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Part 1:

Real-world networks
and models for them



Complex networks
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Network functions

Internet: e-mail

WWW: Information gathering

Friendship networks: gossiping, spread of information and disease

Power grids: reliability
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Processes on networks!



Scale-free paradigm

1

10

100

1000

10000

1 10 100

 

"971108.out"
exp(7.68585)  * x ** (  -2.15632 )

1

10

100

1000

10000

1 10 100

 

"980410.out"
exp(7.89793)  * x ** (  -2.16356 )

¾�¿�À�Á�Â�Ã�Ä	Å
Å�Ä�Æ�Ç ¾�È[À�Á�Â�Ã�Ä�É�Ê�Ä�Æ
Ë

Ì�Í Î
Ï�Ð	Ñ=Ò�Ó�Ô�Õ$Ñ7Ö
Ï Ã5× Ñ-Î�Ð	Ñ-Ñ7Ø$Ù Ö Ã	Ú Ó�Û/Ö
Î Ä Ù Ö
ÎXØ$Ù Ö Ã Ö�Ü�Ü Ð	Ñ@Ý�Ï$Ñ Â$Þ�ßJà@á=â Ñ�Ð Ú Ï Ú:Ã Õ$Ñ%Ö
Ï Ã5× Ñ-Î�Ð	Ñ-Ñ7ãHä

1

10

100

1000

10000

1 10 100

 

"981205.out"
exp(8.11393)  * x ** (  -2.20288 )

1

10

100

1000

10000

1 10 100

 

"routes.out"
exp(8.52124)  * x ** (  -2.48626 )

¾�¿�À�Á�Â�Ã�Ä	ÅDå@Ä�Æ
Ë ¾�È[À�æ Ö
Ï Ã�Ä�Æ Ò

Ì�Í Î
Ï�Ð	Ñ�ç!Ó�Ô�Õ$Ñ7Ö
Ï Ã5× Ñ-Î�Ð	Ñ-Ñ7Ø$Ù Ö Ã	Ú Ó�Û/Ö
Î Ä Ù Ö
ÎXØ$Ù Ö Ã Ö�Ü�Ü Ð	Ñ@Ý�Ï$Ñ Â$Þ�ßJà@á=â Ñ�Ð Ú Ï Ú:Ã Õ$Ñ%Ö
Ï Ã5× Ñ-Î�Ð	Ñ-Ñ7ãHä

ÚUÃ Ï ×!ß Ã Õ$Ñ Ú Í è-Ñ_Ö�Ü Ã Õ$Ñ Â Ñ-Í Î
Õ È Ö�Ð	Õ$Ö�Ö ×¨é Í Ã Õ$Í ÂcÚ Ö
êXÑ × Í ÚUÃ5¿�Â$Þ Ñ
ë
Í Â$ÚUÃ Ñ ¿
× Ö�Ü Ã Õ$Ñ × Í ÚUÃ5¿�Â$Þ Ñ:Í Ã	Ú Ñ-Ù Ü�äZì ¿ êXÑ-Ù ß ë é ÑWÏ Ú Ñ Ã Õ$Ñ Ã Ö Ã5¿ Ù Â Ï$ê Ä
È Ñ�Ð�Ö�Ü:Ø ¿ Í Ð Ú Ö�Ü Â Ö × Ñ Ú=íO¾�î[ÀWé Í Ã Õ$Í Â î Õ$Ö
Ø Ú ë é Õ$Í Þ Õ é Ñ × Ñ�ï Â Ñ
¿�Ú=Ã Õ$Ñ Ã Ö Ã5¿ Ù Â Ï$ê È Ñ�Ð�Ö�Ü1Ø ¿ Í Ð Ú Ö�Ü Â Ö × Ñ Ú=é Í Ã Õ$Í Â Ù Ñ Ú�Ú Ö�ÐOÑ@Ý�Ï ¿ Ù
Ã Ö î Õ$Ö
Ø Ú ë[Í Â$Þ Ù Ï × Í Â Î Ú Ñ-Ù Ü Ä Ø ¿ Í Ð Ú ë ¿�ÂH×_Þ Ö
Ï Â�Ã Í Â Î ¿ Ù Ù3Ö Ã Õ$Ñ�Ð;Ø ¿ Í Ð Ú
Ã�é Í Þ Ñ
ä
Û/Ñ Ã Ï ÚSÚ Ñ-Ñ Ã Õ$Ñ(Í Â�Ã Ï$Í Ã Í Ö ÂfÈ Ñ-Õ$Í ÂH×dÃ Õ$Ñ Â Ï$ê È Ñ�Ð=Ö�Ü;Ø ¿ Í Ð Ú Ö�Ü

Â Ö × Ñ Ú;íO¾�î[À äZÌ$Ö�Ð î>ðñÉ ë é Ñ7Ö Â Ù ß Õ ¿@â Ñ Ã Õ$Ñ Ú Ñ-Ù Ü Ä Ø ¿ Í Ð Ú Ó íO¾�É�ÀZð
ò\äZÌ$Ö�Ð Ã Õ$Ñ × Í ¿ êXÑ Ã Ñ�Ð�Ö�Ü Ã Õ$Ñ1Î�Ð ¿ Ø$Õ(ó!ë î>ð ó!ë é Ñ1Õ ¿@â Ñ Ã Õ$Ñ Ú Ñ-Ù Ü Ä
Ø ¿ Í Ð Ú Ø$Ù Ï Ú1¿ Ù Ù Ã Õ$Ñ7Ö Ã Õ$Ñ�Ð;Ø[Ö Ú�Ú Í È Ù Ñ=Ø ¿ Í Ð Ú Ó íO¾ ó ÀZð ò_ô�ë é Õ$Í Þ Õ_Í Ú
Ã Õ$Ñ�ê ¿Dõ Í êSÏ$êöØ[Ö Ú�Ú Í È Ù Ñ Â Ï$ê È Ñ�Ð:Ö�ÜZØ ¿ Í Ð Ú äWÌ$Ö�Ð ¿ Õ ß Ø[Ö Ã Õ$Ñ Ã Í Þ@¿ Ù
Ð	Í Â Î Ã Ö
Ø[Ö
Ù Ö
Î ß ë é Ñ7Õ ¿@â Ñ íO¾�î[ÀZ÷øî/ù ë ¿�ÂH× ë$ÜeÖ�Ð ¿(å@Ä�× Í êXÑ Â$Ú Í Ö ÂH¿ Ù
Î�Ð	Í × ë é ÑSÕ ¿@â Ñ íO¾�î[À1÷úî ô�ëxÜeÖ�Ð î\û ó!ä7ü©ÑSÑ õ$¿ êXÍ Â Ñ é Õ$Ñ Ã Õ$Ñ�Ð
Ã Õ$Ñ Â Ï$ê È Ñ�Ð;Ö�Ü�Ø ¿ Í Ð Ú7íO¾�î[À ÜeÖ�Ð Ã Õ$Ñ Á�Â�Ã Ñ�Ð Â Ñ Ã ÜeÖ
Ù Ù Ö éWÚ=¿(Ú Í êXÍ Ù ¿ Ð
Ø[Ö é Ñ�Ð Ä Ù ¿-é ä
Á�Â ïHÎ
Ï�Ð	Ñ Ú:Ç7¿�ÂH×XË ë é Ñ1Ø$Ù Ö Ã�Ã Õ$Ñ Â Ï$ê È Ñ�ÐBÖ�ÜQØ ¿ Í Ð Ú�íO¾�î[ÀB¿�Ú�¿

ÜeÏ Â$Þ�Ã Í Ö Â Ö�Ü Ã Õ$Ñ Â Ï$ê È Ñ�Ð�Ö�ÜBÕ$Ö
Ø ÚWî Í Â Ù Ö
Î Ä Ù Ö
Î Ú�Þ@¿ Ù Ñ
ä�Ô�Õ$Ñ ×$¿DÃ5¿
Í Ú Ð	Ñ-Ø�Ð	Ñ Ú Ñ Â�Ã Ñ ×aÈ�ßa× Í ¿ êXÖ ÂH×�Ú ë ¿�ÂH×_Ã Õ$Ñ × Ö Ã�Ã Ñ × Õ$Ö�Ð	Í è-Ö Â�Ã5¿ ÙBÙ Í Â Ñ
Ð	Ñ-Ø�Ð	Ñ Ú Ñ Â�Ã	Ú:Ã Õ$Ñ%ê ¿Dõ Í êSÏ$ê Â Ï$ê È Ñ�Ð�Ö�ÜBØ ¿ Í Ð Ú ë é Õ$Í Þ ÕKÍ Ú ò ô ä3ü©Ñ
é:¿�Â�Ã�Ã Ö × Ñ Ú�Þ Ð	Í È Ñ Ã Õ$ÑOØ$Ù Ö Ã=È�ß\¿ Ù Í Â ÑXÍ Â Ù Ñ ¿�ÚUÃ�Ä0Ú Ý�Ï ¿ Ð	Ñ Ú ï Ã ëQÜeÖ�Ð
îaû ó!ë Ú Õ$Ö éWÂd¿�Ú%¿(Ú Ö
Ù Í × Ù Í Â ÑSÍ Â_Ã Õ$Ñ�Ø$Ù Ö Ã	Ú ä%ü©Ñ ¿ Ø$Ø�Ð	Ö õ Í ê ¿DÃ Ñ
Ã Õ$Ñ;ï$Ð ÚUÃWÊ Õ$Ö
Ø Ú Í Â>Ã Õ$Ñ%Í Â�Ã Ñ�Ð Ä�× Ö
ê ¿ Í Â Î�Ð ¿ Ø$Õ Ú ë ¿�ÂH×(Ã Õ$Ñ;ï$Ð ÚUÃ7ÅDå
Õ$Ö
Ø Ú Í Â>Ã Õ$Ñ æ Ö
Ï Ã�Ä�Æ Ò�äZÔ�Õ$Ñ Þ Ö�Ð�Ð	Ñ-Ù ¿DÃ Í Ö Â_Þ Ö�Ñ�ý Þ Í Ñ Â�Ã	Ú1¿ Ð	Ñ%Í ÚWÉ!þ Æ
Ë

ÜeÖ�Ð>Í Â�Ã Ñ�Ð Ä�× Ö
ê ¿ Í Â Î�Ð ¿ Ø$Õ Ú>¿�ÂH×cÉ!þ Æ ç!ë:ÜeÖ�Ð Ã Õ$Ñ æ Ö
Ï Ã�Ä�Æ Ò�ë ¿�ÚXé Ñ
Ú Ñ-Ñ(Í Âfÿ Ø$Ø[Ñ ÂH× Í õ�� ä�� Â ÜeÖ�Ð Ã Ï ÂH¿DÃ Ñ-Ù ß ëQÜeÖ
Ï�ÐSØ[Ö
Í Â�Ã	Ú Í ÚS¿ Ð ¿DÃ Õ$Ñ�Ð
Ú ê ¿ Ù Ù Â Ï$ê È Ñ�Ð Ã Ö â Ñ�Ð	Í Ü ß Ö�Ð × Í Ú Ø�Ð	Ö â Ñ ¿ Ù Í Â Ñ ¿ Ð	Í Ã�ß Õ ß Ø[Ö Ã Õ$Ñ Ú Í Ú Ñ õ!Ä
Ø[Ñ�Ð	Í êXÑ Â�Ã5¿ Ù Ù ß ä��;Ö é Ñ â Ñ�Ð@ë/Ñ â Ñ Â_Ã Õ$Í Ú Ð	Ö
Ï$Î
Õ ¿ Ø$Ø�Ð	Ö õ Í ê ¿DÃ Í Ö Â Õ ¿�Ú
Ú Ñ â Ñ�Ð ¿ Ù/Ï Ú Ñ�ÜeÏ$Ù ¿ Ø$Ø$Ù Í Þ@¿DÃ Í Ö Â$Ú;¿�Ú:é Ñ Ú Õ$Ö é Ù ¿DÃ Ñ�Ð;Í Â>Ã Õ$Í ÚWÚ Ñ Þ�Ã Í Ö Â ä

���	�	
���
���������� ����������� ��!"�$# � ��%&
'�(����%��)�+*-,�.�/�021430254687�9&:<;=/=>�1�?A@�5+BC>=DE1�?F7�1�GH/=DJI íO¾�î[À IAK(BC0C.HBC7 î .�1=@ DJIBCDL@ >"1=@�1+>=0�BM1+7�546�021<0C.�/�7�9&:<;=/=>N1�?O.�1=@ DP021Q0C.�/R@�1+KS/=>N1�?5�TJ1+7�DJ025+7�0�I$U�V
íO¾�î[ÀB÷ñî�WYX î>û ó

Z %H[(�	� ��� ���]\�^	/=0�9&D)@�6 1+0�0C.�/_7�9&:<;=/=>R1�?)@�5+BC>=D_1�?L7�1�GH/=DJI íO¾�î[À IK(BC0C.HBC7 î .�1=@ DR`4/=>=DJ9&DR0C.�/R7�9&:<;=/=>O1�?_.�1=@ DRBC7�6 1Ja4326 1Ja�DbTJ546 /�c_d�1+>
î�û ó I�KS/eGH/Cf(7)/g0C.�/FD=6 1=@�/e1�?�0C.HBCDY@�6 1+0�021h;=/F0C.�/ Õ$Ö
Ø Ä Ø$Ù Ö Ã
Ñ õ Ø[Ö Â Ñ Â�Ã I U�ci È$Ú Ñ�Ð â Ñ Ã Õ ¿DÃ�Ã Õ$Ñ Ã Õ�Ð	Ñ-Ñ;Í Â�Ã Ñ�Ð Ä�× Ö
ê ¿ Í Â>×$¿DÃ5¿�Ú Ñ Ã	Ú Õ ¿@â Ñ;Ø�Ð ¿�Þ�Ä
Ã Í Þ@¿ Ù Ù ß Ñ@Ý�Ï ¿ Ù
Õ$Ö
Ø Ä Ø$Ù Ö Ã Ñ õ Ø[Ö Â Ñ Â�Ã	Úkj�Ê�þ ç X	Ê�þ Ç ë ¿�ÂH×%Ê�þ Ë çWÍ Â�Þ Õ�Ð	Ö Â Ö Ä
Ù Ö
Î
Í Þ@¿ Ù/Ö�Ð × Ñ�Ð@ë ¿�Ú�é Ñ Ú Ñ-Ñ;Í ÂKÿ Ø$Ø[Ñ ÂH× Í õ<� äZÔ�Õ$Í Ú�Ú Õ$Ö éWÚ�Ã Õ ¿DÃ�Ã Õ$Ñ
Õ$Ö
Ø Ä Ø$Ù Ö Ã Ñ õ Ø[Ö Â Ñ Â�Ã�× Ñ Ú�Þ Ð	Í È Ñ Ú�¿�ÂX¿�Ú Ø[Ñ Þ�Ã Ö�Ü Ã Õ$Ñ Þ Ö Â$Â Ñ Þ�Ã Í â Í Ã�ß Ö�Ü
Ã Õ$Ñ%Î�Ð ¿ Ø$ÕKÍ ÂK¿=Ú Í Â Î
Ù Ñ Â Ï$ê È Ñ�Ð@äBÔ�Õ$Ñ æ Ö
Ï Ã�Ä�Æ Ò7Ø$Ù Ö Ã ë$Í Â ïHÎ�ä Ë ä È ë

Loglog plot of degree sequences in Internet Movie Data Base (2007)
and in the AS graph (FFF97)



Small-world paradigm

0 2 4 6 8 10 12
Distance

0

1

2

3

4

5

6

7

8

Fr
e
q
u
e
n
cy

1e8Gay.eu histogram for user distance in 200812 (1656328424 values)

0 5 10 15 20
Distance

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

D
e
n
si

ty

LiveJournal histogram for user distance in 2007 (8279218338 values)

Distances in social networks gay.eu on December 2008 and
livejournal in 2007.



Distances in IP graph
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Modeling real networks

• Inhomogeneous Random Graphs:
Static random graph, independent edges with inhomogeneous edge occu-
pation probabilities, yielding scale-free graphs.
(BJR07, CL02, CL03, BDM-L05, CL06, NR06, EHH06,...)

• Configuration Model:
Static random graph with prescribed degree sequence.
(MR95, MR98, RN04, HHV05, EHHZ06, HHZ07, JL07, FR07,...)

• Preferential Attachment Model:
Dynamic random graph, attachment proportional to degree plus constant.
(BA99, BRST01, BR03, BR04, M05, B07, HH07,...)
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• Inhomogeneous Random Graphs:
Static random graph, independent edges with inhomogeneous edge occu-
pation probabilities, yielding scale-free graphs.
(BJR07, CL02, CL03, BDM-L05, CL06, NR06, EHH06,...)

• Configuration Model:
Static random graph with prescribed degree sequence.
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(BA99, BRST01, BR03, BR04, M05, B07, HH07,...)

Universality??



Part 2:

Routing on random graphs:
First passage percolation
on configuration model



Configuration model

Invented by Bollobás (1980), EJC: 285 cit. to study
number of graphs with given degree sequence.

Inspired by Bender+Canfield (1978), JCT(A): 300 cit.
Giant component studied by Molloy, Reed (1995), RSA: 664 cit.
Popularized by Newman, Strogatz, Watts (2001), Psys. Rev. E: 1190 cit.

Let n be number of vertices. Consider sequence of degrees d1, d2, . . . , dn.

Often will take di = Di, where (Di)i∈[n] is sequence of independent and
identically distributed (i.i.d.) random variables with a certain distribution.

Special attention for power-law degrees, i.e., when

P(D1 ≥ k) = cτk
−τ+1(1 + o(1)),

where cτ is constant and τ > 1.



Power-law degree sequence CM
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Configuration model: graph construction

How to construct graph with above degree sequence?

• Assign to vertex j degree dj.

`n =
∑
i∈[n]

di

is total degree. Assume `n is even.
Incident to vertex i have di ‘stubs’ or half edges.



Configuration model: graph construction

How to construct graph with above degree sequence?

• Assign to vertex j degree dj.

`n =
∑
i∈[n]

di

is total degree. Assume `n is even.
Incident to vertex i have di ‘stubs’ or half edges.

• Connect stubs to create edges as follows:
Number stubs from 1 to `n in any order.
First connect first stub at random with one of other `n − 1 stubs.
Continue with second stub (when not connected to first) and so on, until all
stubs are connected...



Properties configuration model

CM can have cycles and multiple edges, but these are relatively scarce com-
pared to the number of edges.

LetDn denote the degree of a uniformly chosen vertex.
We shall always assume thatDn converges in distribution to a limiting ran-
dom variableD.

When E[D2
n]→ E[D2] <∞, then the numbers of self-loops and multiple

edges converges in distribution to two independent Poisson variables with
parameters ν/2 and ν2/4, respectively, where

ν =
E[D(D − 1)]

E[D]
.

Configuration model (CM) is locally tree-like.



Properties configuration model (Cont.)

Parameter ν arises as mean of size-biased distribution ofD minus one.

This distribution is asymptotic distribution of forward degree of neighbor of
uniformly chosen vertex.

ν > 1 is equivalent to branching process approximation of connected com-
ponents being supercritical, and giant component existing.



Shortest-weight problems

In many applications, edge weights represent cost structure of the graph,
such as actual economic costs or congestion costs across edges.

Actual time delay experienced by vertices in the network is given by hop-
countHn which is the number of edges on shortest-weight path.

How does weight structure influence hopcount and weight SWP?

Assume that

edge weights are i.i.d. random variables:
Aldous’ stochastic mean-field model of distance.

Problem with exponential edge weights has received tremendous attention
on complete graph, here extend to general (random) graphs.



Results

Theorem 1. (BvdHH10). Let Hn be number of edges between two uniformly
chosen vertices on CM with i.i.d. exponential edge weights.

AssumeD ≥ 2 a.s. and ν = E[D(D−1)]
E[D]

> 1.

For τ > 3 or τ ∈ (2, 3),

Hn − α log n√
α log n

d−→ Z,

where Z is standard normal, and

α =
ν

ν − 1
> 1 for τ > 3,

α =
2(τ − 2)

τ − 1
∈ (0, 1) for τ ∈ (2, 3).



Results

Theorem 2. (BvdHH10). Let Wn be weight of shortest path between two
uniformly chosen vertices on CM with i.i.d. exponential edge weights.
AssumeD ≥ 2 a.s. and ν = E[D(D−1)]

E[D]
> 1.

Then, for some limiting random variableW, and for τ > 3 or τ ∈ (2, 3),

Wn − γ log n
d−→ W,

where

γ =
1

ν − 1
> 0 for τ > 3,

γ = 0 for τ ∈ (2, 3).



Graph distances in configuration model

H̃n is graph distance between uniform pair of connected vertices in graph.



Graph distances in configuration model

H̃n is graph distance between uniform pair of connected vertices in graph.

Theorem 3. (vdHHVM03). When τ > 3 and ν > 1

H̃n

logν n
P−→ 1,

and fluctuations are bounded.



Graph distances in configuration model

H̃n is graph distance between uniform pair of connected vertices in graph.

Theorem 3. (vdHHVM03). When τ > 3 and ν > 1

H̃n

logν n
P−→ 1,

and fluctuations are bounded.

Theorem 4. (vdHHZ07, Norros+Reittu 04). When τ ∈ (2, 3),

H̃n

log log n
P−→ 2

| log (τ − 2)|
,

and fluctuations are bounded.



x 7→ log log x grows extremely slowly
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Discussion Theorems 3-4

Proof relies on coupling of neighborhood of vertices to branching process.

Extensions:
Fluctuations around leading order are uniformly bounded, and ‘limiting dis-
tribution’ computed in terms of martingale limit of branching process.
Interestingly, fluctuations are tight sequence of random variables that does
not converge.

Diameter of graph is maximal distance between any pair of connected ver-
tices.
Diameter CM is Θ(log n) when P(Di ≥ 3) < 1 (FR07, HHZ07),
while of order log log n when τ ∈ (2, 3) and P(Di ≥ 3) = 1 (HHZ07).

More information Erdős-Rényi + power-law degree random graphs:

www.win.tue.nl/∼rhofstad/NotesRGCN.pdf



Discussion Theorems 1-2

Random weights have marked effect on shortest-weight problem.

Proof Theorems 1-2: Comparison neighborhood uniform vertex to
branching process, and use wealth of results on FPP on trees.

Surprisingly universal behavior for FPP on configuration model.
Universality is leading paradigm in statistical physics.
Only few examples where universality can be rigorously proved.
Extension to FPP on super-critical Erdős-Rényi random graph.

Key question:
To what extent is universality true for processes on random graphs
models?

Cool application by Ding, Kim, Lubetzky, and Peres identifying dis-
tance between two random vertices in two-core of slightly supercriti-
cal ERRG.



Digression 1: Preferential attachment models

Albert-Barabási (1999):
Emergence of scaling in random networks (Science)
8737 citations on April 4, 2011.
Bollobas, Riordan, Spencer, Tusnády (2001):
The degree sequence of a scale-free random graph process (RSA)
371 citations in April 4, 2011.

In preferential attachment models, network is growing in time, in such
a way that new vertices are more likely to be connected to vertices that
already have high degree.

Rich-get-richer model.



Digression 1: Preferential attachment models

At time n, a single vertex is added to the graph with m edges ema-
nating from it. Probability that an edge connects to the ith vertex is
proportional to

Di(n− 1) + δ,

where Di(n) is degree vertex i at time n, δ > −m is parameter model.



Digression 1: Preferential attachment models

At time n, a single vertex is added to the graph with m edges ema-
nating from it. Probability that an edge connects to the ith vertex is
proportional to

Di(n− 1) + δ,

where Di(n) is degree vertex i at time n, δ > −m is parameter model.

Different edges can attach with different updating rules:
(a) intermediate updating degrees with self-loops (BA99, BR04,
BRST01)
(b) intermediate updating degrees without self-loops;
(c) without intermediate updating degrees, i.e., independently.

(Graphs in cases (b-c) have advantage of being connected.)



Scale-free nature PA

Yields power-law degree sequence with power-law exponent
τ = 3 + δ/m ∈ (2,∞).
(Bollobás, Riordan, Spencer, Tusnády (01) δ = 0, Deijfen, vdE, vdH, Hoo
(09),...)
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Albert-László Barabási

“...the scale-free topology is evidence of organizing principles
acting at each stage of the network formation. (...) No matter
how large and complex a network becomes, as long as pref-
erential attachment and growth are present it will maintain its
hub-dominated scale-free topology.”



Distances PA models

Non-rigorous physics literature predicts that scaling distances in pref-
erential attachment models similar to the one in configuration model
with equal power-law exponent degrees.



Distances PA models

Diamn is diameter in PA model of size n.

Theorem 5 (Dommers-vdH-Hoo 10). For all m ≥ 2 and τ ∈ (3,∞),

Diamn, Hn = Θ(log n).

Theorem 6 (Dommers-vdH-Hoo 10, DerMonMor 11). For allm ≥ 2 and
τ ∈ (2, 3),

Hn

log log n

P−→ 4

| log (τ − 2)|
,

and
Diamn = Θ(log log n).



Distances PA models

Theorem 7 (Bol-Rio 04, Dommers-vdH-Hoo 10). For all m ≥ 2 and
τ = 3,

Diamn, Hn ≥
log n

log log n
,

while, for model (a), matching upper bound exists (Bol-Rio 04).

Similar results can be proved for configuration model when τ = 3.



Digression 2: FPP on complete graph

Consider complete graph Kn = ([n], En) with edge weights Es
e , where

(Ee)e∈En are i.i.d. exponentials.

Theorem 8. (BvdH10). Let Wn and Hn be weight and number of edges
of shortest path between two uniformly chosen vertices in Kn. Then,
with

λ = λ(s) = Γ(1 + 1/s)s,

there exists a limiting random variable W, such that

Wn −
1

λ
log n

d−→ W,

while
Hn − s log n√

s2 log n

d−→ Z,

where Z is standard normal.



Weights matter: s < 0

Not always CLT, even when weights have density:
Consider complete graph Kn = ([n], En) with edge weights Es

e , where
(Ee)e∈En are i.i.d. exponentials and s < 0.

Theorem 9. (BvdHH10b). Hn converges in distribution. Limit is con-
stant k = k(s) for most s...

What are universality classes FPP on complete graph?



Topology matters

Theorem 10. (BvdHH in progress). For configuration model with de-
gree exponent τ > 3, there exist α, β > 0 such that

Hn − α log n√
β log n

d−→ Z.

Hopcount not always of order log n:
Weights (1 + Ee)e∈En and τ ∈ (2, 3), Hn = Θ(log log n).

What are universality classes FPP on random graph, and are they
related to ones for FPP on complete graph?
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Part 3:

Attack vulnerability on random graphs:
Critical inhomogeneous percolation.



Erdős-Rényi random graph

Vertex set [n] := {1, 2, . . . , n}.

Erdős-Rényi random graph is random subgraph of complete graph on
[n] where each of

(
n
2

)
edges is occupied with probab. p.

Simplest imaginable model of a random graph.

• Attracted tremendous attention since introduction 1959, mainly in
combinatorics community.

Probabilistic method (Erdős et al).

Egalitarian: Every vertex has equal probability of being connected to.
Misses hub-like structure of real networks.



Rank-1 inhomogeneous random graphs

Attach edge with probability pij between vertices i and j, where

pij = 1− e−wiwj/`n,

and
`n =

∑
i∈[n]

wi,

and different edges are independent.
Interpretation: wi is close to expected degree vertex i.

When wi = − log (1− λ/n), we retrieve Erdős-Rényi random graph
with p = λ/n.



Choice of weights

Take w = (w1, . . . , wn) as

wi = [1− F ]−1(i/n),

where F (x) is distribution function.
Interpretation: proportion of vertices i with wi ≤ x is close to F (x).

Simple example:

F (x) =

{
0 for x < a,

1− (a/x)τ−1 for x ≥ a,

in which case

[1− F ]−1(u) = a(1/u)−1/(τ−1), so that wj = a(n/j)1/(τ−1).



Degree structure graph

Denote proportion of vertices with degree k by

P (n)

k =
1

n

∑
i∈[n]

1{Di=k},

where Di denotes degree of vertex i.

Model is sparse, i.e., there exists probability distribution (pk)
∞
k=0 s.t.

P (n)

k
P−→ pk where pk = E

[
e−W

W k

k!

]
,

for wi = [1− F ]−1(i/n), with W ∼ F.

In particular,
∑

l≥k pk ∼ ck−(τ−1) iff P(W ≥ k) ∼ ck−(τ−1).



Critical behavior Erdős-Rényi random graph

Double jump (Erdős and Rényi (60))
For p = (1 + ε)/n, largest component is
(a) ΘP(log n) for ε < 0;

(b) ΘP(n) for ε > 0;

(c) ΘP(n
2/3) for ε = 0.

Scaling window: (Bollobás (84) and Łuczak (90))
For p = (1/n)(1 + λn−1/3), largest component is ΘP(n

2/3).

Extension: Aldous (97): Weak convergence of ordered clusters.

Key question:
Degree ERRG with p = c/n is Poisson with parameter c, not realistic!
How does critical behavior change when we let go of homogeneity ver-
tices?



Critical value IRG

Bollobás-Janson-Riordan (07), Chung-Lu (02): Let W ∼ F, then
• largest component∼ ρn with ρ ∈ (0, 1) for ν = E[W 2]/E[W ] > 1;

• largest component o(n) for ν = E[W 2]/E[W ] ≤ 1.

Identifies critical value IRG as

ν = E[W 2]/E[W ] = 1,

where ν is asymptotic expected number of forward neighbors, and W
is asymptotic weight of uniform vertex.

In simple example F (x) = 1− (a/x)τ−1 for x ≥ a

E[W ] =
a(τ − 1)

τ − 2
, E[W 2] =

a2(τ − 1)

τ − 3
,

so that critical case arises when a = (τ − 3)/(τ − 2).



Robustness of networks

Above has important implications for robustness network under vari-
ous attacks:

Random attack: Remove vertices uniformly at random with probability
p. Obtain rank-1 IRG where now probability of edge ij between kept
vertices equals

1− e−wiwj/`n,

and otherwise equals 0.

Giant component exists whenever

(1− p)ν > 1.

In particular, when ν =∞, always giant component:

Robust to random failure.



Robustness of networks

Above has important implications for robustness network under vari-
ous attacks:

Deliberate attack: Remove proportion p of vertices with highest
weight. Obtain rank-1 IRG where probability of edge ij for i, j > np

equals
1− e−wiwj/`n,

while otherwise probability equals 0.

Thus, giant component exists whenever∑
i>npw

2
i

`n
> 1.

In particular, even when ν =∞, for p large, no giant component:

Fragile to deliberate attacks.



Critical behavior

Let
1− F (x) ∼ cx−(τ−1) for x sufficiently large.

Further, let |Cmax| denote largest connected component.

Theorem 11. (vdH 09) Assume that ν = 1.

(a) Let τ > 4. Then, there exists b > 0 such that for all ω ≥ 1

P
( 1

ω
n2/3 ≤ |Cmax| ≤ ωn2/3

)
≥ 1− b

ω
as n→∞.

(b) Let τ ∈ (3, 4). Then, there exists b > 0 such that for all ω ≥ 1

P
( 1

ω
n(τ−2)/(τ−1) ≤ |Cmax| ≤ ωn(τ−2)/(τ−1)

)
≥ 1− b

ω
as n→∞.



Scaling limit for τ > 4

Let µ = E[W ], σ2 = E[W 3]/E[W ]. Consider

Bλ
s = σBs + sλ− s2σ2/(2µ),

whereB is standard Brownian motion. Let

Rλ
s = Bλ

s − min
0≤u≤s

Bλ
s .

Aldous (1997): Excursions of Rλ can be ranked in increasing order as
γ1(λ) > γ2(λ) > . . . .

Let |C(1)(λ)| ≥ |C(2)(λ)| ≥ |C(3)(λ)| . . . denote sizes of components with
weights w̃i = (1 + λn−1/3)wi arranged in increasing order.

Theorem 12. (BvdHvL 10, Turova 09) Assume that ν = 1, and E[W 3] <∞.
Then (

n−2/3|C(i)(λ)|
)
i≥1

d−→
(
γi(λ)

)
i≥1.



Scaling limit for τ ∈ (3, 4)

Let |C(1)(λ)| ≥ |C(2)(λ)| ≥ |C(3)(λ)| . . . denote sizes of components with
weights w̃i = (1 + λn−(τ−3)/(τ−1))wi arranged in increasing order.

Theorem 13. (BvdHvL 09b) Assume that ν = 1, and τ ∈ (3, 4). Then,(
n−(τ−2)/(τ−1)|C(i)(λ)|

)
i≥1

d−→
(
Hi(λ)

)
i≥1.

Moreover, for every i, j fixed

P(i←→ j)→ qij(λ) ∈ (0, 1).

Limits Hi(λ) correspond to ordered hitting times of 0 of a certain fascinat-
ing ‘thinned’ Lévy process.



Multiplicative coalescents

Multiplicative coalescent is continuous-time Markov process λ 7→ X(λ),
where

X(λ) ∈ {x = (xi)i≥1 : xi ≥ xi+1},
where xi corresponds to mass of ith largest particle, and where particles
with masses xi and xj merge to particle of mass xi + xj at rate

xixj.

Process describes evolution of masses where particles coalesce at rate
equal to product of their masses.

Theorem 14. (Aldous97, BvdHvL 09b) As function of λ ∈ R, processes
λ 7→

(
γi(λ)

)
i≥1 and λ 7→

(
Hi(λ)

)
i≥1 are

multiplicative coalescents.

Distinction between τ > 4 and τ ∈ (3, 4) arises through

entrance boundary at λ = −∞.



Digression 3: Critical behavior CM

Theorem 15. (Joseph 11) Theorems 12 and 13 also hold for

configuration model

with i.i.d. degrees, under suitable conditions as for IRG, i.e.,

ν = E[D(D − 1)]/E[D] = 1.

Remarkably, the scaling limit is notably different.



Proof: weak convergence stochastic processes

Proof relies on three main ingredients:

(1) subsequent exploration of clusters;

(2) removal of possible further neighbors due to their exploration:

depletion of points effect;

(3) in critical window, these effects play at same scale, and

cluster exploration process weakly converges;

Cluster sizes correspond to excursion lengths limiting process hav-
ing an increasing negative drift.



Proof: weak convergence stochastic processes

τ > 4 : exploration process has finite variance steps, so that Brownian
motion appears in limit, and P(1 ∈ Cmax)→ 0 :

‘power to the masses!’

τ ∈ (3, 4) : exploration process is dominated by vertices with high
weights, and P(1 ∈ Cmax)→ q1(λ) ∈ (0, 1) :

‘power to the wealthy!’



Cluster exploration for τ > 4

For all ordered pairs of vertices (i, j), let (i, j) be independent exponential
random variables with rate (1 + λn−1/3)wj/`n.

Choose vertex v(1) with probability proportional to w, so that

P(v(1) = i) = wi/`n.

Children of v(1) are those vertices j for which

V (v(1), j) ≤ wv(1).

Label children of v(1) as v(2), v(3), . . . v(c(1) + 1) in increasing order of
their V (v(1), ·) values.

Move to v(2), explore all of its children, and label them as before. Children
of v(2) are those vertices j for which V (v(2), j) ≤ wv(2), and continue!

Once we finish exploring one component, move onto next component by
choosing starting vertex in size-biased manner amongst remaining vertices.



Size-biased reordering

Size-biased order v∗(1), v∗(2), . . . , v∗(n) is random reordering of vertex set
[n] where
• v∗(1) = i with prob.wi/`n;
• given v∗(1), . . . , v∗(i− 1), v∗(i) = j ∈ [n] \ {v∗(1)} with prob. propor-
tional towj.

Key ingredient proof:

(v(i))i∈[n] is size-biased reordering.

Number of new neighbors c(i) of v(i) is close to

c(i) = Poi
(
wv(i)

∑
j∈[n]\{v(1),...,v(i)}

wj/`n
)
.



Connected components

Recall number of new neighbors of v(i) is close to

c(i) = Poi
(
wv(i)

∑
j∈[n]\{v(1),...,v(i)}

wj/`n
)
.

Denote cluster exploration process Zn by Zn(0) = 0 and

Zn(i) = Zn(i− 1) + c(i)− 1.

Denote first hitting time of−j by

η(j) = min{i : Zn(i) = −j}.

Then, all connected component sizes are given by successive excursions
from past minima

C∗(j) = η(j)− η(j − 1).



Scaling limit of cluster exploration

Process t 7→ n−1/3Zn(sn
2/3) is close to Brownian motion with changing drift

given by
E[n−1/3Zn(sn

2/3)] ∼ sλ− s2σ2/(2µ),

while
n−1/3Zn(sn

2/3)− (sλ− s2σ2/(2µ))
d−→ Bs.

Suggests that rescaled cluster sizes converge to successive excursions from
past minima of process

Bλ
s = Bs + sλ− s2σ2/(2µ).

Weak convergence of exploration process follows from

functional martingale central limit theorem.
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