Analysis of Large Random Graphs

Emilie Coupechoux - Marc Lelarge

INRIA-ENS

5 December 2012

3 . 3

1 / 39

Coupechoux/Lelarge (INRIA-ENS) Analysis of Large Random Graphs 5 December 2012

Outline

Introduction

- 2 Random graph models
- 3 First Epidemic Model : Diffusion
- 4 Second Epidemic Model : Contagion
- 5 Conclusion and perspectives

э

2 / 39

Outline

1 Introduction

- 2 Random graph models
- 3 First Epidemic Model : Diffusion
- 4 Second Epidemic Model : Contagion
- 5 Conclusion and perspectives

э

3 / 39

< 行い

Complex networks

Plants and bees : co-occurrence network

(日) (同) (三) (三)

Complex networks

Examples :

۵

- Population (individuals)
- Internet (autonomous systems)
- World-Wide Web (sites)
- Collaborations (individuals)

Model : finite graph G = (V, E)

- V = set of vertices / nodes
- E = set of edges / connections between nodes

Large networks

Empirical data = local observations \Rightarrow statistics on the network

э

(日) (周) (日) (日)

Large networks

Empirical data = local observations \Rightarrow statistics on the network

Example :

Degree = number of acquantainces for each node

- Observation : degree of each node
- Computation : for all k ≥ 0, probability pk that a node (chosen uniformly at random) has degree k :

$$p_k = \frac{\text{nb of nodes with degree } k}{\text{total nb of nodes}}$$

• Deduction : (empirical) distribution of degrees $\boldsymbol{p} = (p_k)_{k \geq 0}$

イベト イラト イラト

Definition 1 : Scale-free networks

Power law degree distribution : there exists $\tau > 0$ such that, for all $k \ge 0$,

(small number of nodes having a large number of edges)

6 / 39

Definition 2 : Clustering coefficient of a graph

("The friends of my friends are my friends", Newman, '03)

$$C := \frac{3 \times \text{nb of triangles}}{\text{nb of connected triples}} = \frac{\sum_{v} P_{v}}{\sum_{v} N_{v}} > 0$$

 $P_v :=$ nb of pairs of neighbors of v sharing an edge together, $N_v :=$ nb of pairs of neighbors of $v : N_v = d_v(d_v - 1)/2$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Define a model of *random* graphs

- having (asymptotically) the observed properties :
 - scale-free networks
 - networks with *clustering*
- tractable

э

Epidemic models

DIFFUSION (Bond percolation) CONTAGION (Watts threshold model)

Examples :

- Spread of a disease
- Spread of e-mail viruses

- Diffusion of innovations
- Adoption of a new technology

- 4 周 ト - 4 日 ト - 4 日 ト

9 / 39

Cascade phenomenon

What we are interested in...

When the epidemic starts from only one individual

- Phase transition
- Cascade size
- Effect of clustering on both phase transition and cascade size

When the epidemic starts from a positive proportion of the population

• Epidemic size

For which kind of random graph models?

Organization in communities

Overlapping communities

Separate communities

< 行い

B> B

12 / 39

DIFFUSION

Phase transition and cascade size

Ball *et al.* (same community sizes + heuristics) Trapman, Gleeson *et al.* (heuristics)

Lelarge (without clustering)

Effect of clustering

Ball *et al.* (Poisson distribution) Gleeson *et al.*

Positive proportion of infected individuals at the start

イロト イポト イヨト イヨト

Random graphs with overlapping communities

DIFFUSION

CONTAGION

Phase transition and cascade size

Newman (BP) Britton *et al.* (Poisson distribution)

Effect of clustering

Britton *et al.* (Poisson distribution) Newman (effect on cascade size)

Positive proportion of infected individuals at the start

14 / 39

Random graphs with overlapping communities

Outline

Introduction

2 Random graph models

- Random graph model with separate communities
- Random graph model with overlapping communities

3 First Epidemic Model : Diffusion

- 4 Second Epidemic Model : Contagion
- 5 Conclusion and perspectives

Random graph model with separate communities

• Configuration model G(n, d):

Degree sequence $\boldsymbol{d} = (d_i)_{1 \leq i \leq n}$

 $\frac{\sharp\{i:d_i=r\}}{n} \xrightarrow[n \to \infty]{} p_r = \text{probability that a vertex has degree } r$

But : converges locally to a tree

- Configuration model G(n, d): $d = (d_i)_{1 \le i \le n}$ $d_1 = 3$ $d_2 = 2$ $d_1 = 3$
- Idea : Replace a vertex of degree r in G(n, d) by a clique of size r :

- Configuration model G(n, d): $d = (d_i)_{1 \le i \le n}$ $d_1 = 3$ $d_2 = 2$ $d_n = 5$
- Idea : Replace a vertex of degree r in G(n, d) by a clique of size r.
- Adding cliques randomly : Let γ ∈ [0, 1].
 Each vertex is replaced by a clique with probability γ (independently for all vertices).

- Configuration model G(n, d): $d = (d_i)_{1 \le i \le n}$ $d_1 = 3$ $d_2 = 2$ $d_n = 5$
- Idea : Replace a vertex of degree r in G(n, d) by a clique of size r.
- Adding cliques randomly : Let γ ∈ [0, 1].
 Each vertex is replaced by a clique with probability γ (independently for all vertices).

• Advantage : clustering coefficient can be easily tuned, while keeping the *whole* degree distribution fixed

Coupechoux/Lelarge (INRIA-ENS)

Analysis of Large Random Graphs

5 December 2012

15 / 39

< A

Community structure of real-world networks

3. 3

Random graph model with overlapping communities

Given degrees for both top and bottom vertices Uniform matching of the half-edges

Projection of this random hypergraph

Advantage : any distribution for

- the community sizes
- the number of communities an individual belongs to

Drawbacks :

- Strong dependence between the edges
- Clustering coefficient and degree distributions cannot be tuned independently
- \Longrightarrow Equivalent branching process for the random hypergraph

∃ → (∃ →

Random graph model with overlapping communities

In the hypergraph :

- $p_d =$ probability that a vertex has degree d
- $q_w =$ probability that a hyper-edge has weight w

Alternating branching process :

- $dp_d/\lambda =$ probability that a vertex has d-1 children
- $wq_w/\mu = probability$ that a hyper-edge has w-1 children

Epidemic models on these random graphs

Final nb of infected nodes negligeable or not / population size?

Effect of clustering on these thresholds and on the cascade size

< 17 ▶

Outline

Introduction

2 Random graph models

First Epidemic Model : Diffusion
On random graphs with separate communities
Comparison with the case of overlapping communities

Second Epidemic Model : Contagion

5 Conclusion and perspectives

- At the beginning, activate a given vertex (= the seed of the epidemic)
- Transmit the epidemic through any edge with probability π

- At the beginning, activate a given vertex (= the seed of the epidemic)
- Transmit the epidemic through any edge with probability π

- At the beginning, activate a given vertex (= the seed of the epidemic)
- Transmit the epidemic through any edge with probability π

- At the beginning, activate a given vertex (= the seed of the epidemic)
- Transmit the epidemic through any edge with probability π

- At the beginning, activate a given vertex (= the seed of the epidemic)
- Transmit the epidemic through any edge with probability π

- At the beginning, activate a given vertex (= the seed of the epidemic)
- Transmit the epidemic through any edge with probability π

- At the beginning, activate a given vertex (= the seed of the epidemic)
- Transmit the epidemic through any edge with probability π

- At the beginning, activate a given vertex (= the seed of the epidemic)
- Transmit the epidemic through any edge with probability π

Diffusion model with a given probability π of transmission

- At the beginning, activate a given vertex (= the seed of the epidemic)
- Transmit the epidemic through any edge with probability π

Diffusion model with a given probability π of transmission

- At the beginning, activate a given vertex (= the seed of the epidemic)
- Transmit the epidemic through any edge with probability π

Diffusion model with a given probability π of transmission

- At the beginning, activate a given vertex (= the seed of the epidemic)
- Transmit the epidemic through any edge with probability π

Connected component of the seed in the bond percolated graph

Theorem (DIFFUSION THRESHOLD)

Let π_c be the solution of the equation : $\pi' = \frac{\mathbb{E}[D_{\pi'}]}{\mathbb{E}[D_{\pi'}(D_{\pi'}-1)]}$, where $D_{\tau'}$ is a random variable with a given distribution that defined

where $D_{\pi'}$ is a random variable with a given distribution that depends on p, γ and π' .

- $\pi > \pi_c$: There exists *whp* a giant component in the percolated graph, *i.e.* a single node can trigger a global cascade.
- π < π_c : The size of the epidemic generated by a vertex u (chosen uniformly at random) is negligeable : o_p(n).

21 / 39

Random *d*-regular graphs

Power law graphs

Cascade size vs Clustering (Infection probability : $\pi = 0.22$)

24 / 39

Comparison with the diffusion on the random graph model with overlapping communities

Effect of clustering on the diffusion threshold :

- In graphs with separate communities, clustering 'inhibits' the diffusion process (cf. also Ball *et al.*);
- In graphs with overlapping communities, clustering 'helps' the diffusion to spread (cf. also Britton *et al.*).

Effect of clustering on the cascade size :

• In both cases, clustering reduces the cascade size (cf. Newman for graphs with overlapping communities).

Outline

1 Introduction

2 Random graph models

3 First Epidemic Model : Diffusion

4 Second Epidemic Model : Contagion

- Motivation
- Random graph with separate communities
- Random graph with overlapping communities
- Variant of the epidemic model on random hypergraphs

5 Conclusion and perspectives

Motivation

Game-theoretic contagion model on a given graph G = (V, E), with parameter $q \in (0, 1/2)$:


```
Infinite deterministic graph G = (V, E)
```

Parameter q varies :

More precisely :

 $q_1 > q_2$, cascade for $q_1 \Rightarrow$ cascade for q_2

Coupechoux/Lelarge (INRIA-ENS)

Coupechoux/Lelarge (INRIA-ENS)

5 December 2012

27 / 39

Coupechoux/Lelarge (INRIA-ENS)

Coupechoux/Lelarge (INRIA-ENS)

5 December 2012 27 / 39

- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

proportion of its infected neighbors > q

Heuristically...

The random graph G(n, d) converges locally to a random tree such that : $\mathbb{P}(r-1 \text{ children}) = rp_r/\lambda$

Infected nodes = those with degree < 1/q

Infinite tree (of infected nodes) $\iff \sum_{r < 1/q} (r-1) \frac{rp_r}{\lambda} > 1$

- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

proportion of its infected neighbors > q

Heuristically...

The random graph G(n, d) converges locally to a random tree such that : $\mathbb{P}(r-1 \text{ children}) = rp_r/\lambda$

Infected nodes = those with degree < 1/q

Infinite tree (of infected nodes) $\iff \sum_{r < 1/q} (r-1) \frac{rp_r}{\lambda} > 1$

- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

proportion of its infected neighbors > q

Heuristically...

The random graph G(n, d) converges locally to a random tree such that : $\mathbb{P}(r-1 \text{ children}) = rp_r/\lambda$

Infected nodes = those with degree < 1/q

- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

proportion of its infected neighbors > q

Heuristically...

The random graph G(n, d) converges locally to a random tree such that : $\mathbb{P}(r-1 \text{ children}) = rp_r/\lambda$

$$q_c := q_c(\boldsymbol{p}) = \sup\left\{q': \sum_{r < 1/q'} (r-1) rac{r p_r}{\lambda} > 1
ight\}$$

Fixed q, $\mathcal{P}^{(n)}$ = set of pivotal players in $\tilde{G}(n, d, \gamma)$:

- $G_0 =$ induced subgraph with vertices of degree < 1/q
- Pivotal players = vertices in the largest connected component of G_0

Theorem (CONTAGION THRESHOLD)

q > q_c : the size of the epidemic generated by a vertex u (chosen uniformly at random) is negligeable : o_p(n).

(人間) トイヨト イヨト

- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

proportion of its infected neighbors $> q = \frac{1}{4}$

 \Longrightarrow Clustering decreases the cascade size.

30 / 39

Effect of Clustering on the Contagion Threshold

Mean degree $\tilde{\lambda}\approx 1.65$

31 / 39

- Graph with maximal clustering coefficient
- Graph with no clustering

Effect of Clustering on the Contagion Threshold

Mean degree $\tilde{\lambda} \approx 46$

31 / 39

- Graph with maximal clustering coefficient

- Graph with no clustering

Effect of Clustering on the Contagion Threshold

Mean degree $\tilde{\lambda}\approx 3.22$

31 / 39

- Graph with maximal clustering coefficient
- Graph with no clustering

32 / 39

Effect of Clustering on the Cascade Size

Asymptotic degree distribution : $ilde{
ho}_k \propto k^{- au} e^{-k/50}$

Random graph with overlapping communities

- At the beginning, the root is infected
- Each vertex becomes infected if :

Random graph with overlapping communities

- At the beginning, the root is infected
- Each vertex becomes infected if :

proportion of its infected neighbors $> q = \frac{1}{5}$

• Independence among the different branches

Random graph with overlapping communities

- At the beginning, the root is infected
- Each vertex becomes infected if :

- Independence among the different branches
- Inside a clique : first ones = those with smaller degree
- At the beginning, the root is infected
- Each vertex becomes infected if :

proportion of its infected neighbors $> q = \frac{1}{5}$

- Independence among the different branches
- Inside a clique : first ones = those with smaller degree
- Then : possibly other vertices infected inside the clique

- At the beginning, the root is infected
- Each vertex becomes infected if :

proportion of its infected neighbors $> q = \frac{1}{5}$

- Independence among the different branches
- Inside a clique : first ones = those with smaller degree
- Then : possibly other vertices infected inside the clique

Independence among the different branches
 ⇒ Study independently each branches

- Independence among the different branches ⇒ Study independently each branches
- Inside a clique : first ones = those with smaller degree
 ⇒ Order the vertices according to their degree

- Independence among the different branches
 Study independently each branches
- Inside a clique : first ones = those with smaller degree
 ⇒ Order the vertices according to their degree
- Then : possibly other vertices infected inside the clique
 i-th vertex infected if needs less than *i* infected neighbors

34 / 39

Random graph with overlapping communities

- Independence among the different branches
 Study independently each branches
- Inside a clique : first ones = those with smaller degree
 ⇒ Order the vertices according to their degree
- Then : possibly other vertices infected inside the clique
 i-th vertex infected if needs less than *i* infected neighbors
- Need to know the number of children of each vertex
 ⇒ Use of a multi-type branching process

Definition of a multi-type (and alternating) branching process such that :

- nb of vertices at a given generation
 nb of infected vertices (in the original process)
- type of a vertex
 - = its number of grandchildren (in the original process)
- type of a hyper-edge
 - = its number of children (in the original process)

Definition of a multi-type (and alternating) branching process such that :

- nb of vertices at a given generation
 nb of infected vertices (in the original process)
- type of a vertex
 - = its number of grandchildren (in the original process)
- type of a hyper-edge
 - = its number of children (in the original process)

Mean number of grandchildren of a type y of a vertex of type x \implies Matrix with largest eigenvalue ρ .

Theorem (CONTAGION THRESHOLD)

- If $q \ge 1/2$, then there is no cascade.
- If q < 1/2, then there is a cascade if and only if either $\rho > 1$ or $p_2 = q_2 = 1$.

- Initially : positive fraction of infected individuals
- Definition of a Markov chain
- Differential equation approximations for Markov chains
- Application : upper bound for the largest component size

Outline

1 Introduction

- 2 Random graph models
- 3 First Epidemic Model : Diffusion
- 4 Second Epidemic Model : Contagion
- 5 Conclusion and perspectives

э

< 行り

Random graphs with separate communities :

- Model of random graphs with a given degree distribution, and a tunable clustering coefficient
- Effect of clustering on the diffusion model :
 - Clustering increases the diffusion threshold
 - Clustering decreases the cascade size
- Effect of clustering on the contagion model :
 - Clustering decreases the contagion threshold for low values of the mean degree, while the opposite happens in the high values regime
 - Clustering decreases the cascade size (when a cascade is possible)
- Non-negligeable proportion of infected individuals at the start

Random graphs with overlapping communities :

- On the equivalent branching process :
 - Clustering decreases the diffusion threshold
 - Use of a multi-type branching process to study the contagion
- Variant of the epidemic model that takes into account the number of groups in common

Random graphs with overlapping communities :

- On the equivalent branching process :
 - Clustering decreases the diffusion threshold
 - Use of a multi-type branching process to study the contagion
- Variant of the epidemic model that takes into account the number of groups in common
- No redundancy in this model :

Random graphs with overlapping communities :

- On the equivalent branching process :
 - Clustering decreases the diffusion threshold
 - Use of a multi-type branching process to study the contagion
- Variant of the epidemic model that takes into account the number of groups in common
- No redundancy in this model :

Thanks for your attention !

References

F. Ball, D. Sirl, and P. Trapman.

Analysis of a stochastic sir epidemic on a random network incorporating household structure. Mathematical Biosciences, 224(2) :53–73, 2010.

T. Britton, M. Deijfen, A. N. Lagerås, and M. Lindholm. Epidemics on random graphs with tunable clustering. J. Appl. Probab., 45(3) :743–756, 2008.

A. Hackett, S. Melnik, and J. P. Gleeson. Cascades on a class of clustered random networks. Physical Review E, 83, 2011.

M. Lelarge.

Diffusion and cascading behavior in random networks. Games and Economic Behavior, 75(2) :752–775, 2012.

M. E. J. Newman.

Properties of highly clustered networks. Phys. Rev. E, 68(2) :026121, Aug 2003.

P. Trapman.

On analytical approaches to epidemics on networks. Theoretical Population Biology, 71(2) :160–173, 2007.

D. J. Watts and S. H. Strogatz.

Collective dynamics of 'small-world' networks. Nature, 393(6684) :440–442, June 1998.