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May 4, 2013

email address: jbusta@fcfm.buap.mx

Postal address: Benemerita Universidad Autonoma de Puebla, Facultad de
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1 Introduction

Let σ be a positive measure on a compact interval, say, [a, b], such that the
support of dσ contains an infinite set of points. In what follows we will be
interested in n-point quadrature formulas having the form

Iσ(f) :=

∫ b

a

f(x)dσ(x) = Qn(f) +Rn(f), Qn(f) =

n∑
j=1

λn,jf(xn,j), (1)

with xn,j ∈ [a, b] distinct called the abscissas, and λn,j ∈ R the weights. This
formula is said to be positive if λn,j > 0 for all j, and to have a degree of precision
m if m is the maximal integer such that Rn(f) = 0 for all polynomials of degree
≤ m. In what follows, all our formulas will have degree of precision m ≥ n− 1,
and thus the weights are computable from the abscissas by integrating Lagrange
polynomials. Any polynomial wn of degree n with roots xn,1, . . . , xn,n will be
called a generating polynomial of Qn.

It is well known that there exist unique n-point quadrature formulas of degree
of precision 2n − 1, the so-called Gauss rules. Also, by relaxing the degree of
precision, one may prescribe one or both endpoints as abscissas: there exist
unique so-called (left or right) n-point Radau rules with abscissa a or b and
degree of precision 2n − 2, and a unique n-point Lobatto rule with abscissas
a and b and degree of precision 2n − 3. The existence and uniqueness of such
formulas can be seen from the fact that Qn has a degree of precision m ≥ n− 1
if and only if we have the orthogonality∫ b

a

xjwn(x)dσ(x) = 0, j = 0, 1, . . . ,m− n (2)

for a generating polynomial wn, which should have simple roots in [a, b]. Denot-
ing by ω(x) ∈ {1, b−x, x−a, (b−x)(x−a)} the prescribed part of the generating
polynomial, we see from (2) that for finding the remaining abscissas we have
to find the roots of the orthogonal polynomial wn/ω of degree n − degω with
respect to the positive measure ω dσ on [a, b] for any of these four quadrature
formulas. It is well known that these roots are simple and in (a, b), and that all
the resulting quadrature formulas are positive.

Motivated by some problems related with the best one-sided polynomial
approximation of Heaviside functions [3], the aim of this paper is to study
the question whether for a given θ ∈ (a, b) there exists a positive quadrature
formula of the above type having the additional prescribed abscissa θ, if we are
willing to lower the corresponding degree of precision by 1. For Gauss rules
this question has been fully treated already in [2, Theorem 2.9], we will give
below an equivalent caracterization. In [2, Theorem 2.17] the authors discuss
the situation of two precribed abscissa θ ∈ (a, b) and c ∈ {a, b}, but it seems for
us that for the θ given by the authors the weight corresponding to the abscissa
c might be begative.

As in [1, 2, 4], a central role in this study are played by quasi-orthogonal
polynomials as introduced by Shohat [7]. Given a θ ∈ (a, b), we call an n-point
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quadrature rule a quasi Gauss rule (and quasi left Radau rule, quasi right Radau
rule or quasi Lobatto rule, respectively) with abscissa θ if it has the prescribed
abscissas in {θ} (and {θ, a}, {θ, b}, and {θ, a, b}, respectively), all other abscissas
in (a, b)\{θ}, and has degree of precision 2n−2 (and 2n−3, 2n−3, and 2n−4,
respectively).

Denote by

a < xGn,1 < ... < xGn,n < b, a = xLRn,1 < ... < xLRn,n < b,

a < xRRn,1 < ... < xRRn,n = b, a = xLn,1 < ... < xLn,n = b,

the abscissas of the classical Gauss, the left Radau, the right Radau and the
Lobatto n-point rules for the measure σ, respectively. It is shown implicitly in
the proof of Theorem 1.1 below (and can be alternatively established directly
using [8, Theorem 3.3.4] due to A. Markov) that

j = 1, ..., n : xLRn,j < xGn,j < xRRn,j , (3)

j = 1, ..., n− 1 : xGn−1,j < xLRn,j+1 < xLn,j+1, (4)

j = 1, ..., n− 1 : xLn,j < xRRn,j < xGn−1,j , (5)

j = 1, ..., n− 2 : xRRn−1,j < xLn,j+1 < xLRn−1,j+1. (6)

We have the following main result, which will be proved in the next section.

Theorem 1.1. (a) There exists a positive n-point quasi Gauss rule with abscissa
θ for n ≥ 1 if and only if

θ ∈
n⋃
j=1

(xLRn,j , x
RR
n,j ) \ {xGn,j}.

(b) There exists a positive n-point quasi left Radau rule with abscissa θ for n ≥ 2
if and only if

θ ∈
n−1⋃
j=1

(xGn−1,j , x
L
n,j+1) \ {xLRn,j+1}.

(c) There exists a positive n-point quasi right Radau rule with abscissa θ for
n ≥ 2 if and only if

θ ∈
n−1⋃
j=1

(xLn,j , x
G
n−1,j) \ {xRRn,j }.

(d) There exists a positive n-point quasi Lobatto rule with abscissa θ for n ≥ 3
if and only if

θ ∈
n−2⋃
j=1

(xRRn−1,j , x
LR
n−1,j+1) \ {xLn,j+1}.

(e) Defining ω(x) = 1, x−a, b−x, (b−x)(x−a), respectively, and ν = n−degω,
a generating polynomial for any such quadrature formula is given by

wn(x) = ω(x)
(
pν(x, ωσ)− pν(θ, ωσ)

pν−1(θ, ωσ)
pν−1(x, ωσ)

)
(7)
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with pj(x, ωσ) the jth orthonormal polynomial with respect to the positive mea-
sure ωdσ, hence the above quadrature formulas are unique.

Since the intervals occurring in Theorem 1.1(b) and in Theorem 1.1(c) are
distinct and the union of their closures give the full interval [a, b] (and similarly
those in Theorem 1.1(a) for n replaced by n − 1 and in Theorem 1.1(d)), we
may draw two different conclusions for any prescribed abscissa θ ∈ [a, b].

Corollary 1.2. If n ≥ 3 and

θ ∈
n⋃
j=1

{xLRn,j , xRRn,j , xLn,j} ∪
n−1⋃
j=1

{xGn−1,j}

then there exists either an (n− 1)-point Gauss rule, an n-point Radau rule, or
an n-point Lobatto rule with abscissa θ. Else, there exists a positive n-point
quasi either left or right Radau rule with abscissa θ.

If n ≥ 3 and

θ ∈
n⋃
j=1

{xLn,j} ∪
n−1⋃
j=1

{xGn−1,j , xLRn−1,j , xRRn−1,j}

then there exists either an (n−1)-point Gauss rule, an (n−1)-point Radau rule
or an n-point Lobatto rule with abscissa θ. Else, there exists either a positive
(n−1)-point quasi Gauss rule with abscissa θ or a positive n-point quasi Lobatto
rule with abscissa θ.

Remark 1.3. In order to understand better the restrictions for the parame-
ter θ in Theorem 1.1, let us have a closer look at the quasi left Radau rule of
Theorem 1.1(b). As θ approaches the exceptional point xLRn,j+1, our quadrature
formula becomes the classical n-point left Radau rule, having a degree of preci-
sion 2n−2 and not 2n−3 as required for a quasi Radau rule. For θ approaching
the left endpoint xGn−1,j we obtain the classical (n − 1)-point Gauss rule (with
degree of precision 2n − 3) since the weight corresponding to the abscissa a
does vanish, see proof of Lemma 2.3 below. Finally, for θ approaching the right
endpoint xLn,j+1, the right-hand abscissa of our quadrature formula approaches
b (see Lemma 2.2 below), and we obtain the classical n-point Lobatto formula
(and degree of precision 2n − 3). Similar phenomena do occur for the other
three quadrature formulas of Theorem 1.1, we omit details.

2 Proofs

Let {pn(x, σ)} be the family of orthonormal polynomials on [a, b] with respect
to dσ normalized to have positive leading coefficients. The roots of pn(x, σ) are
known to be simple and in (a, b), we will enumerate them more explicitly as

xn,1(σ) < . . . < xn,n(σ)
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and use the convention xn,0(σ) = a, xn,n+1(σ) = b. If ω(x) ∈ {1, b−x, x−a, (b−
x)(x− a)}, we use the notation pn(x, ωσ) for the polynomials corresponding to
the measure ωdσ. We also introduce the rational function

fn(x, σ) =
pn(x, σ)

pn−1(x, σ)
.

As usual Pn denotes the family of all algebraic polynomials of degree not greater
than n.

In the next statement which goes back essentially to Shohat [7] we will enu-
merate some classical necessary and sufficient conditions for a certain quadrature
formula to exist. For the sake of completeness, each time a proof is provided.

Lemma 2.1. Let ω(x) ∈ {1, x − a, b − x, (b − x)(x − a)}, ν = n − degω, and
θ ∈ (a, b).

(a) If pν−1(θ, ωσ) = 0 then there exists no n-point quadrature formula of
degree of precision ≥ n+ ν − 2 having as prescribed abscissas the roots of (x−
θ)ω(x).

(b) If pν(θ, ωσ) = 0 then there exists a unique n-point quadrature formula
of degree of precision ≥ n + ν − 2 having as prescribed abscissas the roots of
(x−θ)ω(x), namely the Gauss/Radau/Lobatto rule which has degree of precision
= n+ ν − 1.

(c) If pν−1(θ, ωσ)pν(θ, ωσ) 6= 0 then there exists at most one n-point quadra-
ture formula of degree of precision ≥ n+ν−2 having as prescribed abscissas the
roots of (x− θ)ω(x). Such a quadrature formula has the generating polynomial
wn defined in (7).

(d) Conversely, if pν−1(θ, ωσ)pν(θ, ωσ) 6= 0 and provided that the roots of
wn/ω with wn as in (7) are simple and in (a, b) and that the weights correspond-
ing to the roots of ω are positive, the polynomial wn of (7) generates a positive
n-point quadrature formula of degree of precision n+ ν − 2 having as prescribed
abscissas the roots of (x− θ)ω(x).

Proof. For a proof of parts (a)–(c), let Qn be an n-point quadrature formula as
in (1), of degree of precision ≥ n+ ν− 2, with generating polynomial W having
roots including θ and the roots of ω. Then for j = 0, 1, ..., ν − 2 we have

Rn(xjW ) = 0 = Iσ(xjW ) =

∫ b

a

xjW (x) dσ(x).

Expanding W/ω in the basis of the pj(x, ωσ) we deduce the equivalent property
that

W (x) = ω(x)(c1pν(x, ωσ) + c2pν−1(x, ωσ))

for some real constants c1, c2. Notice that c1 6= 0 since otherwise Qn would be
an (n − 1)-point rule. Since W (θ) = 0 6= ω(θ), we conclude that c1pν(θ, ωσ) +
c2pν−1(θ, ωσ) = 0. By the interlacing property of orthogonal polynomials
[8, p. 46], the quantities pν(θ, ωσ) and pν−1(θ, ωσ) do not vanish simultane-
ously. Thus pν−1(θ, ωσ) 6= 0, as claimed in part (a). Also, notice that in case
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pν(θ, ωσ) = 0 the roots of W become the roots of ω(x)pν(x, ωσ), that is, we
obtain the classical Gauss/Radau/Lobatto rule described in the introduction.
This shows claim (b).

In the remaining case pν−1(θ, ωσ)pν(θ, ωσ) 6= 0 we have shown that wn =
W/c1 as in (7) is a generating polynomial for Qn. Observing that

Rn(pν−1(x, ωσ)w) = Iσ(pν−1(x, ωσ)w) = c2

∫ b

a

pν−1(x, ωσ)2ω(x)dσ(x) 6= 0,

we conclude that there is a unique such Qn, which has degree of precision
precisely n+ ν − 2, as claimed in part (c).

Conversely, under the assumptions of part (d) we may construct a quadrature
formula (1) with abscissas xn,j being the roots of wn (which have been supposed
to be distinct elements of [a, b]), and weights

λn,j =

∫ b

a

wn(x)

w′n(xn,j)(x− xn,j)
dσ(x) (8)

obtained by integrating Lagrange polynomials [5, p. 80], and thus Qn has degree
of precision ≥ n−1. Since any f ∈ Pn+ν−2 can be written as f = f1wn+f2 with
f1 ∈ Pν−2, f2 ∈ Pn−1, we find that Rn(f) = Rn(f1wn) + Rn(f2) = Rn(f1wn),
the latter vanishing by orthogonality. Hence Qn has degree of precision ≥
n+ ν − 2, and thus n+ ν − 2 by part (c).

It remains to discuss the positivity of the weights. If ω(xn,j) = 0, the
property λn,j > 0 has been included in the assumptions. Else we observe that

Pj(x) :=
wn(x)

w′n(xn,j)(x− xn,j)
P (x)

P ′(xn,j)(x− xn,j)
, P (x) =

wn(x)

ω(x)

is an element of Pn+ν−2 which is ≥ 0 on [a, b] and = 0 only at a finite number
of points, implying that λn,j = Qn(Pj) = Iσ(Pj) > 0.

One learns from Lemma 2.1(c),(d) that there is a gap between our necessary
and sufficient conditions for a certain quadrature formula to exist, namely the
localization of the roots of wn/ω in (a, b), and the positivity of certain weights.
Each of these conditions will be further analyzed in the next two lemmas.

We start by recalling results from Peherstorfer [6] and Brezinski et al. [1,
Theorem 3] on the localization of roots of the quasi-orthogonal polynomial wn
of (7). The second part can be found in [2, Remark 2.11].

Lemma 2.2. Let ω(x) ∈ {1, x − a, b − x, (b − x)(x − a)}, ν = n − degω, and
θ ∈ (a, b) be such that pν−1(θ, ωσ)pν(θ, ωσ) 6= 0.

The roots of wn/ω with wn as in (7) are simple and in (a, b) if and only if

fν(a, ωσ) < fν(θ, ωσ) < fν(b, ωσ), (9)

which again is equivalent to

θ ∈
ν⋃
j=1

(
xν−1,j−1(ωaσ), xν−1,j(ωbσ)

)
, (10)
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where ωa(y) = (y − a)ω(y) and ωb(y) = (b− y)ω(y).

Proof. From [8, p. 45] or [7, p. 463] it is known that the ν roots of the quasi-
orthogonal polynomial wn/ω are real and distinct, and that at least ν − 1 of
them lie in (a, b). Thus it remains to localize the remaining root. The sufficiency
of condition (9) has been shown in [1, Theorem 3(v)], and the necessity in [1,
Theorem 3(iii) and (iv)].

In order to make the link with condition (10), we write the partial fraction
decomposition

fν(x, ωσ) = αx+ β +

ν−1∑
j=1

cj
x− xν−1,j(ωσ)

,

where from the interlacing property of the roots of pν(x, ωσ) and pν−1(x, ωσ)
[8, p. 46] it follows that α, c1, ..., cν−1 > 0, fν(b, ωσ) > 0, and fν(a, ωσ) < 0. In
particular, x 7→ fν(x, ωσ) is strictly increasing in each subinterval

(xν−1,j−1(ωσ), xν−1,j(ωσ))

for j = 1, ..., ν, where we recall the convention xν−1,0(ωσ) = a and xν−1,ν(ωσ) =
b. Since fν(a) < 0 < fν(b), we may conclude that θ ∈ (xν−1,j−1(ωσ), xν−1,j(ωσ))
satisfies (9) iff θ ∈ (xj−1, yj), with

xν−1,j−1(ωσ) ≤ xj−1 < xν,j(ωσ) < yj ≤ xν−1,j(ωσ) (11)

and xj−1 a root of Py(x) = pν(x, ωσ)− fν(y, ωσ)pν−1(x, ωσ) for y = a, and yj
for y = b, respectively. By construction, Pa(x)/(x− a) ∈ Pν−1 is orthogonal to
Pν−2 with respect to the measure ωaσ. Thus Pa(x) is a non-trivial multiple of
(x−a)pν−1(x, ωaσ), showing that x0 = a, and xj = xν−1,j(ωaσ) for j = 1, ..., ν−
1. By a similar argument, yν = b, and yj = xν−1,j(ωbσ) for j = 1, ..., ν − 1.

We learn from the proof of Lemma 2.2 that condition (10) implies the hy-
pothesis pν−1(θ, ωσ) 6= 0, but it may happen that pν(θ, ωσ) = 0.

We finally need to discuss the positivity of weights corresponding to pre-
scribed abscissas being roots of ω for the n-point quadrature formula with gen-
erating polynomial wn as in (7). The following result seems to be new.

Lemma 2.3. Let ω(x) ∈ {1, x − a, b − x, (b − x)(x − a)}, ν = n − degω,
and θ ∈ Jj :=

(
xν−1,j−1(ωaσ), xν−1,j(ωbσ)

)
for some j ∈ {1, ..., ν} such that

pν(θ, ωσ) 6= 0, where as before ωa(y) = (y − a)ω(y) and ωb(y) = (b− y)ω(y).
(a) If ω(a) = 0 then the weight corresponding to the prescribed abscissa a is

> 0 if and only if θ > xν,j(ω̃aσ), with ω̃a(y) = ω(y)/(y − a).
(b) If ω(b) = 0 then the weight corresponding to the prescribed abscissa b is

> 0 if and only if θ < xν,j(ω̃bσ), with ω̃b(y) = ω(y)/(b− y).

Proof. Since the second statement follows from the first after replacing x by −x,
we only show part (a). We will write shorter pj(x, ω̃aσ) = pj(x) and require in
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what follows the so-called Christoffel-Darboux formula [8, p. 41-42]: there exist
scalars am > 0 such that for all m ≥ 0

am
pm+1(x)pm(y)− pm+1(y)pm(x)

x− y
=

m∑
j=0

pj(x)pj(y) =: Km(x, y). (12)

As before we observe that Km(x, a) ∈ Pm is orthogonal to Pm−1 with respect
to the measure (x− a)ω̃aσ = ωσ, and hence

Km(x, a)

Km(a, a)
=
pm(x, ωσ)

pm(a, ωσ)
. (13)

Using (12) as well as the orthonormality of the pj we deduce that∫ b

a

pm(x, ωσ)

pm(a, ωσ)
ω̃a(x) dσ(x) =

1

Km(a, a)
> 0.

According to (8) we may write the weight corresponding to the abscissa a as
follows

λn,1 =

∫ b

a

pν(x, ωσ)− fν(θ, ωσ)pν−1(x, ωσ)

pν(a, ωσ)− fν(θ, ωσ)pν−1(a, ωσ)

ω̃a(x)

ω̃a(a)
dσ(x)

=

∫ b

a

pν(x,ωσ)
pν(a,ωσ)

− fν(θ,ωσ)
fν(a,ωσ)

pν−1(x,ωσ)
pν−1(a,ωσ)

fν(a, ωσ)− fν(θ, ωσ)

ω̃a(x)

ω̃a(a)
dσ(x)

=
1

ω̃a(a)

1/Kν−1(a, a)

fν(θ, ωσ)− fν(a, ωσ)

(fν(θ, ωσ)

fν(a, ωσ)
− Kν−1(a, a)

Kν(a, a)

)
.

Recall from Lemma 2.2 that fν(θ, ωσ) > fν(a, ωσ) < 0, and trivially

ω̃a(a)Kν−1(a, a) > 0.

With the rational function

r(x) =
fν(x, ωσ)

fν(a, ωσ)
− Kν−1(a, a)

Kν(a, a)
,

we therefore may conclude that λn,1 > 0 if and only if r(θ) > 0. In or-
der to discuss the sign of r(θ), recall from the proof of Lemma 2.2 that r
is strictly decreasing in the interval Jj , and notice that we have the value
1 −Kν−1(a, a)/Kν(a, a) > 0 at the left endpoint of Jj , and a strictly negative
value at the right endpoint of Jj . Thus λn,1 > 0 if and only if θ > xj , with xj
the unique root in Jj of r. Applying (12) and (13) we obtain the simplification

r(x) =
Kν−1(a, a)

Kν(a, a)

( Kν(x, a)

Kν−1(x, a)
− 1
)

=
Kν−1(a, a)

Kν(a, a)

pν(a)pν(x)

Kν−1(x, a)

with roots xν,1(ω̃aσ), ..., xν,ν(ω̃aσ). Comparing with the ordered and disjoint
intervals J1, ..., Jν , we find that xν,j(ω̃aσ) ∈ Jj , and thus xj = xν,j(ω̃aσ), as
claimed above.
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We are now prepared to show our main Theorem.

Proof of Theorem 1.1. Statement (a). We set ω(x) = 1, ν = n, and wn as in (7).
Provided that θ is as indicated in Theorem 1.1(a), we conclude from Lemma 2.2
with

xn−1,j−1(ωaσ) = xLRn,j < xn,j(ωσ) = xGn,j < xn−1,j(ωbσ) = xRRn,j

that wn = wn/ω has all its roots in (a, b). Thus the existence of a positive
n-point quasi Gaussian quadrature with abscissa θ follows from Lemma 2.1(d).

Conversely, if θ = xn,j(ωσ) = xGn,j for some j ∈ {1, ..., n} then pn(θ, ωσ) = 0,
and there does not exist a n-point quasi Gaussian quadrature by Lemma 2.1(b).
For any other value of θ ∈ (a, b), the polynomial wn = wn/ω has one of its roots
outside (a, b) by Lemma 2.2, and thus an n-point quasi Gaussian quadrature
cannot exist by Lemma 2.1(c).

Statement (b). We set ω(x) = x− a, ν = n− 1, and wn as in (7). Provided
that θ is as indicated in Theorem 1.1(b), we conclude from Lemma 2.2 and
Lemma 2.3(a) with

xn−2,j−1(ωaσ) < xn−1,j(ω̃aσ) = xGn−1,j

< xn−1,j(ωσ) = xLRn,j+1 < xn−2,j(ωbσ) = xLn,j+1

that wn/ω has all its roots in (a, b), and that the weight λn,1 corresponding
to xn,1 = a is > 0. Thus the existence of a positive n-point quasi left Radau
quadrature with abscissa θ follows from Lemma 2.1(d).

The non-existence for other values of θ follows as above using again Lemma 2.1,
Lemma 2.2, and Lemma 2.3(a).

Statement (c) follows from Theorem 1.1(b) after replacing x by −x, or,
alternatively from Lemma 2.1, Lemma 2.2, and Lemma 2.3(b) with ω(x) = b−x,
ν = n− 1, and

xn−2,j−1(ωaσ) = xLn,j < xn−1,j(ωσ) = xRRn,j

< xn−1,j(ω̃bσ) = xGn−1,j < xn−2,j(ωbσ).

Statement (d) follows from Lemma 2.1, Lemma 2.2, and Lemma 2.3(a),(b)
with ω(x) = (x− a)(b− x), ν = n− 2, and

xn−3,j−1(ωaσ) < xn−2,j(ω̃aσ) = xRRn−1,j < xn−2,j(ωσ) = xLn,j+1

< xn−2,j(ω̃bσ) = xLRn−1,j+1 < xn−3,j(ωbσ).

Statement (e) follows from Lemma 2.1(c).
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