Projets ANR

Plusieurs projets ANR sont portés par le laboratoire Paul Painlevé.

  • ChroK (2016 - 2021)

​"Chromatic homotopy and K-theory (CrhoK)"

The project builds upon the new foundations of algebraic topology, with the view to fundamental applications, notably in algebraic K-theory and in chromatic homotopy theory.

Membres impliqués : I. Dell'Ambrogio, A. Touzé (coordinateur local).

Coordinateur du projet : C. Ausoni (Paris 13).

Site web du projet

  • BECASIM (2013 - 2016)

La cohérence de la matière condensée à des températures proches de zéro absolu laisse présager des applications qui pourront révolutionner la technologie de demain. Le projet vise l’exploration numérique de ce type de systèmes (comme le condensat de Bose-Einstein) pour comprendre des configurations difficiles à étudier expérimentalement.

Membres impliqués : G. Dujardin, I. Lacroix-Violet (coordinatrice locale), A. Mouton.

Coordinateur du projet : I. Danaila (LMRS, Rouen).

Site web du projet

  • SUSI (2012 - 2016)

Singularités de surfaces.

Membres impliqués : P. Popescu-Pampu.

Coordinateur du projet : A. Bodin.

Site web du projet

  • HOGT (2011 - 2015) 

"Algebraic Homotopy, Operads and Grothendieck-Teichmüller groups (HOGT)".

The general purpose of this proposal is to explore new connections between operads Grothendieck-Teichmüller groups and the theory of associators in view towards applications in algebra and in topology. Our first objective is the definition of suitable generalizations of the Grothendieck-Teichmüller group: a version attached to moduli spaces of curves of genus g>2 and a version attached to En-operads of dimension n>2. (En-operads are structures introduced in topology in the late 60s for the study of iterated loop spaces.) Our second purpose is to study various homology theories attached to En-operads and their applications for the construction of topological invariants associated to manifolds, or spaces with Poincaré duality. Our idea is to use actions of generalized Grothendieck-Teichmüller groups for this study. In parallel, we intend to study operadic generalizations of Drinfeld's associators, also related to our generalized Grothendieck-Teichmüller groups, for the purpose of developing applications of our researches to combinatorial structures, like graph complexes, which are naturally associated to operads.

Membres impliqués : liste de tous membres du LPP impliqués.

Coordinateur du projet : B. Fresse.

Site web du projet