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Abstract
We describe a new method of computing matrix Padé approximants of series with

integer data in a an efficient and fraction-free way, by controlling the growth of the
size of intermediate coefficients. This algorithm is applied to compute high precision
Padé approximants of matrix-valued generating functions of time series. As an
illustration we show that we can successfully recover from noisy equidistant sampling
data a joint damped signal of four antenna, even in the presence of background
signals.

1 Introduction and application

Consider four independent antennas labeled by ` ∈ {1, 2, 3, 4}, at different places receiving
a damped signal

A(`)e−αt cos(2πνt+ ϕ(`))

with the same frequency ν > 0 and damping factor α > 0, but with different amplitudes
A(`) 6= 0 and phases ϕ(`) ∈ [−π, π]. Each antenna has a characteristic spectrum that can
be approximated by a finite number of discrete frequencies, contributing with a stationary
background represented by

n(`)∑
j=1

A
(`)
j cos(2πν

(`)
j t+ ϕ

(`)
j ).

Here the number of frequencies n(`) ≥ 0, the frequencies ν
(`)
j > 0, amplitudes A

(`)
j > 0

and phases ϕ
(`)
j ∈ [−π, π] might vary with the antenna `.

Each antenna records N + 1 samples over the time interval [0, T ], in other words,
we know the first N + 1 coefficients of the Taylor series at 0 of the following generating
rational function associated with each time series

F (`)(z) =
∞∑
k=0

zk
(
A(`)e−α

kT
N cos(2πν

kT

N
+ ϕ(`)) +

n(`)∑
j=1

A
(`)
j cos(2πν

(`)
j

kT

N
+ ϕ

(`)
j )
)

=
A(`)eiϕ

(`)
/2

1− ze(−α+i2πν)T/N
+

n(`)∑
j=1

A
(`)
j e

iϕ
(`)
j /2

1− zei2πν
(`)
j T/N

+ cc, (1)
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where +cc means that we have to add the complex conjugate of the whole expression,
except z. By arranging these four generating functions in a 2×2 matrix we obtain a
matrix Taylor expansion with coefficients Fk ∈ R2×2

F (z) =

[
F (1)(z) F (2)(z)
F (3)(z) F (4)(z)

]
= F0 + F1z + ...+ FNz

N +O(zN+1)z→0

=
ρ0

1− z/z0

+
4∑
`=1

n(`)∑
j=1

ρ
(`)
j

1− z/z(`)
j

+ cc. (2)

Notice that F (z) is a matrix-valued rational function, with poles

z0 = e(α−i2πν)T/N , z
(`)
j = e−i2πν

(`)
j T/N , (3)

and their complex conjugates, and with

ρ0 =

[
1
2
A(1)eiϕ

(1) 1
2
A(2)eiϕ

(2)

1
2
A(3)eiϕ

(3) 1
2
A(4)eiϕ

(4)

]
, ρ

(`)
j =

1

2
A

(`)
j e

iϕ
(`)
j

[
δ`,1 δ`,2
δ`,3 δ`,4

]
, (4)

δ`,k denoting the Kronecker symbol such that the matrices ρ
(`)
j only have one entry different

from 0. We will refer to the matrices in (4) as residual–type matrices since they are
residuals of the rational function 1

z
F (1

z
), a common change of variables in signal processing.

Supposing that

ν
(`)
j distincts, ν <

N

2T
, ν

(`)
j <

N

2T
, and N ≥ 3 + 4 max{n(1), n(2), n(3), n(4)}, (5)

we may reconstruct from the recorded sampling data F0, ..., FN a unique partial fraction
decomposition as in (2), and thus via the formulas (3) and (4) all frequencies, damping
factors, amplitudes and (up to a sign) the phases. In particular, the desired frequency ν
and damping factor α can be found from the (up to conjugation) unique pole of modulus
exp(αT/N) > 1 (the other poles having modulus = 1), also in the case where the am-
plitude of the signal is smaller than the one of the characteristic oscillations of antennas.
Moreover, even in case of a small damping factor α ≈ 0, we expect that the residual-type
matrix ρ0 is the only one with four entries different from zero, which enables us to identify
the interesting pole and thus the desired frequency ν.

Since in general we do not know in advance the value of n(`), we will construct right
matrix Padé approximants of type [L|M ], and in particular for the special case L =
M −1, for different values of M . Such a matrix approximant for a power series F (z) with
coefficients ∈ Rm×m (here m = 2) is defined to be the expression P (z)Q(z)−1 with

(i) P (z) and Q(z) are m×m matrix polynomials of degree ≤ L, and ≤M , resp.,

(ii) Q(z) is invertible for almost all z, and

(iii) the expansion of F (z)Q(z)− P (z) at z = 0 starts with the power zL+M+1,

compare with [1, §8.2]. Then, for sufficiently large M , the matrix rational function
P (z)Q(z)−1 will coincide with F (z), see Appendix B, and a partial fraction decompo-
sition enables us to identify the desired frequency.

In the scalar case m = 1 it is well known that a Padé approximant always exists and
that the fraction P (z)Q(z)−1 is unique. However, for m > 1 it may happen that matrix
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Padé approximants of a given type do not exist, essentially due to condition (ii), see [1,
Section 8.2, Example 2]. In what follows we will exclude these cases by supposing that
suitable underlying matrices are invertible, compare with [1, Theorem 8.2.2]. This can
be justified by the fact hat the four antennas operate independently, or, as in Section 4,
that there is random noise on the input. We should warn the reader that, due to lack of
commutativity, we cannot just use the same algorithms as in the scalar case m = 1 to
compute matrix Padé approximants for m > 1.

It is well known[1, §2.1] that the calculation of a scalar Padé approximant of type
[L|M ] is fraught by numerical instability. A rule of thumb for this situation is that about
M digits of precision from the initial data are lost, meaning that for large data sets one
has to use numbers with at least M digits of precision. An efficient implementation of
such a multi–precision algorithm is obtained by using only integer coefficients. For this we
need of course to transform our floating point data into integer data, by multiplying F (z)
with a sufficiently large integer, which does not change the poles of the corresponding
Padé approximant, and multiplies all residual matrices by that factor. Providing that the
algorithm does not involve any division, then the results in turn remain within the ring of
integers. The fraction–free computation of matrix Padé approximants has been discussed
before in [5], using so–called order bases and Mahler systems, but this paper is quite
involved since it covers more general approximation problems and in addition all different
types of singular cases. It turns out that the normalization of the Padé numerators and
denominators, essential for constructing fraction–free methods, is the same in [5] and in
the present paper. One may consider the method presented here as a block version of
that of [5] where one increases the order simultaneously for several rows. Such a block
version allows us to generalize to the matrix setting several classical concepts like Jacobi
matrices [13] and resolvent functions.

The reminder of the paper is organized as follows: in § 2 we establish our new fraction-
free algorithm for computing matrix Padé approximants via matrix-valued three-term
recurrence relations. Illustrating examples show that this new approach enables us to
control coefficient growth. In § 3 we suggest a block Jacobi matrix approach in order to
express these Padé approximants, and to compute their poles and residuals. § 4 shows
how our new algorithm can help to detect the above desired time series data of four
antennas from a finite number of recorded samplings, even in the presence of noise. Finally,
Appendix A contains the proof of our main Theorem 2.3, whereas in Appendix B we
address the question of how to choose the type of aatrix Padé approximants in order to
reconstruct exactly our matrix-valued generating function.

2 Fraction–free computation of matrix Padé approx-

imants

Let us consider N+1 real matrices Fk, l = 0, ..., N of given dimension m×m, representing
the first N + 1 coefficients of the formal matrix Taylor series

F (z) = F0 + F1z + ...+ FNz
N +O(zN+1)z→0. (6)

In what follows we will suppose that each entry of each Fk is an integer, and we want to
compute right matrix Padé approximants Rk(z) = Pk(z)Qk(z)−1 of F (z) of a certain type
to be specified later, and with integer coefficients.
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With suitable αk, βk ∈ Rm×m, consider sequences of matrix polynomials generated by
the three–term recurrence relations for k = 1, ..., N − 1

Pk+1(z) = Pk(z)βk+1 + zPk−1(z)αk+1, (7)

Qk+1(z) = Qk(z)βk+1 + zQk−1(z)αk+1, (8)

together with the initializations

Q0(z) = I, P0(z) = 0, Q1(z) = β1, P1(z) = α1, (9)

where here and in what follows I, and 0, denote the identity matrix, and the matrix
containing only zeros, respectively, both of suitable size. In the scalar case m = 1, there
is a close connection between three term recurrence relations and continued fractions: here
the rational function Rk(z) = Pk(z)Qk(z)−1 may be written as the kth partial fraction
(or convergent) of some infinite continued fraction, namely

Rk(z) = Pk(z)Qk(z)−1 =
α1

β1

+
α2z

β2

+
α3z

β3

+ ...+
αkz

βk
. (10)

In particular, we obtain the expansion in terms of a regular continued C–fraction by
choosing all βk = 1, see [1, §4.5] or [13]. Also, in the scalar case m = 1 there are
known algorithms how to choose the αk in such a way such that R2k(z), and R2k+1(z),
respectively, are the Padé approximants of F (z) of type [k − 1|k], and [k|k], respectively,
see, e.g., [1, Theorem 4.4.2]. In our case m = 2, due to the lack of commutativity, we
prefer to stay with the recurrence relations (7), (8), (9) and do not use the formalism of
continued fractions since it does not indicate how to divide by matrices, and in which
order one has to multiply with the matrices αk or βk.

It is not difficult to verify by recurrence that the polynomials Pk(z) and Qk(z) gener-
ated by (7), (8), (9) verify the degree constrains

degP2k(z) ≤ k − 1, degP2k+1(z) ≤ k, degQ2k(z) ≤ k, degQ2k+1(z) ≤ k. (11)

Moreover, Qk(0) = Qk−1(0)βk = ... = β1β2...βk is invertible as long as the βk are invertible,
which means that also the condition (ii) for right matrix Padé approximants is true. In
order to identify Rk(z) with right matrix Padé approximants of F (z), we still require the
accuracy–through–order condition

F (z)Qk(z)− Pk(z) = Ekz
k +O(zk+1)z→0 (12)

for some matrix Ek = coeff(F (z)Qk(z), zk) of size m ×m. This relation is trivially true
for k = 0 with

E0 = coeff(F (z)Q0(z), z0) = coeff(F (z), z0) = F0, (13)

whereas for k = 1 we require according to (9) that F0β1 − α1 = 0 or

E0β1 + E−1α1 = 0, E−1 := −I, E1 = coeff(F (z)Q1(z), z1) = F1 β1. (14)

By recurrence, a similar relation is obtained in order to insure that Rk+1(z) has the correct
order, since by injecting (12) for k and k − 1 into (7), (8) we obtain

F (z)Qk+1(z)− Pk+1(z)

=
(
F (z)Qk(z)− Pk(z)

)
βk+1 + z

(
F (z)Qk−1(z)− Pk−1(z)

)
αk+1

= zk
(
Ekβk+1 + Ek−1αk+1

)
+O(zk+1)z→0.
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Thus Ekβk+1 + Ek−1αk+1 = 0 implies that (12) holds for k replaced by k + 1. We thus
have shown the following result, compare with [1, p. 431].

Lemma 2.1 Suppose that all matrices Ek in (12) are invertible, E−1 := −I, and define
the matrix polynomials Pk(z) and Qk(z) for k = 0, 1, ..., N + 1 by (7), (8), (9), where we
suppose that the βk ∈ Rm×m are invertible, and that

Ekβk+1 + Ek−1αk+1 = 0, k = 0, ..., N. (15)

Then R2k(z) = P2k(z)Q2k(z)−1 for 0 ≤ 2k ≤ N + 1 are right matrix Padé approximants
of type [k− 1|k] of F (z), and R2k+1(z) = P2k+1(z)Q2k+1(z)−1 for 0 ≤ 2k + 1 ≤ N + 1 are
right matrix Padé approximants of type [k|k] of F (z).

We may therefore identify our three–term recurrence relation as an identity between
”neighbors” in the table of matrix Padé approximants. Such so–called Frobenius identities
are well established [1, §3.5] in the scalar case m = 1, and have been generalized before
to the matrix setting m > 1 by [8].

Equation (15) still gives a lot of liberties for computing matrix Padé approximants.
This liberty corresponds to the question of how to normalize matrix Padé approximants,
since the matrix fraction Rk(z) = Pk(z)Qk(z)−1 is invariant under multiplication on the
right of both Pk(z) and Qk(z) by some real or complex matrix of size m×m. For instance,
the choice

βk+1 = I, αk+1 = −E−1
k−1Ek

leads to a normalization Qk(0) = I similar to the one used in regular C–fractions. The
choice

αk+1 = I, βk+1 = −E−1
k Ek−1

reminds of an equivalence transformation of S–fractions discussed in [13, §44,], it leads to
the normalization of leading coefficients since then coeff(Q2k, z

k) = I and coeff(P2k+1, z
k) =

I. However, both choices will give in general matrix polynomials Pk(z) and Qk(z) with
rational and not integer coefficients.

Using the relation adj(A) = det(A)A−1 for the adjoint of a matrix, we see that the
choice

αk+1 = det(Ek)I, βk+1 = −adj(Ek)Ek−1 (16)

will enable us to obtain integer results from integer data, however, we will have to pay
a very important price of exponential growth of coefficients which is expensive in multi–
precision arithmetic: roughly speaking, the number of digits necessary to store our auxil-
iary quantities are multiplied by m+ 1 while stepping from index k to index k + 1. This
can be easily seen by writing down the first 3 approximants.

Example 2.2 With the choice (16) we get that

P1(z) = det(E0)I = det(F0)I, Q1(z) = adj(E0) = adj(F0).

Since adj(adj(M)) = det(adj(M))adj(M)−1 = Mdet(M)m−2, we find that E1 = F1adj(F0),
and hence

α2 = det(E1)I = det(F1)det(F0)
m−1I,

β2 = −adj(E1)E0 = −det(F0)
m−2F0adj(F1)F0,

P2(z) = −P1(z)adj(E1)E0 + 0 = −det(F0)
m−1F0adj(F1)F0,

Q2(z) = −Q1(z)adj(E1)E0 + zQ0(z)det(E1)

= det(F0)
m−1
(
−adj(F1)F0 + zIdet(F1)

)
5



implying that F (z) − R2(z) = O(z2)z→0 (after some computations). Notice that P2(z)
and Q2(z) are indeed with integer coefficients, but there is a common factor det(F0)

m−1,
so it seems that (16) is not an optimal choice for getting integer output, see Theorem 2.3
below.

In the next step we obtain

E2 := coeff(F (z)Q2(z), z2) = det(F0)
m−1Ẽ2, Ẽ2 := −F2adj(F1)F0 + F1det(F1),

where generically we do not expect Ẽ2 to have a non–trivial content, i.e., all entries are
divisible by the same integer > 1. Then

α3 = det(E2)I = det(F0)
m2−mdet(Ẽ2)I,

β3 = −adj(E2)E1 = −det(F0)
(m−1)2adj(Ẽ2)F1adj(F0),

in particular we see that α3 and β3 contain at least a joint factor det(F0)
(m−1)2 , that is, the

non–trivial content of Q2(z), P2(z) is even magnified in later steps. Thus, even without
explicitly writing down the complicated expressions for P3(z), Q3(z), one sees that there
should be a different and more efficient way of getting integer output. 2

Exponential growth of coefficients (by cross multiplications) is also an important issue
in several elementary tasks in Computer Algebra such as solving systems of equations
[2] or GCD computations [7, 10]. The problem is that the cost for the multiplication of
two integers heavily depends on the number of digits used to store these integers, see
for instance [11]. One possibility to control the size of the intermediate quantities is to
remove the content (i.e., a largest common integer factor) of Pk(z), Qk(z), Ek, but finding
the content may be quite expensive. Instead, one prefers in [2, 3, 4, 5, 7, 10] to predict
common factors which in particular cases may not be optimal, but which can be removed
with hardly any additional cost, leading to a linear growth of coefficients.

Theorem 2.3 Suppose that the entries of the coefficients of F (z) are integers, and define
dk recursively by d−1 = d0 = 1, d1 = det(F0), and for k = 1, 2, ..., N by factorizing

dk+1d
m−1
k = det(Ek), (17)

and the matrices αk+1, βk+1 with rational entries for k = 0, ..., N by

αk+1 =
1

dm−1
k dk−1

det(Ek)I, βk+1 = − 1

dm−1
k dk−1

adj(Ek)Ek−1. (18)

Then dk are integers, and moreover the matrix polynomials Pk(z), Qk(z) and coefficients
Ek have all integer entries, with the normalizations

Q2k(z) = d2kIz
k + smaller degree , P2k+1(z) = d2k+1Iz

k + smaller degree. (19)

Finally, if the data are represented using d digits, then the quantities Pk(z), Qk(z) and
Ek−1 may be represented using at most mkd digits.

We give a proof of this statement in Appendix A. Let us here have a look at the first
approximants generated by our new recurrence relation.
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Example 2.4 By definition (17), (18), the quantities E−1 = −I, E0 = F0, α1, β1 are the
same as in Example 2.2, and the same is true for E1, P1(z), Q1(z), that is,

P1(z) = det(E0)I = det(F0)I, Q1(z) = adj(E0) = adj(F0), E1 = F1adj(F0),

and

d0 = 1, d1 = det(F0), d2 =
det(E1)

dm−1
1

= det(F1),

in particular we find the normalization (19) for P1(z). Subsequently, we compute

α2 =
det(E1)

d0d
m−1
1

I = det(F1)I,

β2 = −adj(E1)E0

d0d
m−1
1

= −F0adj(F1)F0

det(F0)
,

P2(z) = −P1(z)β2 + 0 = −F0adj(F1)F0,

Q2(z) = Q1(z)β2 + zQ0(z)α2 = −adj(F1)F0 + zd2I,

again with the normalization of Q2(z) predicted by (19). In particular, we succeeded to
drop the common factor of Example 2.2.

In the next step we get

E2 = coeff(F (z)Q2(z), z2) = −F2adj(F1)F0 + F1det(F1)

with E2 having clearly integer entries. It is however far from evident that d3 defined in
(17) is an integer: to see this, notice that E2 is a scalar times a Schur complement

E2 = det(F1)
(
F1 − F2F

−1
1 F0

)
from which it follows using classical properties of Schur complements that

det(E2) = det(F1)
m

det(

[
F1 F0

F2 F1

]
)

det(F1)
= d3d

m−1
2 , d3 = det(

[
F1 F0

F2 F1

]
).

In a similar way it is possible to show that the next matrix polynomials P3(z) and Q3(z)
are indeed with integer coefficients. Since the involved matrices are quite complicated, we
omit details. 2

Example 2.5 Let us have a look at the special case m = 1 of Theorem 2.3, and hence
det(M) = M and adj(M) = 1 for any ”matrix” M ∈ C1×1. From (17) we read that
dk+1 = det(Ek) = Ek. Thus combing (18) with the three–term recurrence relations of (8),
(9), we obtain Q0(z) = 1, Q1(z) = 1, and for k = 1, ..., N − 1

dk−1Qk+1(z) = −Qk(z)dk + zQk−1(z)dk+1.

The same relation is obtained for the Pk(z), with initialization P0(z) = 0, P1(z) = F0.
By eliminating all quantities with odd indices we obtain new three term recurrence rela-
tions between quantities with even indices. These are essentially the polynomials of the
extended Euclidean algorithm corresponding to the fraction-free subresultant sequence,
see [10, 7], at least in the special case where the degree in each step of the Euclidean
algorithm decreases by 1. A similar fraction–free relation for scalar Padé approximants
has been given in [9], and for scalar rational interpolants in [4]. 2
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We should insist on the fact that in general αk+1 and βk+1 have rational but not
necessarily integer entries. For αk+1 we may even derive a simpler formula by injecting
(17) in (18)

αk+1 =
dk+1d

m−1
k

dk−1d
m−1
k

I =
dk+1

dk−1

I, (20)

where in general dk−1 does not divide dk+1. In Example 2.4 we have seen that we have
the correct normalization (19) both for P1(z) and Q2(z). Since by construction and (11)
the leading coefficients of α2kzQ2k−2(z) and of Q2k(z) as well as of α2k+1zP2k−1(z) and of
P2k+1(z) coincident, it follows that (19) is true.

Remark 2.6 For large m, one efficient way of computing X := −dm−1
k dk−1βk+1 =

adj(Ek)Ek−1 together with det(Ek) is to apply fraction–free Gaussian elimination [2, 11]

to the system of equations EkX̃ = Ek−1 with m right–hand sides. One may show that
the quantities after the first elimination step are divisible by dk. By implementing this
division, one obtains directly X/dm−1

k = −dk−1βk+1 and determinant dk+1. 2

3 Block Jacobi matrices

In the scalar case m = 1 with the normalization F (0) = 1, we may write R2k(z) =
(1, 0, ..., 0)(I − zJk)

−1(1, 0, ..., 0)T for the Padé approximant of type [k − 1|k], with Jk
a tridiagonal matrix of order k, the so–called Jacobi matrix. From such a formula we
see that the poles of R2k(z) are obtained by computing eigenvalues, and the residuals by
computing the first component of eigenvectors, both being classical tasks in numerical
analysis where stable procedures are available.

One way of deriving such a matrix formula for Padé approximants is to contract
the continued fraction representation (10) by recalling that the event part of a regular
C–fraction with convergents R0, R2, R4, ... is a J–fraction (up to a change of variables
z → 1/z), and then use the classical matrix description of J–fractions, see for instance
[13]. In terms of our three term recurrence relation, a contraction means that we eliminate
from (7), (8) all polynomials with odd indices: recalling that with Ek, also αk and βk are
invertible, we have that

Q2k+1(z) = Q2k+2(z)β−1
2k+2 − zQ2k(z)α2k+2β

−1
2k+2,

and thus

Q2k(z)β2k+1 = Q2k+1(z)− zQ2k−1(z)α2k+1

= Q2k+2(z)β−1
2k+2 − zQ2k(z)α2k+2β

−1
2k+2 − zQ2k(z)β−1

2k α2k+1 + z2Q2k−2(z)α2kβ
−1
2k α2k+1.

Injecting formulas (18), (20), and setting

γk+1 := β−1
k+1

dk+1

dk
= E−1

k−1Ek
dk−1

dk
(21)

we obtain

Q2k(z)

zkd2k

= z
( Q2k−2(z)

zk−1d2k−2

γ2kγ2k+1 −
Q2k(z)

zkd2k

(γ2k+2γ2k+1 + γ2kγ2k+1) +
Q2k+2(z)

zk+1d2k+2

γ2k+2γ2k+1

)
,
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Q−2(z) = 0, which may be rewritten as(Q0(z)

z0d0

, ...,
Q2k−2(z)

zk−1d2k−2

)
(I − zJk) =

(
0, ..., 0,

Q2k(z)

zk−1d2k

γ2kγ2k−1

)
(22)

with the block tridiagonal Jacobi matrix

Jk =



−γ2γ1 − γ0γ1 γ2γ3 0 · · · · · · 0
γ2γ1 −γ4γ3 − γ2γ3 γ4γ5 0 · · · 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . . . . γ2k−2γ2k−1

0 · · · · · · 0 γ2k−2γ2k−3 −γ2kγ2k−1 − γ2k−2γ2k−1


.

We get the same recurrence for the numerator polynomials P2k(z) including the case k = 0
provided that we choose the initializations

P0(z) = 0,
P−2(z)

z−1d−2

γ0γ1 = −P2(z)

z1d2

γ2γ1 = − d1

d2z
β2γ2γ1 = −β−1

1

d1

d0z
= −1

z
F0

(see Example 2.4), and hence the second relation(P0(z)

z0d0

, ...,
P2k−2(z)

zk−1d2k−2

)
(I − zJk) =

(
−F0, 0, ..., 0,

P2k(z)

zk−1d2k

γ2kγ2k−1

)
. (23)

Multiplying (22) on the left by R2k(z) and subtracting (23), we obtain the left–hand side(R2k(z)Q0(z)− P0(z)

z0d0

, ∗, ..., ∗
)

(I − zJk) = R2k(z)(I, ∗, ..., ∗)(I − zJk).

Hence we arrive at the following result.

Corollary 3.1 With the block tridiagonal Jacobi matrix Jk ∈ R(mk)×(mk) as above, we
have for the right matrix Padé approximant of type [k − 1|k] of F (z)

R2k(z) =
(
F0, 0, ...., 0

)
(I − zJk)−1

(
I, 0, ...., 0

)T
2

As a consequence, the poles of the Padé approximant R2k(z) of type [k − 1|k] are
given by the reciprocal eigenvalues of Jk. Moreover, if V −1JkV is diagonal, then one may
construct from Corollary 3.1 the corresponding residuals: let the rows of V1,j span the left
eigenspace of an eigenvalue 1/zj, and the columns of V2,j span the right eigenspace, with
V1,jV2,j = I, then

R2k(z) =
∑
j

ρj
1− z/zj

, ρj =
(
F0, 0, ...., 0

)
V2,jV1,j

(
I, 0, ...., 0

)T
.

It is possible to construct V1,j using (22) at z = zj, in particular we may deduce from (22)
that, for diagonalizable Jk, the multiplicity of an eigenvalue is between 1 andm. An analog
relation for V2,j is obtained by considering denominators of left matrix Padé approximants
(leading to the same matrix rational function R2k(z), see [1, Theorem 8.2.1]). However, a
numerically more interesting method consists in applying inverse subspace iterations with
subspaces of dimension between 1 and m.

9



4 Application

This section presents results for a numerical example that demonstrates the efficacy of
the proposed algorithm.

Our input data are a set of four N = 127 long time series, recorded with simple
precision arithmetic (7 digits). The data are transformed into integers by rounding the
numbers after multiplying with 107. All calculations are carried within the integer algebra,
and, at the end, the residuals are recovered by dividing with the same factor. The poles
of the Padé approximant are not affected by the overall multiplicative scale.

Each channel ` (` = 1, 2, 3, 4) is obtained by sampling with a rate of N/T = 100 Hz,
over a period of T = 1.27s, a characteristic oscillator ν(`) of unit amplitude superimposed
on a signal, with frequency ν and decay constant α, that needs to be discovered. Our
model also includes noise controlled by the parameter η and the random numbers u

(`)
k

sampled uniformly within (−1, 1). Input time series are therefore obtained as

F
(`)
k = sin(2πν(`)kT/N) + A(`)e−αkT/N cos(2πνkT/N) + ηu

(`)
k

with k = 0, . . . , N and ` = 1, 2, 3, 4, and different signal amplitudes A(`) in each channel.
In all our experiments, the signal has frequency ν = 20 Hz, decay constant α = 8

Hz, and amplitudes A(1) = 0.1, A(2) = 0.2, A(3) = 0.3 and A(4) = 0.4. The vibration
frequencies for each channel are ν(1) = 24 Hz, ν(2) = 12 Hz, ν(3) = 32 Hz and ν(4) = 36
Hz, such that assumption (5) holds.

In our first series of experiments reported in Fig. 1 and Table 1, we have a noise level of
η = 0.01, which of course makes it impossible to recover exactly the desired 5 frequencies
by some lower order matrix Padé approximant. We therefore decided to compute a [63|64]
matrix Padé approximant P (z)Q(z)−1 via the recurrence relations of Theorem 2.3, and
determine its partial fraction decomposition as

P (z)Q(z)−1 =
∑
k

ρk
1− z/zk

, ρk = −zk
P (zk)adj(Q(zk))

q′(zk)
∈ C2×2, (24)

with the 128 poles zk determined directly as roots of the polynomial q(z) = det(Q(z)),
that is, we did not use the alternate Jacobi matrix approach of Section 4. For time series
longer than the one considered in this example the polynomial root finding procedure
becomes unstable and an implementation of the Jacobi matrix method is necessary. In all
our experiments, the roots of q(z) have been simple. Only five poles, and their complex
conjugate, in the partial fraction expansion (24) have significant residuals ρk, each of them
representing one oscillator in the input data. The rest of the poles must be associated
with noise. In a general time series, the number of oscillators is not known a priori and
therefore we need to introduce a classification: in our case, we call a pole significant if
it corresponding ρk matrix has at least one entry of modulus > 0.07. The exact relation
between this threshold and the noise level η needs to be subject of a deeper statistical
analysis, but this is outside the scope of our paper.

A typical distribution of the 128 poles in the complex plane can be found in Fig. 1,
where poles zk with non-significant ρk are represented by small circles, and for the others
we display a circle with a quadrant filled according to its position in the matrix. As
expected, there are exactly 10 poles with significant ρk. The other poles tend to cluster
along the unit circle drawn with a dashed line. These poles seem to be related with the
noise. It has been observed in [6] than a scalar (m = 1) random time series has all its
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Figure 1: Poles of the right matrix Padé approximant [63|64] with noise level η = 0.01,
which are represented as circles with quadrants filled according to their most significant
residual matrix element, and labeled by their index. Poles with no significant element in
their residuals are shown as small circles, and the unit circle is drawn with dashed lines.

poles distributed along the unit circle and the poles are paired with zeros of the Padé
approximant, forming Froissart doublet. The distance between the pole and the zero
in such a pair is proportional to the residual of the pole. Therefore poles with small
residuals are always paired in a Froissart doublet. The probability distribution function
of such poles is universal [6] because it does not depend on the specific distribution or
characteristics of the noise.

More precise information about the quality of approximation of the time series data
can be found in Table 1 where we only display poles zk with significant ρk (and not their
complex conjugates). According to (3) and (4), the magnitude and the phase of the pole zk
are related to the damping factor α and the frequency ν through αk = N log(|zk|)/T and
νk = N |arg(zk)|/(2πT ), respectively. The matrix ρk associated with each pole zk gives
the amplitudes Ak = |2ρk| and phases ϕk = arg(ρk), the magnitude and the argument
functions being applied componentwise for each antenna.

The results tabulated in Table 1 show that the signal is correctly identified as the poles
number 81, and its complex conjugate 80, which have four large elements in the residual-
type matrix. The frequencies characteristic to each antenna are correctly identified by
an amplitude close to unity in the corresponding position in the matrix and by negligible
damping factor. The precision for frequency identification is in general compatible with
the level of noise. As expected, the worse results are obtained for the common signal

11



Table 1: Poles with significant residuals and parameters of their corresponding oscillators
# ν [Hz] α [Hz] A ϕ

99 12.0017 −1.03× 10−2

(
3.96× 10−3 0.984
5.87× 10−6 1.46× 10−3

) (
2.22 −1.58
0.541 3.02

)

81 19.8911 7.91

(
0.139 0.202
0.27 0.404

) (
0.191 0.088
0.147 0.044

)

67 24.0000 9.49× 10−3

(
1.01 8.51× 10−3

1.08× 10−3 9.19× 10−7

) (
−1.57 0.48
1.76 −2.46

)

47 32.0020 −2.39× 10−3

(
2.04× 10−3 4.42× 10−6

0.99 2.16× 10−3

) (
−1.57 0.48
1.76 −2.46

)

35 35.9987 1.07× 10−2

(
1.59× 10−6 5.84× 10−3

2.75× 10−3 1.01

) (
−0.84 −2.65
0.23 −1.57

)

since it has weak amplitudes and it is overshadowed by the other stronger oscillators in
the system. However, any attempt to use traditional time-domain or frequency-domain
filtering is likely to fail to detect reliably the common signal because its small amplitudes
and because its frequency is within the range of characteristic frequencies.

We finally were interested in a more systematic study of the error in computing the
joint frequency ν, the joint damping factor α, and the amplitudes A(`) by our approach as
a function of the noise level η. Keeping all parameters the same, we repeated the numerical
experiments 100 times, for various levels of noise η ∈ [10−7, 10−1]. Figure 2 shows that the
error in determining the parameters for the oscillator common to all channels decreases
linearly with the noise level. The error in finding the oscillator amplitude seems to be
insensitive to the noise below a certain level, being significant even for very low noise
levels. The cause of this behavior is the subject of further investigations.
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Appendix

A Proof of Theorem 2.3

As in [4, 5], our proof of Theorem 2.3 is essentially based on Cramer’s rule for the system
of linear equations obtained by expanding F (z)Q(z)− P (z) in powers of z.
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More specifically, in order that P (z)Q(z)−1 is a right matrix Padé approximant of type
[k− 1|k] of F (z) with a specific normalization, we need to find pj, qj complex matrices of
size m×m obtained from

Q(z) = Izk +
k−1∑
j=0

qjz
j, P (z) =

k−1∑
j=0

pjz
j,

such that
F (z)Q(z)− P (z) = z2kE +O(z2k+1)z→0,

or, equivalently

F0 I 0 0 0 0 · · · · · · 0 0
F1 0 F0 I 0 0 · · · · · · 0 0

F2 0 F1 0 F0 I
. . .

...
...

...
...

...
...

... 0 0 0 0

Fk−1 0 Fk−2 0 Fk−3
... F0 I 0

Fk 0 Fk−1 0 Fk−2 F1 0 F0

Fk+1 0 Fk 0 Fk−1 F2 0 F1
...

...
...

...
...

F2k 0 F2k−1 0 F2k−2 · · · · · · Fk+1 0 Fk



[
X2k

I

]
=


0
...
0
E

 , X2k =



q0
p0

q1
p1
...

qk−1

pk−1


.

Denoting the matrix of coefficients by C2k+1 and the one obtained from C2k+1 by dropping
the last m rows and columns by C2k, and introducing the partitionning

C2k+1 =

[
C2k A2k

B2k Fk

]
,

we see that we have to solve the system C2kX2k = −A2k with m right–hand sides, corre-
sponding to the m columns of Q(z) and P (z). We suppose here and in what follows that
all matrices Ck are invertible, and hence we find the unique solution

X2k = −C−1
2k A2k, E = Fk −B2kC

−1
2k A2k =: C2k+1/C2k,

that is, we find a representation of E as a Schur complement. A generalization of
Sylvester’s determinental identity tells us that therefore det(E) = det(C2k+1)/det(C2k).
Comparing with the normalization (19) of Theorem 2.3, we therefore find that Q2k(z) =
d2kQ(z), P2k(z) = d2kP (z), implying that

E2k = d2kC2k+1/C2k, det(E2k) = dm2k
det(C2k+1)

det(C2k)
. (25)

Similarly, in order that P (z)Q(z)−1 is a right matrix Padé approximant of type [k|k] of
F (z) with a specific normalization, we need to find pj, qj complex matrices of size m×m
obtained from

Q(z) =
k∑
j=0

qjz
j, P (z) = Izk +

k−1∑
j=0

pjz
j,

such that
F (z)Q(z)− P (z) = z2k+1E +O(z2k+1)z→0,
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or, equivalently,

C2k+2

[
X2k+1

I

]
=


0
...
0
E

 , X2k =



q0
p0
...

qk−1

pk−1

qk


.

Introducing the partitionning

C2k+2 =

[
C2k+1 A2k+1

B2k+1 0

]
,

we see that we have to solve the system C2k+1X2k+1 = −A2k+1 with m right–hand sides,
corresponding to the m columns of Q(z) and P (z), with the unique solution

X2k+1 = −C−1
2k+1A2k+1, E = 0−B2k+1C

−1
2k+1A2k+1 =: C2k+2/C2k+1,

As before, we find that Q2k+1(z) = d2k+1Q(z), P2k+1(z) = d2k+1P (z), implying that

E2k+1 = d2k+1C2k+2/C2k+1, det(E2k+1) = dm2k+1

det(C2k+2)

det(C2k+1)
. (26)

Taking into account that d0 = 1, the ”determinant” of an empty matrix, we conclude from
(25) and (26) that dk = det(Ck) for all k = 0, ..., N , in particular we get the factorization
(17) with integer factors.

Moreover, the coefficients of Pk(z), Qk(z) different from those specified in (19) can be
found in the vector

dkXk = −det(Ck)C
−1
k Ak.

Since the entries of Ck and Ak are integers, we conclude using Cramer’s rule that also
these coefficients have a determinental representation with help of matrices of the same
order as Ck, namely, mk. Hence they are integers, as claimed in Theorem 2.3.

Finally, the above determinental representation together with the Hadamard inequality
[11, p. 299] allows to establish the claimed upper bound for the number of digits necessary
for representing Ek−1, Pk(z) and Qk(z). Roughly speaking, we may even divide divide
this number of digits by 2 since half of the columns of Ck only contains 0 or 1.

B Reconstructing matrix-valued rational functions via

matrix Padé

The assumptions of the following statement are true in our application, with q(z) =
(z − z0)(z − z0) and m(`) = 2 + 2n(`).

Lemma B.1 Consider a matrix-valued rational function

F (z) =

[
p(1)(z)

q(z)q(1)(z)

p(2)(z)

q(z)q(2)(z)
p(3)(z)

q(z)q(3)(z)

p(4)(z)

q(z)q(4)(z)

]
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where we suppose that in each component the scalar polynomials p(`)(z) and q(z)q(`)(z)
are coprime, deg p(`)(z) + 1 ≤ m(`) = deg(q(z)q(`)(z)), and, in addition, any two of the
polynomials q(1)(z), ..., q(4)(z), q(z) have distinct roots, different from zero. Then, for

L+ 1 ≥M ≥ max{m(1) +m(2),m(1) +m(3),m(2) +m(4),m(3) +m(4)} − deg q(z), (27)

any (right) matrix Padé approximant of F (z) coincides with F (z).

Proof. Consider the matrix polynomials of order 2

P0(z) =

[
p(1)(z)q(2)(z) p(2)(z)q(1)(z)
p(3)(z)q(4)(z) p(4)(z)q(3)(z)

]
,

Q0(z) =

[
q(z)q(1)(z)q(2)(z) 0

0 q(z)q(3)(z)q(4)(z)

]
,

and thus F (z) = Q0(z)−1P0(z). Provided that L + 1 ≥ M ≥ max{m(1) + m(2),m(3) +
m(4)}−deg q(z), the reader easily verifies that Q0(z)−1P0(z) is a left matrix Padé approx-
imant of type [L|M ] of F (z). Given any right matrix Padé approximant P (z)Q(z)−1 of
type [L|M ] of F (z), we can follow the reasoning of [1, Theorem 8.2.1] and write

P0(z)Q(z)−Q0(z)P (z) = Q0(z)(F (z)Q(z)− P (z))

with has order L + M + 1, but is a matrix polynomial of degree at most L + M . Hence
this expression vanishes, implying that F (z) = P (z)Q(z)−1, as claimed above.

We claim in addition that in the case M < max{m(1) +m(3),m(2) +m(4)}− deg q(z) a
right matrix Padé approximant P (z)Q(z)−1 of type [L|M ] may not exist. To see this last
claim, we have to enter more closely in the theory of matrix polynomials [12] : let

P1(z) =

[
p(1)(z)q(3)(z) p(2)(z)q(4)(z)
p(3)(z)q(1)(z) p(4)(z)q(2)(z)

]
,

Q1(z) =

[
q(z)q(1)(z)q(3)(z) 0

0 q(z)q(2)(z)q(4)(z)

]
,

and thus also F (z) = P1(z)Q1(z)−1. It is possible to check that P1(z) and Q1(z) are
right-coprime, and that both Q(z) and the stacked matrix S1(z) defined below are column
reduced. As a consequence [12, Section 6.5.4], the columns of S1(z) form a minimal basis
of the right nullspace of [−I, F (z)], in particular there is a matrix polynomial V (z) such
that [

P (z)
Q(z)

]
= S1(z)V (z), S1(z) =

[
P1(z)
Q1(z)

]
.

Notice that, with Q(z), also V (z) must be invertible for almost all z. The predictable
degree property [12, Theorem 6.3-13.] implies that at least one column of Q(z) must have
degree ≥ max{m(1) +m(3),m(2) +m(4)}− deg q(z), in contradiction with our choice of M
and the degree constraints on Q(z). 2

In our application, (27) implies that we require recorded sampling data F0, ..., FN with

N ≥ L+M ≥ 2M − 1 ≥ 3 + 4 max{n(1) + n(2), n(1) + n(3), n(2) + n(4), n(3) + n(4)} (28)

in order to reconstruct the generating function F (z), a lower bound larger than the one
found in (5).
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