where λ 7→ Q(λ, 0) and σ satisfy the conditions of
Theorem 1. We also suppose that there is neighborhood U of some (x0, t0) such that, for
all (x, t) ∈ U , the equilibrium set Sµ ∩ Sσ−µ for the extremal measure µ = µx,σ

Q(·,t) is an

interval [α(x, t), β(x, t)] with A < α(x, t) < β(x, t) < B. Finally, we suppose that1 the map
G : (x, t) 7→ (α, β) is of class C1(U), with nonsingular Jacobian at the point (x0, t0). Our
claim is that, in a neighborhood of (x0, t0), the two bivariate functions α, β are related as
follows

∂α

∂t
= −β − α

4

∂α

∂x
,

∂β

∂t
=

β − α

4

∂β

∂x
. (20)

First notice that, by the theorem of local inversion, G has an inverse map G−1 : (α, β) 7→ (x, t)
of class C1 in some neighborhood of (α0, β0) = (α(x0, t0), β(x0, t0)), with nonsingular Jacobian.
For showing (20) it is sufficient prove the identities

∂x

∂α
= −β − α

4

∂t

∂α
,

∂x

∂β
=

β − α

4

∂t

∂β
. (21)

Indeed, by multiplying the second identity of (21) by ∂α
∂x

and taking into account that ∂α
∂x

∂x
∂β

+
∂α
∂t

∂t
∂β

= 0, we arrive at

0 =
∂α

∂x

(
−∂x

∂β
+

β − α

4

∂t

∂β

)
=

∂t

∂β

(∂α

∂t
+

β − α

4

∂α

∂x

)
.

Since, according to (21), the determininant of the Jacobian of G−1 is given by −β−α
2

∂t
∂α

∂t
∂β
6= 0,

we obtain the first equation of (20), and the second is shown similarly. It remains to show
(21). Taking into account the relations

1

π

∫ b

a

t

2

√
λ− a

b− λ
dλ =

b− a

4
t =

1

π

∫ b

a

t

2

√
b− λ

λ− a
dλ,

the system of nonlinear equations of Theorem 1 for α = α(x, t), β = β(x, t) takes the form∫
[A,B]\Sσ−µ

√
λ− α

λ− β
dσ(λ) +

1

π

∫ β

α

∂Q

∂λ
(λ, 0)

√
λ− α

β − λ
dλ = x +

β − α

4
t, (22)∫

[A,B]\Sσ−µ

√
λ− β

λ− α
dσ(λ)− 1

π

∫ β

α

∂Q

∂λ
(λ, 0)

√
β − λ

λ− α
dλ = x− β − α

4
t. (23)

Writing
√

λ−α
λ−β

= ε(λ) λ−α√
(λ−α)(λ−β)

with ε(λ) = 1 for λ > β and ε(λ) = −1 for λ < α,

and similarly for
√

β−λ
λ−α

, we get by subtracting (23) from (22) and by dividing the resulting

equation by 2(β − α) that

t

4
=

1

2

∫
[A,B]\Sσ−µ

ε(λ) dσ(λ)√
(λ− α)(λ− β)

+
1

2π

∫ β

α

∂Q

∂λ
(λ, 0)

dλ√
(λ− α)(β − λ)

. (24)

Comparing the right-hand sides of (22), (23) with (21), the equations (21) are obtained by
observing that the left-hand side of (22) is differentiable with respect to α, the left-hand side

1Notice that this regularity assumption is not covered by our Theorem 2. However, according to (20), the
determinant of the Jacobian equals β−α

2
∂α
∂x

∂β
∂x , and thus our assumption on the Jacobian is in accordance with

the monotony of x 7→ α(x, t) and x 7→ β(x, t) for fixed t.
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of (23) is differentiable with respect to β, and that both partial derivatives are equal to the
expression of t/4 given on the right-hand side of equation (24). Here the differentiability
follows from the smoothness of G−1, and the remaining straightforward computations are left
to the reader.

Finally, observe that by adding equation (22) to (23), we also obtain an explicit expression
for x = x(α, β), namely

x =

∫
[A,B]\Sσ−µ

ε(λ)(λ− α+β
2

)√
(λ− α)(λ− β)

dσ(λ) +
1

π

∫ β

α

∂Q

∂λ
(λ, 0)

λ− α+β
2√

(λ− α)(β − λ)
dλ.

Thus, provided that λ 7→ Q(λ, 0) is of class C2([A, B]) and σ has a density function of
class C1([A, B]), we could show also directly via Lebesgue’s Dominated Convergence Theorem
following the arguments of Section 2 that the map (α, β) 7→ (x, t) is of class C1, and that (21)
holds. Thus, at least at points where the the determinant −β−α

2
∂t
∂α

∂t
∂β

of the Jacobian is non-

zero, we have the converse assertion complementing Theorem 2 that the endpoints α(x, t) and
β(x, t) of the equilibrium set are locally C1, with non-vanishing partial derivatives.
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