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Introduction

Complex networks

Plants and bees : co-occurrence network
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Introduction

Complex networks

Examples :
Population (individuals)
Internet (autonomous systems)
World-Wide Web (sites)
Collaborations (individuals)
...

Model : finite graph G = (V ,E )

V = set of vertices /nodes
E = set of edges /connections between nodes
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Introduction

Large networks

Empirical data = local observations ⇒ statistics on the network
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Introduction

Large networks

Empirical data = local observations ⇒ statistics on the network

Example :

Degree = number of acquantainces for each node
dv = 3

Observation : degree of each node
Computation : for all k ≥ 0, probability pk that a node (chosen
uniformly at random) has degree k :

pk =
nb of nodes with degree k

total nb of nodes

Deduction : (empirical) distribution of degrees p = (pk)k≥0
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Introduction

Definition 1 : Scale-free networks

Power law degree distribution :
there exists τ > 0 such that, for all k ≥ 0,

pk =
nb of nodes with degree k

total nb of nodes
∝ k−τ

(small number of nodes having a large number of edges)
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Introduction

Definition 2 : Clustering coefficient of a graph

(“The friends of my friends are my friends”, Newman, ’03)

C :=
3× nb of triangles

nb of connected triples
=

∑
v Pv∑
v Nv

> 0

Pv := nb of pairs of neighbors of v sharing an edge together,
Nv := nb of pairs of neighbors of v : Nv = dv (dv − 1)/2.

Example :
Nv = 3

v

Pv = 0
v

Pv = 2
v

Pv = 3
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Introduction

Define a model of random graphs

having (asymptotically) the observed properties :

I scale-free networks

I networks with clustering

tractable
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Introduction

Epidemic models

DIFFUSION
(Bond percolation)

CONTAGION
(Watts threshold model)

Examples :

Spread of a disease
Spread of e-mail viruses

Diffusion of innovations
Adoption of a new technology

Influence of the neighbors :

Independence
Probabilistic

Joint influence
Deterministic
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Introduction

Cascade phenomenon

Phase transition

NO cascade

Parameter of the
epidemic modelCASCADE
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Introduction

What we are interested in...

When the epidemic starts from only one individual

Phase transition
Cascade size
Effect of clustering on both phase transition and cascade size

When the epidemic starts from a positive proportion of the population

Epidemic size
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Introduction

For which kind of random graph models ?

Organization in communities

Overlapping communities Separate communities
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Introduction

Random graphs with separate communities

DIFFUSION CONTAGION

Phase transition and cascade size

Ball et al. (same community sizes +
heuristics)
Trapman, Gleeson et al. (heuristics)

√

Lelarge (without clustering)

√

Effect of clustering

Ball et al. (Poisson distribution)
Gleeson et al.

√
√

Positive proportion of infected individuals at the start

√ √
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Introduction

Random graphs with overlapping communities

DIFFUSION CONTAGION

Phase transition and cascade size

Newman (BP)
Britton et al. (Poisson distribution)

√
(BP)

Effect of clustering

Britton et al. (Poisson distribution)
Newman (effect on cascade size)

√
(Poisson distribution)

Positive proportion of infected individuals at the start

√ √
(Variant of the model)
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Random graph models

Outline

1 Introduction

2 Random graph models
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Random graph models Random graph model with separate communities

Random graph model with separate communities

Configuration model G (n,d) :

Degree sequence d = (di )1≤i≤n

d1 = 3 d2 = 2 dn = 5

]{i : di = r}
n

−→
n→∞

pr = probability that a vertex has degree r

But : converges locally to a tree
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Random graph models Random graph model with separate communities

Random graph model with separate communities

Configuration model G (n,d) :

d = (di )1≤i≤n
d1 = 3 d2 = 2 dn = 5

Idea : Replace a vertex of degree r in G (n,d) by a clique of size r :
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Random graph models Random graph model with separate communities

Random graph model with separate communities

Configuration model G (n,d) :

d = (di )1≤i≤n
d1 = 3 d2 = 2 dn = 5

Idea : Replace a vertex of degree r in G (n,d) by a clique of size r .
Adding cliques randomly : Let γ ∈ [0, 1].
Each vertex is replaced by a clique with probability γ (independently
for all vertices).

−→
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Random graph models Random graph model with separate communities

Random graph model with separate communities

Configuration model G (n,d) :

d = (di )1≤i≤n
d1 = 3 d2 = 2 dn = 5

Idea : Replace a vertex of degree r in G (n,d) by a clique of size r .
Adding cliques randomly : Let γ ∈ [0, 1].
Each vertex is replaced by a clique with probability γ (independently
for all vertices).

−→

Advantage : clustering coefficient can be easily tuned, while keeping
the whole degree distribution fixed
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Random graph models Random graph model with overlapping communities

Community structure of real-world networks

BA DC E
Vertices

Hyper-edges
(Papers)

(Authors)

A B

D C

E

Projection

collaborations)
(Author
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Random graph models Random graph model with overlapping communities

Random graph model with overlapping communities

Given degrees for both top and bottom vertices
Uniform matching of the half-edges

Projection of this random hypergraph

Advantage : any distribution for
the community sizes
the number of communities an individual belongs to

Drawbacks :
Strong dependence between the edges
Clustering coefficient and degree distributions cannot be tuned
independently

=⇒ Equivalent branching process for the random hypergraph
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Random graph models Random graph model with overlapping communities

Random graph model with overlapping communities

In the hypergraph :
pd = probability that a vertex has degree d
qw = probability that a hyper-edge has weight w

Alternating branching process :
dpd/λ = probability that a vertex has d − 1 children
wqw/µ = probability that a hyper-edge has w − 1 children

Coupechoux/Lelarge (INRIA-ENS) Analysis of Large Random Graphs 5 December 2012 18 / 39



Random graph models Random graph model with overlapping communities

Epidemic models on these random graphs

Final nb of infected nodes negligeable or not / population size ?

DIFFUSION MODEL CONTAGION MODEL
Ref. Bond percolation Morris, Watts
Para- π = probability that an edge A vertex is infected ⇔
-meter transmits the epidemic fraction of infected neighbors > q

���
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���

���
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���
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���

π
f f

1− π 1
3 ≤ q

���
���
���
���
���

���
���
���
���
���

2
3 > q

Thm threshold πc

CASCADE
π

NO cascade

threshold qc

q
NO cascadeCASCADE

Effect of clustering on these thresholds and on the cascade size
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First Epidemic Model : Diffusion

Outline

1 Introduction

2 Random graph models

3 First Epidemic Model : Diffusion
On random graphs with separate communities
Comparison with the case of overlapping communities

4 Second Epidemic Model : Contagion

5 Conclusion and perspectives
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First Epidemic Model : Diffusion On random graphs with separate communities

Random graph with separate communities
Diffusion model with a given probability π of transmission

At the beginning, activate a given vertex (= the seed of the epidemic)
Transmit the epidemic through any edge with probability π

INITIAL GRAPH GRAPH WITH CLIQUES

Connected component of the seed
in the bond percolated graph
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First Epidemic Model : Diffusion On random graphs with separate communities

Random graph with separate communities

Theorem (DIFFUSION THRESHOLD)

Let πc be the solution of the equation : π′ =
E[Dπ′ ]

E[Dπ′ (Dπ′−1)] ,

where Dπ′ is a random variable with a given distribution that depends on
p, γ and π′.

π > πc : There exists whp a giant component in the percolated graph,
i.e. a single node can trigger a global cascade.
π < πc : The size of the epidemic generated by a vertex u (chosen
uniformly at random) is negligeable : op(n).
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First Epidemic Model : Diffusion On random graphs with separate communities

Random graph with separate communities

Diffusion Threshold πc vs Clustering

Random d -regular graphs Power law graphs

Coupechoux/Lelarge (INRIA-ENS) Analysis of Large Random Graphs 5 December 2012 22 / 39



First Epidemic Model : Diffusion On random graphs with separate communities

Random graph with separate communities

Cascade size vs Clustering
(Infection probability : π = 0.22)

Coupechoux/Lelarge (INRIA-ENS) Analysis of Large Random Graphs 5 December 2012 23 / 39



First Epidemic Model : Diffusion Comparison with the case of overlapping communities

Comparison with the diffusion on the random graph model
with overlapping communities

Effect of clustering on the diffusion threshold :
In graphs with separate communities, clustering ’inhibits’ the diffusion
process (cf. also Ball et al.) ;
In graphs with overlapping communities, clustering ’helps’ the
diffusion to spread (cf. also Britton et al.).

Effect of clustering on the cascade size :
In both cases, clustering reduces the cascade size (cf. Newman for
graphs with overlapping communities).
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Second Epidemic Model : Contagion

Outline

1 Introduction

2 Random graph models

3 First Epidemic Model : Diffusion

4 Second Epidemic Model : Contagion
Motivation
Random graph with separate communities
Random graph with overlapping communities
Variant of the epidemic model on random hypergraphs

5 Conclusion and perspectives
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Second Epidemic Model : Contagion Motivation

Game-theoretic contagion model on a given graph G = (V ,E ),
with parameter q ∈ (0, 1/2) :

Two possible choices : (↔ susceptible) or (↔ infected)

Initially : all use , except one who uses

Possible switch → , but no switch 6→

Situation Payoff (for both users)

q

1− q > q

0

Total payoff
= sum of payoffs from

all your neighbors

Switch from to ⇔ |Neighbors using Skype|
|Neighbors| > q.
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Second Epidemic Model : Contagion Motivation

Infinite deterministic graph G = (V ,E )

Parameter q varies :
q small ⇒ CASCADE

q higher ⇒ NO cascade

More precisely :
q1 ≥ q2, cascade for q1 ⇒ cascade for q2

Contagion threshold q(G)
c := sup

{
q
∣∣CASCADE in G for parameter q

}
threshold q(G )

c

q
NO cascadeCASCADE
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Second Epidemic Model : Contagion Motivation

Switch from to ⇔ |Neighbors using Skype|
|Neighbors| > q

Example : G = d -regular tree

q ≥ 1/d ⇒ NO cascade
q < 1/d ⇒ CASCADE

⇒ q(G)
c = 1/d
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Second Epidemic Model : Contagion Random graph with separate communities

Random graph with separate communities

At the beginning, one infected vertex (= the seed of the epidemic)
At each step, each vertex becomes infected if :

proportion of its infected neighbors > q

Heuristically...
The random graph G (n,d) converges locally to a random tree such that :

P (r − 1 children) = rpr/λ

q = 1
4

Infected nodes = those with degree < 1/q

Infinite tree (of infected nodes)
⇐⇒

∑
r<1/q

(r − 1)
rpr

λ
> 1
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Second Epidemic Model : Contagion Random graph with separate communities

Random graph with separate communities

qc := qc(p) = sup
{

q′ :
∑

r<1/q′(r − 1)
rpr

λ
> 1
}

Fixed q, P(n) = set of pivotal players in G̃ (n,d , γ) :

G0 = induced subgraph with vertices of degree < 1/q
Pivotal players = vertices in the largest connected component of G0

Theorem (CONTAGION THRESHOLD)

q < qc : |P(n)| = Θp(n)
Each pivotal player can trigger a global cascade.
q > qc : the size of the epidemic generated by a vertex u (chosen
uniformly at random) is negligeable : op(n).
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Second Epidemic Model : Contagion Random graph with separate communities

Random graph with separate communities

At the beginning, one infected vertex (= the seed of the epidemic)
At each step, each vertex becomes infected if :

proportion of its infected neighbors > q = 1
4

INITIAL GRAPH GRAPH WITH CLIQUES
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Second Epidemic Model : Contagion Random graph with separate communities

Random graph with separate communities

At the beginning, one infected vertex (= the seed of the epidemic)
At each step, each vertex becomes infected if :

proportion of its infected neighbors > q = 1
4

INITIAL GRAPH GRAPH WITH CLIQUES

=⇒ Clustering decreases the cascade size.
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Second Epidemic Model : Contagion Random graph with separate communities

Effect of Clustering on the Contagion Threshold

Asymptotic degree distribution :
p̃k ∝ k−τe−k/50

— Graph with maximal clustering coefficient
— Graph with no clustering

Mean degree λ̃ ≈ 1.65

No Cascade

Cascade
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Second Epidemic Model : Contagion Random graph with separate communities

Effect of Clustering on the Contagion Threshold

Asymptotic degree distribution :
p̃k ∝ k−τe−k/50

— Graph with maximal clustering coefficient
— Graph with no clustering

Mean degree λ̃ ≈ 3.22

Cascade

No Cascade
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Second Epidemic Model : Contagion Random graph with separate communities

Effect of Clustering on the Cascade Size

Asymptotic degree distribution : p̃k ∝ k−τe−k/50
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Second Epidemic Model : Contagion Random graph with overlapping communities

Random graph with overlapping communities

At the beginning, the root is infected
Each vertex becomes infected if :

proportion of its infected neighbors > q = 1
5

Independence among the different branches
Inside a clique : first ones = those with smaller degree
Then : possibly other vertices infected inside the clique
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Second Epidemic Model : Contagion Random graph with overlapping communities

Random graph with overlapping communities

Independence among the different branches
=⇒ Study independently each branches

Inside a clique : first ones = those with smaller degree
=⇒ Order the vertices according to their degree

Then : possibly other vertices infected inside the clique
=⇒ i-th vertex infected if needs less than i infected neighbors

Need to know the number of children of each vertex
=⇒ Use of a multi-type branching process
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Second Epidemic Model : Contagion Random graph with overlapping communities

Random graph with overlapping communities
Definition of a multi-type (and alternating) branching process such that :

nb of vertices at a given generation
= nb of infected vertices (in the original process)
type of a vertex
= its number of grandchildren (in the original process)
type of a hyper-edge
= its number of children (in the original process)

Mean number of grandchildren of a type y of a vertex of type x
=⇒ Matrix with largest eigenvalue ρ.

Theorem (CONTAGION THRESHOLD)
If q ≥ 1/2, then there is no cascade.
If q < 1/2, then there is a cascade if and only if either ρ > 1 or
p2 = q2 = 1.
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Second Epidemic Model : Contagion Variant of the epidemic model on random hypergraphs

Variant of the epidemic model on random hypergraphs

With the previous model : individuals equally influenced by each neighbor
Epidemic model that takes into account the number of papers in common

B C
Vertices

Hyper-edges
(Papers)

(Authors) A

Initially : positive fraction of infected individuals
Definition of a Markov chain
Differential equation approximations for Markov chains
Application : upper bound for the largest component size
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Conclusion and perspectives
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Conclusion and perspectives

Conclusion and perspectives

Random graphs with separate communities :

Model of random graphs with a given degree distribution, and a
tunable clustering coefficient

Effect of clustering on the diffusion model :
I Clustering increases the diffusion threshold
I Clustering decreases the cascade size

Effect of clustering on the contagion model :
I Clustering decreases the contagion threshold for low values of the mean

degree, while the opposite happens in the high values regime
I Clustering decreases the cascade size (when a cascade is possible)

Non-negligeable proportion of infected individuals at the start
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Conclusion and perspectives

Conclusion and perspectives
Random graphs with overlapping communities :

On the equivalent branching process :
I Clustering decreases the diffusion threshold
I Use of a multi-type branching process to study the contagion

Variant of the epidemic model that takes into account the number of
groups in common

No redundancy in this model :

B C
Vertices

Hyper-edges
(Papers)

(Authors) A

Thanks for your attention !
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Conclusion and perspectives
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