On the numerical condition of polynomial bases:
Estimates for the Condition Number of
Vandermonde, Krylov and Hankel matrices

Von dem Fachbereich Mathematik
der Universitat Hannover

zur Erlangung der venia legendi
fiir das Fachgebiet Mathematik
genehmigte Habilitationsschrift

von

Bernhard Beckermann

30. Mai 1997






Fur Kerstin, Agnes und Lisa



Gutachter: Prof. Dr. M. Gutknecht, ETH Ziirich
Prof. Dr. C. Brezinski, Université des Sciences et Technologies de Lille
Prof. Dr. G. Miihlbach, Universitat Hannover

Datum des Kolloquiums: 7. Juni 1996

Datum der Veroffentlichung: 30. Mai 1997



Summary

A study is made of the numerical condition of the coordinate map associating to each
polynomial its coeflicients with respect to a given basis of polynomials. This problem depends on
the choice of norms for the sets of polynomials of a given maximal degree, and the corresponding
sets of coefficients. In the present work we discuss three different choices of norms for the sets
of polynomials, and equip the set of coefficients with a suitable Hélder vector norm.

In the first part we choose for the sets of polynomials the supremum norm with respect to
some compact set in the complex plane. Relations to Zolotarov—type and Markov-type extremal
problems for polynomials in the complex plane are used to derive approximately tight estimates
for various coordinate maps, including the bases of Faber polynomials and Newton polynomials.
In particular, we discuss the numerical condition of the basis of monomials on intervals and
ellipses, generalizing previous work of Gautschi.

The second part deals with bases of orthogonal polynomials, where the sets of polynomials
are equipped with an Ly—norm induced by some other scalar product. Here, equivalently, one
has to study the condition number of (modified) moment matrices such as positive definite
Toeplitz or Hankel matrices. We propose a lower bound for the condition number in terms of
the supports of the underlying measures. Furthermore, asymptotics are given for a particular
class of modified moment matrices.

The aim of the third part is to derive approximately tight lower bounds for the condition
number of special structured matrices, such like Vandermonde-like, Krylov and Hankel matrices.
Here the link to coordinate maps is obtained by taking for the sets of polynomials the supremum
norm with respect to some discrete set. In particular, we give lower bounds for the p-condition
number of a real Vandermonde matrix of order n growing exponentially in n. These bounds are
shown to be attained up to a factor n?. In addition, we determine explicitly the optimal node
configuration which minimizes the 1-condition number.

Krylov matrices consist of colums B? - b, j = 0,1, ..,n, where B is a normal matrix of size
m > n with eigenvalues being located in some real or complex set . It is shown that, for
estimating the Euclidean condition number, it is sufficient to discuss the case of diagonal B, and
in this case a Krylov matrix becomes a rowscaled Vandermonde matrix. We provide an explicit
expression for the nth root limit of the optimal lower bound for the condition number of such
Krylov matrices. In the case of real G, lower bounds in terms of n,G are given which again are
shown to be approximately tight, improving results obtained recently by Tyrtyshnikov. As an
application, we discuss the condition number of positive definite Hankel matrices, including for
example moment matrices such as the famous Hilbert matrix.
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Chapter 1

Introduction

In this thesis we are concerned with the numerical condition of special structured matrices.
Examples of such structured matrices include Vandermonde matrices, Krylov matrices, positive
definite Hankel and Toeplitz matrices, and more general moment matrices.

A fundamental operation in numerous branches of mathematics is to solve a linear system
of equations A -z = b, with A being a nonsingular matrix. Often the given data, A and b,
are themselves results of (sometimes extensive) computations, and as such we are faced with
the problem of how perturbations d A, 4b in the data affect the solution z. A common answer
to this problem is to compute the condition number k,(A) = ||A||, - ||]A7||, of the matrix of
coeflicients, where || - ||, denotes a Holder matrix norm, p € [1;00] (for a short summary on
vector and matrix norms see Appendix A). In fact, from the formula

-1
[A="- (b +db) — A1 -b][, (]]9b]],
K,(A) = max :
p(4) b#0,8b£0 [|A=1-bl|, 11011

we see that x,(A) is equal to the maximum magnification of the relative error in the right hand
side b (the maximum magnification of absolute errors is measured by ||A71|[,). In addition,
it is known that k,(A) serves for measuring the magnification of relative errors in the matrix
of coeflicients (see [GoVL93, Subsections 2.7.2 and 2.7.4]). Thus, the condition number x,(A)
quantifies the sensitivity of the A - x = b problem. Another characteristic of the condition
number is that 1/k,(A) coincides with the relative distance of A to the set of singular matrices.
In particular, with ,(A) we obtain a measure for the linear independence of the columns of A

[GoV1.93, p.80].

To establish terminology and notation, we call a Vandermonde matriz a matrix of the form

1 zg -+ 2%

n

/ 1 Zl DR Zl
Vi = : ;

1 z, zy
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where the z; are distinct real or complex numbers called nodes. Systems of linear equations
having as a matrix of coefficients V,, (or its transposed) occur naturally in polynomial interpo-
lation. Other applications include the determination of Christoffel numbers for interpolatory
quadrature formulas, and the interpolatory approximation of linear functionals (see [BjEf73]).
We will also consider the case of Vandermonde-like matrices where the successive powers, i.e.,
the monomials, are replaced by a sequence (pg)r>o of polynomials, p;, of degree k.

Krylov matrices are obtained by taking as columns the Krylov vectors 47 -a, j = 0,1, ..., n.
These vectors are basic, for instance, in the context of iterative methods for solving (large)
linear systems such as Lanczos type methods (see, e.g., [GoVL93, Chapter 9]). In such cases
one is concerned with the nearly linear dependence of Krylov vectors, a problem that requires
a knowledge of the numerical condition of such matrices. The third class of matrices included
in our work consists of (modified) moment matrices. These are Hermitian positive definite
matrices which occur in the context of the numerical computation of orthogonal polynomials.
In particular, we will be interested in the subclass of positive definite Hankel matrices, where
we recall that a Hankel matrix has constant entries along all its antidiagonals. Included among
such matrices is the Hilbert matrix, a famous example of an ill-conditioned matrix.

In this context, let us mention without giving details that there exist several concepts of
structured condition numbers for special structured matrices (see, e.g., [GoKo92, HiHi92]).

We denote by P the space of polynomials with complex coefficients, and by P,, the subset
of polynomials of degree less or equal to n. Clearly, two norms on P,, are equivalent, and, for
given norms || - ||4, || - ||, it is natural to ask about the size of the equivalence constant

[Pl
1Pl

max{

®.PeP,, P+0}.
8

This question is closely related to the problem of determining the condition number of the
special structured matrices mentioned previously. If both norms are induced by (different) scalar
products, then the above quantity is shown to coincide with the square root of the norm of the
corresponding modified moment matrix. Let us mention a further example: given a sequence
of polynomials (px)i as above, we will discuss the numerical condition of the coordinate map

IL, : €t — P, (see, e.g., [Gau72, Gau79, Rei85]) defined by
Ma(a)(z) =D a;-pi(z), a=(ag,..,a,)" € T,
7=0

where we equip €"*! with a vector Hélder norm, and P, with the maximum norm w.r.t. some
compact set G. Again, the induced operator norms of both II,, and II ! are equivalence con-
stants. They enable us to quantify the change of values of a polynomial in P, in G while pertur-
bating its coefficients (with respect to the basis {po, .., p,}). Here the link to Vandermonde-like
matrices is given by taking as GG the finite set of nodes. In addition, there are applications to
interpolation processes (Newton basis, see, e.g., [FiRe89]) and to the numerical solution of inte-
gral and differential equations by collocation or other discretizing methods (basis of Chebyshev
polynomials, see, e.g., [ErSt]).



For investigating the above problems, we will stress the connection to extremal problems for
polynomials in the complex plane of the following type: under all polynomials in P, satisfying a
linear constraint, find the one with smallest deviation from zero p, on some compact set G. As a
linear constraint we fix the value at some argument ¢ ¢ G (the constrained Chebyshev problem),
fix the leading coefficient (Chebyshev polynomials of G), or, more generally, we fix the value of
a derivative at some fixed argument (Markov-type problems). Here, depending on G, a typical
answer is to give the asymptotic of p, (or of its nth root) for n tending to infinity. Also, for
particular sets G one may either obtain explicitly p,, or at least give lower and upper bounds
for all n being asymptotically tight (e.g., a polynomial in n times 7™, with the same v > 1 for
both bounds).

Using the shorthand p, for the condition number of coordinate maps, or for the optimal
lower bound inf{k,(A) : A € A,} for the condition number of a matrix of order n + 1 having a
particular structure as mentioned above, our findings may be classified in the same way. Depend-
ing on the given framework, we will describe the nth root behaviour of (p,),, its asymptotic,
or give explicit intervals containing p, for all n. Here the third characterization is of particular
practical interest, since it enables us to conclude that matrices of a particular structure are
necessarily ill-conditioned, even for not very high orders n.

In what follows we briefly describe the main results of this work, together with a short
survey of previously known results.

It is well-known that real Vandermonde matrices are ill-conditioned (see for instance
Gautschi’s survey on Vandermonde-like matrices [Gau90], where several examples are also
given). To give an idea of the size of the condition number, Wilkinson discussed three dif-
ferent configurations of nodes [Wil65, p.372f] for Vandermonde matrices of order 20. For the
cases of equidistant nodes on [0; 1], on [~1; 1], and geometric nodes z; = 27/, he gave the (rough)
lower bounds 242, 224, and 2'™!, respectively. Gautschi and Inglese [Galn88, Theorem 2.1] later
showed that for any configuration of nonnegative nodes zy, .., z, it is the case that x;(V,,) > 2".
Moreover, Tyrtyshnikov [Tyr94a, Theorem 4.1] gives the lower bound k9 (V,,)) > 2771 /v/n + 1,
valid for any configuration of real nodes. This improves a result of Taylor [Tay78, Section 4]

who proved that x3(V,,) for real nodes grows asymptotically at least as 2".

In Theorem 5.8 of Section 5.2 we show that, for all n > 0, k,(V,,) is at least as large
as (1 ++/2)"/(4- (n 4+ 1)'/?) for any configuration of real nodes zg, .., z,, and #,(V,)) > (1 +
V2)?" /(2 - (n + 1)'/7 for nodes having one sign. Moreover, both bounds are attained roughly
up to a factor 2n2. In the case of nodes being located in a real interval [a; ], we point out the
relation to the numerical condition of the basis of monomials with respect to the interval [a; b].
The latter problem had been studied and partly solved by Gautschi [Gau79]. In Section 2.5 we
derive asymptotically tight lower and upper bounds for the condition of the basis of monomials
for arbitrary intervals and ellipses.

In the context of real Vandermonde matrices, Gautschi [Gau75b] raised the question of
determining a configuration of real (nonnegative) nodes minimizing the p-condition number
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of Vandermonde matrices. For the p = 1 case, some results have been obtained in [Gau75b,
Galn88]. An explicit solution for the co-condition number is given in Section 5.2. This section
also includes some numerical results for this problem.

To our knowledge, little is known on bounds for the condition number of Krylov matrices,
though they are also suspected to be notoriously ill-conditioned (see, e.g., [Wil65, p.374]).
Besides Krylov matrices, we also consider more generally Krylov-like matrices. These are defined
on a column basis by

K, = (po(A) -a,p1(A) - a, ..., p,(4) - a),

where (pr); a sequence of polynomials as above, and where A is assumed to be normal and having
eigenvalues lying in some compact set GG. In Section 4.2 we show that for norm considerations
it is sufficient to discuss the case of diagonal A. In this case K, may be rewritten as a product
of a (in general unknown) diagonal factor, and a Vandermonde-like matrix. Moreover, in order
to give lower bounds for the condition number, we may even restrict ourselves to particular
diagonal matrices. In Section 4.3 we make some regularity assumptions and are able to give
the nth root limit of the optimal lower bound for the condition number of Krylov-like matrices.
Our proof makes use of some tools from potential theory.

For the particular case of Hermitian A and ordinary Krylov matrices, we are able to sub-
stantially improve the above results. Namely, in Section 5.3 we show that ko (K,) > 1.79"/(n+1)
for any such Krylov matrix, and this bound is attained roughly up to a factor n3/2. We also
discuss particular cases such as (scaled) positive definite A.

As an application, we establish, in Section 5.4, that the Euclidean condition number of a
positive definite real Hankel matrix of order » 4+ 1 has an approximately tight lower bound of
3.21"/(n 4+ 1)2. This improves a recent statement of Tyrtyshnikov [Tyr94al.

In the following we give a brief outline of the organization of the thesis. More detailed
summaries are included in the introduction sections of each chapter.

Chapter 2 treats the numerical condition of coordinate maps, with an emphasis on the
bases of monomials, orthogonal polynomials, Faber polynomials and Newton polynomials. In
particular, we study the connection to extremal problems for polynomials. In Chapter 3 we
investigate modified moment matrices. Here, a lower bound for the nth root behaviour is given,
and asymptotics are considered for a particular class.

Chapter 4 is devoted to Vandermonde-like and Krylov-like matrices. We make use of several
examples to illustrate the important role of the growth of the (weighted) Lebesgue function. The
link between these two classes of matrices is discussed, and we provide an explicit formula for
the nth root limit of optimal lower bounds for their condition number. Finally, in Chapter
5 we consider real Vandermonde, Krylov and positive definite Hankel matrices, and establish
approximately tight lower bounds for their condition numbers.

For the sake of completeness, we have included in Appendix A a brief summary on vector



and matrix norms. In Appendix B we present some results from potential theory required for
nth root asymptotics, and adapt them to our framework. Finally, in the index we have listed
the most important notation and keywords used throughout this work.

The author wishes to thank Professor G. Miihlbach and Professor C. Brezinski for their
encouragement and continuous interest in this work. Thanks also go to my colleagues and
friends at the ‘Laboratoire d’Analyse Numérique et d’Optimisation’ in Lille and at the ‘Institut
fiir Angewandte Mathematik’ in Hannover for their support.

The result of Section 4.3 has been influenced by some very useful comments from Professor
H. Stahl and Professor E. Saff.

Finally, I am deeply indebted to my family for their ever-lasting support.
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Chapter 2

The maximum norm and coordinate
maps

Given a compact set G C €, we denote by C(G) the set of functions being continuous on G,
which throughout this chapter will be equipped with the maximum norm

1fllg = max|f(2)l, [ € ().

Furthermore, for a given sequence of polynomials (p,)., pn of degree n, we introduce the corre-
sponding sequences of coordinate maps I, : €**!1 — P, n > 0, being defined by

I,(a)(z) = iaj pi(2), a=(ag,.,a,)T € Tt (2.1)

Obviously, II, is bijective, and its inverse is built up by the component maps m, : P, — C,

0 <k <n, where
n
Thn Za]- pj | = ax.
i=0

In the sequel of this chapter, we equip €' with the Hélder infinity vector norm || - || (see
Appendix A), P,, with the maximum norm || ||, and denote also by || -||¢ the induced operator
norms, k¢ (I1,) := ||IL,||c - [|TI;!||¢. Note that, in the particular case of finite G = {zo, .., 2},
the norm of 1I,, coincides with the Holder infinity norm of the Vandermonde-like matriz V. =
(pj(Zk))iz%’;’% whereas ||II!||5 is equal to the norm of the inverse of V.

For each a = (ag, .., a,)T € €' and 2z € G we have
[ (a) (2)] < Hlalloo - > 1 (2)],
7=0

11
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with equality if a; = |p;(2)|/pj(2), 0 < j < n. Consequently, we obtain the following explicit
expressions for the norm of II,, and its inverse

o, 1M le = max ||mkalla, (2.2)

11 =
Ml = | Jmax

K,

with the Kernel function K, := |po| + |p1| + .- + |pn|. Due to the recursive structure of the
sequence of coordinate maps one immediately verifies

Molle < [Millg < . < |Wlla, g6 < e < - < I | (2.3)
Let us also mention the following simple inequalities
IMalle, < |[Mallg, and |74 |6, > [[N7H]6,, provided that Gy C Ga. (2.4)

Moreover, there will be approximately equality in (2.4) if Gy is a discrete set representing the
particular characteristics of the continuous set Gy (such like Fekete, Leja or Fejer points, see
below). This will enable us to calculate the condition number of particular Vandermonde-like
matrices in Chapter 4.

This chapter is organized as follows: The preliminary Section 2.1 is intended to serve as
a motivation for the following considerations. We review in Section 2.1.1 Gautschi’s results
concerning the condition of monomials with respect to particular real intervals. It is shown
that the calculation of ||II;!||c for monomials requires the solution of Markov—type extremal
problems for polynomials, in general a quite difficult task. In contrast, simple estimates for
||I,;}|| are obtained in Section 2.1.2 for sequences of (bi)orthogonal polynomials. In Section
2.1.3, the influence of scaling of the polynomials on the numerical condition is discussed, where
as illustration the case of monomials on real intervals [—7;~] is studied.

Though for instance tight estimates for kg (Il,) on the unit disk H are easily available in
the case of monomials, it seems to be an open problem to give (tight) estimates for arbitrary
real intervals H. In Section 2.2 we show that the link between these two quantities is given by
a set function A, (+,-), being related to the constrained Chebyshev problem. From the theory
of extremal problems for polynomials in the complex plane it is well-known that (A,(, -)1/”)n
converges, with limit A(-, ), which may be expressed in terms of Green functions. This allows
us to formulate in Section 2.3 necessary conditions for a sequence of polynomials (p,,), in order
to insure that (kg(11,)), does not grow exponentially. Also, we show that, for given (p,,),, there
is essentially only one set G with this property. The above necessary conditions turn out to be
also sufficient for bases of orthogonal polynomials, as well as for bases of Newton—polynomials.

As an illustration, we mention the Newton basis of Leja nodes.

In Section 2.4 we restrict ourselves to simply connected compact sets G where explicit
intervals for the quantity A, (-, G)/A(-,G)™ are available. Some results on the size of this interval
in dependence of the smoothness of G are reviewed. We also study the numerical condition of
the basis of G-Faber polynomials, including for instance (shifted) Chebyshev polynomials.

The numerical condition of the basis of monomials on (scaled) ellipses G is considered in
Section 2.5. For this particular case, improved estimates for the quantity A, (-, G)/A(-,G)™ have
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been given by several authors. In Section 2.5.1 we provide an explicit expression for ellipses with
foci lying on the real axis. In particular, we deduce explicit inequalities for the condition number
of the basis of monomials on arbitrary real intervals, improving previous results of Gautschi.
These estimates are tight up to the factor 2n 4 2. Finally, we discuss in Section 2.5.2 the case of
ellipses G being sufliciently far away from the origin. Here we compute explicitly the quantity
kq(I1,), by solving some Markov-type extremal problems which to our knowledge have not been
considered before.

2.1 Some preliminary results

2.1.1 The basis of monomials on intervals

As a first example, let us consider the numerical condition of the basis of monomials p;(z) = 27,
where in view of (2.2) it remains to determine ||7;,||q, 0 < 7 < n, with

PU(0
7l = max{'j# . P eP,.|IPllo = 1).

The case of a real interval G = [ — 8, « + 3] has been studied by Gautschi [Gau79, Theorem
3.1, Theorem 3.2, p.346] who showed the identities

. . loos (2.5)

B>0: | g = maX{Ilfn—l(%)llm7 IITn(B)IIm}- (2.6)

lof >8> 0: I [ja—giats = [T

Here T, denotes the classical Chebyshev polynomial being defined by
T, (z) = cos(n - arccos(z)), n >0, z€[-1;1].

Moreover, in order to evaluate the Hélder norm of the coefficient vector of a polynomial, we
write shorter P = (cg, ..,¢,)" for any P € P,, P(z) = co +c1z+ ..+ c,2".

Gautschi [Gau79] also proved the asymptotics

sor 1 (143 (14 T\ L
||Tn(ﬁ)||oo— o 3 ( 3 (1+0(n™ )nseo),
s B+e 1 (4283 (1484 VTF28\" .

Note that (2.5), (2.6), together with (2.4) implies already that Vandermonde matrices with real
nodes necessarily have to be ill-conditioned.

For a proof of (2.5), (2.6) one has to solve the equivalent problem of maximizing the absolute
value of the jth derivative at a real argument ¢ = —a/( of a polynomial p of degree at most
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n, being bounded by 1 on the interval [—1;1]. Outside the interval, this quantity is maximal
[Riv74, p.93] for the Chebyshev polynomial, namely [p{!)(c)| < |T7£j)(c)| for all |¢| > 1, leading
to (2.5). The size of the jth derivative in the interior of the interval (i.e., |¢| < 1,) is maximal
for so-called Zolotarev polynomials, for a characterization see Schénhage [Sch71, Section 6.4,
p.162ff]. However, the only explicit extremal polynomials are known for the particular case
¢ = 0 (as required for (2.6)); by a Theorem due to V.A. Markov [Sch71, Satz 6.12] we have
Ip)(0)] < |T7gj)(0)|, if n — jis even, and [p)(0)| < |T7£]_)1(0)| if n — j is odd. In the case
0 < |e] < 1, V.A. Markov gave explicitly the norms for j = 1,n = 2,3, and Voronovskaja and
Gusev proposed (complicated) techniques for 0 < j < n (see [MMR94, p.539f] and the references
therein).

In the case 0 < |a| < B, the bounds for [|Il,[|[_g 445 obtained by Gautschi [Gau79] are
not tight and will be improved in Section 2.5.1, see Corollary 2.19. The Markov—-type extremal
problems related to ||[I;!||¢ may also be explicitly solved for some other sets G (see, e.g.,
Theorem 2.20 and Lemma 5.5), however, for the general case we will apply different methods in
order to obtain asymptotically tight bounds (see Section 2.2).

2.1.2 Biorthogonal functions

In [Gau72], Gautschi discussed the numerical condition of polynomials being orthogonal with
respect to a measure with support being a subset of G. His method of proof also applies for
families (p,), of biorthogonal functions

THEOREM 2.1 Let p be a positive Borel measure with support supp(u) being a subset of a
compact set G C ©. Furthermore, suppose that there exist qo,..,q, € C(G) such that for
5, k=0,1,..n

fater e ={ 1 1=

Then for the coordinate map of (p.)n we have the estimate

I8 e < max. [ lg;(2)] du(z)

Proof:  For each P =377 g a; - p; there holds

0l =| [ 66P@ )| < [l 1P < [1aE)] 1Pl i)

and therefore ||7;,|| < [¢;(2)] dp(z). O

One also verifies that there holds equality in Theorem 2.1 if the set GG consists of n 4+ 1
elements. Let us study some simple applications of Theorem 2.1
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EXAMPLE 2.2 Ifpo, .., pn are orthogonal polynomials with respect to the (Hermitian) scalar prod-
uct induced by p (see Definition 3.1), then we may take

62 = m @ vi= [P ),

J

Moreover, by the Cauchy—-Schwarz inequalily

ﬂMMW@st/M@Pw@: 0 o= [ dute),

J

which together with (2.2) leads to the estimate [Gau72]

- Ko .
Y6 < <[4/ — IL||c = |-
e < gmax (1f32) IMalle =1 Ini e
Gautschi mentioned that, among all possible normalizations, the upper bound for kg(Il,,) becomes
minimal for orthonormal polynomials, i.e., v; = 1, 7 > 0. He also gave the following two
exzamples: for Chebyshev polynomials p, = T, we have k[_y;11(I1,) < V2 (n+ 1), whereas for
Legendre polynomials there holds kj_14)(I1,) <+/2n+1-(n+1). O

ExaMPLE 2.3 The monomials p;(z) = 20 are orthonormal with respect to the scalar product

()= 5= [ 1) (e an,

i.e., with respect to a measure with support being the unit circle 0D, the boundary of the
closed unit disk ID = {z € C : |z| < 1}. Let H be some compact set satisfying 0D C H.
Then ||| g > ||, M| = 1 by construction, and from Ezample 2.2 we may conclude thal
|||y =1 for all n > 0. Furthermore, we get ||IL,||g = n+ 1 for all n > 0 provided that H
is also a subset of ID. a

2.1.3 Scaling of functions

Let us discuss the problem of reducing the condition number kg (Il,) by scaling the functions
Po, --» Pn With positive scalars dy, .., d,,. In view of (2.2), we obtain for the coordinate map I1sce!
corresponding to the sequence p*°** = p,, /d,, n >0

sca = |p|
ke (113 l) = (max d; - ||7Tj,n||G) : ||Z d—‘7||G

0<i<n j=0 %

By applying the Holder inequality (A.1) one easily verifies that the minimum over all possible

choices of the scalars d; is obtained for p;pt(z) = ||7jnllc - p;jy 0 < j < mn, with
i3
ke () = (M7 | = || 2 lImjnlle - 19l - (2.7)

i=0
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However, this scaling has the important drawback that one might have to rescale the whole
family of functions if one wants to add one additional function. Hence, following Reichel [Rei85,
Eqn.(2.6)] it seems to be more convenient to consider the scaling p;lyn(z) = p;/lIpilla, 7 > 0,
referred to as the dynamical scaling; here

R (7)< (n 4 1) 17 lg = (n+1) - max ||l - [1plle- (2.8)

Comparing (2.8) and (2.7), one easily verifies that
kG (TIY) < w(IT4) < (n+ 1) - kg (T2, (2.9)

hence the dynamical scaling is optimal up to a factor (n+ 1). Obviously, applying the dynamic
scaling to the family of monomials is equivalent to a rescaling of the set of arguments G: we
replace G by % -G ={z:2z-v € G}, where v = max,eq |2|.

EXAMPLE 2.4 Let us consider the basis of scaled monomials on the interval [—3; 3], 3 > 0. By
the Markov Theorem mentioned in Section 2.1.1 we have for the corresponding component maps
for0<k<n

|T7gk)(0)|/k! if n — k even,

k . . —
B |7k nll— s {|T7g’i)l(())|/]g! if n — k odd,

and for n > 1 we obtain from (2.7)

Ry () 2 Ko (157 = > !

=T+ Tha (1) =

2.2 Connection to the constrained Chebyshev problem

In Section 2.1 we have seen that, for monomials, the quantity k¢ (IL,) is exponentially increasing
in the case of a real interval G, but only polynomially if G = ID. The exact dependence may be
described with help of

DEFINITION 2.5 Let G, H be compact subsetls of the complex plane, n > 0, such that G contains
at least n + 1 elements. Then the constrained Chebyshev problem consists in determining the

quantily

Pllg
A, (H,G) = max{% : P e Pyl

We will also write shorter A, (z,G) := A, ({z}, G). O
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As an illustration, let us mention the following result of Bernstein
lzl=R>1 = A,(%,D)=R",

implying
A, (G, D) = max{y", 1}, ~:= max |z]. (2.10)

By definition there holds A, (H,G) > A, (H,G) > A¢(H,G) = 1. The nth root asymptotic of
A, (H,G) is discussed in Theorem B.22 of Appendix B, and will be basic for the considerations
of Section 2.3.

For ¢ ¢ G, n > 1 we have

1
——— = min max|l—-(z—-¢)-Q(z
An(e,G)  QePas ZEG| ( ) Q(2)];
i.e., we look for the element of best approximation of 1 out of span{(z — ¢), (2 — ¢)?, .., (z —
c)"}, satisfying the Haar condition on G. Thus [Sch71, Satz 6.3, p.155], up to normalisation,
there always exists a unique ‘extremal’ polynomial such that the maximum in the definition of
A, (e, G) is attained. However, these polynomials are explicitly known only for special cases,

e.g., An(c,[-1;1]) = |T(¢)| for c € R\ [-1;1].

Given a compact set GG, we denote by Do (G) the unbounded open connected component
of €\ G, and call 0D (G) the outer boundary of G. With help of the maximum modulus
principle for analytic functions one easily verifies that [|P||c = || P|[sp(g) for each polynomial
P. Consequently, the condition number and the norm of a coordinate map will not depend on
G but only on its outer boundary. Moreover

An(H,G) = Ay (H, 0D (G)) = A (0D (H), G),

Ay (H,G) = Ay(HN Do (G), G), (2.11)

where for the second formula A, (0, G) = 1 (in other words, A, (H,G) = 1if 0D (G) ‘surrounds’
the set H).

THEOREM 2.6 Lelt G, H be compact sels. We have for each n > 0

A, (H, G _ _
Sl G izl < An(r,G) -1 s,
.11

A(G H

BolC ) il < Anter ) - Il
05

Proof: The assertion follows from simple norm manipulations by applying the norm equiv-

alencies . P
- 1Pl

An(G,H) ~ [[Plle

<An(H,G), PeEPy,

e.g.,

-1
Tt = w0 Pl o o 1Pl Au(H.G)
I
FE NPlla = PR T 1Plle = Il
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O

Note that the ratio of the upper and lower bounds of Theorem 2.6 is given by rg (I1,).
Consequently, we obtain ‘tight’ bounds for kg (I1,,) iff kg (I1,) is ‘small’. For instance, combining
Example 2.3 (with H = 0ID), equation (2.10) and Theorem 2.6 we get

COROLLARY 2.7 For the coordinate map of the basis of monomials there holds

no I,
I = 32 e e fin,
where v := max,¢q |2, and X
B e
Moreover, if dID C G, then ||II]}||c = 1. O

In Section 2.5 we will give bounds for the quantity A, (ID,G) for G being an ellipse, which
enables us to derive explicit estimates for the condition number of the basis of monomials. The
case of discrete (G and its relation to the Lebesgue function will be studied in Section 4.1.

2.3 The nth root behavour for coordinate maps

For the following considerations we will require the concept of the Green function, where we
follow [NiSo88, Section 5, pp.188-191]. Recall that a domain D with compact boundary 9D is
called regular if the Dirichlet problem has a solution for each function being continuous on 9D.

DEFINITION 2.8 Let G C € be compact, with D, (G) being reqular. Then there exists a unique
real function gg called Green function (with singularity at infinity) with the properties

(a) g is continuous on the closure of Do (G),
(b) ga vanishes on 0D (G),
(¢)

(d)  g(2) :==gc(z) —log|z| is bounded around infinity.

g s harmonic and positive on Do, (G)

The capacity cap(G) of G is obtained by the formula lim,_,, gg(z) — log|z| = —logcap(G).
Furthermore, we define for r > 1 the (compact) level set

Gy 1= C\{z € Doa(G) : ga(2) > log(r)}.
In addition, for any compact set H let
A(H,G)=min{r >1: H CG,},
where we write shorter A(z,G) := A({z},G). ]
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In the case of an arbitrary compact set G with positive capacity, we may still define a unique
Green function gg : Do (G) — R as the limit of Green functions of suitable compact sets (see
[NiSo88, p.191]). Here properties (c) and (d) remain valid, moreover, up to a set of capacity zero
(the set of irregular points, see [Tsub9, Theorem I11.38, p.83]), property (b) remains valid for
the limiting values of g4 on the boundary of G. Also, in this more general context, the formulas
of Definition 2.8 for cap(G), G, and A(H,G) may be applied, and G, remains compact.

Note that, by definition, the quantities g¢, cap(G), G,, and A(H,G) only depend on
the shape of the outer boundary of GG, they remain invariant if we fill any ‘holes’ of G. Also,
r = A(H, ) is the parameter of the smallest levelset GG, such that its outer boundary ‘surrounds’
the outer boundary of H. In particular, since G; = €\ D (G), we obtain A(H,G) = 1 iff
HNDo(G) =0, and otherwise A(H,G) = sup{exp(ge(z)) : 2 € HN Do (G)}.

In Theorem B.22 of Appendix B, we have discussed connections between the quantity
A, (H,G) introduced in Definitions 2.5 and the quantity A(H, G) of Definition 2.8. In particular,
it is shown in (B.16), (B.17) that for any compact sets H, G, cap(G) > 0 there holds

An(H,G)/" < AH,G),  lim A, (H,G)'/" = A(H,G),

the inequality obtained by reformulating the classical Bernstein—Walsh Lemma. This enables us
to show the following

THEOREM 2.9 Let G,H C C be compact sels with positive capacity. Furthermore let (py)s,
be a sequence of polynomials, p, of degree n with leading coefficient a,. Suppose that for the
corresponding sequence of coordinate maps there holds

lim kg(IL,)Y™ = 1.

n—oo
Then necessarily
. 1/n . —1/n _
Jim [lpnflg™ =1, lim fa,|7/" = cap(G). (2.12)
Moreover,
Tim (||l = A(H,G) > 1, Jim ([} = A(G, H) > 1,

and lim,_ o0 577 (1) = 1 if and only if Do (G) = Doo (H).

Proof: We first notice that by (2.3)

. 1/n _ . —1l/n
Jim [[In]lg " =1, lim [[IL7][g" = 1.

In particular, from the explicit formula for ||IL,||c we obtain
lim sup [[pa|le/" < 1.
n— oo
Moreover, denoting by LC(P) the leading coefficient of a polynomial, LC(p,) = a,, there holds
|0 (P)] 1 [Pl

|Tnnlla = max = my = min

pep,deg P=n ||Plla — lan|-m}’ " pep,deg P=n |LC(P)|’
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It is well-known [NiSo88, Proposition 5.4] that the sequence of Chebyshev coefficients (m;‘z)l/”

converges, with limit cap(G). Using the fact that |a,| - mZ < ||p.||c, we get

1= lim ||H;1||1G/n > lim sup ||7rnn||g/n = lim sup <;) v
n—00 T n—oo ' n—0co |an| - my

> 1 > lim inf
2z llmsup ———— > lim inf ————— >
noo [|pal|™ T (|

This yields the desired nth root asymptotic for ||p,||c, and that for |a,| is obtained in the same
way.

The rest of the assertion now follows from Theorem 2.6 and (B.17), where we notice that

A(G, H) - A(H,G) = 1iff Doo (G) = Doo (H). O

Consequently, for a given sequence (p,), of polynomials, there is essentially at most one set
G where kg(11,) is not exponentially increasing. Let us also mention that, if beside (2.12) also
Pn, n > 0 is supposed to have no zero in D (G), then the sequence (log |pn|1/”)n necessarily
converges to the Green function gg locally uniformly in Do, (G) (see [NiSo88, Proposition 5.3]).
A connection between the kernel function and the Green function gg will be discussed in Lemma
4.14.

EXAMPLE 2.10 Let (pn)n be a sequence of polynomials being orthonormal with respect to some
measure ji with S := supp(u) being compact. Then

t=vn = [ Ipn(2) du(z) < pl@) - Ipallf 020,

and thus
lim [|p.|[{" > 1. (2.13)

n— 00
From FEzample 2.2 we know that ks(Il,,) does not increase exponentially if and only if there holds
equality in (2.13). Following Saff [Saf90, Definition 3.1], in such a case the measure p is said
to be completely regular (see also Definition 3.7). In contrast, the necessary condition
. —-1/n _
Jim_fa,| 7" = cap(S)
of Theorem 2.9 was used by Stahl & Totik [StTo92] in order to characterize so—called regular

measures. Notice that a regular measure i with Do, (supp(p)) being regular also is shown to be
completely reqular (see [StTo92, Theorem 3.2.3]). O

In view of Theorem 2.9, it remains the question whether, for any compact set G’ with positive
capacity, there exist a sequence of polynomials where kg (Il,,) is not exponentially increasing.
For the case of regular Do, (G), a constructive answer has been given by Reichel [Rei90] who
considered Newton interpolation at Leja points. Adapting the proof of [Rei90, Theorem 2.4], we
may even show that, for a suitable scaled Newton basis, the necessary condition (2.9) already
is sufficient. Given a sequence (2,),>0 of not necessarily distinct elements of &, the Newton
polynomials are defined by wo(z) = 1, and w,(2) := (2 — 20) - (2 — 21) - .. (2 — z—1) for n > 1.
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THEOREM 2.11 Let G C @ be compact, with D, (G) being reqular. Furthermore, let zg, z1, .. € G
such that condition (2.12) holds for the scaled Newton polynomials p, = a,, - w,, n > 0, with
suitable scalars a,, (e.g., a, = 1/||w,||c), in particular

. 1/n
Jim|len|lg ™ = cap(G). (2.14)
Then for the coordinate map corresponding to (p,), we have

1/n

Tim [[IL[|¢/" =1, Tim ||1I; W =

Proof:  First from (2.2) together with (2.12) it follows that
Tim ([T, [|¢/" =1
Also, ||TI;Y|¢ > ||TI5Y |G, and therefore
11m1nf||H 1||1/n
For an upper bound, let us first discuss ||II;!||g, for a fixed » > 1. The component map

Tk,n corresponding to the scaled Newton basis is a scaled divided difference; we will apply its
well-known integral representation

1 1 p
Tk n(P) = —" [Zo, ..,Zk]P = / (Z) dz,
’ ar Q'W'l'ak 3G, wk+1(2)

valid for 0 < k < n and P € P. Consequently,

ThnllG, = max <
1Tralle: = B8 TBla, = Tan

(P 1 1 1
LIColip [z,
dGr

'||K+1||8GT'§

Notice that the regularity of D, (G) implies that G, is a compact subset of D, (G). By [NiSo88,
Proposition 5.3], from the relation (2.14) it follows that
lim [, ()] = cap(G) - e29) = cap(G) -

uniformly for z € dG,. Let now € > 0 be determined by (1 — €)% -7 = 1. Then there exist an
K = K(r) such that for all £ > K and for all z € G,

w1 ()Y 2 (1 =€) - cap(@) vy JaVE - cap(G) 2 (1- )7,

and therefore .

forl o
Consequently, for each r > 1, we may find a constant C' = C'(r) such that for all n > 0 there
holds ||I1;]|g, < C(r). Applying Theorem 2.6 with H = G, yields

||3Gr <1, k> I((T‘).

fim sup 151" < (“mSUPMGr,G)””) | (“mSUPIIH lll””) <r
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where we have applied (B.17) together with A(G,.,G) = r. Since r > 1 may be chosen arbitrarily
close to 1, the assertion of the Theorem follows. a

Notice that condition (2.14) is also sufficient for the following assertion: for each f being
analytic in €\ D (G), the sequence (@), of polynomials converges to f uniformly in €\ D (G),
where (), of degree n interpolates f at the nodes zg, .., z,.

Reichel [Rei90, Lemma 2.1] also mentioned the following result of Leja: let us define a not
necessarily unique sequence (z,,), of elements of G (called Leja nodes) by

lz0| = mac);(|z|, and for n=1,2,...: |wy,(2,)] = ||wnl|c- (2.15)
z€

Then condition (2.14) holds, i.e., the condition number of the corresponding coordinate map is
not exponentially increasing.

2.4 Simply connected GG and Faber polynomials

In order to exploit Theorem 2.6 for the numerical condition of polynomial bases, we require
information on A, (H, G) which is available if we impose some restrictions on G, such as D, (G)U
{oo} being simply connected. Due to (2.11) we may assume without loss of generality that there
are no holes in G, i.e.,, G = €\ Dy (G). Hence the sets G which we wish to consider in this
section are simply connected compact subsets of € whose boundary 0G is a rectifiable Jordan
curve. We will shorter denote its complement by G° = D, (G), and by ID := {w € C: |w| < 1}
the closed unit disk.

2.4.1 The Riemann map

Let w = ®¢(z) be the function that maps the exterior G¢ conformally and univalently on ID€,
with ®;(00) = oo, and ®f;(co) > 0. This function is called the Riemann map of G. By the
Carathéodory Theorem, &5 can be continued continuously to a bijective map from G° U 0G to
ID°U dID. Then the Green function of G (see Definition 2.8) is given by gg(z) = log |®g(z)],
z € G°U0G. In particular, cap(G) = 1/®,(c0), and the level sets GG, are given by G¢ = {z €
G :|®g(z)| > r}, r > 1. We also denote the inverse Riemann map by z = Ug(w).

ExaMPLE 2.12 The Riemann map for the unit disc trivially is given by ®p(z) = z, cap(ID) = 1.
For an arbitrary disk we may apply a linear transformation as follows: writing a + -G =

{a+p-2:2€ G}, a,€C, B #0, we have

z—

<I>(a+5.c;)(2)=|%|-%( 5 ).
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Therefore we observe the following invariance under a linear transformation of the complex plane

1
capla+f-G) =19 cap(G), A(H,a+§-G)=A-F+5 H,G),  (216)
the latter relation being obviously valid also for the quantity A, (-, ). a
EXAMPLE 2.13 For p € [1,400), we define the ellipse
1 1
&= {I(p-w) s Ju] 1), J(s) =5 (s+ 1),

where J is called the Joukowski map. Note that, for a, 3 € €, 3 # 0, the set a+ 3-&, is an
ellipse with foci at o — 3, o+ B, with the sum of the semiazes given by || - p. In particular, we
describe segments o+ - & ={a+ -t : -1 <t <1}, i.e., for real a, 8 we obtain the interval
[ — B, a4+ []. Moreover, % - &, becomes for p — oo the unit disk ID.

The reciprocal Joukowski map is defined by
JHe) =2 (14 4/1 - 1/22),
where the branch of the square root is chosen such that /1= 1. Then for G = &, there holds

Vo(w) = J(p-w), a(z)=—-J7(z), cap(G)=

N

) G, = gr~p7

™=

in particular cap([—-1;1]) = 1/2. O

2.4.2 Estimates for the constrained Chebyshev problem

Let H C € be compact, H ¢ G. Inequality (B.16) yields tight upper bounds for the quantity
A, (H,G), n > 0. In order to derive lower bounds, we introduce the Faber polynomial F,, = Fg,,
as the polynomial part of the Laurent expansion of ®7 at infinity, i.e., Fi5 , is of precise degree
n with leading coefficient cap(G)™", n > 0, and in particular Fiz o = 1. These polynomials have
been introduced in the Thesis of Faber, and are very useful, e.g., for finding a best polynomial
approximation of functions continuous on G, and analytic in the interior of G (for further
properties see, e.g., [Sue71], [SmLe68]). By the Cauchy integral formula we obtain immediately
for each z lying in the interior of G and for each r > 1

FG’n(Z) T o /QGT (—=z d6 = 27 /|w|=r v \I}G( ) -z w

leading to the following two alternative definitions of Fg,: the Laurent expansion of
Fg (Vg (w)) — w" contains only negative powers of w, and we have the generating function

‘I]/

Zw” Fon(z), z€G, |w >1
Vg (w) -z
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As an example, there holds for n > 0

FlD,n(Z) = Zn, FO“Fﬁ'G,n(Z) _ (%)n . FGM(%)

Moreover, with help of the Joukowski map we may represent the classical Chebyshev polynomials
in the form

T,(J(w)) = J(w"), n>0, (2.17)

implying that for p > 1 )

o

Fe,o=1, Fen=—-To, n2>1 (2.18)

A~

We are now prepared to prove

THEOREM 2.14 Lel G be as described in the inlroduction of Section 2.4. Then for each compacl
set H and for each n > 0 we have

1 A
1—}—2-6(;’71 A

where €g,, == || Fan — P&l|ac-

Proof:  The upper bound is a consequence of the Bernstein-Walsh Lemma, see (B.16). In
order to show the lower bound, let ( € H \ G (the case H C G is trivial) such that A(H,G) =
|®¢(C)], and define p, € P, by pn(2) = Fgn(2) + (®c(¢)" — Fg,,(¢)). Notice that ®% — Fg ,, is
analytic in G° U {0}, and continuous in G°U dG. By the maximum modulus principle we get

@6 ()" = Fan(Q)| <198 — Fanlloac = €Gn,

and
llprllc = llpnllac < 119E]laG + 1|96 — Fanllag + 26(0)" = fu(Q)] £ 142 egn.
Consequently,
A(Hv G)n _ |pn(C)| < ||pn||H
142, 142, ~ llpadle’
and the lower bound becomes immediate. O

Of course, the sharpness of the bounds in Theorem 2.14 depends on the behavour of the
sequence (€g,,)n, which for sufficiently smooth G is shown to tend to zero, and, for general
G, increases at most as O(y/n). For instance, for ellipses one verifies with help of (2.18) that

€€pn = p~?", n > 1. Some classical results are summarized in the following

LeMMA 2.15 Let €Gpn = ||FG,n — (I)?;Ha(;, n>0.
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(a) If G has an analytic boundary, and the function Yq is analytic and univalent in {w € @ :
|lw| > R} with R € (0;1), then

1
€an < Mn-log(l_RQ) -R*, n>0.

(b) We say that G belongs to the class C({,a), where { is a nonnegative integer, and 0 < a < 1,
if the parametrization of the boundary 0G is s — z(s), where s is the arc length, and the
periodic function z(-) is { times continuously differentiable, with = (-) € Lip, (o = 0
means that we drop this additional condition).

IfGeCl+1,a), where £ >0, a > 0, then

log n
€Gn = O(W)n—)oo-

(c) If G is convexr bul not a segment then eg, < 1 for all n > 0.

(d) For any G, there exists an o € (0;1/2) such that

€Gn = O(na)n%oo .

Moreover

ecn <14+e+y/n-log(n+1), n>0.

Proof: Part (a) is cited from Smirnov & Lebedev [SmLe68, Eqn.(14), p.136], assertion (b)
was proved by Suetin [Sue71, Lemma 1.3], and part (c) has been shown by Kévari & Pommerenke
[K6Po67, Theorem 2]. The first part of assertion (d) is an immediate consequence of [K6P067,
Theorem 1(i)], and the final part may be found in [SmLe68, Eqn.(10), p.136]. O

From Lemma 2.15(c) we may conclude that, by the argument principle, the Faber polyno-
mial has all its zeros in the interior of G for all n, provided that G is convex, but not a segment
(in the latter case, of course the Faber polynomials are suitable shifted Chebyshev polynomials
with zeros on dG). Moreover, this property remains true at least for sufficiently large n if the
conditions of (a) or (b) are valid.

Following Geronimus [Ger52], we will call G of class I' if (¢g,,)n tends to zero.

2.4.3 The basis of Faber polynomials

In Example 2.3 we have already seen that the monomials — the Faber polynomials of the unit
disk — are well-conditioned with respect to this set. In fact, it is easily seen that this fact remains
true in a more general context, leading beside Corollary 2.7 to another application of Theorem
2.6: Since w — Fg,(Vg(w)) — w™ is analytic in ID° U {oo} including infinity, we obtain for
7, k=0,1,..

1 _ 1 Fg,;i (Yo (w))
_ Fe (T T ldw| = _/ TEINTENT ) = S0
5= [ Fasa(w) - fdu| = o [ ZE560 4w g,
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Hence the Faber polynomials (Fg ), and the successive powers of @ are biorthogonal with
respect to some measure with support dG. Let us denote the corresponding coordinate map by
I1,,, n > 0. Applying the reasoning of Section 2.1.2 yields

1
m?! < ,_/ | |dw| = 1
[|TL, IIaG_Orgnggn 5 au)lw | |[dw| =1,

and in addition ||TI;!|ac > [|TI5"||sg = 1. Together with (2.2) and the first formula of Lemma
2.15(d) we obtain

1T oe =1, [Mallae > 1, |Tllac = O(n*?). (2.19)

Notice also that the second formula of Lemma 2.15(d) allows us to specify an explicit upper
bound for ||I1,,||5¢, which may be improved if (G satisfies in addition one of the initial conditions
of Lemma 2.15(a)—(c). For instance, if G is of class I', then ||IL,||s¢ = O(n).

As a final example, the Faber polynomials on ellipses (2.18), namely the shifted Chebyshev
polynomials
Fon(Wg(w) =w"+w™" p " G=¢, n>l,

have been considered by Reichel and Opfer [ReOp91], here we get explicitly for the corresponding
coordinate map
—2n

- - iy 1-p
I e, =1, [[Malle, =143 (14p 2]):n+1+p27_1

i=1

<2n+4 1.

2.5 Monomials on Ellipses

In order to obtain the numerical condition of monomials with respect to ellipses of the form
G=a+p-&,0,€C,3#0,p¢€[l,+00) (see Example 2.13), we may apply Corollary 2.7,
where estimates for the unknown quantity

An(D, o+ B-E,) = An(—% + % ‘D, &)

may be obtained in terms of A(—% + % -ID,&,) = A(D,a+ 3 - &,) by applying Theorem 2.14

n_ By the way, notice that the numerical condition of the monomial basis is

with eg_, = p~
P
invariant under rotation, such that we may (and we will) assume without loss of generality that

8 > 0.

In the particular case of ellipses and intervals, however, Theorem 2.14 may be substantially
improved; we will report some results below. In Section 2.5.1 we compute explicitly the quantity
A(ID, G) for ellipses with real foci, and give a closed form estimate for the numerical condition
of monomials on real intervals. Ellipses with real foci being sufficiently far away from the origin
are considered in Section 2.5.2.



2.5. MONOMIALS ON ELLIPSES 27

The constrained Chebyshev problem for the real interval [—1;1] (i.e., p = 1) was considered
by Freund and Ruscheweyh [FrRu86], in particular they proved [FrRu86, Theorem (6.12)] that

An(J(i- R), [-1;1]) = An% %

This covers completely the case « = 0, p = 1 of intervals of the form G = [—3; §]. Frappier and
Rahman [FrRa82] showed that

1 2—-1
3 R" + \/_TRn_Q <AL (&R, [-1:1])

‘D, [-1;1]) == - (R*+ R"™?), R:=A(=-ID,[-1;1]). (2.20)

N | —

1 5+ V17
Lopng 28V g2 (2.21)
2 4

and conjectured that A, (Er,[-1;1]) = A,(J(i - R),[—1;1]) (which was given in (2.20)).

In the case p > 1, we are also able to improve Theorem 2.14. Here, a tighter lower bound
was given by Fischer & Freund [FiFr90, Theorem 2, p301]. The upper bound given by Fischer
& Freund is only valid if n is sufficiently large, however, we may give the tighter bound (2.23)
which in addition is valid for all n > 0.

LEMMA 2.16 For 1< p < R, t € [0;27] we have

R*+R™ R”
——— < Ay(¢Rr, &) < —, 2.22
pn _I_p—n ( P) ( )

pn
An(J(R- €M), &) < \/ J(an)fp;;ii(? i (2.23)

Proof:  As proved in [FiFr90, Theorem 2], the lower bound of (2.22) is obtained by consid-
ering p,(2) = Tn(2) +1- ST (J(R-€?))/(J(R™)? - 1), where T,, denotes the classical Chebyshev
polynomial of degree n. The upper bound of (2.22) was already stated in Theorem 2.14.

Assertion (2.23) follows by a standard technique based on the Rouché Theorem: suppose
that this inequality does not hold. Then there exists a polynomial p with p(J(R - €")) =

T.(J(R-e")), and
_ - ny2 _ — 3
llplle, = max Ip(2)] < +/J(p")* =1 Join T (2)]-

Consequently, |p(z)| < |T,(z)| for all z € 9€,. But T,, has n zeros in the interior of &,, whereas
p — T, has the zero J(R - €') € £,, a contradiction to the Rouché Theorem. O

As also shown by Fischer and Freund [FiFr90], the lower bound of (2.22) is attained for
sufficiently large R/p. We therefore obtain the following complement of Corollary 2.7

COROLLARY 2.17 Consider the basis of monomials, and let G = a4 3-&,, p > 1, be an ellipse
with foci a— § # a+ 3, with || - p denoting the sum of the semiazes (in the limiting case p = 1,
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the support G becomes a line segment). If D C G, then ||II; || = 1, n > 0, and otherwise for
alln >0
1 1+R?™ R __, _
' ) S(_) ||Hn1||G§17
n+1l 14 p—4n P
where R = A(ID, [a — 3; a4+ 3]) = p- A(ID, G) is the smallest parameter such that the ellipse En
contains the disk centered at —a/ with radius 1/|5| (i.e., R > p). O

2.5.1 Ellipses with real foci

In the particular case of ellipses G = a4 3 - £, with foci lying on a straight line through the
origin we are able to determine explicitly the quantities v and R = A(ID, [a — §; &+ 3]) required
in Corollaries 2.7 and 2.17 in terms of a, 8 and p. Since the norms ||II,||¢ and ||IL ]| are
invariant under rotation of G, we may assume without loss of generality that «,8 € IR, and
a >0, 8 > 0. Then the quantity v of Corollary 2.7 is given by

vzzegngggpIZI=a+ﬂ-J(p)=a+§-(p+1/p)-

The aim of the following geometrical Lemma is to determine explicitly the quantity R =

A(ID, [a — B; a4+ 5]) of Corollary 2.17.

LEMMA 2.18 Let o, € R with o >0, § > 0. Then

\/ﬁziaz + \/52ia2 + 1, Zf ﬁQ > o? + «,
A, [a— o+ ) =4 /77T =S o
Frf(E) -1 Tfsetra

Proof: Equivalently, we may look for the largest r such that the boundary of the corre-
sponding ellipse &, has a non—-empty intersection with the circle —% + % - JID.

The equation
23+ contt)
(3-0+b)

can be equivalently rewritten as
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Now possible extremals ¢; of the function r = r(¢) being defined by F(r(t),t) = 0 have to satisfy
r'(t1) = 0. Therefore, for these extremals there holds

001;(7' £) = 0= —sin(7) - (Cos(t) ta. (% = 1)) ) . (2.24)

The case sin(t) = 0 corresponds to the intersection of the circle with the real axis, here the
maximal r = ry is given by

1 1 14+« 14+« 14 a\?
2 il — - 1.
2(’"+r) g orn ﬁ+<ﬁ)

On the other hand, the right hand term in (2.24) vanishes if and only if

—cos(t) = a - (1.(r_l)>2§ 1

2 r

and in this case we obtain from F(r,t) = 0 the representation

2 CD) S et et

being a possible candidate for an extremum if 32 > a?4a. The assertion now follows by verifying
that ro > rqy in the case 82 > a? + « (and ry = ry in the case 3? = o? + «, respectively). a

The condition of the basis of monomials for supports being arbitrary real intervals has been
studied by Gautschi [Gau79, Section 4], and some first results have already been reported in
Section 2.1.1. In order to compare, we summarize our findings in the following Corollary where
we have applied (2.21) and Corollaries 2.7, 2.17

COROLLARY 2.19 Consider the basis of monomials, and let the support G = [a — B;a + []
be a real interval, with § > 0 and without loss of generality o > 0, furthermore let R =
A(D, [« — B;a+ 5]) as in Lemma 2.18. Then for each integer n > 0

1—(a+p8)!

. -max{1 —n q 2-1)-R2

kg(Il,) > R™ - (a4 )"t -

and

1— (46t 1 54+/17T __
. 12TVl
PR m1n{,2—|— 1 R

In particular, the sequence (kg(I1,)Y/™),, tends to

ka(ll,) < R” - (at )"+ 2.

B+a—|—\/ﬁ+a (B+ «a)? if32>a’+aanda+3>1,
(a+)- [““ﬂ/(%“) ~1] <o’ taandat B>,
Ve + /e 1 ifB>a’+aanda+pB<1,
(O i <a’+aandatB<l.
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asymptotic value

10.0 o
| + o+ 4 )
+ +
T o+ 7 X4
| .q;
4 X
(o]
X
T (o]
4 X O
X 0
1 X o]
X (o]
(o]
T X (o]
(0]
®
0.0 : | : :
0.0 0.8 o

Table 2.1: Asymptotic upper bounds of Gautschi (x,4) and the exact value (o)

Let us first mention that our bounds enable us to determine the condition number up to
a factor 2n + 2. Moreover, in the cases @« = 0 and o > 3, Corollary 2.19 is in accordance with
Gautschi’s (asymptotic) results mentioned in Section 2.1.1. For the asymmetric case 0 < a < 3,
Gautschi [Gau79, Theorem 4.1, p.350] gave upper bounds for kg (Il,,) being weaker, at least for
large n. For instance, for intervals with half-width 3 = 1 Gautschi derived the asymptotic upper
bound

()7 < (14 a)2(1+v?2) if 0 < a < 0.8216..,

[o=tsa41] (1+a)(2—a)(2+V3) if0.8216.<a<1.

whereas the exact asymptotic grow is given by

lim Kla— la—l—l](H )

n—00

1/n:{\/1+°“+\/1+°“+ (1+ a)? if 0 < a < 0.6180..,

(a+1)-[(14+« —}—\/1—}—042—1] if @ > 0.6180.. .

In Table 2.1, we have plotted both right hand sides for o varying between 0 and 1.

2.5.2 Ellipses not containing the origin

In (2.5) of Section 2.1.1 we have seen that, for monomials, the quantity |[II; ]|,
computed explicitly in terms of Chebyshev polynomials provided that the origin does not lie in

—B;a+4) Can be
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the interior of [a& — §; w4 §]. This remains true for ellipses G = a + § - &, with real foci (or foci
lying on a straight line through the origin) which are sufficiently far away from the origin. For
a proof, we first have to solve the corresponding Markov—-type extremal problems

THEOREM 2.20 Let p > 1, and 0 < 5 < n. We have for p € P,

D (e < 1T (¢ ‘||p||5p
RGN Gy

provided that ¢ € R, |c¢| > J(p), and

n—j pttp”
- n pn—l + p—n+1 :

(2.25)

A proof of Theorem 2.20 will be given below. Note that condition (2.25) of Theorem 2.20
holds for 0 < j < n if |¢| > p. Hence in the particular case of £, being an interval (p = 1)
we obtain the classical results on the grow of (derivatives of) polynomials outside £, mentioned
already in the context of (2.5).

Taking 7 = 0 in Theorem 2.20 leads to

_ 1T (c)|

J(pr)
In many textbooks on numerical analysis it is stated without proof that the constrained Cheby-
shev problem on ellipses has the solution (2.26) for all ¢ € R not lying in the interior of &,, i.e.,
|c| > J(p). However, as shown by Fischer & Freund [FiFr91, Theorem 1], this is only true for
n > 5if c € R\[-J(p);J(p)] satisfies a complementary condition |c| > ¢*(p) > J(p), at least for

p being sufficiently large. Some choices for ¢*(p) different from (2.26) may be found in [FiFr91,
Theorem 2].

Ay (e, &) ceR, e >|p| (2.26)

In the case j > n/2 one shows that (2.25) is true for all ¢ on the real axis not lying in the
interior of £,. Thus the Chebyshev polynomial is optimal if one wants to maximize sufficiently
high derivatives outside of ellipses. In particular (j = n), the monic counterpart of 7}, is, under
all monic polynomials of degree n, the one that deviates least from zero on an arbitrary ellipse
&y, p > 1 (this property of course is well-known, see, e.g., [SmLe68, Corollary 7, p.360]).

Before giving a proof of Theorem 2.20, we first summarize the consequences for the coor-
dinate map of monomials in the following

THEOREM 2.21 Let the ellipse G = o+ 3 - &, with real foci be sufficiently far away from the
origin such that |o/B| > p > J(p). Then for the basis of monomials py(z) = 2%, k > 0, we have

r —

B

2 _
—n ||Tn(

Y g = ———
I3l =

)||007 n > 0.
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Moreover, given any basis of scaled monomials fi(z) = dj, - 2% dy #0, k> 0, we have for the
corresponding coordinate map @,

To(1% |+ (p))
L ()

and the right hand side is atlained for the optimal scaling of Section 2.1.3.

kG (®n) > ., n>0,

Proof: We may assume without loss of generality that o > 8 > 0. For 0 < k < n we
obtain from Theorem 2.20 with help of a linear transformation

renllo = max APOOL__,, 1OVBI_ PO

knl||G — [ S B _ |
Pep, K MTPllasac, — 9er IR TIQMe, ~ BT,

where P,(2) := Tu((z = a)/B), |[Tulle, = (p" 4 p™")/2 = J(p"). This yields the first part of

the assertion. Moreover, taking into account the results of Section 2.1.3, for the second part we

only have to evaluate

ke (P) = 2 7k|!]'DT|T(n(T|)lp e
v POk s gk = GO P =60 (p) _ Te(F 4T ()
= LT, TV et )= T.(J(7)) TG

For a proof of Theorem 2.20 we require a technical lemma where some suflicient and nec-
essary conditions are given for ‘real’ functionals A : P, — @ in order to satisfy [|A|le, =
IN(T)|/J(p™). For the particular case p = 1 of the interval [—1;1] and polynomials having
only real coefficients, equivalent conditions have been obtained by Rivlin [Riv74, Theorems 2.16
and 2.20].

LEMMA 2.22 Let p > 1, and let the linear functional A : P, — € be ‘real’, i.e., A\ =
AT%)/J(p*) € R, k=0,..,n. Then ||M||e, = [\u| if and only if the cosine polynomial

n—1
ct) = % + 1; An—k -cos(k-t) + % -cos(n - t)

does not change sign at the argumentst =m-j5/n, 7 =0,..,n.

Moreover, ||X|e, = |An| if (Ak)o<k<n is nonnegative, nondecreasing, and convez, i.e.,

A>0, A >X, andfork=1..,n—-1: Xgy1 —2 A+ Ap—1 > 0.

Proof: By continuity, it is sufficient to prove the assertion for p > 1. Notice that [[A[[e, =
|An| (i.e., T, is extremal for A) if and only if 0 is the element of best approximation (with
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respect to || - [|g,) to T, out of the null-space of A, a linear space of dimension n denoted by
N(A). In order to apply the classical characterization of elements of best approximation (see
Rivlin, [Riv74, p.63ff], or Schénhage [Sch71, Satz 6.2, p.152]), we first require the arguments
where 7}, attains its maximum on &,. These are precisely given by z; := J(p-exp(7-i-j/n)),
7=0,.,2n—1,and for 0 < k < mn, 0 < 7 < 2n, we have

. .z . : = 1
Ti(z3) = J(p) - cos(m - - k) +i- T () sin(r - -k/n), () := 50y~ 1/y).
Also, notice that a basis of N(A) is given by A(T,) - T — A(T%) -1y, k=10,..,n— 1.
Consequently, applying the characterization of elements of best approximation we obtain

[|Alle, = [An] if and only if there exist a solution o; > 0, j = 0,...,2n — 1, for the following
system of equation

2n—1
k=0,..,n: ATy = XT ZU] n(25) - Tr(z5).

This system may be rewritten as

__ M =0y (—1)°-cos(k-0) + o, (—1)"-cos(k - ) (2.27)

J(pn)2 e

ik, J D= jok

—I—ZO' 7. cos(m - - ]Z:;O' 7. sin(r - - ),

k=0,..,n, where
O';- =0+ 02—j, O';-/ =0 — O

Since the left hand side of (2.27) is real, we see that, for any solution, the sine polynomial

n—1

s(¢) = Z 0;-’ . (—1)j -sin(j - @)

i=1

must have the zeros 7 - k/n, &k = 0,..,n. Now, s(¢)/sin(¢) is a polynomial of degree at most
n — 2 in cos(¢), and therefore must vanish identically. Hence, for any solution of (2.27) there
necessarily holds o) . = 0, and, by taking into account that (— 1)7 - cos(m -5 - k/n) = cos(m-j -
(n — k)/n), we have ||/\||gp |/\ | if and only if there exist 7; > 0, 7 =0, ..., n, satisfying

1 . 1=0,..,n

A_n ' (An? o Alv AO)T = Vni41 - (7—07 ooy Tn)Tv Vn—l—l = (COS(ﬂ' “J k/n))?c:%:..:n .

The inverse of V,, 41 is explicitly known, namely, with D,y = diag (1/2,1,..,1,1/2) there holds
2-Dpy1 - Vayr - Duyy - Vayr = n- I,4q. Thus, the equivalent characterization of Lemma 2.22
follows from multiplying the above equation by A, - V41 - Dyyq.

Finally, Fejer showed that if (A;)g<r<, satisfies the conditions of the second part of Lemma
2.22 then the cosine polynomial C' of Lemma (2.22) is nonnegative on [0;27] (see [MMR94,
Theorem 1.2.8, p.310]). This implies [[A|[e, = [Ax]. O



34 CHAPTER 2. THE MAXIMUM NORM AND COORDINATE MAPS
Proof of Theorem 2.20: We may assume without loss of generality that ¢ > J(p) > 1
(otherwise consider p(—x)). We introduce the abbreviation
t, =T ()| = TV(e),  pni=Ta(J(p)) = J(p"), n,j>0.

In view of Lemma 2.22, it is sufficient to show that the sequences (ti/Pk)nggn are nondecreasing
and convex for  =0,1,2,..,n.

The aim of the first part is to show that the sequences

(t2/pr)osk<n and for 1< j<m:  (t,/(k - pr))i<k<n (2.28)

are nondecreasing. Any sequence of polynomials (pg)r being orthonormal with respect to a
scalar product induced by a weight function on [—1, 1] satisfies a Rodrigues formula

k, { Pot1(y) -

(2) = Pn(y) - Prya () 24y,
y—x
() = pn (@) prya(e) ifz=y,
where k, > 0 denotes the leading coefficient of p,. Since p; has all its zeros in [—1;1], we

may conclude that, for all y > & > 1, the sequences (pr(y)/pr(z))r>0 and (p)(y)/pr(v))r>0
are nonnegative and increasing, and this property remains valid if we multiply pi by a suitable

(7)

constant. Now, (7’

ipm) pi(y) =

P
k
A g (@) pn

)k>; are orthogonal with respect to the weight function (1 — 22)i=/2 on
[-1;1], 7 = 0,1,... Consequently, for each ¢ > py, the sequences (ti/,ok)kzj, as a product of
nondecreasing sequences, are nondecreasing, 7 = 0, 1, ..., n. Moreover, (2.28) follows by showing
that (¢1/(k - t9))o<k<n is nondecreasing, the latter being an immediate consequence of ¢} /k =
Uk-1(c), where Uy, denotes the Chebyshev polynomial of second kind.

Since ti =0 for k£ < 7, it remains to show that

tj

| gy
(%::ﬂ_g._k_}_ﬂz()’ 1<k<n, 0<j<k.
PE+1 Pk Pk-1

Here we need to consider the three term recurrencies for ti and pg. The classical Chebyshev
recurrence may be rewritten as

Prt1 = 2-p1 - Pr— Pr—1, k> 1.

Moreover, for j > 1, T,Ej)/k coincides, up to a constant independent of k&, with the ultraspherical
polynomial of degree k — j and index j (see [Sze67, Eqns.(4.7.8) and (4.7.14)]), and hence
the classical three term recurrence for ultraspherical polynomials [Sze67, Eqn.(4.7.17)] may be
applied

k1 R+ D(k—147)
k+1—5 % (k+1—j5)(k—-1)

Therefore, for 1 < k < n and 0 < 5 < k we have

tj

k+1:2-c

o, k>1, 0<j<Ek

' j k1) (k=147
5 oo prer (e fHs e = peet) F 8y ok (rrt = Gy - Pi-1)
’ Pk+1 " Pk Pk—1 '
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Now, by assumption (2.25) on c,

Lkl k41 min (e ETLd pean
k+1—] PE pk+1_k—|—1—] Pk ked{j,j+1,..,n—1} k+1 Pk
=T k(- >0,
1o ( - pn_l)

and hence we obtain a lower bound for 5i if we replace the quantity t‘]i - pr—1 by a smaller one.
We study the case j = 0 separately. Applying (2.28) gives ¢ - px—1 > 9_, - pi, and

0 0
5 > iy (2 copr—pria —pr-1) _ 2-(c=p1)-pr- iy > 0.

Pk+1 * Pk—1 Pk+1 " Pk—1

Therefore, the sequence (tg/mc)ogkgn is convex.

The case j > 0 is slightly more involved. First notice that 5; > 0 according to t§—1 =0.In
the case n > k> j > 1 we again apply (2.28), leading to ¢} - pr—1 > t}_, - px - k/(k — 1), and

PEk+1 " Pk—1 '5;]C

b
22.%.(0 kf_%l Pk — Prt1) + (Prt1 — E:i?ij)_(l—l_]i Pr—1)
2 k(k41) k+1 (k+1)(k—1+35)
=0 1)(k+1—j)pk_ H(Qplpk—pk_ﬂ ESEnIE )Pk 1
2k(k +1) . 2(7 - 1)(k+1)

=(e=p)- E-—DE+1—j) T E-—DE+ 1) PPk = prea).

One verifies that, according to the restrictions ¢ > py = J(p) > 1, and k > 7 > 1, each individual
factor in the final expression is nonnegative, leading to the conclusion of Theorem 2.20. ad

[t remains the question whether not only (2.5), but also (2.6) can be generalized to ellipses.
In this context it is interesting to observe that a simple extension of the Markov Theorem for
ellipses is not valid, i.e., it is not possible to bound a coefficient of a polynomial of degree less or
equal to n in terms of its maximum on an ellipse £,, p > 1, times the corresponding coefficient
of T,/ J(p™) or Ty—1/J(p" ). For a proof note that, e.g., both sequences

<|T§i)+1<o>|) . (|T§;?<o>|

1 T2ns1lle, /n 1 T2nlle, /m

are no longer increasing for p > 1.
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Chapter 3

The Euclidean norm and modified
moment matrices

Given a sequence of polynomials (pn,)n, p, of degree n, let us study the numerical condition
of the polynomial coordinate map II, : €**! — P, defined in (2.1), where, in contrast to the
considerations of Chapter 2, we equip P, with the L? norm induced by some scalar product.
Also, we will restrict ourselves to sequences (p,,), being orthonormal with respect to some other
scalar product, and equip € with the Euclidean vector norm. Then, as we show in Section
3.1, our problem consists in giving tight bounds for the absolute value of so-called transmission
coefficients which are required if one expresses the orthonormal polynomials of one scalar product
in terms of the orthogonal polynomials with respect to the other scalar product. Equivalently, we
have to study the condition number of a so—called modified moment matriz, a square Hermitian
matrix of order n + 1 being positive definite.

This chapter is organized as follows: in Section 3.1 we recall the concept of orthogonality
with respect to some measure p. Modified moment matrices w.r.t. measures p, v are introduced,
and different techniques for estimating their condition number are provided. Here we use the
basic observation that the inverse of a modified moment matrix is similar to a modified moment
matrix. We also mention particular cases such as positive definite Hankel and Toeplitz matrices.
The importance of the condition number of modified moment matrices for the numerical calcu-
lation of orthogonal polynomials by different methods, such as the E. Schmidt orthogonalization
method, or the modified Chebyshev algorithm, is outlined.

Some simple examples of modified moment matrices are considered in Section 3.2, in parti-
cular we review classical results on the Hilbert matrix. In Section 3.3 we show that the condition
number of modified moment matrices of order n+1 w.r.t. measures u, v does necessarily increase
at least exponentially in n if the supports of the measures are essentially different. The reciprocal
of this assertion is established for the subclass of completely regular measures, for which some
examples are given.

37
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In the final Section 3.4, we restrict ourselves to measures supported on ‘smooth’ contours
0G,0H, and induced by density functions satisfying the Szeg6 condition. Norm estimates are
given for the case H C (. As the main result of this section, we determine in the case H ¢ G
the asymptotic of the norm of the corresponding modified moment matrix for large dimensions
n 4+ 1. This generalizes well-established results for the inverse of the Hilbert matrix, as well as
results of Wilf and Widom for the case of inverses of ordinary moment matrices. For illustrating
our results, we discuss orthogonality on two intervals, and orthogonality on the semi-circle (see
Example 3.5, and Example 3.16, respectively).

3.1 Notation

We first summarize the concept of p—orthogonality in the following

DEFINITION 3.1 Given a measure p with compact and non-finite support supp(u) (see Section
B.1 of Appendiz B), we may associate a scalar product on C(supp(p)) and the induced norm
being defined by

(.= [ TG -9 a2, 11l = /U D

(pn)n is called a sequence of p—orthogonal polynomials if p,, is a polynomial of degree n, n >
0, and (p;,px)y = 0 for j # k. Uniqueness is oblained by the additional requirements that
(PrsPn)u = 1, and p,, has a positive leading coefficient, n = 0,1, .... In this case we will speak of
p—orthonormal polynomials, and write shorter p, = pk. a

We will also require the reproducing kernel

n

KH(z,y) = ij(a:) pily), KE(z):=K[L(z,2)>0, n>0, (3.1)

having the property that K} (z,y) = K#(y, ), and
(Kfj(z, ')7 P)M = P(Z)

for Pe Py, z € C.

By orthogonality we obtain for a polynomial of degree n

T
P=> apf = |IPllu=Il(ac, ., an)"[]2= \/Iaol2 + a1 |? + ...+ Jan|?.
i=0

Consequently, if we equip P,, with the norm || - ||,, then for the coordinate map II,, associated
to the orthogonal polynomials with respect to some measure g we have

|P|],
H j— 'Y f—
|11, max Iz

D), T = A, v). (3.2)
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Also, by orthogonality

Ph =20 ik bk =L n) = (05 Pp), k>0,
i

where ¢;, = 0 for £ < j. Defining the upper triangular non-singular matrix of transmission

coeflicients
k=0,..,n

Tuv, ) = (43 1)) n>0, (33)

we obtain for a polynomial P of degree at most n

j:O,..,n7

P= E agpy = ijpy, (boy .., b)Y =T (v, 1) - (ag, .., an) 7,
k=0 7=0

and hence A, (v,u) = ||T,(v, u)|]2. Now, for any matrix B, the quantity ||B||3 is obtained as
the largest eigenvalue of the positive semidefinite Hermitian matrix B - B, where B¥ denotes
the transposed and adjoint counterpart of B, and ||B||; = ||B¥||z. The entry on position (j, k)
of the matrix T, (v, u)" - T}, (v, ) has the form

n

mn(vo) = Y ) () = [0 (K2 ), p) dv(z) = 0 ph
£=0

This gives raise to consider the following Hermitian positive definite matrix, called a modified

moment matriz
k=0,..,n

M, (v,p) = (m]'7k(l/, ,u)) , n>0. (3.4)

7=0,..,n

Note that, by definition, T, (u,v) is the inverse of T}, (v, ), yielding the following identities for
n >0

An(v, ) = [|Tn(v, w)ll2 = \/ | Mn(v, w)]]2, (3.5)
Mn(”v :u) = Tn(V7 N)H ' Tn(’/7 N) = Tn(#a”)_H ' Tn(/h V)_17 (3'6)
Mn(’/v :u)_l = Tn(’/v :u)_l 'Tn(’/v M)_H = Tn(:uvy) ’ Tn(lu’y)H’ (3'7)

In particular, M, (u,v)”! is similar to M, (v,u), and thus these matrices have the same 2—

norm and the same Froebenius norm. Equations (3.5)—(3.7) together with (3.2) provide several
possibilities to compute or estimate the numerical condition of a basis of orthogonal polynomials.
Let us also mention the following two formulas: writing shorter m;, = m; (v, ), we obtain by
the Cauchy—Schwarz inequality

1
[mj el < \flmgsl - migl < 5 - (5 4 mig).

Together with (A.4), (A.5) of Appendix A we arrive at

1M )llzring = V- max D41, I Tals )l = Y912 = [ KA (). (3.9
—Hey ]:0

M, = M, (v, p) is called a (classical) moment matrix, if p}(z) = z¥, k > 0, being orthogonal
with respect to the equilibrium measure g = pp on the unit circle (see Example 2.3). If in
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addition the support of v is a subset of the real axis, then the entries of M,, are constant along
antidiagonals, and M,, is a (positive definite) Hankel matriz. Similarly, if supp(v) C 0D, then
the entries of M,, are constant along diagonals, in this case M, is a (positive definite) Toeplitz
matriz. In the case of other supports like algebraic curves, one may also recover some particular
structure in M, leading to a small UV —displacement rank (see [Bre95]).

To the end of this section, let us discuss some applications where the matrices of (3.3),
(3.4) occur. Suppose that we want to compute the first elements pf, .., pf of the sequence of
orthonormal polynomials with respect to some measure v, where we want to use the known
polynomials pf, ..., p¥, being orthonormal with respect to some other measure g, i.e., we want
to determine the transmission coefficients being the entries of the matrix T),(p, v).

One attempt could be to determine for k£ = 0, .., n the coeflicients in the linear combination
Py = broph + ... + b kpl in such a way that Py is v-orthogonal to pj, .., p)._, (inverse Choleski
decomposition of M, (v, u)) or orthogonal to the already computed polynomials p, ..., p}_;. In
the latter case we successively solve the systems

Tk—l(]/v H) ' (bk,Ov -y bk,k—l)T = _bk,k . ((p;’pz)y) k= 17 w1,

i=0,..,k—1’

or, equivalently, we compute T, (v, )" by a forward substitution.

Let us also study the orthonormalization procedure of E. Schmidt based on the recurrencies

k—1

Ge=pp = > (4,00 4, =
i=0

Gk
Gkl

k =0,..,n, which for exact arithmetic gives the result ¢, = p}, ¥ = 0,..,n. Notice that ¢ is a
scalar multiple of p}, and by comparing the leading coefficients one obtains ¢x = p¥ - (p%, P}).-
Using the abbreviation T'= T, (v, 1), we may hence rewrite the Schmidt procedure in the form

(pgv 7p'lrla) T = (pgv "7pg)7

where we recall that the coefficients of T are also computed by the procedure. If one wants to
implement this method, then of course errors occur due to floating point arithmetic, and due to
a numerical evaluation of the scalar products. We will restrict ourselves to the accumulation of
errors due to numerical integration. Here it seems to be appropriate to discuss a recurrence of
the form

(90:20)v =+ -+ (90, Ph)w
X X o - :

where the entries in the upper triangular matrix R are errors due to a discretization of the scalar
products. We suppose that ||R||2 < ¢, and neglect in the sequel terms of order €. Let us show
that an ill-conditioned matrix of transmission coefficients 7" might lead to a significant loss of
v—orthogonality between the resulting polynomials ¢, .., ¢y,.
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First, if ¢ = 0, then (3.9) leads to the correct result ¢x = p{, k = 0,..,n, hence we may
suppose that

(q07 7Qn) = (p67 7p7l;) . (I—I_ E)7

with the unknown upper triangular matrix F satisfying ||E|| = O(e). Notice that
T=U+E.T-5,

where the strictly lower triangular matrix S contains the entries (¢;, p}), (j > k) missing in T:in
particular the elements of the first row of S are identically zero, and ||S|| = O(¢). Consequently,

(90, ) - (T + R) = (ply, ., 0y = (Ph, - 0h) - T
= (pb,pp) - U+ E)- (I+ E)T-T - S+ R),

and we obtain

(E4+FE").T=-R+S+0().

Thus, in first order, the first row of E + E* is given by the first row of —R - T~!. Since

(qoqu)u (q07qn)u
: =1+ E+E7 40P,

(quqO)u (Qan)u

we are therefore only able to insure ‘good’ orthogonality if ||771]|| is sufficiently small. On the
other hand, procedure (3.9) is only feasible if the (off-diagonal) entries of T + R are small, or in
first order, ||T|| has to be small. Consequently, also this third method should only be applied if
the underlying modified moment matrix is well-conditioned.

In the particular case of a measure v supported on the real axis, three consecutive orthogonal
polynomials py_,,p;, py, ., are connected via a recurrence relation. In order to obtain a certain
value of p¥, it is numerically more interesting (and more efficient) to compute the coefficients of
the recurrence relation instead of computing the coefficients of pZ. The recurrence coeflicients
may be obtained, e.g., with help of the modified Chebyshev algorithm of Wheeler (see, e.g.,
[Gau85, Section 3]), where as a starting point one uses the modified moments mg x(v, 1), k =
0,..,2n — 1, obtained from a known family (p#),, of polynomials being orthogonal with respect
to a measure p which is supposed to be also supported on the real line.

In a number of papers [Gau82, Gau85, Gau86], Gautschi studied the question whether the
(nonlinear) map K,, = K, (v, ) mapping the first 2n modified moments to the first 2n recurrence
coefficients of (monic) v—orthogonal polynomials is sensitive to perturbations. In particular, it
is of interest to know which g — for given v — is suitable in order to have a well-conditioned
map K, (v, ). Notice that the modified Chebyshev algorithm uses as auxiliary quantities the
transmission coefficients which may be found in the matrix 7),_1(v, ). Also, the numerical
experiments reported by Gautschi in [Gau85, Examples 4.1-4.3] seem to indicate that, as a
necessary condition, the matrix M, _; (v, u) has to be well-conditioned.
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3.2 Some examples of modified moment matrices

Let us first consider the case where the measures p, v have the same support, and the measure
v is obtained by a simple modification of the measure p, i.e.,

S = supp(p) = supp(v), dv(z)=p(z)-du(z),

and p > 0 is bounded on S. Of course for any polynomial P we have ||P||? = [|P(2)|*-
p(z) du(z) < ||P||2 - max,es p(z), which together with (3.5) yields

ITa(v, pllz < maxy/p(z), n20. (3.10)

For instance, Gautschi discussed in [Gau85, Example 4.1] the case of an ‘elliptic’ modification

dz dz

du(z) = —, dv(z)= ,

p) V1— 22 (2) V1= 221 - k222

with k < 1. Here one verifies using (3.10) that xy(M, (v, 1)) < (1 — k?)Y/2 for all n > 0. Also,
(3.10) may be applied in the case of a polynomial modification of a given weight supported on
the real line, where (up to a normalization) the transmission coefficients are explicitly known

(see [Sze67, Theorem 2.5]).

z € [—1;1],

EXAMPLE 3.2 For a, 3 > —1, let us denote by p(*?) the Jacobi measure du(®P)(z) = (1 — ) -
(1+2)?dz on[-1;1]. Here the corresponding orthonormal polynomials are known to be (suitably

scaled) Jacobi polynomials such as Legendre polynomials (a = 3 = 0) or Chebyshev polynomials
(a=p=—1/2). Since

max (1 217 (14 2)f = (2007 (28)°
L (1= e)® - (T4 e)” = =t

a? ﬁ Z 07

we may apply (3.10) in order to obtain absolute bounds for ||T,(u(*P), n(®9)||y (@, 3 > 0) and

Jor || T (u@®), u(=1/2=1/2) ||y (o, 8 > —1/2). In order to obtain bounds for the norm of ils

inverse, we apply (3.8). By combining [Sze67, Equation (4.3.3), (7.32.2)] we get writing shorter
— ,(,8)

vi=p

max{a+1/2,8+1/2,0}
n )n—)oov

- 14 — O
,ax [pa(@)] = O(

leading to
1B gy = Ok 220421y

It follows that both quantities ||T,(u®9, u@PN||y (o, 8 > 0) and ||T, (u=1/2=12) y(h)y||,
(a, B > —1/2) grow at most as O(p@@{atl.A+1}) o

Let us also discuss a classical moment matrix, namely the Hilbert matrix being a well-known
example for an extremely ill-conditioned matrix.
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ExaMmpPLE 3.3 The perhaps most famous positive definite Hankel matriz is the Hilberl matriz

1 1 1

1 2 n

1 1 A

2 3 n+1
Hn—l - . . . ;

i1 1

n n+1 2n—1

H, = M, (v,pp), dv(z) = dz on [0;1], where p = pp denotes the equilibrium distribution of
the unit circle (i.e., p*(z) = 2", n > 0). Notice that Hilbert originally introduced the infinite
matriz H = (1/(j +k — 1)), k=0,1.2,.. as an ezample of a bounded linear operator on £* (namely
[|H|| < 7, see, e.g., [Pow82, p.58]) whose row and column sums are divergent. Thus the norm of
H,, is an element of the interval [1,7]. It seems to be Todd [Tod5}] who gave a first asymptotic
expression for the Turing condition number of the Hilbert matriz H,. Let us here mention a

result of Wilf [Wif70, Equation (3.35)] who showed that

1 (1 +\/§)4n—l—4
/7 - 21574 NG

1H . 2 = [[Ma (i, v)ll2 = (14 0(1)nso0)-

3.3 Behavour for large dimension

The main result of this section (see Corollary 3.6) is to show that a modified moment matrix
M, (v, i) can only be asymptotically well-conditioned if the supports of the two underlying
measures essentially coincide.

LEMMA 3.4 Let cap(supp(p)) > 0, then we have
liminf || My, (v, )3 > A(supp(v), supp(p))? > 1.

Proof: As in [Sze67, Theorem 3.1.3] one shows that the constrained Chebyshev problem
with respect to the Ly(p) norm is explicitly solvable

|P(2)] -
ax =4/Ki(z), ze€, n>0. (3.11)
PePn || P,

Since [| P[], < /p(€) - [|P||supp(y) for any polynomial P, we may conclude that

A'/1(”/:7 SUpp(,u))Q
pe)

Taking into account (A.6) of Appendix A we get

Mo (v, )2 (1T (v, )13 e [—
I Tn(, Wl 1 Ta(v,w)llf ™ n 41

zeC, n>0.

1.
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Thus, by (3.8), the sequences (||M, (v, u)||é/n)n and ([ K£(2) dv(2)]'/™), have the same accu-
mulation points.

In particular, we have

1/n
lirrl)inf || M, (v, u)||é/n > lirrl)inf Cpy  Cpi= [/ A, (2, supp(p))? dv(2)

Let us show that (c,), converges, with limit R?, where R := A(supp(v),S), S = supp(u).
First notice that A,(z,5) < R" for all z € supp(v) by (B.16) and by definition of R, and thus
limsup,,_,.. ¢, < R?. Moreover, if supp(v) N D (S) = 0, then A, (-, S) is identical 1 on supp(v),
and the assertion is trivially true. Suppose now that supp(v) N Do (S) is nonempty, and let
p,r € (1;R), p < r. Recall that R = sup{exp(gs(z)) : 2 € supp(v) N D (S)}. By continuity of
gs in Do (S) and by definition of supp(v), we may find some compact set V' C D, (5) satisfying
A(z,8) > rforall z € V, and v(V) > 0. From Theorem B.22 in Appendix B we know that
(A, (-, 8)'/™),, converges to A(-,S) locally uniformly in Dy, (S). Thus there exists an N > 0
such that A, (z,5) > p" for all z € V and for all n > N. Consequently,

1/n
lim inf ¢, > lim inf [ A, (2, supp(p))? dv(2) > p2.
n—0o n—00 174
Since p < R may be chosen arbitrarily close to R, the assertion follows. a

EXAMPLE 3.5 As in [Gau85, Example 4.3/, consider a measure p being supported on a union
of two intervals supp(u) = [0;1/3] U [2/3;1]. Here the quantity A(-,supp(p)) may be explicitly
computed using the fact that, for 0 < ¢ < 1, the Green function of the set [—1; —c] U [¢; 1] is
given by (see, e.g., [Wid69, p.225])

1

14?2 —222
g[—l;—c]u[c;l](z) = _log ‘J 1(7

2 1—¢2

For instance, for the inverse of the underlying positive definite Hankel matriz we obtain by
Lemma 3.4

n 1, .1 _
i inf |, 3, 1) 137" > A(ID, supp(10))? = A(~142:D, [-1; —5]UL3; 11)? = |77} (~19)| = 37.97.
If in contrast we use as pl, the Chebyshev polynomials shifted on [0; 1], then
. n 1 1 4,5
i int 1M, (13" > A(D0; 1], s0pp())? = A1 1], [ 5]U[3:10)7 = 177 ()] = 2

This confirms an observation of Gautschi [Gau85] who reported about numerical difficulties if
one tries to compule (p?), from the shifted Chebyshev polynomials by applying the modified
Chebyshev algorithm. a

COROLLARY 3.6 Lel pu,v be measures with supports having positive capacity. A necessary con-
dition for
lim ko (M, (v, u)/" =1 (3.12)

n—0oo

to hold is that Dy (supp(p)) = Deo(supp(v)).
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Proof: Notice that

M (v, 1) ™M l2 = T, ) 7M1 = 1T, )13 = 1M (2, ) 2.

Applying Lemma 3.4 gives

lim inf £y (M, (v, p))"/™ > A(supp(v), supp(u))? - A(supp(), supp(v))?.

n—0oo

Consequently, (3.12) implies Do (supp(pt)) = Doo (supp(v)). O

For a subclass of measures we may even be more precise (compare [Saf90, Definition 3.1]
and Example 2.10).

DEFINITION 3.7 A measure p with compact support is called completely regular if

cap(supp(u)) >0, and lim ||p5||é{1§>1)( )= L

n— oo

COROLLARY 3.8 Let p,v be completely reqular measures. Then (3.12) holds if and only if
Doo (supp(p)) = Doo(supp(v)).

Proof: One implication of the assertion has been established in Corollary 3.6. In order
to show the other one, we denote by S the complement of D, (supp(p)) = Doo(supp(v)). First
notice that

pallsupp(u) = lIpnlls,  NPallsuppey = [lpills, n =0,

by the maximum principle for analytic functions. Consequently,

. ~upl/n . - 1/n . n

lim sup ||K7‘;||5/ < lim sup[z ||p;||%} = max{l,hm sup[||p*]|s]% } =1.
On the other hand, we have K/*(z) > Kj(z) = 1/u(C) for all z € S. Therefore, the sequence
(IKHY™) 50 tends to 1 uniformly in supp(l/) C S. Similarly, ([K%]'/"),>0 tends to 1 uniformly

in supp(u), and the assertion follows from (3.8). O

In order to illustrate Corollary 3.8, we give some examples of completely regular measures
(part (a)-(c) are cited from Saff [Saf90, Example 3.A], and part (d) follows from results of Widom
[Wid69, Theorem 9.1, Theorem 12.3]).

ExampPLE 3.9 The following measures p are completely regular

a) dy = wdz dy over a bounded Jordan region S, where the weight w > 0 and some negative
1
powers of w are integrable with respect to area over S.
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(b) du = wds, where ds is arclength over a rectifiable curve S and the weight w > 0 and some
negative powers of w are integrable with respect to ds.

(c) du(z) = w(z)dz on a real interval [a,b], where w > 0 almost everywhere with respect to the
Lebesgue measure on [a, b].

(d) S = supp(u) consists of finitely many C(2, o) —curves or arcs, o > 0 (e.g., several real
intervals, or the unit circle), and dp = w |dz| satisfies the Szegé—type condition

/w(z) |dz] < oo, /log(w(z)) |dz| > oo, (3.13)
S S

where here and in the sequel |dz| denotes the differential of the arc length of S.

3.4 Asymptotics for particular modified moment matrices

The aim of this section is to discuss a class of measures (u,r) where we may establish the
asymptotic behavour

A(supp(v), supp(u))?"
nl/m

1Mo (v, )2 = (€4 0(1)n—so0) (3.14)

with m an even integer, and C' a suitable explicit constant. Notice that for the inverse of
the Hilbert matrix studied in Example 3.3 formula (3.14) holds with m = 2, since (1 ++/2)? =
3+2-v2 = A(ID, [0; 1]), see Lemma 2.18. The case of inverses of ordinary moment matrices, i.e.,
v being the equilibrium distribution on the unit circle, was already discussed by Wilf [Wif70] and
Widom [Wid69]. Wilf considered measures of the form du(z) = w(z) dz on a real interval [a; b]
with the weight function w > 0 satisfying the Szegd condition (see (3.16) below), and established
(3.14) with m € {2,4} for the resulting class of inverses of particular positive definite Hankel
matrices (see [Wif70, Theorem 3.2]). In [Wid69, Theorem 10.1, Theorem 10.4, Theorem 10.5,
and Theorem 13.1], Widom was able to show that (3.14) remains valid with m an even positive
integer including infinity, if du(z) = w(z) dz is supported on a system of (smooth) curves or
arcs in the complex plane, and w > 0 satisfies the Szeg6-type condition (3.13).

As discussed by Widom, the case of a measure with support consisting of several curves or
arcs requires the solution of some rather complicated extremal problems in the complex plane.
Here we will restrict ourselves to the case of measures being supported on just one arc or curve,
namely

dv(z) = wg(2) |dz| on supp(v) = 0H, du(z) = wg(z) |dz| on supp(p) = 0G, (3.15)

where G, H are simply connected compact subsets of the complex plane with rectifiable bound-
ary, and wy > 0, wg > 0. We will specify further conditions on y, v below. As in Section 2.4.1,
denote by ®¢, @y the corresponding Riemann maps, and by ¢, Wy their inverses.
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In the sequel of this section we will also consider the case where wg satisfies the Szegd
condition
| lotwa(z)) - @6 ()] dz] = /| _, loa(wa(¥a(w)) [du] > —o. (3.16)

Define the Szego function

1 27 w_l_eit i
D (W (w)) = exp{ - - / —— -log(wa (Ve (") di}, |w| > 1,
then D¢ has limit values almost everywhere on 9G satisfying |Dg(2)] 72 - | @4 (2)| = wg(2) (see,
e.g., [SmLe68, Section 4.4.1]). We are now prepared to study the case supp(v) C G, which in

fact is not covered by (3.14).

THEOREM 3.10

(a) Let p be asin (3.15) satisfying (3.16). For any measure v with support being a proper subset
of the interior of G we have ||M, (v, 1)||2 = O(1)n—00-

(b) Let p be as in (3.15), with weight function wg being bounded away from zero, that is,
wg(z) > wo > 0 for all z € dG. Then for any measure v with supp(v) C G there holds

1My (v, )2 = O(1) nsoo-

Proof: (a) It is well-known that, under the above assumptions, the sequence (K%),, con-
verges uniformly on compact subsets of the interior of G (see, e.g., [Sze67, Theorem 16.3],
[SmLe68, Section 4.2.4]), and in particular is bounded there. Hence the first part of the asser-
tion follows from (3.8).

(b) The aim of the following considerations will be to establish bounds for K¥ on the
boundary of GG, or more generally on G°. Notice that wg trivially satisfies (3.16). Also,

, , 2-|P(z)]?
e < B8 TS TPOP waQ 14T

where we added the factor 2 in order to include also the case of supp(u) being an arc. For any
P € P,, define the function

z €@,

P(¥e(w))
w) = .
fP( ) Dg(\Ilg(w))w’”
fp is analytic in ID¢ including infinity, hence by the Cauchy integral formula we have for |w| =
r>p>1

1

Ir() < o

1 1
< .
—2r r—p

|=p L —w

Ve (@cO) #6014
9G,

By definition of the Szegd function Dg we know that, for almost all {; € G, |fp(®c(())]? -
|®4.(¢)| tends to |P(¢o)|? - wg(Co) for ¢ — Co. Consequently, for [P (z)| =7 > 1,
2n

,
P(2)? <
PP <

ADeE)E - [ PO we(c) ]



48 CHAPTER 3. THE EUCLIDEAN NORM AND MODIFIED MOMENT MATRICES

(the passage to the limit in the integral is justified by the theory of Hardy spaces, for details
see, e.g., [SmLe68, Section 4.4.1]). On the other hand, for w = r - €**, r > 1, there holds

%w—l—e”: r2—1 0,

w—et  r2—2rcos(s—1t)+1

hence the Szegd function may be estimated as follows

1 27 w_l_eit it
log | Da(Wa(w))| = 3=+ [ (R log(wa(Wale™)) di
< _ log(wo) ‘/% rf—1 df — _log(wo).
4r o r?—2rcos(s—t)+1 2

Summarizing we get for any polynomial P € P, by applying the maximum modulus principle
for analytic functions

1
max |P(2)]|? < max PP <n-(1+1/n)?". —. PO w d¢|,
wax PEP< | max PGP <ne (4107 [ PO walc) 1]
or K¥(z) < n-2e?/wg for all z € G. Thus, part (b) again is a consequence of (3.8). o

For the rest of this section we will study the remaining case where supp(p) does not ‘sur-
round’ supp(v), or R := A(supp(v), supp(p)) > 1. Our aim is to establish (3.14) for a class of
measures (u,v) satisfying (3.15). Here we require power asymptotics for (p¥),, and suppose
(3.18) below. Furthermore, we will need some further information about the points of inter-
section of 0GR and dH. To simplify the presentation, we will restrict ourselves to the case of
piecewise analytic H, assume that wy does not vanish on dH N Gr, and wy is of class Lip,
in a neighborhood of this set for some a > 0.

In order to describe the geometrical form of 0Gr N 0H, define on I := {t € [0;27] :
Uy (') ¢ G} the function _
h(t) :== |®c(Ty(e))). (3.17)

By assumption, h is continuous, and log(h) is the real part of a function being piecewise analytic
in an open neighborhood of I. Note that we have a point of intersection between 0Gr and dH
at 2o = Wy (e) if and only if A has a maximum at ¢, with h(to) = R. Thus, {t € I : h(t) = R}
must consist of a finite number of intervals [a;; b;] and a finite number of isolated points ¢;, and
in any of the points a;, b;, ¢; we may define a (right or left handed) multiplicity of the equation
h(t) = R, denoted by m_(t) or m (t). Notice that m4 (a;) = m_(b;) = oo, whereas the numbers
m_(a;), my(b;), m_(c;) and my (c;) are even, positive integers.

We say that the sequence of orthonormal polynomials (p#),, has a power asymptotic if there
exists a function g, being analytic in G°U {oco}, and having no zeros there, such that

Ph(z)
9(2) - @ (2)"

locally uniformly in G¢ = €\ G. Szegd established power asymptotic for dG being a real
interval [Sze67, Theorem 12.1.2] and wg satisfying (3.16), here g(2) := Dg(2)/v/27 (see also

1, (3.18)
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[Sze67, Theorem 16.4]). As shown by Geronimus [Ger52], instead of intervals one may also allow
curves 0G where G is of class ' (see the remark at the end of Section 2.4.2). Power asymptotics
for OG being a C(2, o)—curve or arc are contained in [Wid69, Theorem 12.3]. Widom showed
(in fact his assertion is much more general) that if also (3.13) holds then (3.18) is valid with
g(2) = /P, (2)/27-exp(—g(z)/2). Here, Rg is harmonic in G°U{oo}, with (limiting) boundary
values £§(¢) = log wg(¢) for ¢ € 0G, and 3¢ is its harmonic conjugate satisfying Sg(oco) = 0
(compare [Wid69, p.155, p.160]).

As a consequence of (3.18), we get

K4 (2) l9(2)]?
()2 [eg()P - 1

locally uniformly in G°. Hence if we denote by v,., r > 1, the restriction of v on the set
{z € G°: |®g(2)| > r}, then using (3.8) for the measure v — v, we obtain

1My (v, )] |2 = | M (v, )2 + O (" )y, 7> 1, (3.19)

which leads to the first estimate ||M,(v,p)|l2 = O(R*")pse-. To be more precise, we have
examine the behavour of v, for r - R—.

LeMMA 3.11 Let T denote a subarc of 9H with endpoints z; :== Wy ('), j = 1,2, t; < t3, and
I'NoGr =4z}, m:=m4(t1). Then

i m! ))”m+ £,

_h(m)(t1‘|‘ 0 nl/m

JIPGIE - wn(z)]d:] = ngﬂlj T+ ) wn(a) (W)

uniformly for P € P, salisfying [|P(2)|* du(z) = 1.

Proof: Let P € P, satisfying [ |P(z)|? du(z) = 1, and define F(z) := P(2)/®q(z)". We
want to show that F? satisfies a Lipschitz condition on I' with a Lipschitz constant independent
of P, more precisely, we may give an upper bound for the derivative of F? on I' which does not
depend on P. First according to (3.19) we may assume without loss of generality that I' C €\ G,
with an r € (1; R). Since F? is analytic in G° including infinity, by the Cauchy integral formula
it is sufficient to give a uniform bound for F? on dG,. By (3.18), there exists a constant C' such
that |pi(2)| < C- |Q>G(z)|k =¥ for all k > 0 and for all z € §G,. Let P = aopy + - + anph,
then by the scaling of P we have a% + ..+ ai =1, and for z € 0G,

C
)< Z|a]|22|pk CIRTeR Sl

k=0

Thus it remains to determine the asymptotic of an integral of the form

L= [0 -d(:) ldzl, d(z) = |F()* - wnlz),
I
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where d € Lip, (I') for some a > 0. Here we will apply the Laplace method. First, by eventually
making ' smaller, we may assume without loss of generality that Wy (e') is differentiable on
(t1;t2), and h defined in (3.17) is strictly decreasing. Thus

t2 (t) 2n

In — RQn i
o h(t)?"

Cdi(t) e, dy(t) = d(Wa(e”)) - [y (e)],

with dy € Lip,([t1;t2]). We now introduce the new variable

1/m
s =s(l) = [log };(8))]  dy(s(t)) =

and notice that s([ty;t]) = [0; 2], and s'(t;) = ¢'/™, where ¢ > 0 is determined from

h(t1)
log( a0

AU (t14)

~log(ldc-(t—t)™) me (t—t)™, t—t = -
Jrlog(l+c-(t—t)")mc-(t—t)", t—=h+, c ol

It remains to discuss the integral
s2
I, = R*". / exp(—2n - s™) - dy(s) ds
0

with dy € Lip,([0; s2]), for which by elementary computations one establishes the asymptotics

b= L P4 L) @0+ o). (0

_ (L) _ d(z) [Py
(2n) 1/ '

cl/m cl/m

O

Of course, Lemma 3.11 remains valid if ¢; > ¢3, here we have to take m = m_(¢;), and the
derivatives of h, Uy are evaluated at ¢ = t;—. Let us denote by v|p the restriction of v on I
Then by taking P = p# in Lemma 3.11 and using (3.18) we obtain

RQn R2n
Cr- i = [[Mn(v]r, p)l|2 + o 7)),

nl/m
with a suitable constant C;. Also, with a suitable constant C'; we get

5 RQTL RQn
1My (Ve w2 < ([T (vIr, i)l < C2 - 7+ o(—70)

by a superposition of Lemma 3.11, P = p}, k = 0,.,,n. In particular, both estimates remain

valid with m = oo if I is a subarc of 0H N 0G'r. We therefore have shown the following

LeEMMA 3.12 Let Hy := 0H N OGR. If Hy contains a proper arc, then

[ PR wn(z) dzl = [ PGP (o) ld: + (R,
oH H

0

uniformly for P € P, satisfying [ |P(2)|* du(z) = 1.
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Otherwise, denote by m the highest multiplicity of intersection, and let zy, .., zs € Hy be the
corresponding intersection points. Furthermore, define for j =1,..,s

1 R-m! 1/m ~( ] i 7$m j
o= D) (S8) T e { hm) ifm=m_(1;) # my (1),
(h(ti=) + h(tj+)) i m=m_(t;) = my(t;),
where z; = Wy (), and h(t) = Wy (t)| - [-RU™ ()]7H™. Then
S |P(z:)]? R2n
1P o = 32 o,
uniformly for P € P, satisfying [ |P(2)|* du(z) = 1. O

Taking into account (3.8) and (3.18), the following assertion becomes immediate

COROLLARY 3.13 With the notations of Lemma 3.11, if Hy conlains a proper arc, then

My (v, )| 7uring = v/ - B2 - ( /H l9(2)1* - wi (2) |dz] + (1))
R2n+2

1Tl = g - ([ 19 wn () 1dz) +o(1)).

0

Otherwise, we have
RQTL S 9
1M, (v )l aring = /- (o a1 v+ 0(1)),
7=1

Tl = 220 L (S 1) P+ o)
n\V, 1 F_R2_1 nl/m ‘ gZ] UJ o .
1=1

Recall from (A.6), (A.7) of Appendix A that ||M, (v, u)||1Turing/v < ||Mu(v, )]z <
[| T, (v, 1)]|%. Hence Corollary 3.13 gives already inclusions for || M, (v, p)||2 with bounds having
the same asymptotic behavour as the right hand side of (3.14). In the case of finitely many
points of intersection, we may even determine the corresponding constant C

THEOREM 3.14 Consider measures p,v satisfying (3.15) and the assumptions formulated after
Theorem 3.10, in particular R = A(H,G) > 1. If 0GrNIH does not contain a proper arc, then
with m,v;, z; as in Lemma 3.12 there holds

R2n+2
[ My (v, p)|]2 = Ry (U + 0(1)n—>oo)7

where o is the largest eigenvalue of the positive definite matriz

B = (\/vf'—v’“'g(zj) 'Q(Zk))kzl,..,s

P(z)) - Palzr) —1

7=1,..,s
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Proof: Let us first show that

¢, +o(R™?" -
Ml = A o max, o LS S ae et 320)
2 7=1 k=0

In fact, for determining ||M, (v, 1)||2, we have to take in the second part of Lemma 3.12 the
maximum over all polynomials of the form

Z) :Eak'pZ(Z)7 |a0|2+"'+|an|2:

Writing Q(2) := S_7_q ax - g(2) - ®(2)*, we obtain

nl/m./ 1P(2)[2 - wy(2) |dz| - Zv] Zakg (2,)®c(z)F
OH j=1
< v IP(z) 1P = 1Q(2)) 1P| + o(R*™),
7=1

uniformly for @ € €™ satisfying ||a||; = 1. Due to (3.18), there exists a constant C such that
Ipi(2)] < C - |®g(2)|F = C - RF and |g(2)| < C for all k > 0 and for all z € Hg := 9H N IGp.
Moreover, for all € > 0 there exists a K > 0 such that for all £ > K and for all z € Hg we
have |p}(z) — g(z) - ®;(2)*| < e- RF. Using the Cauchy-Schwarz inequality, one verifies that,
for n' :=[n/2] > K,

IIP(ZJ)I2 QI < (1P(z)] +1Q(z)]) - [P(25) — Q(%5)]
L 2:C R (2.C R 4 e R
- R?—1 '

Since € > 0 may be chosen arbitrarily close to zero, it follows that | |P(z;)|* —|Q(z;)|*| = o(R*™),
uniformly for @ € €"*! satisfying ||a||; = 1. This proves (3.20).

By definition, ¢, is the largest eigenvalue (namely the largest Rayleigh quotient) of the
matrix A% . DY . D . A with
k=0,..,n

A= (q)g(zj-)k) , , = diag (\/_ g(z])) L

1=1,..,s 1oy
coinciding with the largest eigenvalue of

———n+1

Do(z) - Po(zk) ! - 1)1':17"75
(I)G(Zj) . (I)G(Zk) -1 k=L1,..,s

DA AT DH = (5 g(z) - g(2) -

Hence with help of a similarity transformation with the matrix diag (®(z )”"’1 R_n_l)j:17,,75
we may conclude that ¢, = R*"*? .o + O(1), yielding the assertion. O

If (asin the case H = ID, G = [0; 1] of the Hilbert matrix) both sets G, H are symmetric with
respect to the real axis, then in general there will be two complex conjugate points of intersection
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z1 = Z3. If in addition the two weight functions wg, wy are invariant under conjugation of the
arguments, then vy = vy, and also ¢g(z1) = g(z2). Consequently, the quantity o of Theorem 3.14

is equal to

o=w-|g(z1)]"- 1_R2+|1—(I)G(Zl)2| ’

and we obtain as a particular case the result [Wif70, Theorem 3.2] of Wilf.

We summarize a weaker form of our findings in the following

COROLLARY 3.15 Lel p,v be measures of the form
dv(z) = wg(z) |dz| on supp(v) = 0H, du(z) = wg(z) |dz| on supp(p) = 0G,

where G, H are simply connected compact subsels of the complex plane, with boundaries being
an analytic arc or curve. Furthermore, suppose that the densily functions wg,wg are strictly
positive, and of class Lip, for some a > 0. Then there exist constants Cy,Cy > 0 such that for
alln >0

HQ(MTL(M7V)) <y _nég‘
A(G,H)?" - A(H,G)*
Here {1 = {3 = 0 in the case H = G, {1 = —1, {5 =0 in the case G ¢ H ¢ G, and {1 = —1/2,

{3 =1 otherwise.

Cy-n't <

Proof: One verifies that the assumptions of either Theorem 3.10(b) or Theorem 3.14 hold
for (u,v) and also for (v, 1) (the case H = (' is covered by (3.10) and (3.5)). Thus the assertion
follows by recalling that ko (M, (i, v)) = || M, (g, v)||2 - || My (v, p)]]2- O

ExaMmPLE 3.16 Suppose thalt we want to compule the polynomials being orthonormal with respect

to the measure
du(z) =|dz| on G ={2 € C:|z| = 1,3z > 0},

i.e., we look for polynomials p* satisfying
PR e bt =

For the case of orthogonalization of the monomials we have to consider the moment matriz
M., (u,v), where

1
dv(z) = 2—|dz| ondD={z¢cC:|z] =1}.
s
Notice that M, (u,v) is a positive definite Hermitian Toeplitz matriz, namely

T 2/1 0 2i/3 0 2i/5
M, (p,v)=| -2¢/1 = 2¢/1 0 2¢/3 0
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First supp(u) C supp(v), hence from Theorem 3.10 (interchange the role of p and v) we
may conclude that ||M,(p,v)||2 = O(n). In fact, we have K%(z) = 14 |2|* + ...+ |2|*", and with
help of (3.8) we obtain

T = [ K2y de =7+ (nt 1),
0

We now consider the asymptotics of || M, (v, p)||2 where we want to apply Theorem 3.14. In
accordance with (3.15), we have H = ID being sufficiently smooth, wy(z) = 1/27, wg(z) = 1.
Also, Vi (z) = z, @y (w) = w, whereas for the set G one oblains the inverse Riemann map

2 S_1+(1+\/§)-i-w
J(s) =i T w—(14+V2)-i

where J denotes the Joukowski map (we may neglect the additional condition Uy, (co) > 0 leading
only to an additional factor of modulus 1). Now R = A(ID, G) is given as the smallest parameter
satisfying |We(R - €)| > 1 for all t € [0;2x]. One verifies that R = 1+ /2, and that there is
only one point of intersection between JH and 0GR, namely

z=Vg(w) = -1+

5= i = WG (R ¢ = Wy (97,
and therefore ty = 3w /2. The expansion at ty of the function h defined in (3.17) is given by

2+\/§‘(t_t)2_4—\/§
8 ! 384

h(t)=R - (=t O((t - t1)%).
Hence we obtain the mazimal multiplicity of intersection m = 2, and the quantity vy of Lemma
3.12 is given by

2 3. 1 4 1

3 1
w=LG) VE-5- —h®(1y) V) 5 317 = 7z g

Notice also that (3.13) holds and G is a sufficiently smooth arc. Thus we obtain (3.18) with
g(z) = /P (2)/2m, and

D (-1 1 R
|g(21)|2: | G( )|: : __ =
27 2|V (R -¢)|  4n
Together, we have
U:v1'|9(21)|2_v_1_ 1

RE—1 81 3720/
and Theorem 3.14 leads to
R2n+2

NG

Thus the underlying moment matriz is a positive definite Toeplitz matriz, with the square of

|| M (v, )|z =

A(F 2T (1) nne ), R=14V2,

its condition number growing roughly as fast as the condition number of the Hilbert matriz (see
Fxample 3.3). o



Chapter 4

Vandermonde—like and Krylov—-like
matrices

It is well-known that perturbations in the coefficients ag, .., a,, of a polynomial P(z) = ap+a;2+
..+ a,_12" might lead to significantly magnified perturbations of values of P at some arguments
20, -y 2m € €. To be more precise, one has to study the condition number of the Vandermonde

matriz
2 n
1 2 25 -+ 2
1 oz 28 - 27
2 N
1 Zm Ryttt 2y

This matrix (or its transposed) occurs beside polynomial interpolation also in other applications,
e.g., the determination of Christoffel numbers for a Gaussian quadrature rule, the interpolatory
approximation of linear functionals, or the discretization of differential equations. Instead of the
monomial, one often chooses other more suitable bases of the space of polynomials. The aim of
this chapter is to study the condition number of matrices of the form

e eyl e s
po(z)  pi)  palz) . palz)
Vi (d) = Viu(d, 20, .., 2m) = d(f«'l) d(fl) d(fl) d(fl) 7 (4.1)
po(om) pim) p2(em) . palom)
d(zm) d(zm) d(zm) d(zm)

where (pg)r is a sequence of polynomials, py of degree k, zq, .., 2, € G C €, the density function
d € C(G) takes only positive values, and m > n. Following Gautschi [Gau90], we will refer to
Vinn(d) as a weighted Vandermonde-like matriz, reducing to a weighted Vandermonde matrix
in the case p(2) = z*, k > 0, and reducing to a Vandermonde-like matriz in the case d(z) = 1
(for convenience, we prefer to take the transposed of the matrices introduced by Gautschi).

The occurrence of a weight function d will be natural in the context of Krylov—like matrices,

55
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see Section 4.2. Since
Vi n(d) = diag (d(20), .., d(2)) " - Vi (1),

we may understand a weighted Vandermonde-like matrix as a (non-weighted) Vandermonde-like
matrix being preconditioned by multiplication on the left with a diagonal matrix.

Our main interest in this chapter will be to derive estimates and asymptotic lower bounds
for the condition number of V,, ,,(d) induced by the Holder vector p—norm

"{p(vm,n(d)) = ||Vm,n(d)||p ’ ||Vm,n(d)+||pa

where V,,, ,(d)* is the pseudo—inverse of V,, ,,(d). However, in order to be able to apply results
from Chapter 2, we want to make use of formulas (A.8), (A.10) and (A.11) of Appendix A.
Hence we will restrict our attention to either the case of square matrices (i.e., m = n and hence
Vi (d)T =V, . (d)™!, see Section 4.1) or to the Euclidean norm (i.e., p = 2, see Section 4.2).

In the case m = n of square matrices, equations (A.8) and (A.10) may be summarized in
the form

(n+ )77 koo (Vi (d)) < 5y (Vi (d)) < (04 1)Y7 - ipyo (Vi (), (4.2)

)

where Ky oo (Vin(d)) = |1V (d) ™Yoo  [|Vin(d)||p,00- We prefer to use polynomial language in
order to evaluate the latter quantity. As in (2.1), let I, : €™ — P, denote the coordinate
map corresponding to the sequence (py)i. Here we equip the domain of II,, with the p-Hélder
norm, whereas for the range P,, we take the weighted maximum norm

)
[1/1l4.6 = max d(z) ’

fec(a),

with G C € being compact. Recall from Appendix A that the matrix norm ||B||, . is ob-
tained as the maximum of the g—norms of the rows of B, where ¢ € [1;00] is the Holder
index being complementary to p, i.e., 1/p+ 1/¢ = 1. Defining the Kernel function K, ,(z) =

[1(po(2), - Pa(2)) llg = (Zheo Pr(2)|)M7, we get similarly as in (2.2)

- _ n-tp
V@ o = 1 Epallacer Vi) ooy = max Mn Plle

, 43
T (43)

with Gy = {20, .., zn}.

For weighted Vandermonde-like matrices, the following problems seem to be of particular
interest

Problem (A) Given d, (px)k, and a family of nodes (z;,)o<j<n, (e.8., equidistant nodes on the
interval [—1;1]), find the asymptotics of (k,(V,.(d, 20,ns - Znn)))

n

Problem (B) Given d, (px)k, n > 0, find nodes 2y, .., 2, such that &, (V,(d, zo, .., 2,,)) is ‘small’.
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Problem (C) Given d, (px)r, n > 0, and a compact set G C €, find a lower bound for
kp(Vi(d, 20, .., 2,)) being valid for each zo, .., z, € G, which is approximately attained for
particular nodes zg, .., 2, € G.

Problem (D) Given (pg)g, m > n > 0, and a compact set G C €, find a lower bound for
k2(V.(d, 20, .., z,)) being valid for each zg,..,2, € G and for each density function d,
which is approximately attained for particular nodes zg,..,z, € G and for a particular
density function.

This chapter is organized as follows: In Section 4.1 we review classical results concerning
Problems (A) and (B) obtained by Gautschi, Taylor, Tyrtyshnikov, Cordova, Ruscheweyh, Rei-
chel, Fischer, and Opfer. By specifying results of Section 2.2, it is shown that properties of
the Lebesgue function corresponding to the considered nodes zy, .., 2, are basic for a solution
of Problems (A)—(C) in the case d = 1. In particular, we point out the connections between
Problem (B) and the problem of finding nodes minimizing the Lebesgue number. In order to
treat the weighted case d # 1, we introduce a weighted analogue of the Lebesgue function,
and provide inequalities for particular sequences of polynomials such as Faber polynomials.
Finally, we outline how potential theory may be applied for investigating the nth root behavour
of solutions of problems (A)—(C). However, the aim of this section is not to give a complete
account of Problems (A)—(C), but instead to motivate the techniques used in the following
sections.

In Section 4.2 we study the problem of giving approximately tight lower bounds for the
Euclidean condition number of Krylov-like matrices, such as a matrix built up with the columns
B b, j =0,..,n, where B is a normal matrix with spectrum contained in some compact set
G, and b is an arbitrary vector of suitable size. These matrices occur for instance while solving
systems of linear equations by some iterative methods. We discuss the connections with Problem
(D), which is shown to be closely related to Problem (C) for a particular ‘optimal’ density
function. In addition, we derive approximately tight lower bounds in terms of the solution of
Problem (D) for the condition number of particular modified moment matrices M,, (i, v), namely
so—called Hankel-like matrices where one of the measures is fixed, and the other one is known
to be supported on some subset of the real line.

Finally, in Section 4.3 we provide a new explicit formula for the limit of the nth root of the
solution of Problem (D). For a proof, we require some elements of Potential theory as described
in Appendix B. Our result is illustrated by considering several classes of Krylov and Krylov—
Chebyshev matrices. In this context let us mention that the main assertion of Section 4.3 will
be substantially improved for some particular cases in Section 5.3 and Section 5.4.

4.1 Some Examples of square Vandermonde—like matrices

In the first part of this section, let us study (non-weighted) Vandermonde matrices, i.e., px(z) =
2% k>0, and d = 1. An answer to Problem (B) is immediate, at least for the Euclidean norm
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EXAMPLE 4.1 Let w,, denote the primitive n+ 1th rool of unity, V, := V(1,02 wl .. w"). One
verifies without difficulty that VH -V, = (n + 1) - I,,. In particular, all singular values of V,,
(square root of eigenvalues of VI -V, ) are equal to \/n + 1, and therefore k3(V,) = 1, the best
possible value. a

In contrast, Taylor [Tay78], Gautschi [Galn88] and Tyrtyshnikov [Tyr94a] (see the re-
marks after Theorem 5.8) showed that, for any family (2;,)o<j<n of real nodes, the sequence
(kp(Vi(d, 20,y -y 2Znn))),, 18 at least exponentially increasing. We will study Problems (C), (D)
for G C R in detail in Chapter 5. With regard to Problem (A), let us mention the following
examples studied by Gautschi [Gau90, Examples 3.1-3.4]

EXAMPLE 4.2 In the case of harmonic nodes, equidistant nodes on [0; 1], equidistant nodes on
[—1;1], and of nodes being the zeros of the Chebyshev polynomial T, 11, respectively, we obtain
for the 1-condition number of the Vandermonde matriz

> ! if 2 = 1/(G + 1)

= 2287 (14 0(1)noseo) if 2 = §/m,

= L2 (VT exp(a/4)" - (14 0(Vnosoc)  if 2 = —1 + 25/,
# (V2 (14 0(1) ns00) if z;, = cos(m - gii;)

K1 (Vn(17 ZO,nv =y Zn,n))

Let us also mention that the above expressions are obtained by exploiting explicit expres-
sions for ||V,(1, 2o, .-, 2,) "}|]1 in terms of Lagrange polynomials

2= Zgp

Cin(2) = (4.4)

k=0,k#] Zin — Zkn

Such formulas have been given by Gautschi for the case where all nodes are real and non—
negative, and for the case of real nodes located symmetrically with respect to the origin, i.e.,
Zin = —Zn—jn € R, 7=0,..,n [GauT7bal.

In order to reduce the number of function evaluations, it is of particular interest for appli-
cations to have well-conditioned Vandermonde matrices for a linear array of nodes z;, = z;,
7 > 0, instead of a triangular array as discussed in Example 4.1. Such an array was given by

Cordova, Gautschi and Ruscheweyh [CGR90],

ExaMmpPLE 4.3 We consider the Van der Corput enumeration of the sel of 2"th roots of unity,
r > 0: for an integer j > 0, let us define the angle ¢; € [0;2m) by bit reversal of the binary
representation of j

o0

;1= 2 - E 27k=1 . j.. where j= ij 2% g e {0,1}.
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It may be verified that (2;);>0, z; = exp(i - ¢;), forms a sequence of Leja points for the unit
disk (see (2.15), [Rei90, Ezample 1.3]). Note that if n is a power of 2, then zy,..,z,_1 are
the nth roots of unity, and k2(V,-1(1, 20, .., 2n—1)) = 1. More generally, Cordova, Gautschi
and Ruscheweyh determined the singular values of V,,(1, zo, .., z,) for all n > 0, and showed in
particular [CGR90, Corollary 3] that for all n > 0

k2 (Vi(1, 20, .., 2)) < 4/2(n+1).

Let us now turn to Vandermonde-like matrices built up with more general bases of poly-
nomials, where in a first step we restrict ourselves to the non—weighted case d = 1. We will
suppose here and in the sequel of this chapter that the corresponding sequence of coordinate
maps I, is well-conditioned with respect to some compact set H, i.e., the sequence (kg (I1,,)),
of condition numbers has modest growth. Thus, by (2.3), both quantities ||IL,,||z and ||I1;}]|g
grow at most with the same rate. This assumption holds for instance for H-Faber polynomials
such as monomials (H = ID), and shifted Chebyshev polynomials (H = a+ (-&,), see Example
2.3, and Section 2.4.3, respectively. A further example is given by polynomials being orthonor-
mal with respect to some completely regular measure with support H, see Example 2.10 and
Example 3.9.

From Theorem 2.6 we may conclude that

1 [V (15 20, -+ 20) ™[]0
< - < A, (H,{z0, -, 2n}), 4.5
An({ZO7--7Zn}7H) ||Hn1||H ( ) ( )
/(15 zo, ..
1 < ||‘n(17 0 7Zn)||00 S An({zo’ ..,Zn},H)-

An(H7 {207"7Zn}) - ||HTL||H

This enables us to propose a solution of Problem (B): In order to keep ||V,,(1; zq, .., 2n) || 0o small,
one should take z, .., z, € H and thus A, ({20, ..,2,}, H) = 1. On the other hand, the problem
of choosing zg,..,z, € H with small A, (H,{zo,..,2,}) is a classical problem of interpolation
theory: for each polynomial P € P, satisfying |P(z;)] < 1, 0 < j < n we obtain with help of
the Lagrange polynomials (4.4)

[P(2)] =

> P) inle)

<D lin(2)]
7=0
with equality if |P(z;)| = 1, P(2;) - {;»(z) > 0. Consequently,
An(zv {70, -, Zn}) = Z |£j7n(z)|7
7=0

the classical Lebesgue function, and A, (H,{zo,..,2,}) equals the corresponding Lebesgue con-
stant. Hence we are left with the problem of finding nodes with a small Lebesgue constant, and
some possible choices are given in Example 4.4. Recall that, even in the case of a real interval
H, a configuration minimizing the Lebesgue constant is not explicitly known.
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ExaMPLE 4.4 (a) For the real interval H = [—1; 1] we have [Sch71, Satz 5.1 and Eqn.(5.60)]

2log(n)
2

An(H, {z0, .y 2n}) >

) An(Ha {ZO,na LRE] Zn,n}) S ‘|’ O(l)n—mov

2log(n)

T
where 2g, .., z, are arbitrary distinct elements of H, and z;, = cos(m-j/n), j = 0,..,n,
are extremal points of T, (these properties are easily adapted to arbitrary segments by
taking into account that A,(H,{zo, .., 2,}) is invariant under linear transformations of the
complex plane).

(b) As a generalization of Example 4.1, the nth Fejer nodes of a simply connected compact
set H with inverse Riemann map Wy are defined (up to a real constant o) by z;,_1 =
Up(exp(i- (2rj/n+ @))), 0 < j < n. Reichel showed [Rei85, Theorem 2.1] that the
Lebesgue constant corresponding to Fejer nodes grows al most as (2/7) - log(n) + O(1),
provided that H has an analytic boundary (the growth O(log(n)) may be also established
under weaker assumptions on 0H ).

(c) Fischer and Reichel [FiRe89] considered Newton interpolation at nodes obtained by a Van
der Corpul ordering of the 2"th Fejer nodes, r > 0. More precisely, let z;, = z; =
Uy(exp(i-¢;)), j > 0, with ¢; as in Example 4.3. By slightly extending the consideralions
in the proof of [FiRe89, Lemma 2.5], one shows that A, (H,{zo,..,2z,}) = O(n®)pn—00 for
some s > 0, provided that ®'y; is nonvanishing and of bounded variation on 0H.

(d) For an arbitrary compact set H, the Fekete nodes (or Vandermonde points) 25, .., 2n,n € H
are obtained as the arguments where det V,,(1, zo, .., z) as a function of z, .., z, € H at-
tains its mazimum. For the corresponding Lebesgue constant there holds A, (H,{zo, .., zn})
<n+1 (see [SmLe68, Section 1.3.2] or Corollary B.18).

As an illustration of the above remarks, let us mention the following result of Reichel and
Opfer [ReOp91, Theorem 3.4] dealing again with a linear array of nodes: Let py = 1, and
pn =2-p " -T, for n > 1, the Faber polynomials of the ellipse £,, p > 1. Furthermore, let
z; =J(p-exp(i-¢;), 7 > 0, as described in Example 4.4(c). Then k. (V,(1, 20, .., 2,)) = O(n?)
for some s > 0 (this assertion follows from a combination of Example 4.4(c) and (4.5) with
the results of Section 2.4.3, whereas the original proof given in [ReOp91] makes use of the
corresponding Newton basis).

The following example was considered by Gautschi [Gau90, Section V]

ExaMPLE 4.5 Let p be a measure supported on the real line. We consider the corresponding
sequence of orthonormal polynomials p, = pk, and nodes 2y ,, .., 25, being the (distinct and real)
zeros of pl . Then

max; v/ K7 (zjn)

’

Ko (Vn(17 Z0,ny - an)) =

min; /K7 (2j5)

)
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This follows at once by observing that the Christoffel numbers of the corresponding Gaussian
quadrature rule (see, e.g., [Sze67, Theorem 3.4.2]) are given by A;, = 1/K#(z;,), 0 < j <mn,
and hence V,,(V K%, zo,n, ., 2nn) 15 an unitary matriz.

A particular role is played by the Chebyshev measure du(z) = (1 — 22)~1/2 on [—1;1] since
here all Christoffel numbers coincide, and thus k2(V,,(1, 20,5, -y 2n,)) = 1. O

We conclude this section with a discussion of problems (A) and (C) for the two particular
cases of polynomials mentioned above, namely H—Faber polynomials, and orthonormal polyno-
mials w.r.t. a measure g with support H. Recall that (4.3) gives a quite handy expression for
the norm of a weighted Vandermonde matrix, namely

Kpn(2)) (Po(2;); - Palz) "]
7 _ pnN<]) . g/ J q
1V (d; 20, -1, 2n)lp,c0 = max d(z)  0<ién d(z)) ’ (4.6)

1/p+1/q = 1, which is easily exploitable if the growth of the sequence of polynomials is known.
However, there is some need to express the norm of the inverse in terms of quantities for which
inequalities or asymptotics are available. Adapting the above reasoning for the case of a non—
trivial weight function, we have to switch a weighted maximum norm. Thus — in generalization
of Definition 2.5 — we introduce for compact sets H,G and for density functions h € C(H),
g €C(G)

P
A, (h,H;9,G) = max{” [ P eP,},
1Pllg,c

in particular A, (H,G) = A,(1,H;1,G). Also, we have a weighted analogue of the Lebesgue
function

A,(1,{z};d, {z0ms - Znn}) = Z |d(zj0)] - [€n(2)] (4.7)

The nth root behavour of this quantity is studied in Sections B.2.2 and B.3.3 of Appendix B,
and in Section B.3.2 we give a weighted analogue of Example 4.4(d).

EXAMPLE 4.6 Consider the basis of Faber polynomials p, = Fy,, n > 0, with respect to some
simply connected compact set H. Let P € P, then ||P|lg < ||Kpnllg - ||, P||, by the Hélder
inequality. Furthermore, one shows as in Section 2.4.3 using biorthogonality that ||II 1 P||, <
(n4 )7 -||P||z. Combining these estimates with (4.3), we obtain for n >0

RENPYIUATENEY LTV
||Kp,n||H (1 H;d, {ZOa- Zn})

Moreover, by Lemma 2.15,

(n+1)MP.

[ Kyl <1 Z |Fr il < 1 Z e+ 1)1 = O((n+1)°277), 0,

showing that the norm of the inverse of such a weighted Vandermonde-like matriz behaves es-
sentially like a ‘weighted Lebesgue constant’.
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Estimates for the condition number of such matrices may now be obtained by applying
(4.6), where we possibly require the asymptotic behavior of K, ,, outside of H. Here bounds may
be given by applying the mazimum principle (compare Theorem 2.14): for z ¢ H there holds
A(z, H) = |®y(z)|, and thus

n

[Kpn(2) = [1(L, Az, H), ooy Az, H)) |l < [0 1Fi(2) = @m(2)7]110

=0

<3 1Fm; — @l = O((n+ 1)32717),
7=0

With regard to Problem (A), let us mention one application

ExamprLE 4.7 We consider Vandermonde-like matrices obtained by the Faber polynomials of
the interval [—1; 1] together with equidistant nodes on [—1;1], i.e., po = 1, p,(z) = 2T,(z) for
n>1, and z;,, = =14+ 2j/n, 0 < j < n. It follows from (4.3) that

Vit 202l = 38X Kpin(ri) = pax (143212 ()| = (1420 0)'/,

Therefore, the growth of Ky oo(Va(1,20m, .., 2n,n)) essentially coincides with the grow of the
Lebesgue constant of equidistant nodes on [—1;1]. This quantity (being for instance basic for
the so-called Runge phenomenon in polynomial interpolation) has been discussed by several au-
thors, e.g., (Turetskii 1940)

2n+1

A ([=151],{20,ns - Znn}) = (14 o0(1)nsoo)-

e-n-logn

EXAMPLE 4.8 Let p, = p¥, n > 0, be orthonormal with respect to some measure p with compact
H :=supp(p). We have seen in Examples 2.2 and 2.10 that the corresponding coordinate map
is not necessarily well-conditioned with respect to the maximum norm on H, here a weighted
mazimum norm is more appropriate. In fact, with help of the Cauchy-Schwarz inequalily one
obtains ||11,(a)||x, .5 < ||all2 for all a € €' (recall that K, = VKE, with the Szegé kernel
K"). Moreover, for each P € P,,

PR = [ 1P du(e) < 1Pl - [ K2G) diz) = 1Pl (04 ).

Thus we obtain using (4.3)

1< ||v%(d7207“7zn)_1”0Q2

< 1)1/2 > 0.
- an(](lnvlf;d7{207“7zn}) _>(n-+ ) ’ =
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Let us suppose for the case of Example 4.8 in addition that the nth root of the Szeg6 kernel
converges locally uniformly in € (the locally uniform convergence of the nth root of the Faber
kernel K, of Example 4.6 to the function A(:, H) is easily established). Then, with regard to
Problem (A), we may determine the nth root behavour of k,(V,(dy, 20,5, .., 2n,n)) for a given
family of distinct nodes (z;,)o<j<n C G, and a sequence of density functions (d,), C C(G) with
d}/n — dy uniformly in . Here we use (4.2), (4.6), and apply the results on the nth root
behavour of the weighted Lebesgue function as stated in Section B.2.2 of Appendix B.

For instance, in Theorem B.5 together with Lemma B.6 we have given a lower bound in
terms of the limit distribution of the family of nodes. In particular, for a linear array z;, = z;,
with (z;); having only a finite number of accumulation points, such as harmonic nodes (see
Example 4.2) or geometric nodes z; = 2-7, we know from Corollary B.7 and Example B.9 that
the condition number grows faster than exponentially. Also, if the family (z;,)o<;j<n is obtained
as the image of equidistant nodes on [0;1] under some conformal map ¢, then the sequence
(hp(Vi(dp, 2oy o znm))l/”)n has a limit, which may be calculated using Theorem B.19.

ExamprLE 4.9 We consider weighlted Vandermonde-like matrices with Chebyshev polynomials
pn = Ty, and with the nodes z;, = exp(2-7-i-j/(n+ 1)), i.e., 20,5, .., 2n,n are the (n+ 1)th
roots of unity. From (4.2) and (4.6) together with (2.18) we may conclude that

Jim [[Va(dn, 20,05 5 Zn,0) /™ = max

whereas by (a slight extension of ) Theorem B.8 and Fxample 4.6

i 1Va(d 0,0 ) /7 = ma o ().

Here we have used the fact that the limit distribution of our nodes is given by the equilibrium
measure on the unit circle, with potential max{0,log(1/|z|)}. We observe that the condition
number is asymplotically minimal if one chooses do, = J~1, the limil of the nth root of the
Kernel function K, ,,. In fact, we will show in Section 4.2 that this choice is also suitable in a
more general context, which will enable us in Section 4.3 to give the nth root asymplotic of the
solution of Problem (D). O

To the end of this section, some remarks concerning Problem (C): In Theorem B.21 of
Appendix B we have given a lower bound for the smallest accumulation point of the sequence
of weighted Lebesgue numbers (A, (hy,, H;dy, 20,5, .-, znm)l/”)n, being valid for each family of
nodes (2;,,)o<j<n C G, and being attained for a particular family of nodes. By Examples 4.6 and
4.8, this leads to a tight lower bound for accumulation points of (||V,,(d,, 2o, .., znm)_lH;/n)
This bound is easily seen to increase if one only allows nodes in a compact subset Gy of G.
On the other hand, by (4.6), the smallest accumulation point of (||V,,(d,, 20, .., zn7n)||]1)/n)n in
general decreases if all nodes lie in a compact subset GGy of . Thus, a solution of Problem (C)
might be obtained by scanning a suitable family of subsets of G, as done in Section 5.2 for the
particular case of real Vandermonde matrices.

ne



64 CHAPTER 4. VANDERMONDE-LIKE AND KRYLOV-LIKE MATRICES

4.2 Krylov-like and Hankel-like matrices

For solving a large linear system B -2z = ¢ with the square matrix B being sparse, one usually
prefers iterative methods such as the method of conjugate gradients, or a Lanczos—type method
(see, e.g., [GoOL89, BrSa93]). Also, a Lanczos—type method may be applied in order to obtain
the approximate spectrum of B (see, e.g., [GoVL93, Chapter 9]). Here, with a suitable vector
b, one successively determines an orthogonal basis of the so—called nth Krylov space spanned by
the Krylov vectors b, B-b, B%-b,.., B® - b. If one wants to analyse the numerical condition of
these methods, one is concerned with the problem of nearly linear dependence of Krylov vectors.
To be more precise, we have to study the condition number of the Krylov matriz

K,(B;b):= (b,B-b,B*-b,...,B"-b).

Depending on the spectrum on B, one observes quite often that the condition number grows at
least exponentially in n, see for instance the numerical results reported in [Car94, Chapitre 4.6].
It is the aim of this and the following section to establish asymptotic lower bounds, which will
be refined for particular cases in Chapter 5.

In the case of non—Hermitian B, the Lanczos algorithm may suffer from breakdown or
near—breakdown. In order to remedy this drawback, several authors have proposed look—ahead
strategies in order to ‘jump’ over numerically unstable subproblems (see, e.g., [BRZS92, Gut92,
Nac91]). The matrix of coefficients of the resulting intermediate linear systems is obtained by
forming successively vectors of the form py(B) - b, & > 0, where pj is a polynomial of degree k
(Chebyshev polynomials in [Nac91, p.55], monomials in [BRZS92]). This motivates the problem
of studying more generally the condition number of Krylov-like matrices

I(H(B;b) = (pO(B) ' b7p1(B) ' b7p2(B) -b, ,pn(B) ' b)

In the particular case p, = T,, n > 0, we will speak of Krylov-Chebyshev matrices.

Using the Jordan decomposition B = U-X -U~!, one easily verifies that p;(B) = U-pg(X)-
U~! for each polynomial py, and hence

K,(B;b)=U K,(X;U'"b).

If the matrix B is supposed to be nondefective [GoVL93, p.338], i.e., X is diagonal, then
we may recover a weighted Vandermonde-like matrix: let X = diag (29,..,2m), UL - b =:
E-(d(20)7', ..., d(2,,)™)7T with F being diagonal and containing elements of modulus 1, then

K,(B;b)=U-E-V,(d,z,.., 2m)

(in the case of a defective eigenvalue z; we will find also derivatives of the polynomials pg
evaluated at z;).

In our considerations we will restrict ourselves to normal matrices B, i.e., B .B = BB,
with spectrum located in some closed set G. Then B is diagonalizable, and has an orthonormal
system of eigenvectors. Consequently, U - E' may be chosen to be unitary, and k2 (K,(B;b)) =
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k2 (Vi(d, 20, .., 2,)). Our aim is to find a lower bound for ky (K, (B;b)), being valid for each
normal matrix B with eigenvalues in (G, and for each b, and which is approximately attained for
a particular pair (B,b). Hence we are left with Problem (D).

Let us also mention another application of Problem (D), namely the problem of finding
optimal lower bounds for the condition number of particular moment matrices: given a fixed
measure p with compact support, we look for

inf{ko(M,(v,p)) : v € M(G)}. (4.8)

E.g., if p is the equilibrium measure of the unit circle, and G = IR, then we look for the optimal
lower bound for the condition number of a positive definite Hankel matrix (see Corollary 5.14).
We are only able to treat problem (4.8) for the case of so—called Hankel-like matrices where G
is a real interval. In fact, for any measure v being supported on the real axis, the link between
(4.8) and problem (D) is obtained by the corresponding Gaussian quadrature formula.

Before specifying our findings in Theorem 4.11, let us first turn to Problem (D). One step
towards the solution of this problem consists in finding for fixed nodes the weight function
leading to a minimal 2-condition number. In other words, we look for an optimal diagonal
preconditioning on the left (or an optimal row scaling) of a Vandermonde-like matrix. The
problem of optimal diagonal preconditioning of an arbitrary square matrix was studied in detail
by Bauer, who gave explicit solutions for the co— and the 1-Hélder norm [Bau63, Theorem Ila].
Instead of using Bauer’s estimates for the Euclidean norm, for the purpose of Section 4.3 and
Chapter 5 we propose the following

THEOREM 4.10 Consider weighted Vandermonde-like matrices corresponding to a fized family
of polynomials (pi)r, with kernel K, , as defined in (4.3). Let G C € be compact, and define
for integers m > n > 0

I;'pP
L Plle . pep, pro,
1P|z,

O, (G) == min{0,,(Gy) : Gy C G, card(Gy) < m + 1}.

0,,(G) := max{

(a) For each density function d and for each zy, .., 2, € G we have

%) (‘/n(dv 205 -+ Zm)) >

and the lower bound is attained up to a factor (m + 1).

(b) Ifin addition G is a real interval, then for each density function d and for each zy, ..,z € G

we have
1

\/n—l—l'

and the lower bound is attained up to a factor (n+ 1).

ko (Vi(d, 20,y oy 2m)) > 0,,,(G),
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(¢) There holds for m > n

0:0(G) 2 0 n () 2 0,(G) 2 —— 00 (G) (1.9)

Proof: (a) We first require an analogue of (4.2) for the case of rectangular matrices Vi, ,,(d)
with m > n and for Euclidean matrix norms. For Gg := {z0, .., 2 }, let

_ - o IR
Kﬂn(d7 GO) = @m,n(d7 GO) ||I\2,n||d,G07 ®m,n(d7 GO) — ]l;ré%):l ||P||d7G0 .

Similar to (4.3), one verifies using (A.8), (A.11) that
(m~+1)"Y2 .k, (d,Go) < Ka(Vn(d, 20, .y 2m)) < (m+ )2 K, (d, Go). (4.10)

Hence, for a fixed configuration of nodes Go = {zq, .., 2, }, we obtain approximately the weight
function d : Gy — (0; +00) minimizing k9 (V,,(d, 2o, .., 2r,)) if we minimize &, (d, Go) as a function
of d(z;) € (0;400), j =0,..,m.

We want to show that, for each density function d on Gy, there holds x,(d,Go) >
kn (K2, Go). In fact, since k,,(d, Gy) is invariant under multiplication of d by a positive constant,
we may assume without loss of generality that || K3 ,||4,c, = 1; in particular

Kan(zj) <d(z), j=0,.,m.
Consequently, for each polynomial P € P, we get ||P||x,,, ¢, > |[Pll4,G,, or
Kn(da GO) = ®m,n(d‘7 GO) Z ®m,n(K72,n7 GO) = Rp (I(Q,na GO)

Thus, for each configuration of nodes, the ‘optimal” density function is given by d = K3 ,. Using
in addition (4.10), we obtain for weighted Vandermonde-like matrices with a fixed configuration
of nodes zg, .., 2,

mc}n ko (Vi(d, 20, .y 2m)) = € - K (K2 0y {20, -, Zm })

with a suitable € € [(m41)~"/2; (m+41)/?]. We now take the minimum over all nodes 2, .., 2, €
G, and recall that each continuous function F : €™+ — [0; 4-00] attains its minimum on compact
subsets of €', This yields part (a) of the assertion.

(b) In view of the first part, it is sufficient to show that, for each density function d
and for each distinct zg, .., 2, € G, there exist a density function d* and distinct 23, ...,z €
G with k2(V,.(d, 20, .., 2m)) = K2(V,(d*, 25, ..., 2%)), and vice versa. By the particular form of
Vo(d, 20, ., 2m)® - V3 (d, 20, .., 2n), We obtain the sufficient condition that for all Q € Py, there

holds
7=0

Qz) _ ¢ Q)
=y (4.11)

i)~ T ()
Notice that the left hand side of (4.11) may be rewritten as [Q(z) du(z) with p a (discrete)
measure being supported on . Hence (4.11) holds by taking as nodes zj, ..,z the zeros of
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the (n + 1)th p—orthogonal polynomial, and d*(z) = \/K}(z), the data of the corresponding
Gaussian quadrature formula (see, e.g., [Sze67, Theorem 3.4.2]). On the other hand, given the
data zg, .., z;;, and d*, equation (4.11) holds with z; = 27, d(z;) = d(z}) for j = 0,..,n — 1, and

LY 77

zj=2z5,d(z;) =d(z;)-vm+1—nfor j=nn+1,.,m.

(c) The first two estimates of (4.9) are immediate. In order to show the third one, notice
that for any nodes zg, .., 2z, € G we have

@nm (G) S ®n (G) . An(I(gm, G, 1{2’7»“ {Zo, cey Zn})

As shown in Corollary B.18, there holds A, (K3 ,,G; K3, {20, .., 2n}) < n+ 1 for the weighted
Fekete nodes (i.e., the arguments maximizing det V,,(K3 ., 20, .., 2,) in G), leading to (4.9). O

THEOREM 4.11 Let G C € be compact.

(a) For each integers m > n > 0 for each normal matriz B of size (m + 1) with spectrum in G
and for each b € €™ the Buclidean condition number of the Krylov-like matriz K, (B, b)
is bounded below by k3 (K, (B, b)) > O, n(G)/v/m+ 1, and the lower bound is altained up

to a factor (m+1). If in addition G is a real interval, and therefore B is Hermitian, then

we have the lower bound ©,, ,(G)/v/n+ 1, being attained up to a factor (n+1).

(b) IfG is a real interval, then for each measure p with compact support

n%l 0, (G)? < inflra(My(v, ) v € M(G)} < (n+1) - 0,,(G)?,

where for O, ,(G) we consider the sequence of the pi—orthonormal polynomials.
Proof: Part (a) follows from the remarks at the beginning of this section together with

Theorem 4.10(a), (b). In order to show part (b), denote the zeros of the (n+ 1)th v—orthogonal
polynomial p} ,; by 20,5, .., 2n,n € G, then we have the Gaussian quadrature formula

~ 1
/P(Z) dv(z) = ) ————"Plzjn), P €Pos1.
i=0 /K7 (2jn)
Consequently,
k=0,..,n - /1
Mn(yv :u) = (/p;(z’) : pZ(Z’) dV(Z))]-ZO n = ‘/n( I(;L/v 20,n5 - Zn,n)H ) ‘/n( I{'zv Z0,n5 s Zn,n)

with Vandermonde-like matrices corresponding to g—orthogonal polynomials, and the assertion
follows from Theorem 4.10(a). o

As a consequence of Theorem 4.11 and Theorem 4.10(c), we may establish approximately
tight lower bounds for the condition number of Krylov-like matrices and Hankel-like matrices
in terms of ©,,,(G) or ©,(G). In order to obtain explicit expressions for the latter quantities,
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we have to restrict ourselves to particular sequences (p,,), and particular sets G. The nth root
behavour of ©,(G) will be established in Section 4.3 for sequences (pn)n where (kg (I1,)1/™),,
tends to 1 for some set H. In the particular case of monomials pg(z) = 2%, k > 0, and G a real
interval, we will give explicit intervals for ©,,,(G) in Section 5.3, Wthh enables us to derive
approximately tight lower bounds for the condition number of positive definite Hankel matrices
(see Corollary 5.14), as well as for Krylov matrices built up with Hermitian B (see Theorem
5.11).

4.3 The nth root behavour

The aim of this section is to give a proof and some examples for the following

THEOREM 4.12 Given a sequence of polynomials (py). with a corresponding sequence of co-
ordinate maps (11,,),, suppose that there exists a compact set H having the K-property (see
Definition B.2) such that

lim kg (IL,) =1.

n—00

Then for each compact set G with K—-property there holds
lim ©,(G)Y" = lim 0,,(G)Y" = A¥(H,G).

Here
log A¥(H,G) = ma)\/ t)d
g A" mAX oo 96170 (D),

where pp denotes the equilibrium measure of the set H (see Example B.14), and gg(-,t) is the
Green function of G with singularity at t ¢ G (see Definition B.1).

The quantity AY(H,G) may be understood as a weighted counterpart of the quantity
A(H,G) introduced in Definition 2.8. In the examples mentioned at the end of this section we
will restrict ourselves to simply connected G here, the quantity log A% (H, G) may be evaluated
by using the fact that, for z,¢, 20 € G, t # 2o,

1- Cbt(Zo) ' ¢t(2)
Cbt(Z) - ¢t(20)

where ¢, maps the exterior of G conformally on the exterior of the unit disk, with ¢;(¢) = cc.

ga(z;t) = ga(t, z) = log|oi(2)],  ga(z;20) = log : (4.12)

Before giving a proof of Theorem 4.12, let us summarize some further properties in the
following

THEOREM 4.13 (a) The assertion of Theorem 4.12 remains valid for closed (not necessarily
bounded) sets G with boundary consisting of segments, straight lines and circular arcs,

provided that G U H # C.
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(b) Let Hy := 0D (H)\G. We have A¥(H,G) > 1, and AY(H,G) =1 if and only if Hy = 0,
i.e., G conlains the outer boundary of H. Moreover, in the case Hy # 0, the mazimum in
the definition of A¥(H,G) is altained for z € Hy.

(¢) If G\ Do (H) = 0, then A¥(H,G) = A(H,G).

(d) In the case of ordinary Krylov and Hankel matrices, i.e., p,(z) = 2", n > 0, the assumptions
of Theorem 4.12 are true with H = 0ID. Here we have the simpler formula

1
log A¥(0ID, ) :== max — /
s€f0;2r] 27 te[0;2m),eitgG

gg (e, e't) dt.
In the case of Krylov—Chebyshev matrices, i.e., Krylov-like matrices with respect to Cheby-
shev polynomials p, = T,, n > 0, the assumplions of Theorem 4.12 are true with

H =[-1;1]. Here we have the simpler formula

1 96 (s, 2)
log A" ([-1;1 = < dz.
og ([ ) ]7G) Ser?_al)?l] s /[—1;1]\G m :

For a proof of Theorem 4.12 we require the following complement of Theorem 2.9

LEMMA 4.14 Under the assumptions of Theorem 4.12, the sequence (g,), being defined by
i 1/n n 5\ 1/2n
gn(2) :=log Ky ,(2)"/" = log(z |p;(2)] ) , zeU, n>0,
=0

converges to the Green function gy (-, 00), locally uniformly in C.

Proof: First by definition of the kernel K5, we obtain for each z € € and for each n > 0
using (A.2)

e L@E] @)
acC™! a2 Cae@ ! lal] oo

(11, (a)) (2)]
< ||I,|| - max = ||[II,||g - An(z, H),
< s, S

and similarly

! (11, (a)) (2)] 1

ean(2) > ——— . max

> A
Vit 1 et lalle T Ve F 1|0 |g

n(z, H).

Due to (2.3), with (kg (I1,)*/™),, also the sequences (||Hn||11q/n)n and (||H;1||gn)n tend to 1.
Consequently, the sequences (g,), and (d,)n, d.(2) = log A, (z, H)'/" have the same limit
behavour.
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Now H has the K—property, and therefore in particular H is regular with respect to the
Dirichlet problem. By Definition 2.8 and Definition B.1 we have

log Az, H) = gu(z,0), z¢€C,
and the assertion follows from the last part of Theorem B.22. a

Let us mention that, by (A.2), the assertion of Lemma 4.14 remains valid if one replaces
the kernel K3, by the kernel K,, = K, , of Chapter 2.

Proof of Theorem 4.12: Using (A.2) we obtain

| Pl =1 P, 1 Pl
——— - max ———— < 0,(G) = max ——— < IT,, Hmax
Tl PP P e = 0@ = B Pl e = VT U Il s =

Hence the sequences
(log ©,(G)Y™), and (log A, (1, H; Ky, G)™),,

have the same accumulation points, the latter sequence being discussed in Appendix B, where
we have used the abbreviation (6,),. By Lemma 4.14, the assumptions of Section B.2.1 hold
with Q = C,

forze€ H: fg(z) =0, andfor z € G: fg(z2) = gu(z,0).

Thus the assertion of Theorem 4.12 follows from Theorem B.21. O
Proof of Theorem 4.13:

(a) Let us first mention that the quantities ©,(G) and A, (1, H; K3, G) also are well-
defined for not bounded G, since, for each P € P,, the function P/K,, is continuous around
infinity. To be more precise, we consider the following linear transformation of the extended
complex plane

1 . 1 - 1

™

= Y
zZ—cC

with a fixed ¢ € €\ (HUG). Any polynomial P of degree less or equal to n may be rewritten as

P(z) = P(c+1/2) = P(3)/z"

with P € P, and thus

A1, H; Ky, G) = A (hny H; G, G)y - hu(2) = 2%, Ga(3) = 2 Kap(c+1/2).
Taking into account the arguments of the proof of Theorem 4.12, we see that the limit of the
sequence (0,(G)Y/™), equals the limit of (A, (hy, H; gy, G)Y™),,. The latter may be determined
using Theorem B.21 since H,G are compact sets with K-property, and

log hy (2)Y/™ — log |2|, loggn(2)/" — log |z + gu(c+ 1/, 0),
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uniformly in H, and G, respectively.

(b) Let
h(z) = /@\G g6 (=:1) durr (1),

Recall from Example B.14 that ug is supported on the outer boundary 0D, (H) of H. Conse-
quently, if Hy = (J, then h is identically zero. Suppose now that Hy # (). Then, by Definition
B.1, h is identically zero on G, and strictly positive on Hg. Let Hy := €\ (D (H)UG). Notice
that Hy C H\ G C Hy and 0H,; C HyU dG. Moreover, h is harmonic in the interior of Hy, and
continuous in €. Thus by the maximum principle for harmonic functions we obtain

0 < maxh(z) < max h(z) < maxh(z) < max h(z) = max h(z),

2€Hy zEH\G z€H, z€dH UG z€3Hy

yielding assertion (b).

(c) By Lemma 4.14, the identity G \ Do(H) = ( implies that (logKQl/n)n con-

verges uniformly on G to the zero function. Hence (0, (G)'/"), behaves asymptotically like
(A, (H,G)'™),, the latter having the limit A(H,G) (see Theorem B.22).

(d) This assertion follows from Example 2.3, and Example 2.2, respectively, by noticing
that dupp(z) = [dz|/(27r) for z € OID, and du_ 11( ) = |dz|/(7 - V1= 2%) for z € [-1;1],

respectively. a

Before studying some examples, let us mention that the quantity A" (H,) is invariant
under a linear transformation, i.e., for a, 8 € €, 3 # 0 there holds

A¥(a+f-H oo+ p-G) = A%(H,G). (4.13)

Hence the quantity AY(ID,() is invariant under a rotation of G, and AY([-1;1],G) =
AY([-1;1], —=G). We first study the case of G being a halfplane

ExaMPLE 4.15 Let
G=0C; ={z€C:Rz >0},

the right halfplane. The function ¢(_y)(z) = (2 — 1)/(z + 1) maps G° conformally on ID°, with
$(—1)(=1) = +oo. One verifies using (4.12) that

z+t
ga(z,t) = log|ﬁ|, z,t € [-1;0] = [-1; 1]\ G,

and by means of elementary computations

1 0 2+t dt
log A% 1,1,€Cy) = max —-/ lo _—
g ([ ] +) se[o10] 7 . g|2_t|m

—1 78
= max — / log | tan )| = max — / log | tan(g)| da.
BE[0;7/2] pefosn/2] ™ J_p 2
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Consequently, the maximum is attained for § = 7 /2 (or z = —1), with the value

1

do=:2-6".
tan(a/2)| “

9 /2
log A”([~1,1),€4) = =+ [ log|
T™ Jo
For the final integral there exists no close form expression. The quantity 6* will be basic also for
the following considerations, lel us mention ils relation with the Catalan constant

2 & (—-1)F . .
== (7)2 ~0.583, € ~1.792, *¥ ~3.210 (4.14)
o= (2k+ 1)

O

Consequently, for large n, the nth root of the condition number of a Krylov—Chebyshev
matrix built up with a normal matrix B having eigenvalues with nonnegative real part is ap-
proximately greater or equal to 3.210, and this bound is best possible. We will discuss some
particular cases below. Let us first show that for ordinary Krylov matrices we obtain in the
same context the lower bound 1.792 ~ /3.210.

EXAMPLE 4.16 Let again G = C4 = {z € C: Rz > 0}, the right halfplane. With help of (4.12)
and Example 4.15 we obtain for €' e € 9D\ G

1

d1y(e) =i tan(t/2), ga(e™, e) =log (G 07D

B

with s,t € (7/2,37/2). Thus

log A®(ID, T;) 1 /37#21 tan("=2)| dr = 6

0 ) = max — - og | tan It =&,

& + s€[r/2;37/2] 2 /2 & 2

where for the final equalily we have taken into account the computations of Fxample 4.15. O

In the next example we consider Krylov(-Chebyshev) matrices built up with Hermitian and
anti-Hermitian matrices, i.e., B = Bf and B = —B, respectively. These matrices are trivially
normal, and their spectrum is contained in G = IR, and G =7 - IR, respectively.

EXAMPLE 4.17 In the case G =t - IR, we have a Green function for each connected component

of €\ G, namely

9g, (5:0)  ift,z e Cy
gR (=) =9 gg,(—= 1) ift,z€ -C4,
0 otherwise.

Hence for H € {0ID,[—1;1]} one gets AY(H,i-R) = AY(H,C;). In particular, by (4.13) we
obtain for Krylov matrices the lower bounds

A¥(9ID,i-R) = A¥(9ID,R) = €%,
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whereas for Krylov—-Chebyshev malrices
A¥([-1;1],i-R) = ¥, A¥([-1;1],R) = 1.

In fact, we know from Fxample 4.5 that a Krylov-Chebyshev matriz based on the (real) zeros of
Chebyshev polynomials is perfectly conditioned. Note however that Krylov—Chebyshev matrices
become ill-conditioned for anti—-Hermitian matrices B, at least for large dimension. a

The aim of the next example is to study Krylov(-Chebyshev) matrices built up with Her-
mitian positive definite matrices B. We will even allow more generally sectors.

ExaMPLE 4.18 With A € [0,2), we consider the sector
S\ ::{ZEC:—/\-ggargzgx\-%},

i.e., S1 = Cy, and So = [0;+00). The function f\(z) := 21/(2_A)-exp(%%r) maps the exterior

of S\ conformally to the exterior of C; (we take the branch of the logarithm on €\ [0; 400) with
log(—1) = im). Consequently, gs,(z,t) = go, (fx(2), [a(t)) for z,t € Sy. In particular,
log A”(AD, Sy) =  max  —. /%_M/Q log [ tan(———" ) dt = (2= A) - 6.
' se[\r/22m—Ar/2] 2% Jar)2 2-(2-X)
Therefore, we obtain for Krylov matrices
AY(DID, Sy) = 27N AY(9ID, [0;4-00)) = A¥(JID, IR)? = €297,

In fact, if A — 2, we get the limiting value AV (0D, C) = 1. With regard to Krylov-Chebyshev
matrices, we only mention the case A = 0 of positive definite Hermitian matrices B. FEvaluating
the resulting integral numerically gives the lower bound A" ([—1;1],[0;+00)) = 4.422. O

In order to prevent overflow, in applications one often scales the matrix B such that ||B|| < 1
with a suitable (subordinate) norm. Then the spectrum of B is contained in the unit disk, and
we may determine asymptotically lower bounds by applying Theorem 4.13(c).

EXAMPLE 4.19 For Krylov(-Chebyshev) matrices built up with Hermitian positive definite scaled
malrices B we have the lower bound

A™(9ID, [0;1]) = A¥([-1;1],[0;1]) = J 1 (3) = (1 + V2)? ~ 5.828.
In the case of Hermitlian scaled matrices B we obtain

AY(OD,[-1;1) = |J7H0)| = (1 +V2) = 2414, A¥([-1;1],[-1;1]) = 1.

Thus, in general, a scaling of the matrix B might increase the condition number of the
corresponding Krylov(—~Chebyshev) matrix.

As a final remark, we believe that Theorem 4.12 also holds for more general closed sets G,
H, namely, H being compact, and G, H being regular with respect to the Dirichlet problem.
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Chapter 5

Tight bounds for particular
matrices

Beside the asymptotic lower bounds of Section 4.3 for the condition number of special structured
matrices, it is of particular practical interest to have lower bounds as a function of the dimen-
sion n which are approximately attained for a particular choice of parameters. Here we will
restrict ourselves to a subclass of the matrices discussed in Chapter 4, namely square weighted
Vandermonde matrices with real nodes

1 zg .

d(zo)  d(zo)  d(zo) d(zo)

1 Ty d il
Vald) i= Vald, o, ) = | T0 Aoy Ty T |

P S

d(zn) d(zn) d(zn) d(zn)

where d(z;) > 0,0 < j < n, and zg, ..,z, € M C IR. Instead of using the coordinate map II,, of
the basis of monomials, we will use the shorthand notation P = (cg, .., ¢,)L = II;1(P) for any

PeP, Plz) =co+ 12+ .. + c,2".

In Section 5.1 we deal with the problem of finding

$0“1.17(1$17111€M Kp,oo(Vn(d; 2o, .., 2,))
for fixed p,n,d and a set M C IR. Nodes where the minimum is attained will be referred to
as optimal nodes. Recall that r, 00 (V,(d)) = ||Va(d) ™ Hloop - ||Va(d)||pco- In order to be able to
monitor the size of ||V,,(d)||y o while calculating the minimum of ||V, (d) ™|, we will restrict
ourselves to a class of admissible density functions described in Definition 5.2. Then a solution
of the above problem may be given in terms of alternants of (weighted) Chebyshev polynomials
with respect to (d, M).

In Section 5.2 we find the configuration of nodes out of [0;400), and of IR, respectively,
minimizing the condition number ko, (V,,(1)) of ordinary Vandermonde matrices. The problem

75
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of minimizing k;(V,(1)) was studied before by Gautschi [Gau75b]. We also give lower bounds
for the condition number £,(V,,(1)) of (column-scaled) real Vandermonde matrices improving
results obtained by Gautschi, Taylor, Inglese, and Tyrtyshnikov.

Krylov matrices built up with Hermitian matrices B are studied in Section 5.3, and applica-
tions to positive definite Hankel matrices, and to the rational interpolation problem, respectively,
are discussed in Section 5.4.

5.1 Real weighted Vandermonde matrices

For the following considerations, we will require (generalized) Chebyshev polynomials with re-
spect to some real compact set M and some density function d € C(M) being defined as follows
(see, e.g., [SmLe68, p.351])

DEFINITION 5.1 Let M C € be compact containing at least n + 1 elements, and let d : M —
(0;+00) be continuous on M. Then there exists a polynomial T, [d, M] of degree n with positive
leading coefficient called nth Chebyshev polynomial which mazimizes

{len] : P € P, ||Pllapmr < 1,P(2) = co+ 12+ .. + c,2" ).

Note that, under the above assumptions, 7,[d, M] is unique (see [Sch71, Satz 6.3, p.155]),
and ||7),[d, M]||qar = 1. As an example we have T),[1,[—1;1]] = T),, the classical Chebyshev
polynomial. Moreover, by a linear transformation,

Z—

8

In addition, 7,[d, M] inherits symmetry properties of (d, M) (see Meinardus [Mei67, Theorem
27, p.26]). For instance, suppose that M = —M, and d(z) = d(—z) for all € M. Then with
M':={2?:2 € M} we obtain

Tod,a+ - M)(z) = Told(a + 8 - 2), MI(E=2). (5.1)

Tanld, M(2) = Told(v/2), M'I(2%),  Tanyald, M](2) = z - Tn[d(T@7 M'\{0}](z%).  (5.2)

Also, Chebyshev polynomials are (partly) explicitly known for polynomial densities d and M
being real intervals; these results will be important for our study of Krylov matrices.

In the following considerations, we will restrict ourselves to real sets M. Given a polynomial
P e P, zg< .. <y is called an alternant of P in M (with respect to a fixed density function
d) if for =0,..,m

Plz; .
r; € M and (%) =(-1)"" - ||P|la,m (5.3)
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(note that m < n for each nontrivial P). Chebyshev showed that the solution of the problem
of best approximation on real compact sets M with respect to the maximum norm may be
characterized with help of alternants. Since the set of functions 1/d,z/d, ..,z"~'/d satisfies the
Haar condition, by the Chebyshev criterion [Sch71, Theorem 6.6] we know that, for each M C IR
being compact, and for each density function d being continuous on a interval containing M, we
have T'=T,[d, M] if and only if T" has an alternant in M consisting of exactly (n+ 1) elements.

The set of admissible density functions is given by

DEFINITION 5.2 Let n > 1 be an integer, p € [1;00] a Hélder index. We say that a pair (d, M)
is p—admissible if M C [0;00), and with v := max{z : z € M} there holds

(a) M C My C R, where M is compact containing at least n+1 elements, and M is a compact
interval. Furthermore, d : My — (0;400) is conlinuous on M.

(b) We have
Kyn(7)

| Kpnllam = ———,
P d(v)

with the kernel function K, ,(2) = (1+|2|94..4|2|"9) " introduced in (4.3), 1/p+1/q = 1.
In addition, v is an element of the alternant of T,[d, M].

We say that a pair (d, M) is s—admissible if conditions (a), (b) hold with v := max{z: z € M},
and if in addittion M and d are symmetric with respect to the origin, i.e., M = —M and
d(z) =d(—z) for allz € M. O

For instance, with help of (5.1) we verify that (1, M) is p-admissible for each real compact
interval M C [0;400), and s—admissible for each real compact interval of the form M = [—7;7].

Notice that most of the conditions of Definition 5.2 are easily checked, perhaps up to the
condition on the alternant of 7),[d, M]. Here, the following observation might be helpful

LEMMA 5.3 Let (d, M) be as in Definition 5.2(a), v = max{z : z € M}. If there exisls a
polynomial ¢ € Ps, being positive on My and satisfying

Proof: By a suitable scaling of ¢, we may assume without loss of generality that ¢(v) =
d(v)?, and therefore ¢(z) < d(z)? for all z € M.
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Let 29 < 21 < .. < x, denote the alternant of T":= T,,[d, M] in M. By Rolle’s Theorem,
T has the zeros yi,..,y, € My with z;_1 < y; < zj, 7 = 1,..,n. Let Q(z) := ¢q(z) — T(x)>.
Then () is a real polynomial of degree at most 2n, satisfying Q(y;) = ¢(y;) > 0, j =1, ..,n, and
Q(z;) = q(z;) — d(z;)* < 0, j = 0,..,n. One verifies that, for j = 1,..,n — 1, @ has at least
two zeros in each open interval (y;,y;41) (counting multiplicities). Moreover, ¢ must have at
least one zero in [2g;y1), and in (y,;z,], respectively. By counting the number of zeros being
obviously bounded by 2n, we may conclude that () is strictly negative on (z,;v]. Assuming now
that z,, # v, we obtain Q(y) < 0, or T(y)* > ¢(v) = d(v)? a contradiction to the definition
(5.3) of the alternant. O

As a consequence, (1, M) is p-admissible for each compact set M C [0; 00), and s—admissible
for each symmetric compact set (take ¢ = 1 in Lemma 5.3). Moreover, in the case p = 2, the
pair (K3 ,, M) is p-admissible for each compact set M C [0;00), and s—admissible for each
symmetric compact set, since ¢(z) := K3,(2)? is a polynomial of degree 2n.

We are now prepared to prove the following Theorem dealing with nonnegative nodes.

THEOREM 5.4 Let (d, M) be p-admissible, and v := max{z : € M}. Then the minimum of

{kp,0 (Vi(d; 20, .., 24)) : 20, .., 2, € M, maxz; =}
J

is given by ) )
Kpn(v) Kpn(v)
d(v) d(v)

with an ¢ € [(n + 1)Y/?=11]. This minimum is attained for x,..,z, being the alternant of

T,[d, M].

N Tald, M]|], = € - |T5[d, M](~1)]

Proof: From (4.3) we know that for all zg, .., z, € M satisfying max; z; = 7 there holds

| Kpn(2;)| _ | Kpn(7)]
d(z;) d(y) ’

the final equality following from the assumptions of Definition 5.2(b). Hence the first lower
bound for the condition number is an immediate consequence of (4.3) by taking P = T,,[d, M]
and noticing that ||T),[d, M]||d7{z07“7mn} <||T.[d, M]||apr = 1.

||Vn(d7 L0y -+ xn)”p,oo == m]ax

In order to show that this bound may be attained, denote by z¢ < .. < z, the alternant
(5.3) of T,,[d,M] in M. By Definition 5.2(b) we have z, = 7. Recall that the inverse of
Vo(d; o, .., ,,) has a checkerboard sign distribution: denote by a;, j, k = 0,.., n the element of
Vo(d; zg, .., z,) 7! in position (j, k), then with the Lagrange polynomials of (4.4) there holds

d(zg) - by () = Zal}k c2?, k=0,..,n. (5.4)
7=0
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Consequently, a; - (—=1)/** >0, and

Va(ds 2o, ey @) ™ oo p (5.5)
T -
= |Va(ds 2o, - 2) - (=), (=)™, (=1)°) [l = [[Tld, M]],.

It remains to show the second representation of the lower bound. Due to (5.3), T' := T,[d, M]
has n positive real zeros, and therefore its coefficients have oscillating signs. Using (A.2) we get

17]x » B}
(nt 11177 <||T[l, < [|T]lx = 1T (-1)|,

leading to the assertion. a

In the second part of this section, we want to give an analogue of Theorem 5.4 for the case of
arbitrary real nodes. However, here the reasoning is more involved. We first formulate some tools
in the following lemma. Part (a) is a weighted analogue of the V.A. Markov Theorem mentioned
in Section 2.1.1 (see [Sch71, Satz 6.12]), and part (c) reminds of a result due to De la Vallée-
Poussin (see [Sch71, Satz 6.7]). Finally, in part (d) we give a relationship between the weighted
constrained Chebyshev problem and the (oo, 1) norm of an inverse weighted Vandermonde matrix
(compare Example 4.6 where instead of the monomials more generally Faber polynomials are
discussed).

LEMMA 5.5 Let (d, M) satisfy the conditions of Definition 5.2(a), and suppose that (d, M) is
symmetric, i.e., M = —M and d(z) = d(—z) for allz € M.

(a) The mazimum in

|PY(0)]
3t 1IPla,m
is attained for P = T,[d, M] if n — j is even, and for P =T,_1[d, M] if n — j is odd.

¢in(d, M) := max{ :deg P <n}

(b) Let zg < 1 < .. < zy, z; € M be symmelric with respect to the origin. Then for n = 2k
or for n = 2k — 1 we have

||Vn(d; L0y +es mn)_lHOOJ? =€ maX{COJ?’ CLp}v €€ [L 21/p]’

where

. d(v/z .
Cop = WVomtld(VA)i s ) M Ct i Vha (20t a)

(c) Given a density function h, 0 < yo < y1 < ... < y¢, y; € M, and a polynomial T € Py with
T(y;)-T(yj+1) <0, j=0,..,0— 1, there holds

- h(y) .
Telh;{yo, .., ye < max L IT||,
|| [ { 0 }]”p j=0,..4 |T(y])| || ||p



80 CHAPTER 5. TIGHT BOUNDS FOR PARTICULAR MATRICES

(d) Letzg < z1 < ..< zp, z; € M be symmetric with respect to the origin. Then
||‘/77«(d7 .’Eo, . ‘rn)_1||0071 =€ AH(L {2}7 d7 {3707 = .’En})

with € € [1,v/2]. Moreover, we have A,(1,{i};d,{zo,..,x,}) = |Q(i)|, where Q € P,
satisfies
T;—1

Qle;) = o+ (1)

. -d(z; =0, ...
|ZC] _ Z| (.’E])7 .] 9 7”7

with a constant o € C, |o| = 1.

Proof: (a) Let the maximum in ¢;,(d, M) be attained for some polynomial P € P,. We
first show that P may be supposed to be either even or odd. In fact, with Q(z) := (P(z)4(—1)7-
P(-2))/2, we obtain QW (0) = PY)(0), and ||P||anm < ||Q||anm according to the symmetry of
(d, M). Defining M" := {2%: 2 € M}, and the integer k by n = 2k or n = 2k — 1, it follows that

2 (d M) = ¢ (d(VE), M), c2y410(d M) = c]-,k_1<d(f? Y.

On the other hand, the convex hull of M’ is a subset of [0;4+00), and we have shown implicitly
in the proof of Theorem 5.4 that the maximum in ¢;,(d’, M') is attained for T;[d’, M']. Hence
the assertion follows from (5.2).

(b) Taking M = {zg,..,z,} in part (a) and using (4.3) we obtain
||Vn(d7 L0y« ‘rn)_llloom < ||(CO,n(d7 M)7 s Cn,n(d7 M))THP = ||fn[d7 M] + fn—l[dv M]Hpa
whereas from (4.3)
1Va(d, 20, - @) " loo,p > max{[|T[d, M]|[p, || T-a[d, M|}
The polynomials T,,[d, M] and T,,_1[d, M] have different parity, and by (A.2) we get
1 Tld, M+ Tomr[d, M|l < 277 [[(1|Tld, M]|[py || T [dy MY 1) co-
Therefore the assertion follows by observing that
CQk—mp = ||fn[d7 {3707 2 xn}]”}% Cl-l-n—?k,p = ||fn—1[d7 {3707 2T xn}]”}h (56)

being a consequence of (5.2) and (5.5).

(c) We have shown in (5.5) that ||Ti[h; {0, .., ¥} ll, = |IVe(h; 90, -, ¥¢) "*||oop- Thus the
stated inequality is a consequence of the checkerboard sign distribution of V;(h;yo, .., ys) ™ .

(d) Recall from Appendix A that [|A||e,1 is evaluated by taking the sum of the 1-norm

of the columns of A. Denoting by ¢;,, 0 < j < n, the Lagrange polynomials corresponding to
Zg, .., Tn, We obtain according to (5.4)

1Va(dy 20, 20) Hloon = D ;) - [[Gn] 1
7=0
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Since the nodes zg < ... < z, are symmetric with respect to the origin, one verifies that there

exist positive ¢; such that
Gn(e) = (1) (@ +2)) - 45(2),  qi(2) = o 2" =i @ b eja "0 F L

and consequently

in @l _ 1O lit sl _ litel 1,
Wnlls NGl (U fasl) Tz 7 V2
(here we have tacitly excluded the case z; = 0, i.e., n = 2j, where one verifies directly
||€_;7n||1 = |€;»(7)]). Thus the first part of assertion (d ) follows from recalling that

An(lv{i};dv{x&-wxn} Z |7

see (4.7) of Section 4.1. Also, for each polynomial Q € P, we have

ZQ z;) L
Therefore, Q(i) = o1 - A, (1, {i};d, M) if (and only if) for j =0,..,n
[£in (3)]
Qz;) =01 - ——
@)= )
with |o9/01| = 1, 03 being independent of j.

Z; —1

cd(z;) = oy - (=)0 - ~d(zj),

lzj — 1

that

O

Proceeding as in the proof of Theorem 5.4, one could imagine that the optimal configuration
of nodes for a weighted Vandermonde matrix with respect to symmetric M and d is given by
the (symmetric) alternant of T),[d, M], which by the Chebyshev criterion consists exactly of

n+ 1 elements zg, .., z,. However, in view of Lemma 5.5(b) and (5.6) we would require

that

Cok—np > Ciyn—2k,p. Let us show in the following example that such an inequality in general is

not valid.

EXAMPLE 5.6 Consider n = 3, d = 1, and the symmelric nodes (zg, 1, x2,23) = (—
v/2,7), v > 0, i.e., the alternant of the Chebyshev polynomial T5[1,[—~,~]]. We have

4 1

2 =1 3 ~3
‘/1(1,.T2,.’E3) - _4 4
342 342

1 ) B 8 _ 1
Vi(—=;23,23) 7 = Vi(l;23,23) 7" - diag (zg,23) ' = "% &7 .
v 37 37

Thus
8 3 4

Co.0o = max Cl .00 = max{—, —<},
0, {3 3 2} 1, {,.)/ 73}

and

4/73201700 Zf’YS \/4/3;
[Va(1; 2o, .., 23) " [oo = max{Co 0, C1,00} = 3/7=Clroo if VA3 <y <9/5,
5/3=Co0 ify>9/5.

We see that both cases max{Cy co,C1,00} = Co,00 0r Max{Cp oo, C1,00} = C1,00 Mmay occur.

Y _7/27

O
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In fact we are only able to show for sufficiently small v that the lower bound given in
Theorem 5.7 below is attained. For instance, from Example 5.6 it follows that, for n = 3,
M =[—~,7],and d = 1, the lower bound is only attained for the proposed Chebyshev nodes if
v < 9/5. However, in Lemma 5.10 we will show that the range for v proposed below is sufficient
to determine optimally conditioned Vandermonde matrices.

THEOREM 5.7 Let (d, M) be s—admissible. Furthermore, let v := max{z : 2 € M}, and

Sy (z) ::x-Tn[d,M](a@)—tn-ﬁ(x—xj), (5.7)

i=0

t, denoting the leading coefficient of T,[d, M], and zy, .., z, the alternant of T,[d, M].

A lower bound for

{Kp,c0(Vi(d; z0, .., 20)) X0, ooy Ty € M, mﬁx|x]-| =}

s given by

Kp,n('Y)‘ i
5 T, M)

Up to a factor being less or equal to 21/7, this bound is attained for xq, .., x,, being the alternant
of T,[d, M], provided that the condition v < 1 or the condition ||S,||, < ||T.[d, M]||, holds.

Proof: The lower bound given in the assertion is established in the same way as in the
proof of Theorem 5.4. It remains to show that the given bound is approximately attained
(exactly attained for p = oo) for the nodes z¢ < .. < x,, constituting the alternant of 7},[d, M] =
T,[d,{zo, .., z,}]. First, by Definition 5.2(b) there holds max; |z;| = z, = 7. Consequently, the
resulting weighted Vandermonde matrix is included in the class discussed in Theorem 5.7, and
it is sufficient to prove that

||Vn(d§ L0y ey mn)_luoom < 2!/7. ||fn[d7 M]Hp'

Note that T,,[d, M] is either even or odd, depending on the parity of n. In particular, its
alternant is symmetric with respect to the origin, and the above matrix norm may be computed
by applying Lemma 5.5(b). The aim of the following considerations is to establish the inequality
Cok—np > Cr4n—2k,p which by (5.6) and Lemma 5.5(b) implies the above estimate, and therefore
the assertion of the theorem.

We first discuss the case v < 1. The polynomial P(z) := (2/7) - T),—1[d, M] has the same
parity as T),[d, M], and ||P||4m < 1. Hence by Lemma 5.5(a) we obtain ||P||, < ||T,[d, M]||,,
or || T,_1[d, M]||, < 7 - [|Told, M|, < ||Told, M]]|,, vielding the desired inequality.

If n =2k — 1, then T,[d, M] is odd. Consequently, S,, is even, and has a degree bounded
by n — 1. Define the polynomial T by

v T(a%) = 5 - (2 Su(2) + Tuld, M](2)).

1
2
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Then T has a degree bounded by k — 1,

x?—l—l

2-x;

[, M)(eg) = S (1) dey),

2.z

T(23) =

J

and in particular |T'(23)| > d(z;). By applying Lemma 5.5(c) we get

Cop = | To_ild(v/2), {22, .., 22}]l|1
- 1 - - -
<Nl < 5 - (IS0l + 1T21d, Mlly) < [1Told, M|l = Cipe

In the case n = 2k we have z;, = 0. Therefore, the matrix Vi (d(y/z); %, .., #2) is block lower
triangular, containing the matrix Vi_(d(v/2)/x; xi_H, ., %) as its lower right block. For any
block triangular matrix, the (oo, p) norm of the inverse is greater than or equal to the norm of
the inverse of any of its diagonal blocks. With help of (5.5) we obtain using polynomial language

17 22)

Azt oYl < 1Teld(Va), {a, -, 22}]llp = Cope
One verifies as above that S,, introduced in (5.7) is odd. Let the polynomial 7" be defined by

T:= % : (Tk_l[d(xﬂ

Then T has a degree bounded by k& — 1,

Aok @14 1), 2 Ti(e?) = Sy (a).

wa-%w

and in particular [T'(z%)| > d(z;)/x;. With help of Lemma 5.5(c) we arrive at

Crp = || T [ 2/2)

S Aekes el < ITy < 5 (1851l + Co) < o

N | —

a

Let us mention at the end of this section that S,, defined in (5.7) may be rewritten for
particular (d, M) in terms of T,,[d, M] and T, _1[d, M]. This is for instance true for the cases
(d, M) = (1,[—7v;7v]), and (d, M) = (Kg,[—7;7]). Also, for particular (d, M) we may give
an approximately tight lower bound for k1 (V,(d, zo,..,2,)) in terms of A, (1,{¢};d, M) by
exploiting Lemma 5.5(d). These results are studied more detailed in the following two sections.

5.2 Optimal nodes for real Vandermonde matrices

Let us exploit in a first step the assertions of Theorems 5.4 and 5.7 in order to derive approxi-
mately tight lower bounds for the p—condition number of a Vandermonde with real nodes.
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THEOREM 5.8 Let V,, := V,,(1, 20, .., z,) denote a Vandermonde matriz of order n+ 1, n > 0,
zo, ..,y € R, and let p € [1;00] be a Hélder index. Then

1

Vv)y> —— .
I{p( )— 2(n+1)1/p

(A+v2)"+ 0 -v2)),

and this bound is attained for the nodes x; = cos(j - ©/n) up to the factor (n+ 1) - (2n + 2)'/7.
If in addition all nodes are non—negative or non—positive then

1

(@+v2+ +vD),

and this bound is attained for the nodes x; = (14 cos(j - 7/n))/2 up to the factor (n + 1)'+1/P,

In particular, both lower bounds remain valid if we scale the columns of V,,, te., if we
multiply V,, on the right by a diagonal matriz.

Proof: Let v € R be the smallest number such that zg, .., z,, € [—7v;v]=: M. Since (1, M)
is s—admissible, we may apply Theorem 5.7 which together with (A.8), (A.9) leads to

Rp(Va) 2 (4 )77 o (Va) 2 (n 4 1) 77 Tl - 1 50y ) g,

where ¢ is the Hélder index being complementary to p. Denoting the coefficients of T,, by
€o, -, Cp, We obtain using the Holder inequality (A.2)

(v + (-2,

N | =

= " ~ .
||Tn(;)”p ANy, ey )T||q 2 Z lejl = |Tu(2)| =
=0

yielding the stated lower bound. On the other hand, by taking the nodes constituting the
alternant of 7),, Theorem 5.7 together with (A.8), (A.9) gives

Rp(Va) < (0 DY7 ko (Vi) < @27 || Tl - Kpn(1)
< @nADY | Tally - (n+ 1) = @04 DY 1,00 - (n 1)1,
showing that this lower bound is attained up to the factor stated in the assertion. The reasoning

for the case of non-negative nodes is similar, here we take into account that (1,[0;7]) is p-
admissible, apply Theorem 5.4, and use the formula

701 [0 1)1y = (| T(=1+ 22) 1 = |Tu(=3)[ = 5 - (1 + VD" + (14 VD) ™). (58)

N | =

It remains to discuss k,(V,, - D) with D being diagonal. As in Section 2.1.3 one shows using
Lemma 5.5(a) that, in the case of nodes in [—7v;7],

1T "
(n+ 17k (Ve - D) 2 ||D7 T 11D (175 ) 1o,
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and an application of the Hélder inequality leads to the same conclusion. A proof for nodes in
[0;v] is similar, we omit the details. O

Let us compare the above inequalities with some classical ones obtained in [Galn88, Tyr94a].
Gautschi and Inglese gave lower bounds for the quantity r..(V,]') = &1(V,), in particular that
#1(V,) > 2" for nonnegative nodes [Galn88, Theorem 2.1] and #;(V,) > 20*+1/2 for symmetric
nodes, i.e., z; = —z,_; for j = 0,1,..,n [Galn88, Theorem 3.1]. Our corresponding estimates
of Theorem 5.8 for p = 1 are tighter for n > 2, and n > 6, respectively. Also, from Example 4.2
we may conclude that our bounds for p = 1 and arbitrary real nodes are asymptotically tight at

least up to a factor (3%/4/2) - (1++/2) - (n +1).

Lower bounds for k3(V,,) have been derived by Tyrtyshnikov [Tyr94a, Theorem 4.1], namely
271 /\/n+ 1 in the case of arbitrary nodes and 2"~! for z; € [-1;1]. Again, our corresponding
estimates are tighter for n > 2.

Let us also mention a result of Taylor [Tay78, p.54] who proved that for any family of nodes
{Zjn}o<j<n lying in the real interval [@ — 3; + B], 8 > 0, there holds

. no 4 (a+
hgrl}logf 52(Vn(17$0,n7 ---wrn,n))l/ > %7

where we have assumed (without loss of generality) that o > 0. Notice that
lirrl)inf Ko (Vi (1, 20y ovoy ) )™ = lirrl)inf Koo (Vi (1, oy ooy )™,

and for the latter quantity we have according to (4.5) and Example 4.4 the optimal lower bound
lim, o0 Kja—gsa+4)(I1n) being determined in Corollary 2.19 of Section 2.5.

We now turn to the problem of finding the ‘optimal’ real nodes minimizing the condition
number of Vandermonde matrices. We will restrict ourselves to particular real intervals and to
the infinity Holder norm, since here the assertions of Theorem 5.4 and Theorem 5.7 simplify.
The configuration of nodes minimizing the 1-condition number of Vandermonde matrices has
been investigated by Gautschi [Gau75b]. He conjectured that an optimal real configuration is
symmetric with respect to the origin.

THEOREM 5.9 Let vy >0, and n > 2.

(a) The minimum of
{koo V(15 20, .., 24)) t 20, .., Ty € [0, 7], maxz; = 7}
J

s given by

Fio e . (Mv)”‘f',(%—j)
FZ() =047+ 47" n- max T i)

This minimum is attained for the optimal configuration of nodes

n — .
vj= - (Lheos("—L-m), j=0,..n.
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(b) A lower bound for
{Koo (Vi (1; 20y .y 1)) t Toy oy @ € [—7;7],m]ax|xj| =7}

is given by

Fo(y) =014+~v+...47")- max W<n_‘])

n
2 j=0,.[n/2] m—7] J

This bound is attained for the optimal configuration of nodes

x; = - cos(

7)), j=0,.,n,

provided that v < /2 and n > 2, or v < /3 and n being sufficiently large.

Proof: In order to show (a), we notice that (1, [0;~]) is p-admissible, and apply Theorem
5.4 by taking into account that

Koo = 200 T 07160 = Tal-1 4 20,

i=0

Now T,,(=1+ 2y?) = T5,(y), and thus part (a) follows by using the formula (see, e.g., [Riv74])

N3

(=1 . <” —.J’

[n/2] ,
)= 5"+ = j ) S29)"7H, > 1. (5.9)
7=0

The lower bound of part (b) follows by Theorem 5.7 and (5.9) since (1,[—v;7]) is s
admissible, and T,[1, [—v;7]](z) = T,.(z/7). Also we have shown in Theorem 5.7 that I',,(7y) is
attained if v < 1. In the case v > 1, we have to examine the polynomial S, being defined in
(5.7). One verifies with help of the Chebyshev polynomials of the second kind U, that

Sp(z)=a -To(x/v) = (22 =) - = - Un_a(2/7) =7 - T (2/7).

=2 | =

By using (5.9) it is not difficult to show that ||S,||os < ||Th(2/7)]|s, provided n > 2 and v < /2,

implying that in this case the lower bound I', () is attained. Moreover, by using Gautschi’s
asymptotic formula for [|T,,(5)|[c mentioned in Section 2.1.1 one verifies that

T =y M lee 14 1+ 2
v <V3: lim N1, [=7; vl 14+V147 <

e [150lloo 7

L,

yielding the second part of assertion (b). ]

In order to be able to drop the constrain maxz; = v in Theorem 5.9(b), we require
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‘ n H Tn ‘ L (n) H 77;'— ‘ FI(%) ‘
1 1 2.0e0 2 3.0000e0
2 V2 4.4142e0 1 2.4000el
3 || 1.154700538 | 1.3062el || 1.521379707 | 1.7331e2
4 1 4.0000el || 1.599999997 | 9.8810e2
5 || 1.190804264 | 1.1492¢e2 || 1.190804264 | 6.4355e3
6 || 1.302411005 | 2.9550e2 || 1.302411006 | 4.2552e4
7 || 1.370544100 | 7.1563e2 || 1.370544100 | 2.5190e5
8 || 1.264911064 | 1.7199e3 || 1.181818233 | 1.5037e6
9 || 1.154700544 | 4.3721e3 || 1.212792543 | 9.7174e6
10 || 1.107495548 | 1.1713e4 || 1.244471545 | 5.8498e7
11 || 1.139975402 | 3.0690e4 || 1.200000000 | 3.3843e8
12 || 1.164110336 | 7.7552e4 || 1.164110336 | 2.1375e9
13 || 1.182344594 | 1.9064e5 || 1.182344594 | 1.2982¢10
14 || 1.196310819 | 4.5863e5 || 1.196310819 | 7.5612¢10
15 || 1.144155277 | 1.1082e6 || 1.133544020 | 4.5954el1
16 || 1.090119774 | 2.8147e6 || 1.145377677 | 2.8062e12
17 || 1.102485418 | 7.2331e6 || 1.154867318 | 1.6552e13
18 || 1.112571589 | 1.8198e7 || 1.112571589 | 9.7275e13
19 || 1.120866477 | 4.4988e7 || 1.120866477 | 5.9623e14

Table 5.1: Condition Numbers and corresponding largest nodes for optimally conditioned Van-
dermonde matrices

LEMMA 5.10 Let n > 2. The function I',, : (0;400) — (0;00) defined in Theorem 5.9(b) is
strictly conver, and attains its unique minimum at v, < /2.

Proof: Since I';, is a maximum of strictly convex functions, I',, is also strictly convex.
Moreover,

lim I',(v) = 400, lim [',(y) = +oo,

v—0 Y—+oo

so that in fact I', has a unique minimum. It remains to localize this minimum. For j =
0,1,..,[n/2] let

o 9n2 _
a0 () :=(1+x+--+w”)-x‘”+2j'g‘m'(njJ)

so that

:%-xQZI f01‘x2\/§and‘n227

(x)
azn(z) n—3
(x)

=3 .22 >1 forz>+v2andn>7.

Consequently, if > /2 then I',(z) # agn(z) for all n > 2 and ', (z) # a1,(z) for all n > 7.
Thus, that the minimum of I';; is attained at +, < V2 if we are able to show that the convex
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functions a; ,, satisfy

a’lm(\/i) >0 foraln<6
a;m(\/i) >0 forall n >4 forall j =2,..,[n/2].

A verification of these inequalities is straight forward by examining the derivatives given by

2 () @ )= ) (-2 ) = )
- n—j (1—2)2 gnti=2 '

O

In order to determine the configuration of real nodes minimizing the oo—condition of a
Vandermonde matrix of order (n+ 1), in view of Theorem 5.9(b) and Lemma 5.10 it remains to
determine the unique argument =, €]0;+/2] where the function I, becomes minimal. This is a
numerically easy task since each function 'ij_” (147 + ...+ ™) is strictly convex.

Similarly, for a nonnegative optimal configuration, we have to find the argument ;% where
the function I'} of Theorem 5.9(a) takes its minimum. Some of these optimal arguments together
with the minimal condition number are given in Table 5.1 (these quantities have been obtained
by using the computer algebra system MAPLE). In fact, the magnitude for the condition number
is the same as in the case of k;(V},) discussed by Gautschi [Gau75b, Table 4.1] and Gautschi
and Inglese [Galn88, Table 1 and Table 2].

The arguments leading to the assertion of Theorem 5.9 also apply for more general sets M
such as the union of disjoint compact intervals. However, in order to give explicit tight lower
bounds we require some information about the corresponding Chebyshev polynomials T,[1, M],
as obtained for instance by Peherstorfer in the case of several intervals (see for instance the
survey paper [Peh93]).

5.3 Sharp lower bounds for particular Krylov matrices

The results of Section 5.1 allow us also to deduce approximately tight lower bounds for the
Euclidean condition numbers of Krylov matrices K,(B,b) = (b,B-b,B%-b,..., B” - b) with
Hermitian B. For M C IR being a real interval, and n > 0 an integer, we denote by '} (M) the
minimum over all k3 (K, (B,b)), where B is any Hermitian matrix of order (m+ 1) > (n+ 1)
with eigenvalues in M, and b is any element of €™*!. Recall that by a combination of Theorem
4.11(a) and Theorem 4.12 we have
lim I'y(M)"" = A*(ID, M),

the latter quantity being computed for particular intervals M in Example 4.17, Example 4.18
and Example 4.19.

The aim of this section is to give a proof for the following
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THEOREM 5.11 Let M be a real interval, n > 1 an integer, and I';! (M) as above.

(a) In the case of scaled Hermitian matrices B we have

1 re(-1;1
1T (14 V) + (1= V2)) /2
(b) In the case of scaled positive semidefinite Hermitian matrices B we have
y 0 ([0:1)
n+1~ ((1 +V2)2n 4 (1+ \/5)—271)/2

<n+1.

(c) In the case of positive semidefinite Hermitian matrices B we have

9 1 ' ([0; 400)) 6
. < n < = 1,
10 n+1 "~ exp(g*)2n+2/(4_\/§) S5 n -+

where exp(6*)? x 3.210, confer Ezample 4.15 of Section 4.3.

(d) In the case of Hermilian malrices B we have

9 1 I (IR)
- . < w < V2 1
10 n + 1 — exp(5*)”+1/\/_ —= \/_ T ‘l‘ 9

where exp(d*) = 1.792.

Let us compare our findings of Theorem 5.11 with some classical ones obtained in [Tay78,
Tyr94a]. Taylor claimed that '}’ (M) grows asymptotically for any compact interval M at least
as 2" [Tay78, p.56]. His reasoning however seems to be incomplete since one requires a lower
bound for the Rayleigh quotient b7 - B2*=2 .5/bT . b which without any additional assumptions
on b is not available. Tyrtyshnikov [Tyr94b] gives for I'¥(IR) a lower bound of the form ¢ - "
with v < 1.14 (the proof of [Tyr94a, Lemma 3.4] is incomplete [Tyr94b]).

Notice that ko (K, (B, b)) is invariant under replacing B by — B, moreover, for invertible B,
the matrix K, (B,b) is obtained by reversing the order of the columns of K, (B~!,¥), ¥’ = B™-b.
Consequently, we have ¥ (M) = T¥(—M), and T¥ (M) = T¥ (M=), M~! :={1/z: 2 € M},
showing that, for instance, the inequalities of Theorem 5.11(b) remain valid for the sets M =
[-1;0], M = [1;00), and M = (—o0; —1].

The proof of Theorem 5.11 is separated into several parts. Let us first recall from Theorem

4.11(a) that
O,,(M)

vn+1

where by Theorem 4.10 together with (4.3)

<TY(M) < Vn+1-0,,(M), (5.10)

O, (M) = inf{||V, (K2, zo, .., acn)_1||oo72 D XQy ey Ty € M}



90 CHAPTER 5. TIGHT BOUNDS FOR PARTICULAR MATRICES

Thus for determining the quantity ©,,, (M) we may apply Theorem 5.4 and Theorem 5.7 where
we require a close form expression for the nth Chebyshev polynomial with respect to a polynomial
weight d = /g with ¢ a polynomial of degree 2n being positive on M. These polynomials are
explicitly known due to Chebyshev, Markov and Bernstein; we will give a suitable representation
in Lemma 5.12 below.

The resulting expressions for compact intervals M = [—v;v] or M = [0;~] are not very
handy, hence for a proof of parts (a), (b) we prefer to apply partly different arguments leading
to slightly weaker estimates

Proof of Theorem 5.11(a),(b): We have Ky ,(z) € [1;4/n+ 1] for ¢ € M = [-1;1], and

hence for all nodes g, ...,z, € M

||‘/n(1(2,n7 L0y -y xn)_1||oo,2 = ||Vn(17 Ly -y xn)_l : dlag (I(Z,n(xO)7 LR I(YQ,H(xn))Hoo,Q
> ||Vn(17 Loy ey xn)_1||0072'

Using in addition (5.10) and (4.3) we obtain

vn+1 vn+1l = n+1

which according to ||T,||; = |T,(7)| yields the lower bound of Theorem 5.11(a). On the other
hand, a Vandermonde matrix also is a Krylov matrix, and in Theorem 5.8 we have given a
Vandermonde matrix V,, with x3(V,) < v/2(n+ 1) -|T,(i)|, implying the stated upper bound.
Finally, Theorem 5.11(b) is proved using similar arguments, where instead of 7T, we take the
polynomial 7,[1,[0; 1]], and apply (5.8). O

For a proof of part (c) we require a particular representation of 7),[\/g,[a;b]] with ¢ a
polynomial of degree 2n.

LEMMA 5.12 Let [a;b] C R, and let ¢ be a real polynomial of degree 2n being nonnegative on
[a;+00), ¢(2) = qan - (2 — 21) - (2 — 2z2) - ..« (2 — 225,). Then for z € C\ [a; D]

T.[v4,[a,b]](z) = q<b>'<z:2)n'

2n 2n
z—a zi—a z—a zi—a
NG s - Z=) T =+ |
(].:1 z—0b z;—b i z—b z;—b
Furthermore, for z € C\ [a;4+00)

T,[va a5 +00)](2) 1=, lim T, [y4, lasb] (2

N | =

- VI U (fwa—z—wa—z]->+f[<«a—z+¢a—zn)-

Here the branch of the square rool is chosen such that Vet = ¢'%/2, —x < ¢ < =.
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Proof: By using the argument transformation

; 2-z—a—b

e 2 e [-1;1] iff z € [a; 0],

one obtains

z’—}—l_z—a z’—l_z—b

=1 z-b 2 b—a’
and thus it sufficient to prove the assertion for the interval = [a;b] = [—1;1]. Bernstein gave the
representation (see, e.g., [Mei67, Section 4.4] or [MMR94, Theorem 1.2.12, p.394])

LIV ) = 5 - (67 - Q(/v) + 5™ Q). (5.11)
provided that
(I (5) = Q) -@@), Qly) # 0 for |y < 1, (5.12)

where () is a real polynomial of degree 2n, having all its zeros outside the unit disk, and Q(0) > 0.
Here J denotes the Joukowski map introduced in Example 2.13 of Section 2.4.1, mapping the
exterior of the interval [—1;1] conformally on the exterior of the unit disk. In particular, the
zeros of q(J(y)) are given by J~1(z;) and 1/J7(2;), 1 < j < 2n. Thus

o) = - T 2= = gy yon U D - L)

o L=z oy (L= J71(z)) - (1= 1/T71(z))
T = =) - (y = I (=)
SRR SR T
Consequently, the polynomial @ in (5.12) is given by
Qy) = /a(1) ]lj[l % (5.13)

The inverse Joukowski map may be rewritten as

J7(=) = S(R(:)), R(=) ;:,/zi, S(w):Z—i.

Due to (5.11), for the first part of Lemma 5.12 it remains to show that

In fact, using (5.13), the left hand side of (5.14) may be rewritten as

srE) 7 T1 5;?;5)))_—52(%12’;3)) = S(R(z))™ ]ﬁ B(2) - R(z)
Zn (Z _ 1)n ‘ 2n

= (R(2)" = )7 [T(R(2) - R(z)) =

i=1 i=1

i=1
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implying (5.14). The second part of Lemma 5.12 now follows by taking the limit b — oc. a

We will also require the following property having a nice geometric interpretation

LEMMA 5.13 Denote by I,,, n > 1, the product of the distances between it and the (2n + 2)th
roots of unity having negative imaginary part, i.e.,
-z 27 —n—1
b= 1T+ exple i 220
1_[1 + exp(m -4 ST

j:

)|
Then
9/10 < V2 - I, - exp(8*) ™"t < 1,

and the upper bound is attained for n — co.

Proof: We first require a different representation of the constant §* being defined in Ex-
ample 4.15

1 /2 1/2 .
5 — = ./0 log |tan( 72) | da = log(2 —|—/ tydt, f(t)= log(cos(%t)).

m

Also, log |1 +exp(m-i-t)] =log2+ f(t), and thus

-log(\/i-ln):logQ—}—n;_}_l-(—10g(\/§)+zn:f(— + J ))

n+1 2 n+1

i=1

Since f(£1/2) = —log(v/2), the same sum is obtained by using the composite trapezoidal rule
for approximating the above integral. We now apply the well-known error formula

/1/2 F(0) dt 1 ( f(—= 1/2)-|-f1/2 Zn:f )):_&

2-(n+1)3
with a suitable & € (—=1/2,1/2), and notice that f”(¢) = —x2/(2-cos(w-£/2))? € [-7?/4; —72/2].

Consequently,
\/5 -1, 2 2
Srn)or © [ekp(—m)aekp(—mﬂa

z) > 9/10 for n > 1. 0

n—}—l

and the assertion follows by taking into account that exp(— W

Proof of Theorem 5.11(c): We know from Lemma 5.3 that (K3, [0;7]) is p-admissible
for each v > 0. Furthermore, ¢ := (K3,,)? is a polynomial of degree 2n, and hence the quantity

= lim |T5[y/,[0;7])(~1)]

W—)oo

is well-defined according to Lemma 5.12. Using (5.10) and Theorem 5.4 we get

iy Qnnl[057) o L e
w . > i > w . < . .
Fn ([07 +OO)) = wh—%lo \/n—_}_1 “n+ 17 Fn ([07 +OO)) <ln n+1
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It remains to give estimates for ¢,,. By Lemma 5.12 we have

1 -1 1 n+1
tn:§'(tgl+q(t/ )):i(t;—l_ H )’ t;:Hl—F\/——Z],

where z;, j = 1,..,2n are the zeros of ¢, i.e., those (2n 4 2)th roots of unity being different from
+1. Since our branch of the square root maps on the right half plane, we get 2 -t/ = I5,41, and
by applying Lemma 5.13 we arrive at

9/10 - exp(6™)2" 2 < 2. V21!, < exp(5*)2"+2,

In particular,

n+1 _ 800 ewv—dn_4q 1
0< 72 Sg-(n—}-l)-exp(&) gg,
and hence t,, = € - exp(8*)?"*2/(4 - /2) with an € € [9/10;6/5], leading to the assertion. |

Proof of Theorem 5.11(d): The reasoning of the proof of part (c) may not be applied since
the initial condition ||S,||2 < ||Th[K2.., [—7; V]]||2 of Theorem 5.7 may be shown to fail for large
~. Instead, define the polynomial

Qu(z) =[] (z-2),

Jz;<0

where z1, .., 22, are the zeros of the real polynomial ¢ := (Kz,,)?, i.e., those (2n + 2)th roots of
unity being different from 1. Let us first summarize some properties of (J,,: obviously @), is
of exact degree n, and

Qn(z)] =/ Qn(2) - Qn(T) = \/q(x) = Kyn(z), z€R. (5.15)

Moreover, with z;, also —%; is a zero of (),,. Thus (), may be factored using terms of the form
22 —2i-2-3(z;) — 1, z; # —1, and eventually z + 7, showing that Q, (i -z) = i" - Qn(z) with Q,
having only positive coefficients. In particular,

I@nll = 1Qn ()] = I (5.16)

with I, being estimated in Lemma 5.13.

Due to (5.15), (5.16), equation (4.3) together with (5.10) allows us to prove the lower bound
of Theorem 5.11 . .
T Vn+1l T v+l n+1 n+1

where it remains to apply Lemma 5.13. On the other hand, for any nodes zq, .., z, € R we have

using (5.10) and (A.2)
V(K2 0y 0 %0) H]oon > Onn(R) > TY(R)/vn + 1.

The construction of these nodes is motivated by Lemma 5.5(d). In fact, if we are able to find
real nodes zg < 1 < .. < &, being symmetric with respect to the origin, and satisfying

I (R)

x]-—i |$]—}—z|

acj—}—i

Qn(z;) =i (=1)"7 Qn(z)| =i+ (1) 1Qn ()] (5.17)

lzj — 1
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for j =0, ...,n, then by Lemma (5.5)(d), (5.15), and (5.16) we obtain
||‘/n(1(2,n7 Loy - xn)_lHoo,l S \/5 ) |Qn(l)| S \/5 . Inv
and again Lemma 5.13 leads to the upper bound of Theorem 5.11(d).

In order to prove (5.17), suppose that z1, .., z, are those zeros of ¢ with negative imaginary
part, define zp := —¢, and let

P(z) := ﬁ(z —zp), a(z):= 2”: ap(z), ap(z) :=arg(z — z).
k=0 k=0

Since §(zx) < 0, the function ay, restricted on the real axis, is continuous and strictly decreasing,
with ag(—o0) = 7, and ai(+0o0) = 0. In particular, the function a, restricted on the real axis, is
continuous and strictly decreasing, with a(—o0) = (n+ 1) -, and a(+o0) = 0. Notice also the
symmetry a(—z) = (n+ 1) -7 — a(z), following from {zo, .., 2.} = {—Z0, ..., —=Za}. Consequently,
we may find unique solutions z; of the equations a(z;) = 7/2+(n—j)-7, 0 < j < n. Obviously
zg < 1 < ... < &y, and these nodes are symmetric with respect to the origin according to the
symmetry of a. Finally, we obtain

P(aj) =i (=1)"7 - |P(zj)l, j=0,.m,

being equivalent to (5.17). Thus we have shown the assertion of Theorem 5.11. O

By proceeding as in Lemma 5.12 one shows that

(Qn(2) + Qn(2))

with @, as in the proof of Theorem 5.11(d), i.e., on the real axis we take the real part of Q.
This illustrates that the lower bound stated in Theorem 5.7 may not be tight. In particular, the
nodes proposed in Theorem 5.7, namely the alternant of T,[K5 ,, [—7;~]] for large v, are not
suitable for showing that the given lower bound is approximately attained. This follows at once
by observing that the underlying weighted Vandermonde matrix becomes singular for v — oo.
In contrast, the more suitable nodes chosen in the proof of Theorem 5.11(d) may be shown to
coincide with the zeros of Ty, 41[/p, (—00; 00)], where p(z) := (14 2%) - K3 ,(2)%.

1
y—+oo 2

To[Kan, R](2) = lim T,[Ky ., [—7;7]](2) =

In all four cases mentioned in Theorem 5.11, we have obtained approximately tight lower
bounds 'Y (M) for the Euclidean condition number of Krylov matrices which may be shown to
be of the same magnitude as the weighted Lebesgue constants A, (1,ID; K, M). For instance,
by adapting the reasoning of Freund and Ruscheweyh in the proofs of [FrRu86, Theorem (3.5)
and Theorem (6.12)], one verifies using (5.15), (5.16), and (5.17) that

A, (1,D; K, R) = A, (1, {i}; Ky, R) = 1,
with I,, being defined in Lemma 5.13.
Let us finally notice that the reasoning leading to the conclusion of Theorem 5.11 may also
be applied in order to determine explicitly

min_ min koo (Vi(d, 2o, .., 2,)), 7 € (0;+00]
To,.,xn€[0yy] d
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(compare Problem (D) of Section 4). In fact, as a consequence of a result of Bauer [Bau63,
Theorem Il(a)], for any fixed configuration of nodes, the minimum over d is attained for the
optimal density function d = K ,, which, restricted on [0;00), is a polynomial of degree n.
Hence it is sufficient to find the quantity

min_ Koo (Vi (Koo s o, oy Tp))
%0, Tn€[057]

which by Theorem 5.4 is equal to ||Tu[Keon;[0;7]]|lec: The corresponding optimal nodes are
given by the alternant of fn[Koom; [0;v]], a polynomial being explicitly given in Lemma 5.12.

5.4 An application to positive definite Hankel matrices

To the end of this work, let us discuss some consequences of Theorem 5.11.

As already noticed in [Tay78, Tyr94a], a lower bound for the condition number of Krylov
matrices also implies a lower bound for the condition number of positive definite Hankel matrices,
where we recall that a Hankel matrix has constant entries along antidiagonals. Notice that there
exist well-conditioned Hankel matrices, for instance the anti-identity J containing 1 on the main
antidiagonal and otherwise zero for which obviously ky(J) = 1. It is widely believed that the
condition number of any Hankel matrix can be bounded below by a (fast growing) function which
takes as argument the number of non-singular principal submatrices (compare the concluding
remarks in [Tyr94al). However, we may construct well-conditioned dense Hankel matrices H,
by reversing the order of columns of positive definite Toeplitz matrices M, (v, 1) (see Section
3.1), where p,v are measures supported on the unit circle. For instance, let du(z) = |dz|,
and dv(z) = w(z) |dz| with a non—constant density function w satisfying w; < w(z) < ws
for all z € 9D with positive constants wy, wy. Then from (3.10) of Section 3.2 it follows that
ko(Hy) = K2(My(v, 1)) < we/wy for all n > 0, though all principal submatrices of H,, might be
non-singular

The situation is different if we restrict ourselves to positive definite Hankel matrices

COROLLARY 5.14 For each real positive definite Hankel matriz H, = (hjyx);k=0,.n of order
n+1, n>1, we have

HZ(Hn) Z 5

2 *\ 27 *
W ((S )2 +2, exp(5 )2 ~ 32107

- exp
and this bound is tight up to the factor 5 - (n + 1)3.

If in addition (H,,),, is the family of moment matrices associated to a scalar product on the
real line induced by some measure u, i.e.,

hy = /IR z" du(z), 0<Ek<2n,
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then ko (H,,) is greater or equal to

exp(6*)4" /(40 - (n 4+ 1)%) =~ 10.30"/(2n + 2)? if supp(p) C [0;+00),
(L4 VB + (1 V3) ™)/ (20 + 2)? ~ 3397/ 20+ 2)2 i supp(u) C [051],
(14 V2" + (1 - VI (20 + 27 ~ 5837/ (20 + 27 if supb() C [-1;1],

and these bounds are tight, at least up to the factors 2 - (n 4+ 1)3, (n + 1)*, and 2 - (n + 1)%,
respectively.

Proof:  Let us first show that each real positive definite Hankel matrix H,, = (h;4%); k=0,..n
may be rewritten in the form

H, =V,(d, zo,.,z,)"  V,(d, xo, .., x,) (5.18)

with real d, zg, .., z,, (for a linear algebra proof, see [Tyr94a, Lemma 2.1]). In fact, by choosing
hon+1 = 0 and hg,yo sufficiently large, we may insure that the extended Hankel matrix H,4+q :=
(hj+k)jk=0,.n+1 also is positive definite. As a consequence, the linear functional ¢ defined on
Pango by c(z¥) := hy, 0 < k < 2n+2, is positive definite. Then assertion (5.18) is equivalent to
the existence of a Gaussian quadrature formula

2”: f(z;)/d(z;)? (5.19)

satisfying Q(z*) = ¢(2*) = hy, k = 0,1,..,2n. Such a formula however can be given explicitly,
take as z; the zeros of the n + 1th orthogonal polynomial and as 1/d(z;)? the corresponding
Christoffel numbers, e.g., d? equals the corresponding nth Szegd kernel.

Notice also that, for each real weighted Vandermonde matrix, the right hand side of (5.18)
is a positive definite Hankel matrix. Thus the first part of the assertion follows from Theorem
5.11(d), since for each matrix B we have ko(BH - B) = ky(B)2.

If now the moments hg, ..., hy, are generated by a measure p supported on the real line, then
(5.19) remains valid, where we recall that the numbers z; lie in the smallest interval containing
the support of . Therefore, (5.18) still holds, and the lower bounds of the second part follow
from Theorem 5.11(a)—(c). Also, defining a discrete measure by the quadrature formula (5.19)
with z;,d as in the proofs of the different parts of Theorem 5.11, we see that these bounds are
approximately attained up to the factors resulting from Theorem 5.11. a

Let us also mention that the lower bounds of Corollary 5.14 are approximately attained for
the measure

dx
A+224at4 .. 422 -(1+22)-/(afa—1)- (1 -z/b)’

du,(z) = € [a; 0],

with [a;b] being an appropriately chosen interval. Here one uses well-established connections
between the polynomials being orthogonal with respect to the measure p,, and the Chebyshev
polynomials of Lemma 5.12 (see, e.g., [Sze67, Section 2.6]), we omit the details.
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Corollary 5.14 states that positive definite Hankel matrices are ill-conditioned even for not
very high orders. To our knowledge, bounds of this type have not been established before (the
proof of [Tyr94a, Theorem 5.1] is incomplete [Tyr94b]). It is interesting to compare our findings
with the asymptotic of the condition number of the Hilbert matrix discussed in Example 3.3 of
Section 3.1. Recall that the Hilbert matrix is the moment matrix M, (p, gp) of the measure
du(z) = dx on [0;1], and its condition number grows asymptotically as (14 v/2)**//n. Hence,
though obviously ill-conditioned, the Hilbert matrix is still ‘relatively well-conditioned’ as a
member of the class of positive definite Hankel matrices studied in Corollary 5.14.

In order to compare Corollary 5.14 with our findings of Section 3.3, notice that in general
the two quantities

inf  liminf ko (M, (i, pp))Y/?,  and  liminf  inf ko (M, (i, pp)) /™

supp(u)cI n—oo n—eo supp(u)CI

for I C R are different. In fact, the second one is discussed in Corollary 5.14, for instance
we obtain exp(§*)? &~ 3.210 in the case I = IR. For the first one, Taylor [Tay78, Corollary to
Theorem 3] gave the lower bound

I=1a;b]: max{a? b*}-[4/(b— a)]* > 4,
whereas from Lemma 3.4 together with Corollary 3.15 we deduce the exact value
I=la;b]:  A(D,[a;0))* - A([a; 0], D)?

being valid for the subclass of measures p with cap(supp(p)) > 0 satisfying a, b € supp(p). Note
that A([a;b],D)? = max{1,a? b*}, and A(ID, [a;b]) has been determined in Lemma 2.18. In
particular it follows that

glg)l A(ID, [a; b])* - A([a; b], D)* = Ibn>iél[(b_1 + V1 4072) -max{1,b}]* = (1 +V2)%

Thus we have shown

COROLLARY 5.15 Denote by M the sel of measures with support being a compact subset of R,
then

inf lim inf ko (M, (1, pp)) /™ = (14 v2)? ~ 5.828,

MeMl n— 00

liminf inf ko (M, (1, pp))™ = exp(6*)? ~ 3.210.

n—00 UGMl

Let us finally mention another application of Theorem 5.11, namely the problem of the
numerical condition of the problem of rational interpolation at real distinct nodes.

First recall from Appendix A that for each (rectangular) matrix B

yll2 - || B - x|l
F.ZQ(B) = { s
vy |[B-yllz - [|2]]2
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hence we obtain a lower bound kq(B) > ko(B’), if B results from B by dropping some columns.
In particular, if B contains n+ 1 columns building up a Krylov matrix K, (B,b) with Hermitian
B , then the lower bounds of Theorem 5.11 are still valid.

‘Striped’” Krylov matrices containing two column blocks of Krylov matrices occur naturally
in the context of the (linearized) rational interpolation problem (see, e.g., [BGMS81]). Given
two positive integers p, v, real nodes zg,.., 2,4, located in the interval [a; (], and real data
(fo,90)s -+, (fustv, Gutv), we look for polynomials P and () with degrees bounded by y, and v,
respectively, such that

Ji-P(z;) —g;-Qz;) =0, j=0,.,u+v.

With f = (fo, ., furs)Ts 9 = (g0, s §utv), and X = diag (2o, .., T,4,), this problem leads to a
homogeneous system of (u+v +1) linear equations and (p+ v +2) unknowns, where the matrix
of coeflicients is given by

(Ku (X5 NI K.(X59)).

Due to freedom in scaling, one usually fixes either the leading coefficient of ¢ or the value of @)
at zero, leading to the square matrices of coefficients

A= (Ku(X; ) Kyo1(X5g)) or A= (Ku(X; )| K1 (X;X - g)).

One could imagine that in the case of clustered data, i.e., of nearly coinciding nodes, this matrix
is ill-conditioned. However, the condition number of A already is very large independent of the
location of the (real) nodes, namely at least 3-1.79""!/(5n+45) with n = min{u, v —1} according
to Theorem 5.11, and this lower bound certainly may be improved.
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Appendix A

Matrix and Vector Norms

The aim of this part is to give a short summary of well-known results on vector or matrix Hoélder
norms which are required elsewhere in our work. We will omit proofs (for a short summary, see,
e.g., [GoVL93, pp.53-58]). Given an integer n > 1, and p € [1;+o0], the p-Hélder norm of a
vector = = (z1,..,2,)7 € €" is defined by

lellp = (Zlasl?)” or el = max oyl
P = j 158, 1%

The number ¢ € [1;+oc] with 1/p+1/¢ = 1 is called the complementary Hélder index of p. We
have the Holder inequality

Y olai-yil < llallp- Iyl 2,y € €. (A.1)

i=1

Of course all norms on €" are equivalent. For Hélder vector norms, we may give explicitly the
corresponding equivalence constants using the Hdélder inequality

lellp, < [lallp, <0777 le]lpy, p1 <oy @ E€CT (A.2)

(both bounds are sharp, consider z = (1,0,..,0)", and z = (1,1, ..,1)¥, respectively). The

Hélder matrix norm being subordinate to the Holder vector norms ||-||,, and || -||,, is given by
A H ., 4.
[ Allprgs = max 22l 7oA el oy g (A.3)
w20 |zllp, w0 |[elp, - [yl
where we write shorter ||A||, := ||A]|,,. Note that ||A||,, 5, = [|A7|]4.0,, Where AH denotes

the Hermitian counterpart of A.

There are well-know formulas for evaluating ||A||; and || A||.. More generally, one verifies
that ||A||p,co is obtained by taking the maximum of the g—norms of the rows of A (and hence
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104 APPENDIX A. MATRIX AND VECTOR NORMS

[|All1,, equals the maximum of the p—norms of the columns of A). In particular, ||A||; . is the
in modulus largest element of A, and one defines for square matrices

||A||Tu7’ing =n- ||A||1,oov Aecemn, (A.4)

It is not difficult to verify that, for positive definite Hermitian matrices A (such as modified
moment matrices discussed in Chapter 3), the in modulus largest element of A lies on the
diagonal.

The Euclidean or 2-norm || - ||z of a matrix A € €™*" is obtained as the square root of the
largest eigenvalue of the positive semidefinite matrix A7 - A, in particular ||A" - A||; = ||A]|2 =
[|AH||2. The Froebenius norm || - ||r is defined by

1AIlE =320 lajil* = trace(A™ - A), A = (aj5) € €™, (A.5)
7k

Recall that both norms are invariant under multiplication on the left or right by unitary fac-
tors. Moreover, if A is Hermitian, then both ||A||; and ||A||F are invariant under a similarity
transformation of A. We have the estimate

1
NG

Inequality (A.2) enables us also to derive various inequalities between matrix Holder norms, let

Al < J[All2 < [[AllF, A € €5 (A.6)

us mention the examples

WAl zuring < 1| Allprge, A € TV, (A7)
[1Allprco < [Allprgy < M2 - [|Allpy 00, A € €T, (A-8)
n P Alloo gy < Allpys < [lAllsogs, A € €757 (A.9)

The pseudo-inverse of a matrix A € €™*" having full column rank n (and thus m > n) is
given by At = (A7 . A)~'. A" if m = n then we obtain the classical inverse AT = A=, It will
be basic for the considerations of Section 4 that, in the cases p = 2 or m = n, we may estimate
the p-norm of AT in terms of A

VP A o < AT < AT |0 :maxM, Aeqr A.10
|| || 7]9—” ||p—|| || P z£0 ||A$||oo ( )

—1/p [lz]]2 + IE3IP: mxn

m -max ——— < [|A <max———, A€l . A1l
220 ||A - 2||s0 < 1A% = 220 ||A - 2|]s0 ( )

Here, (A.10) is an immediate consequence of (A.9), whereas for (A.11) we require beside (A.2)

also the representation of eigenvalues of A . A in terms of its Rayleigh quotient. Note that
(A.11) in general does not remain valid for Holder norms with p # 2.

We finally define for A € €™*" the Hoélder condition numbers &y, ,, (A) = [|AT||,.p0 -
[1Allp1,pz» and sy (A) := |[AT]], - || A]lp-



Appendix B

Some elements of Potential Theory

Let 2 C € be open. For a compact set G C €2, we introduce a weighted maximum norm on the
space C(G) of functions f being continuous on G' by

f(2)
9(2)
where g € C(G) is strictly positive, referred to as a weight function on G. On P,, the space
of polynomials of degree at most n, any two norms are equivalent. In order to compare two
weighted maximum norms, one has to study the quantity

| Pllk,1
1Pllg.c

Given compact sets G, H C €2, a triangular array Z := (2j,)o<j<n of nodes in G, 2g, .., 2nn
being distinct, and sequences of weight functions (g.), on G, and (h,), on H, respectively,
in the sequel of this chapter we will be interested in establishing nth root asymptotics for the
quantities

[1/1l.G := max

3

A, (h,H;g,G) == max{ :PeP,, P#0}. (B.1)

An (hn7 H; 9n, G)7 and An(hTu H; 9n, {ZO,na Zl,na LA Zn,n})-

The latter quantity is referred to as a weighted Lebesgue constant . Its relation to the classical
Lebesgue constant becomes clear by the following considerations: with help of the functions

n
wzn(z) =[] (z = zin),
i=o

each polynomial P of degree at most n may be rewritten as

Plz) _ w7, (2) 9n(zin)  P(2jn)
ha(2) Z

(= zin) W (Zin)  hl2) ga(zin)

Consequently, A, (gn, 5 gny {200y 21,05 -+ Zn,n}) 18 equal to a weighted generalization of the clas-
sical Lebesgue function

- |wzn(2)] 9n(Zjn)
An(hnv{z};gnv{zo,nvzl,m --7Zn,n}) - ’ ' : . (BQ)
D ETE A e R )
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106 APPENDIX B. SOME ELEMENTS OF POTENTIAL THEORY

Let L,(f) denote the polynomial of degree at most n which interpolates a given f € C(G) at
the nodes 2o, .., 2p,n. One verifies that the induced operator norm of the interpolation operator
L, : (C(G), || llgnc) = (C(G), || lg.,c) is given by the weighted Lebesgue constant

||Ln|| = An(gn7 G7 Gn, {ZO,'M Zl,nv E Zn,n})-

Moreover, for each f € C(G) we have
I = La(Dllgna < A+ [[Lall) - min [If = Pllg,.c,

and therefore the size of the weighted Lebesgue constant will be also important for studying the
problem whether L, (f) tends uniformly to f with respect to a weighted maximum norm for all

Fec(a).

For a study of nth root asymptotics it is appropriate to employ techniques from Potential
theory, where we follow the notation proposed by Nikishin & Sorokin in [NiSo88, Chapter 5].
This chapter is organized as follows: in Section B.1 we recall some basic notation. The exact
assumptions for the sets G, H, and for the sequences of density functions are formulated in
Section B.2.1. An asymptotic lower bound for the weighted Lebesgue constant in terms of the
limit distribution of nodes is established in Section B.2.2. The aim of Section B.3 is to derive an
asymptotic lower bound being independent of the limit distribution of nodes, but being attained
for a particular limit distribution, for instance for so—called weighted Fekete nodes.

B.1 Some basic notation

Denote by C(G)’ the space of continuous linear functionals being dual to C(G), the set of functions
being continuous on a compact set G C €, equipped with the maximum norm || - ||g = || ||1,6-
By the Riesz theorem, C(G)’, equipped with the operator norm, is isometric to the space M4 (G)
of finite charges on G, i.e., real o—additive functions defined on Borel subsets of G, the isometrie
being expressed by the relation

plh) = [ 1) du(z), [ECG), ne M)

Furthermore, we denote by M(G) the set of measures, i.e., charges that take nonnegative
values; and by Mg(G) the subset of probability measures u for which u(G) = 1. The support
S = supp(p) of a measure p € M(G) is the smallest closed set such that p(S) = u(G). Note that
the operator norm of a linear functional induced by p € M(G) is given by u(G). In particular,
My (G) is isometric to a closed subset of the unit ball in C(G)’, which is known to be weakly
compact. Consequently, each sequence in My(G) has a weak accumulation point in My(G).

For the following considerations we will require the concept of the Green function, where
we follow [NiSo88, Section 5, pp.188]. Recall that a domain D with compact boundary 9D is
called regular if the Dirichlet problem has a solution for each function being continuous on 9D.
We say that a compact set GG is regular if each of the connected components of €\ G is regular.
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DEFINITION B.1 Let G C € be compact and regular, and let D be a connecled component of
C\G, where €© = CU{cc} denotes the compactification of the complex plane. The Green function
with singularity at a point ¢ € D, { # oo, is a function gg(-, () with the following properties

(a)  ga( Q)

(b)  ga(-,¢) vanishes on €\ D,

(¢)  gal <)

(d)  g(2) = gc(z,¢) —log(1/|z — (]|) is bounded around (.

If ¢ = oo, condition (d) is replaced by the requirement that ¢(z) = go(z,00) — log|z| has to be
bounded around infinity. a

is continuous on €\ {C},

is harmonic and positive on D \ {(}

This definition of the Green function gg(-, () perhaps needs some clarification: Some authors
prefer to use instead of G the index D, and in some publications g¢(+, () is only defined on D or
its closure. For instance, gg(-, c0) coincides in D with the Green function gg of Definition 2.8,
and is continued to a continuous function on € by ¢g¢(z,00) = 0 for all z ¢ D.

With the notation of Definition B.1, if ¢(-,{) provides a conformal mapping of D on the
exterior of the unit disk with pole in ¢, then gg(z,() = log|¢(z,()| for all z € D. Let us also
recall that the capacity cap(G) of G is obtained by the formula lim,_, gg(z,00) — log|z| =
—log cap(G) =: W(G), and W (G) denotes its Robin constant (see, e.g., [NiSo88, p.190]).

Following [NiSo88, p.180ff], in the sequel we will restrict ourselves sometimes to sets H
having a certain regularity property.

DEFINITION B.2 Let H C © be closed, ( € H, and H") := Hn{z € € : |2 - (| < r},
r > 0. We say that H has the K—property at ¢ if there are positive numbers K and rq such that
W(H") < K -log(1/r) for all 0 < r < 0.

We say that H has the K-property if H is compact, and if it has the K—property at any of
its points. a

Note that a set with K-property is regular with respect to the Dirichlet problem, and
necessarily has positive capacity (see [Tsub9, Corollary 2, p.104]). Moreover, with Hy, Hs, also
Hy U Hy has the K—property. Also, a compact set H has the K—property at each of the points
lying in its interior. As an example, circular arcs, and segments have the K—property. Moreover,
if S is a set with K—property containing ¢ € H and if SN {z: |z — (| < ro} C H for some rg,
then H has the K—property at .

DEFINITION B.3 The logarithmic potential of a measure p with compact support is the funclion

Vi) = [log —

|t = 2|

du(t).

Here the integral is to be thought of in the Lebesgue sense, and V[u](z) € (—oo;40o0]. O
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The potential V' [u] is harmonic (and therefore continuous) in €\ supp(u), and superharmonic
in € (see [NiSo88, Theorem 1.2]). Some further properties are summarized in

THEOREM B.4 Let the sequence of measures (p,), C M(G) converging weakly to p € M(G),
€.,

[ 1) dunz) = [ 1) dutz)

for all f € C(G). Furthermore, suppose that H C § is compact.

(a) If pn € Mo(G), then the sequence (V]py])n converges to Viu] locally uniformly in each
connected component of C\ G.

(b) If (21)n C € converges to z € C, then

Vipl(z) < Hminf V]p,](z,). (B.3)

n— 00
(c) Let f € C(H). If H has the K-property at ( € H, and if there exists a set Hy C H with

cap(Hp) =0 and
Vig](z) + f(2) 20,z € H\ Ho,

then we have V[p](¢) + f(¢) > 0.

(d) If (fn)n C C(H) converges uniformly to f € C(H), and if H has the K-property, then

lim_min (V) (2) + /() = min (VI (=) + 1(2)).

n—00 z€ H ze€H

Proof: Parts (b), (c), (d) are cited from [NiSo88, Theorem 1.1, Theorem 4.1, Theorem
4.3], respectively. In order to show (a), let D be a connected component of €\ G, and define
Uy, = V[p,] — V[u], n > 0. One easily verifies that the sequence (u,), is uniformly bounded
on closed subsets of D, and each u, is harmonic on D. Thus (u,), is a normal family on D.
Moreover, by assumption we have pointwise convergence of (u,), to the zero function on D, and
consequently (uy), converges uniformly on each compact subset of D to the zero function. 0O

B.2 A lower bound for the weighted Lebesgue constant

B.2.1 Formulation of the assumptions

Let us shortly recall the given data as mentioned already in the introduction of Chapter B. The
set Q C € is open, G, H C {2 are compact. We will always assume implicitly that the set H has
the K-property described in Definition B.2 (though many of the subsequent results also hold
for more general sets). Additional assumptions for the set G’ will be mentioned explicitly.
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Our second assumption concerns the sequences of density functions: we suppose that
1 1
E'loggn%fGa and Eloghn_}va

uniformly in G, and in H, respectively, and therefore fg € C(G), fu € C(H). In order to
simplify notation, in the sequel we will not write down all dependencies, but use instead the
abbreviations

5n = log An(hna H; 9n, G)l/n’ 5Z,n = 108; An(hna H; 9n, {ZO,na Z1my - Zn,n})l/nv (B4)

where Z = (ij)ostn is a triangular array of nodes being elements of G.

Let us also specify families of nodes Z = (Zj,n)OSan which we wish to consider. First
Zjn € G, and zgp, .., 2n,n are distinct for each n > 0. Introducing the zero counting measures
Ty =Tz, of wz, by
1

Tn(f) = n+ 1 ';Jf(zj,n)a f € C(G)v

we see that (7,), C Mo(G), and therefore (7,), is weakly compact. We assume that there is
at most one weak limit point (which can be always satisfied by eventually considering subse-
quences), and denote this limit by 7 = 77 € My(G).

B.2.2 A lower bound in terms of the distribution of nodes

For a given family of nodes Z = (2, )o<j<n in G, let
Gz:={Cel: lgzrrl){)%forsnjléln |zjn — ¢| = 0},
7 :={C € C:limsup min |z;, — (| =0}.
n—co 0<7<n
Note that Gz, G, are both compact, G, C Gz C G, and Gz is the set of accumulation points

of {z;,, : 0 < j < n}. Moreover, supp(t) C G',, where as before 7 = 77 denotes the asymptotic
distribution of nodes. Since (7z,,), converges weakly to 7z, we know from Theorem B.4(a) that

1
n+1

Virzal(2) = log lwzn(2)] = VIrz](2),

locally uniformly in each connected component of € \ Gz, where € = € U {oc} denotes the
compactification of the complex plane.

We first want to show that the number of accumulation points of (§z,,), only depends on
the family of nodes Z.

THEOREM B.5 Forn > 0, let

azn = Qn = O?Jagxn(fg(zm) + VIrinl(zin),
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where T;,, denotes the zero counting measure of the polynomial wz ., (2)/(z — z;,), i.e.,

[ 16 dminz) = =5 f(a), S EC(G).

ki

Then
Tim (37,0~ az,) = —min(fu (=) + VI7l(2))

Proof: In view of (B.2), we have to take the maximum for z € H of the expression

1 - |lwzn(2)] gn(2jn)
— -log : . ,
n ]2_;) [(z = zjn) - Wz (Zim)| Bn(2)
= — -log max |wz.n (2)] In(zjn) | logna(2)
n 0<i<n (2 = zj5) * Wy, (250)| hn(2) n
log 7,
= s (VIrs,)(zi) = VIri,d(2) 1080 (23,0 " — log oy (2)17) 4 128242

with 7,,(z) € [1;n+1] according to well-known inequalities between vector Hélder norms. Hence,
by the uniform convergence of the sequences of density functions we get

570 = goax (fo(zin) + VIrinl () = min(fu () + Ve (D) + 60), - (B5)

where lim,,_, o maxo<;<n €, = 0. Note that (Tj(n)m)n also converges weakly to 7 for any integers
j(n) € {0,...,n}. Let the maximum on the right hand side of (B.5) be attained for j = j(n),
then with help of Theorem B.4(d) we arrive at

lim sup(9z, — az,n) + min(f () + VI7](2)

= lim sup(fc; (j(n).n) + VI[Tj().n] (2j().0) = @7,0) < 0.

In order to obtain the opposite inequality, suppose that the maximum in az, is attained for
j=7j(n). Then

620 =z 2 —min(fa1() + VI[7j()n) (2)) + )0

and the assertion follows by applying again Theorem B.4(d). a

LEMMA B.6 We have

limsupagz, > sup (fa(¢)+ VI[7](¢)), liminfaz, > sup (fa(¢)+ V[7](()).

n—00 (eGy n—roo CEG'Z

Proof: For each ¢ € Gz there exist a subsequence of nodes (z;, ,, ) converging to (. With
help of (B.3) we may conclude that

lim Sup azmn > h]?_l)gf(fG(ij,nk) + V[Ukﬁk](%kﬂk)) > fG (C) + V[T](C),

n—00
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leading to the first part of the assertion. The second part follows by using a similar argument:
Let

liminfaz, = hm aan,
n—00

then for each ¢ € G’ there exists a sequence of integers jj such that z;, ,, — ¢ for & — oo.
Hence the second assertion again is a consequence of (B.3). O

As a consequence of Theorem B.5 and Lemma B.6 we have
CoROLLARY B.7 If there exist a ( € € with V[7](() = oo, then liminf,_, §7, = +oo.

Proof: Note that V7] is finite on € \ supp(7), consequently, ¢ € supp(t) C G’,, and the
assertion follows from Lemma B.6. a

We finally describe a class of nodes where we may establish the exact nth root behavour.

THEOREM B.8 Let the family of nodes Z = (zj,)o<j<n be defined by z;, = ¢(j/n), where ¢
maps conformally a neighborhood of [0;1] on some subset of G. Then Gz = G'; = supp(r) =
¢([0;1]), VIr](z) = — [log|z — ¢(t)| dt, and

lim 0zn = —min(fu(z) + VIr](2)) + sup (Jo(2) + VIr](z)).

n— 00 ZGGZ

Proof: We first notice that, for all f € C(G), the function f o ¢ is continuous on [0;1]. In
particular, it is Riemann integrable on [0; 1] and thus

/f ) dra(z _n—l-lzf (3/n)) _>/

This yields the explicit formula for V[r], and that for Gz, G", is trivial.

In the second part of the proof we want to show that for each sequence of nodes (z;, n, )%
converging to ¢ we have V[7j, ,,,1(z;, ) = V[7](¢). Notice that, by applying the reasoning of
the proof of Lemma B.6, this property together with Theorem B.5 implies the assertion.

For a given ¢ > 0, let U, := {2z € G : |z — (| < ¢}. We introduce the restriction of 7,7, .,
on U,, denoted by 7*, 7}, and put 7’ :=7 — 7%, 7/ := 7, ,,, — 7. Obviously, (7)), C M(G\U,)
tends weakly to 7/ € M(G \ U,). From Theorem B.4(a) we know that V[r]] converges to V[7’]
locally uniformly in U, in particular

hm VIr(zjen) = VIT(O)-

k—oo

We still have to examine 777, 7*. Let { = ¢({g), then, by assumption on ¢, the function ¢t —
log |¢(to) — ¢(t)| is Riemann integrable on [0; 1]. In particular, |V[7*](¢)| tends to zero for € — 0.
Thus for the assertion of the Lemma it is suflicient to show that

VImElzimi)| < e€), k>0, (B.6)
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with ¢(¢) tending to zero for ¢ — 0. First we may assume without loss of generality that
|o(t1) — &(t2)] < 1 for any two ¢q,t5 € [0;1]. It follows that log |z, — z¢,| < 0, and

VIri(zjme) >0, k> 0.

By assumption on ¢ there exists a constant ¢; > 0 such that, for all 0 < j,¢ < n,

[l
|Zj,n - Zf,nl > ——.
n
Consequently, there exists a constant ¢y > 0 such that, for all € < ¢y and for all n > 0, at most
¢z - € - n nodes out of {zg, .., 2, .} lie in U.. We obtain for any & > 0 and for any sufficiently
small €

1
V[Tk](’z]kmk) = _n_ H log |ij7nk - Z&nk|
2g,ny, EULH#]

9 [co-emp—1] cL-m o€
< —— lo <—2-/ log(cy - t) dt =: c(e),
< T ton <2 [T (e = et
leading to (B.6). O

Let us illustrate the results of this section with help of two examples.

ExaMPLE B.9 Let z;, = z;, 0 < j < n, with (2;); having only a finite number N of accumu-
lation points, for instance the geometric nodes z; = 277 or the harmonic nodes z; = 1/(j + 1).
Then for the weak limit T of the sequence of zero counting measures T, we obtain

ZCJ ¢;), [fec(q),

with suitable c;,(;. In particular, its potential

Zc] log _C]|

has poles, and by Corollary B.7 we may conclude that liminf, ., 67, = cc. a

ExampLE B.10 Consider equidistant nodes on [—

1;1], ice., zj, = —1+4+2j/n, 0 < j<n. Then
by Theorem B.8 we get Gz = G'; = supp(7) = [—1;

i 1], and

1 1 1
V[T](Z):—/O log|z—(—1—|—2-t)|dt:—§/_llog|z—t| dt.

Hence . )
V() =1 - —= log 1 - | - %-10g|1—|—z|, 2 €R,
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and for z = ' € 9D\ R

1 — cos(a)
2

1+ cos(a)

5 log |1+ z|.

V[T](z):1—£-|sin(a)|— log |1 — 2| —

In particular one verifies that

Jpin VIR(G) =1-log(2),  max V[r](z) =1, minVir](z) =1- log V2 — 2.

Using Theorem B.8 and (B.4}) we get for the (non-weighted) Lebesque constant of equidistant
nodes on [—1;1]

1i_>m A (L [-1;1]5 1, {200 21,05 -+, an})l/n =2,

1i_>m A, (1,1D; 1, {20,ms 21,m5 -, zn’n})l/n =2 exp(w/4),

in accordance with resulls mentioned in Fxample 4.2 and Frample 4.7. a

B.3 Optimal nodes

The aim of this section is to study families of nodes Z where the quantity éz, is minimized.
A connection to the quantity §, is given, and we establish for families of weights required in
Section 4.3 an explicit formula for the limit of (4,,),.

In Section B.3.1 we recall the (electrostatical) problem of how to distribute a positive unity
charge on a given compact set G such that, in the presence of an external field represented by
f € C(G), the energy is minimized. Most of the results of this section are cited from [MhSa92],
however, according to the restriction to sets having the K-property several results simplify (see
[NiSo88]); proofs for these simplifications will be given. In Section B.3.2 we study the family of
weighted Fekete nodes. Properties for the quantities 6, 7 and 6, are deduced in Section B.3.3.

B.3.1 The equilibrium measure with external field

The energy of u € M(G) with respect to the external field f € C(G) is defined by

) = (Vi) +2+ () du(z).
Consider the extremal problem of finding
W(f,G)=inf{F(u): p € Mo(G)}. (B.7)

This problem and related extremal problems have been considered by Gonchar & Rakhmanov

[GoRa86] and Mhaskar & Saff [MhSa85] for sets G C R being not necessarily bounded. A
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discussion of the complex case may be found in [NiSo88, Saf90, MhSa92], where again also the
case of unbounded G and not necessarily continues functions f is studied.

The solution of problem (B.7) is characterized in the following Theorem being a summary
of [NiSo88, Theorem 4.4] and [MhSa92, Theorem 3.1]

THEOREM B.11 Let cap(G) > 0. Then the following properties hold

(a) The quantity W (f,G) is finite, moreover, there exists exactly one measure T = 7(f, G) with
F(r) =W(f,G), called the equilibrium measure. In particular, cap(supp(7)) > 0.

(b) Letw(f,G):=WI(f,G)— [ f(t)dr(t). There exists a set K(f,G) of capacity zero such that

the following equilibrium conditions hold

>w(f,G) ifze G\ K(f,G),
V[T](Z)+f(z){ §wEf,G§ iszsupp(;). )

(¢) If in addition G has the K-property, then the exceptional set K(f,G) of part (b) is empty,
i.e., we have

(f.G) ifz€dq,

(7.G) if = € supp(r).

v

Z (B.8)

VIrl(z) + f(2) {

Note that part (c) of Theorem B.11 follows from part (b) together with Theorem B.4(c).

In the case of an unbounded closed set G one may show that as well that supp(7(f,G))
is compact; however, additional restrictions on the weight function at infinity are required
(f(z)/log|z| is asymptotically less than 1 in [GoRa86], and equal to zero in [MhSa85, MhSa92]).
Note also that in order to solve (B.7) explicitly, we have to solve the difficult problem of find-
ing supp(t). Afterwards, 7 may be determined by a balayage while solving the corresponding
Dirichlet problem (see, e.g., [Tsu59, Chapter I11.10]). In our applications we will be mostly
interested in the simpler case f(z) = ¢ — V[u](2z) with ¢ a constant (see Example B.15 below).

For the sequel we will need a technical Lemma where we summarize the ‘first’ maximum
principle [NiSo88, Theorem 1.3] and a weak form of the ‘second’ maximum principle [NiSo88,
Theorem 2.5] for potentials (the latter is also referred to as the ‘principle of domination’).

LemMMA B.12 Let E C € be compact, i € Mo(F), v € M(E) with v(E) < 1, and denote by
Do (E) the unbounded connected component of C\ E. Suppose that there exist constants Cy,C5
with

VIpl(z) < max{V[v](z) + C1,C2}, =z € supp(p).
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Then
Vipl(z) < max{V[v](z) + C1,C3}, =z¢€ C.

Moreover, in the case v(F) =1 we have
either Cy <0 or dzg € Doo(E) : V[u](z0) > V[v](20) + C1

if and only if
Ci=0 and Yz €Dy (E): V[ul(z) =V](z).

Proof:  The fact V[u](z) < C; for z € € is shown in [NiSo88, Theorem 1.3], here we only
discuss the rest of the assertion. Let u(z) := V[u](z) — Cy — V[r](z). First notice that u is
bounded on any compact subset of €, moreover, by definition of the potential of a unit measure
with compact support, « is continuous at infinity, with u(co) = —C} in the case v(E) = 1, and
u(00) = —oo otherwise.

Let D := €\ supp(p), Do any connected component of D. By assumption, u is subharmonic
and bounded on Dy, and less or equal to zero on the boundary of Dy. From the maximum
principle of subharmonic functions it follows that u(z) < 0 for all z € Dy, implying the first part
of the assertion. If now in particular v(E) = 1, then u is harmonic in D (F), a subset of the
unbounded connected component of D, and less or equal to zero on the boundary of D (F).
From the maximum principle for harmonic functions we may conclude that either u(co) > 0 or
u(z9) > 0 for a 29 € Doo () implies that u vanishes on the whole component D, (£) including
infinity. a

With help of Lemma B.12 we may further characterize the weighted equilibrium measure
of Theorem B.11

COROLLARY B.13 Let G have the K —property.

(a) The potential of the weighted equilibrium measure is continuous and bounded above in C.

(b) Condition (B.8) characterizes the weighted equilibrium measure in a unique way: if (B.8)
holds for any T € My(G) and for any constant w(f,G), then 7 = 7(f,G).

(c) If f is subharmonic in €, and f(z) —log(|z]) is bounded above in C, then (B.8) takes the
form

VIrl(z) + f(z) = w(f,G), z€d.

Proof: In order to show (a), notice that (B.8) implies the continuity of V[r] restricted
on the support of 7 = 7(f, ), and, by the ‘principle of continuity’ [NiSo88, Theorem 1.4], the
potential of the (weighted) equilibrium measure is continuous in €. Moreover, since supp(T) is
compact, we may find an upper bound for V[r] on supp(7), which by the first maximum principle
of Lemma B.12 also is an upper bound in C.
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For part (b), suppose that there exist two measures uy, 3 € Mo(G) and constants ¢y, ¢z
such that for j = 1,2
2 ¢ if z € G,
=c¢; if z € supp(p;).

Vipl(z) + f(2) {
Then for z € supp(p1) we have

Viml(z) = Vipa](2) — er + e < (V[](2) + f(2) — e1) = (V][pal(2) + f(2) = e2) <0,

which by Lemma B.12 is valid for all z € €. Interchanging the role of 11, p9 leads to the identity
Vip](z) = V]uz](2) = e1 — ¢ for all z € €, and hence py = pg by [Tsu59, Theorem I1.25].

It remains to discuss part (c). By assumption, u := V[r]+ f is subharmonic in €\ supp(T)
and bounded above, moreover, on the boundary of each connected component of €\ supp(r)
we have u = w(f,G). From the maximum principle of subharmonic functions we may conclude
that u(z) <0 for all z € €, which together with (B.8) gives the assertion. o

ExaMmpPLE B.14 Let us first discuss the case of a trivial external field f = 0. Here we have
W(0,G) = w(0,G) = W(G) = log(1/cap()),

the classical Robin’s constant. In fact, by (B.7) for f = 0 one usually defines the capacity
of a compact set [Tsu59, p.55]. In the case f = 0, the extremal measure puc = 7(0,G) of
Theorem B.11 also is called the equilibrium measure of G. Denote by D = D (G) the unbounded
connected component of €\ G. From [Tsub9, Theorem I1.31] we know that the support of pg
is a subset of the boundary of D, and hence pg = pag = pap as well as cap(G) = cap(9G) =
cap(dD).

Suppose as before that G has the K—property, and therefore D is regular with respect lo the
Dirichlet problem. Then [Tsu59, Theorem I1.37]

Vipal(z) = w(0,G) — ga(z;00), z€C, (B.9)

with gg(-;00) denoting the Green function of G with singularity at infinity (see Definition B.1),
in accordance with the characterizations of Corollary B.13. a

ExampLE B.15 Let H C € be compact. We consider the subharmonic weight function f(z) =
c— V[u](z) with c € € a constant and p € Mo(H), e.g., f(2) = gu(z;00), the Green function
with singularity at infinity of a set H having the K-property. From Corollary B.13(b),(c) we
know that

[(2) +VIrl(z) = e+ Vr — y](2)

is constant on G if and only if T equals the weighted equilibrium measure 7(f,G). We shall
construct a measure T satisfying

fE)+VIr](z) = c+ @\GQG(t; o0) du(t) — /C\Ggg(z;t) du(t), = e (. (B.10)
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Denote by Dg the unbounded and by Dy, k = 1,2, .., the bounded connected components of C\ G,
each being regular with respect to the Dirichlet problem. For each Dy, there exist the harmonic
measure (or mass of balayage) ui(+; 20) € Mo(0Dy) such that (see [Tsu59, Theorem II1.41] or
[StTo92, Section A.VII])

1 1
golzi¢) =log ——— — [ g dus(t;Q), 5CE Dy k21, (B.11)
lz—¢l Jap, Tzt

ga(z;¢) = log ﬁ

Moreover, for fized ( € Dy, both hand sides of (B.11) and (B.12) (as a function of z) are
vanishing on @Dy, and harmonic on each component of C\ (DyUdDy). Hence, by the mazimum
principle for harmonic functions, equality (B.11) remains valid for z € € and { € Dy. Let

=l + ;/D (50 dp(Q),

+oalGioo) - [ log ! T diolti0. (e Do, £ ofB12)

then

)+ 3 [ €0 du(©) = (@) + 3 (D) =
k k k

and supp(t) C G. By using the Fubini Theorem and (B.11), (B.12), we get for all z € €

FR) 4+ VI[r(z) = c+ Vr — y)(2)
1 1
:C+Z(_/ o a4 [ tor [ 50 )

9Dy

—c+/ ga(t;00) dpf(t) E/ 9a(2:¢) du(C)

:c'—/C\GgG<z;c>d ©. ¢ —c+/®\ (13 00) du(t).

As a consequence, we have found a T € Mq(G) satisfying (B.10). In particular, f+ V1] equals
the constant ¢’ on G, and hence T = 7(f,G) with w(f,G) = . O

To the end of this section, let us show a weighted analogue of the Bernstein—-Walsh lemma,
where we adapt [MhSa92, Theorem 4.1] to our setting.

LEMMA B.16 Let G have the K -property, and f,(z) := exp(n - f(z)), n > 0. Then for each
polynomial P of degree at most n and for each z € C

1Og(|P(Z')|/||P||fn,supp(7)) <n-w(f,G)—n-V[r](z),

with the equilibrium measure 7 = 7(f,G). In particular, ||P||f, ¢ = ||P|f, supp(r)- Finally, if
deg P = n, then the leading coefficient of P has to be less or equal to ||P||, ¢ -exp(n-w(f,G)).
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Proof: lLet P(z)=a-(z—a1)-..- (z—ax), k <n,

1
Cl = —; . 10g(a/||P||fn75upp(q—)) ‘|’w(f7 G)7

and define the measure v by
k
> hag).
7=1
Then v(€) < 1, and v(€) = 1 if and only if deg P = n. With help of (B.8), we obtain for
z € supp(T)

/h(z) dv(z) :== %

VIrl(z) = V[vl(z) - CL = % log(|P(2)/11Pll4,.,supp(r)) + VITl(2) — w(/f,G)

< f(2) + VITl(2) — w(f, G) =0,

and the assertion follows from Lemma B.12. O

A discussion of the case f = 0 of the classical Bernstein-Walsh Lemma may be found in
Theorem B.22.

B.3.2 Weighted Fekete nodes

Let G C Q be compact, and g € C(G) be a density function. We consider for an integer n > 1
and zp, .., 2, € G the expression

[o<jcren 125 — 2kl
Fol9](z0y oy 2y) = —=22= . B.13
( ) Hog]‘gn 9(25) ( )

Obviously, F,[g] : G™™! — [0; +0c0) is continuous, and therefore attains its maximum on G™*1.

DEeFINITION B.17 A family of nodes (2, )o<j<n is called a family of Fekete nodes (with respect
to G and to the sequence of densities (g,)n) if, for all m > 1, the mazimum of F,[g,] on G"!
is attained at (20, .., Znpn) € G.

(2j,n)o<j<n are called (g,G)-Fekete nodes if (2;,)o<j<n is a family of Fekete nodes with
respect to G and lo the sequence of densities g,(z) = exp(n-g(z)), n > 0. In this case, let

Wn(ga G) = ) ) log Fn[gn](zo,na LA ] Zn,n)-

n-(n+1

Fekete nodes are not necessarily unique. Let us first mention the following simple observa-
tion
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COROLLARY B.18 If Z = (2;)0<j<n is a family of Fekete nodes with respect to G and to the
sequence of densities (g,)n, then for all0 < j < n and for all z € G

Wz n (Z) . gn(Z]JL)
(2= 2jn) w7, (2in) | 9n(2)

<1. (B.14)

In particular we have for the corresponding weighted Lebesque function on GG the estimale

1< An(gnaG;gna {ZO,na ey Zn,n}) <n+41.

Proof: We have for all z

Fn[gn](ZO,n7 sy Zi—1,my 2y 2541, "7Zn,n) . WZ,n(z) . gn(zj,n)

Folgn](z0,, -+ 2n,n) (z = zjm) 'w/Z,n (2j) gnl2)

Notice that z;, has been chosen such that the ratio is maximized over all z € &, consequently,
the ratio is less or equal to 1 for all z € G. The estimate of the Lebesgue function now becomes
immediate. a

In the sequel of this section we will restrict ourselves to (f,G)-Fekete nodes, f € C(G),
where it is supposed that G has the K—property. Note that

1 2 ~

Wof.G) = — 2 log PCH
(/,G) n-(n+1) 0<j§%§n |2im = 2knl 41 ;J (5]
2
- = log + f Zin + f Zkmn) s
ne(n+1) OS§SH< |25 — 2kl (2jn) ( ))

corresponding with the quantity log(1/8,4+1(1/expof, G)) of [MhSa92, Eqn.(2.5)]. Some results
from [MhSa92] concerning modified transfinite diameter and modified capacity of G with respect
to f, adapted to our framework, are summarized in the following

THEOREM B.19 Let G have the K—property.

(a) The sequence (W, (f,G)), is increasing, with limit W(f,G).

(b) Let E be compact satisfying supp(t) C E C G, with the weighted equilibrium measure
T = 7(f,G). Then (f, F)-Fekete nodes are also (f,G)-Fekete nodes, moreover, (f,G)-

Fekete nodes necessarily lie in the compact set
&= {z € G VIFE) + F(2) = w(/,G)).

(c) Let T, denote the zero counting measure associated to (f,G)—Feketle nodes zy y,, .., 2 ,,. Then
(Tn)n converges weakly to the equilibrium measure 7 = 7(f,G).
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Proof:  Part (a) is cited from [MhSa92, Theorem 5.1, Lemma 5.2]. In order to prove (b),
notice that, according to the continuity of F,,[exp(n- f(z))], the (f, G) Fekete node z; 5, is uniquely
defined by the requirement

l9(zi.0) = max|g(2)],  g(2) :=exp(=n- f(2)) - [](z = 2.n)-
ki

From Lemma B.16 we know that

Lelmax lg(z)] = rgeaglg(zr)l = rgeaglg(Z)l,

such that in fact z;, may be chosen as an element of E. Therefore, (f, I/)-Fekete nodes are

also (f,G)-Fekete nodes. Also, G’ is compact since both f, V[r] are continuous on G. If now
z € G\ G', then by Lemma B.16 and (B.8)

9()| < max lg(=)| - exp(n - (~VI7)(2) = [(2) + w([.G))) < la(z50)].

Let us finally prove part (c¢) which for the case G C IR may be found in [MhSa85, Re-
mark p.90]. Here we will use (B.7) and the uniqueness of the equilibrium measure, however,
unfortunately F(r,) = +oo. Following [MhSa92, p.122ff], we consider for 0 < j < n

Gni={z€C:dist(z,G) < (r(n+1))"Y2), Aj,:={2€C:|z—z,| < (z(n+1))""/2).

As in [MhSa92, Eqn.(5.10)] we may extend f € C(G) to a continuous function on the set Gy.
Notice that G, C Q for sufficiently large n. With y;, denoting the characteristic function of
A; ., we define the smoothed measure o,, € My(G,,) by

5uB) = [ 3" i) (),

J=0

where dm denotes the two—dimensional Lebesgue measure, and B is any Borel set.

For each g € C(Gy) we have lim, o, [ g d7, — [ g do,, = 0, hence it is sufficient to prove
that (0,), has the only weak accumulation point 7(f,G). Mhaskar and Saff showed [MhSa92,
Eqn.(5.21)] that

W(f,Gn) < F(o,) < W,(f,G) + €,

where €, — 0. Now the right hand side tends to W (f,G) according to Theorem B.19(a), and
the left hand side according to [MhSa92, Theorem 3.3(d)]. Consequently, each accumulation
point o of (0,), satisfies F(¢) = W (f,G), proving that necessarily o = 7(f, G). o

B.3.3 The optimal limit distribution

By definition given in (B.4), we have 7, > §, for all n > 0. The aim of this section is to
show that, for all sets H and G having the K—property, these quantity coincide in the limit if
one chooses as Z a family of weighted Fekete nodes. Moreover, we will establish an explicit
expression for this limit in terms of the weighted equilibrium measure. In view of the result of
Theorems B.5 and B.8, let us first study the following extremal problem
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LEMMA B.20 Let G have the K-property, f € C(G). We have for all z € C and for all
1€ Mo(G)

=Vpl(z) +  sup  (V[e](Q) + f(Q) = =VI[7](2) + w(/, G)
¢esupp(u)

with the weighted equilibrium measure T = 7(f, G).

Proof: In order to apply Lemma B.12, we take v = 7 = 7(f,G), E = G, p € My(G)
with potential being bounded on the support of p (otherwise the assertion is trivially true).
Furthermore, let

Cri= sup  (V[g](¢) + f(C) — w(f, G).
cesupp(n)

We get for z € supp(r) C G by using (B.8)
Vip)(z) = VIr](z) = 4

=VIEl(z) + f(2) - CES%I;(M)(V[M](C) +7(Q) = VIrl(z) = f(z) + w(f,G) <0,

and Lemma B.12 yields the assertion. a

THEOREM B.21 Let G have the K-property, and denote by T = 7(fc,G) the weighted equilib-
rium measure. Then we have for each family of nodes Z in G

liminf 6z, > —min(V[7](z) + fu(2)) + w(fa, G).

n—00 zeEH

Here, equality is attained for the family Z of (fq,G)-Fekete nodes

lim 0z, = nh_)rréo 8, = —min(V[7](2) + fu(2)) + w(fa, G).

n—00 ze€H

Moreover, in the particular case fi = 0 and fg(z) = gu(z,00), z € G, the right hand quantity
takes the form

—min (V7)) + fu () + w(fo, G) = max /@\G g6 (= 1) dyurr (1),

with pg € Mo(H) denoting the (non—weighted) equilibrium measure of H.

Proof: We may assume without loss of generality that the zero counting measures of
the given family of nodes has a weak limit p (otherwise we consider a subsequence). Since
supp(p) C G5, we obtain from Theorem B.5 and Lemma B.6

lim inf &7,
> —mip (Vi) + () + sup (VIG) + o)

> —min(V[u)(2) + fu()) + o (VIH() + fa(2)-
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Since the minimum is attained in H, the first part of the assertion follows from Lemma B.20.

Consider now the particular case of Z being the family of (fg,G)-Fejer nodes. We apply
again Theorem B.5 together with Theorem B.19(c), where it remains to determine the asymp-
totics of the sequence (az,),. By definition of weighted Fekete nodes we obtain

— . . T 1z — c mi P [
0zn = 102X (fa(2in) + VIrinl(zin)) = max min(fa(2) + Virinl(2)),
which by Theorem B.4(d), Theorem B.19(c) and (B.8) is convergent, with limit w(fg, G). This

yields the desired representation for the limit of (67,),. The connection with the limit of (,),,
is obtained by observing that, for all n > 0,

An (hn7 H; 9n, G) S An (hn7 H; 9n, {ZO,m Zl,m oty zn,n})
S An (hna H; 9n, G) . An(gnv G; 9n, {ZO,na Zl,na LRy Zn,n})v

and thus 6z, > 6, > 6z, — log(n + 1)1/” according to Corollary B.18. Finally, the explicit
formula for the particular weight functions fy, fg follows from (B.10) established in Example
B.15 by using (B.9). O

As the final assertion mentioned in this Appendix, we want to specify some more properties
of the sequence (4,,),,. In our work, these properties will be only required in the context of trivial
density functions, hence the following Theorem is formulated in terms of A, (-,G) and A(+,G),
see Definition 2.5 and Definition 2.8.

THEOREM B.22 Let G be compact, cap(G) > 0. Then for z € Do (G) and for P € P, there
holds
|P(2)] < [|P||g - ™99, (B.15)

In particular, for each compact set H we have

An(H,GYY™ < A(H,G), (B.16)
and
lim A, (H,G)"" = A(H,G). (B.17)
Finally,
lim Ay (z,G)/" = A(z,G) (B.18)

pointwise for z € €, and uniformly on compact subsets of D (G). If in addition Du, (G) is
regular, then (B.18) holds uniformly on compact subsets of C.

Proof: Inequality (B.15) is referred to as the (classical) Bernstein-Walsh Lemma, for a
proof see, e.g., [NiSo88, Lemma 5.1]. If G in addition has the K-property, and therefore D, (G)
is regular, then

96(2) = 96 (z;00) = w(0,G) = V[7(0,G)](2) (B.19)
(see Example B.14), and (B.15) follows by taking f = 0 in Lemma B.16.
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Using the maximum modulus principle for analytic functions, we obtain |P(z)| < ||P||¢ for
all z € €\ Do (G) and for each polynomial P. Thus (B.16) follows from (B.15) by taking the
maximum with respect to z € H and P € P,.

By definition of A(H,G), for each € > 0 there exists a . € H with A(¢.,G) > A(H,G) —e.
With help of the pointwise convergence of (B.18) we get
lim inf A, (H,G)!/™ > liminf A, (¢, G)Y/" > A(H, G) — e.

n— 00

Since € > 0 may be chosen arbitrarily close to zero, assertion (B.17) becomes a consequence of
(B.16) (notice also that (B.17) was already proved in Theorem B.21 for the case of G, H having
the K-property).

It remains to show (B.18). First notice that (B.18) trivially holds for z € €\ D4 (G) since
then all quantities involved are equal to 1. In order to verify locally uniform convergence in
D (G) (implying of course also pointwise convergence in Dy (G)), according to (B.15) it is
sufficient to construct a sequence of ‘extremal’ polynomials (py)n., pn of degree n, such that

lim <7|pn(2)|) =A(z,G) = e95(2),
n=oo | |palla

locally uniformly in Do (G). We may construct such a sequence if G has the K-property (for
compact sets G with cap(G) > 0, such a sequence has been given in [NiSo88, pp.193-195]). Let
Z = (%jn)o<j<n be the family of (1,G)-Fekete nodes, and p,41 = wz,, n > 0. It was shown
in Theorem B.19 that the corresponding sequence of zero counting measures (7,), converges
weakly to the equilibrium measure 7 = 7(0,G). From Theorem B.4(a) we may conclude that
log pgl/” = V[7,—1] converges locally uniformly in D (G) to V7], whereas by Theorem B.4(d)
and (B.8) we get

log |[pall"" = min V[r,1](2) = min V[7]() = w(0,G).

Thus the desired convergence follows from (B.19).

Finally suppose that D, (G) is regular, and let ¥ C € be compact. Then, for each ¢ > 0,
the set E. := {z € END(G) : gg(z) > €} is a compact subset of D, (G). We have already
established uniform convergence in F., and get in addition for z € E'\ F.

llog A, (2, G)"™ —log A(z,G)| < 2 -log A(z,G) < 2e.

This yields uniform convergence in F, or locally uniform convergence in C. a
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