
Variational inference for the Stochastic Block-Model

S. Robin

AgroParisTech / INRA

Workshop on Random Graphs, April 2011, Lille

S. Robin (AgroParisTech / INRA) Variational inference for SBM Random Graphs, Lille 1 / 37



Stochastic block model

Stochastic block model (SBM)

S. Robin (AgroParisTech / INRA) Variational inference for SBM Random Graphs, Lille 2 / 37



Stochastic block model

Modelling network heterogeneity

Latent variable models allow to capture the underlying structure of a
network.

S. Robin (AgroParisTech / INRA) Variational inference for SBM Random Graphs, Lille 3 / 37



Stochastic block model

Modelling network heterogeneity

Latent variable models allow to capture the underlying structure of a
network.

General setting for binary graphs (Bollobás et al. (2007)):

S. Robin (AgroParisTech / INRA) Variational inference for SBM Random Graphs, Lille 3 / 37



Stochastic block model

Modelling network heterogeneity

Latent variable models allow to capture the underlying structure of a
network.

General setting for binary graphs (Bollobás et al. (2007)):
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{Zi} i.i.d. ∼ π

the edges Xij are independent conditionally to the Zi ’s:

{Xij} independent |{Zi} : Xij ∼ B[γ(Zi ,Zj)]

Continuous (Hoff et al. (2002)): (' PCA)

Zi ∈ R
d , logit[γ(z , z ′)] = a − |z − z ′|
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General setting for binary graphs (Bollobás et al. (2007)):

an latent (unobserved) variable Zi is associated with each node:

{Zi} i.i.d. ∼ π

the edges Xij are independent conditionally to the Zi ’s:

{Xij} independent |{Zi} : Xij ∼ B[γ(Zi ,Zj)]

Continuous (Hoff et al. (2002)): (' PCA)

Zi ∈ R
d , logit[γ(z , z ′)] = a − |z − z ′|

Discrete (Nowicki and Snijders (2001)): (→ finite mixture = SBM)

Zi ∈ {1, . . . ,K}, γ(k, `) = γk`.
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Stochastic block model

(Weighted) Stochastic Block-Model (SBM)

Discrete-valued latent labels: each node i belong to class k with
probability πk :

{Zi}i i.i.d., Zi ∼ M(1;π)

where π = (π1, . . . πK ).
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probability πk :

{Zi}i i.i.d., Zi ∼ M(1;π)

where π = (π1, . . . πK ).

Observed edges: {Xij}i ,j are conditionally independent given the Zi ’s:

(Xij | Zi = k,Zj = `) ∼ fk`(·)
where fk`(·) is some parametric distribution fk`(x) = f (x ; γk`), e.g.

(Xij | Zi = k,Zj = `) ∼ B(γk`) (binary graph)

We denote γ = {γk`}k,`.
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Discrete-valued latent labels: each node i belong to class k with
probability πk :

{Zi}i i.i.d., Zi ∼ M(1;π)

where π = (π1, . . . πK ).

Observed edges: {Xij}i ,j are conditionally independent given the Zi ’s:

(Xij | Zi = k,Zj = `) ∼ fk`(·)
where fk`(·) is some parametric distribution fk`(x) = f (x ; γk`), e.g.

(Xij | Zi = k,Zj = `) ∼ B(γk`) (binary graph)

We denote γ = {γk`}k,`.

Statistical inference: We want to estimate

θ = (π,γ) and P(Z|X).
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Variational inference Maximum likelihood inference

Maximum likelihood inference

Maximum likelihood estimate: We are looking for

θ̂ = arg max
θ

log P(X;θ)

but P(X;θ) =
∑

Z P(X,Z;θ) is not tractable.
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Variational inference Maximum likelihood inference

Maximum likelihood inference

Maximum likelihood estimate: We are looking for

θ̂ = arg max
θ

log P(X;θ)

but P(X;θ) =
∑

Z P(X,Z;θ) is not tractable.

Classical strategy: Based on the decomposition

log P(X) = E[log P(X,Z)|X] − E[log P(Z|X)|X],

the EM algorithm aims at retrieving the maximum likelihood estimates via
the alternation of 2 steps.

E-step: calculation of P(Z|X; θ̂).

M-step: maximisation of E[log P(X,Z;θ)|X] in θ.
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Variational inference Maximum likelihood inference

Case of the Stochastic Block-Model

Dependency structure.

Dependecy graph:
P(Z)P(X|Z)

Moral graph
(Lauritzen (1996))

Conditional dep.:
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The conditional dependency graph of Z is a clique
→ no factorisation can be hoped to calculate P(Z|X) (unlike hidden
Markov random fields).
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Variational approximation

As P(Z|X) can not be calculated, we need to find some approximate
distribution Q(Z).
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Lower bound of the log-likelihood: For any distribution Q(Z), we have
(Jaakkola (2000),Wainwright and Jordan (2008))

log P(X) ≥ log P(X) − KL[Q(Z);P(Z|X)]

= EQ [log P(X,Z)] + H(Q)

where H(Q) is the entropy of Q: H(Q) = −EQ[log Q(Z)].
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Variational inference Variational inference

Variational approximation

As P(Z|X) can not be calculated, we need to find some approximate
distribution Q(Z).

Lower bound of the log-likelihood: For any distribution Q(Z), we have
(Jaakkola (2000),Wainwright and Jordan (2008))

log P(X) ≥ log P(X) − KL[Q(Z);P(Z|X)]

= EQ [log P(X,Z)] + H(Q)

where H(Q) is the entropy of Q: H(Q) = −EQ[log Q(Z)].

This amounts to replace P(·|X) with Q(·) in

log P(X) = EP(·|X)[log P(X,Z)] + H[P(·|X)].
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Variational inference Variational inference

Variational EM

’Expectation’ step (pseudo E-step): find the best lower bound of log P(X),
i.e. the best approximation of P(·|X) as

Q∗ = arg min
Q∈Q

KL[Q(Z);P(Z|X)]

where Q is a class of ’manageable’ distributions.
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Variational EM

’Expectation’ step (pseudo E-step): find the best lower bound of log P(X),
i.e. the best approximation of P(·|X) as

Q∗ = arg min
Q∈Q

KL[Q(Z);P(Z|X)]

where Q is a class of ’manageable’ distributions.

Maximisation step (M-step): estimate θ as

θ̂ = arg max
θ

EQ∗ [log P(X,Z;θ)]

which maximises the lower bound of log P(X).
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Variational inference Variational inference

Approximation of P(Z|X) for SBM

We are looking for

Q∗ = arg min
Q∈Q

KL[Q(Z);P(Z|X)].
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Variational inference Variational inference

Approximation of P(Z|X) for SBM

We are looking for

Q∗ = arg min
Q∈Q

KL[Q(Z);P(Z|X)].

We restrict ourselves to the set of factorisable distributions:

Q =

{
Q : Q(Z) =

∏

i

Qi(Zi ) =
∏

i

∏

k

τZik
ik

}
, τik ≈ Pr{Zi = k|X}.
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Approximation of P(Z|X) for SBM

We are looking for

Q∗ = arg min
Q∈Q

KL[Q(Z);P(Z|X)].

We restrict ourselves to the set of factorisable distributions:

Q =

{
Q : Q(Z) =

∏

i

Qi(Zi ) =
∏

i

∏

k

τZik
ik

}
, τik ≈ Pr{Zi = k|X}.

The optimal τ∗
ik ’s satisfy the fix-point relation:

τ∗
ik ∝ πk

∏

j 6=i

∏

`

fk`(Xij)
τ∗

j`

also known as mean-field approximation in physics (Parisi (1988)).
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Variational inference Operon network

Application to a regulatory network

Regulatory network = directed graph
where

Nodes = genes (or groups of
genes, e.g. operons)

Edges = regulations:

{i → j} ⇔ i regulates j
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Variational inference Operon network

Application to a regulatory network

Regulatory network = directed graph
where

Nodes = genes (or groups of
genes, e.g. operons)

Edges = regulations:

{i → j} ⇔ i regulates j

Questions

Do some nodes share similar
connexion profiles?

Is there a ’macroscopic’
organisation of the network?
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Variational inference Operon network

SBM analysis

Parameter estimates. K = 5
γ̂k` (%) 1 2 3 4 5

1 . . . . .

2 6.40 1.50 1.34 . .

3 1.21 . . . .

4 . . . . .

5 8.64 17.65 . 72.87 11.01
π̂ (%) 65.49 5.18 7.92 21.10 0.30

Picard et al. (2009)
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Variational inference Operon network

SBM analysis

Parameter estimates. K = 5
γ̂k` (%) 1 2 3 4 5

1 . . . . .

2 6.40 1.50 1.34 . .

3 1.21 . . . .

4 . . . . .

5 8.64 17.65 . 72.87 11.01
π̂ (%) 65.49 5.18 7.92 21.10 0.30

Meta-graph representation.

Picard et al. (2009)
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Variational inference Consistency (?) of the variational inference

Properties of variational inference

The quality of the inference based on the variational approximation is not
very well known yet.
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Properties of variational inference

The quality of the inference based on the variational approximation is not
very well known yet.

Negative result: (Gunawardana and Byrne (2005)) The VEM algorithm
converges to a different optimum than ML in the general case, except for
’degenerated’ models.
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Variational inference Consistency (?) of the variational inference

Properties of variational inference

The quality of the inference based on the variational approximation is not
very well known yet.

Negative result: (Gunawardana and Byrne (2005)) The VEM algorithm
converges to a different optimum than ML in the general case, except for
’degenerated’ models.

Specific case of graphs.

Specific asymptotic framework: n2 data, ′p′ = n ’variables’ per
individual.

Mean field approximation is asymptotically exact for some models
with infinite range dependency (Opper and Winther (2001): law of
large number argument).
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Variational inference Consistency (?) of the variational inference

Concentration of P(Z|X) for binary graphs

Let us denote g , the conditional distribution

g(z;X) := Pr{Z = z|X} =
1

C

∏

i

πZi

∏

j 6=i

γ
Xij

ZiZj
[1 − γZiZj

]1−Xij
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g(z;X) := Pr{Z = z|X} =
1

C

∏

i

πZi

∏

j 6=i

γ
Xij

ZiZj
[1 − γZiZj

]1−Xij

Theorem (Célisse & al. (2011)). Under identifiability conditions and if
∀k, ` : 0 < a < γk` < 1 − a, 0 < b < πk , then we have

∀t > 0, Pr

{ ∑
z 6=z∗ g(z;X)

g(z∗;X)
> t

∣∣∣∣Z = z∗
}

= O(ne−κ(t)n).
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∀t > 0, Pr

{ ∑
z 6=z∗ g(z;X)

g(z∗;X)
> t

∣∣∣∣Z = z∗
}

= O(ne−κ(t)n).

→ If the true labels are z∗, then P(Z|X) concentrates around z∗.
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Variational inference Consistency (?) of the variational inference

Concentration of P(Z|X) for binary graphs

Let us denote g , the conditional distribution

g(z;X) := Pr{Z = z|X} =
1

C

∏

i

πZi

∏

j 6=i

γ
Xij

ZiZj
[1 − γZiZj

]1−Xij

Theorem (Célisse & al. (2011)). Under identifiability conditions and if
∀k, ` : 0 < a < γk` < 1 − a, 0 < b < πk , then we have

∀t > 0, Pr

{ ∑
z 6=z∗ g(z;X)

g(z∗;X)
> t

∣∣∣∣Z = z∗
}

= O(ne−κ(t)n).

→ If the true labels are z∗, then P(Z|X) concentrates around z∗.
→ SBM is a ’degenerated’ model.

Ongoing work about the convergence P(·|X) → δ{z0} (Matias (2011)).
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Variational inference Consistency (?) of the variational inference

Concentration of the degree distribution

Binary graph. Binomial distribution of
the degrees

Ki |(i ∈ q) ∼ B(n − 1, γk)

where γk =
∑

` π`γk,`.
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Variational inference Consistency (?) of the variational inference

Concentration of the degree distribution

Binary graph. Binomial distribution of
the degrees

Ki |(i ∈ q) ∼ B(n − 1, γk)

where γk =
∑

` π`γk,`.

Normalised degree: Di = Ki/(n − 1)
concentrates around γk .

Linear algorithm

based on the gaps between the
ordered D(i),

provides consistent estimates of
π and γ can be derived.

(Channarond (2011)).
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Variational Bayes inference

Variational Bayes inference
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Variational Bayes inference Variational Bayes approximation

Variational Bayes inference

Bayesian setting: Both θ and Z are random and unobserved and we want
to retrieve P(Z,θ|X)
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Variational Bayes inference Variational Bayes approximation

Variational Bayes inference

Bayesian setting: Both θ and Z are random and unobserved and we want
to retrieve P(Z,θ|X) so we look for

Q∗ = arg min
Q∈Q

KL[Q(Z,θ);P(Z,θ|X)]

within Q = {Q : Q(Z,θ) = QZ (Z)Qθ(θ)}.
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Variational Bayes inference

Bayesian setting: Both θ and Z are random and unobserved and we want
to retrieve P(Z,θ|X) so we look for

Q∗ = arg min
Q∈Q

KL[Q(Z,θ);P(Z,θ|X)]

within Q = {Q : Q(Z,θ) = QZ (Z)Qθ(θ)}.

VB-EM algorithm: In the exponential family / conjugate prior context

P(X,Z,θ) ∝ exp{φ(θ)′[u(X,Z) + ν]}
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Variational Bayes inference

Bayesian setting: Both θ and Z are random and unobserved and we want
to retrieve P(Z,θ|X) so we look for

Q∗ = arg min
Q∈Q

KL[Q(Z,θ);P(Z,θ|X)]

within Q = {Q : Q(Z,θ) = QZ (Z)Qθ(θ)}.

VB-EM algorithm: In the exponential family / conjugate prior context

P(X,Z,θ) ∝ exp{φ(θ)′[u(X,Z) + ν]}

the optimal Q∗(Z,θ) is recovered (Beal and Ghahramani (2003)) via

pseudo-M: Qθ(θ) ∝ exp
(
φ(θ)′ {EQZ

[u(X,Z)] + ν}
)

pseudo-E: QZ (Z) ∝ exp{EQθ
[φ(θ)]′u(X,Z)}
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Variational Bayes inference

Bayesian setting: Both θ and Z are random and unobserved and we want
to retrieve P(Z,θ|X) so we look for

Q∗ = arg min
Q∈Q

KL[Q(Z,θ);P(Z,θ|X)]

within Q = {Q : Q(Z,θ) = QZ (Z)Qθ(θ)}.

VB-EM algorithm: In the exponential family / conjugate prior context

P(X,Z,θ) ∝ exp{φ(θ)′[u(X,Z) + ν]}

the optimal Q∗(Z,θ) is recovered (Beal and Ghahramani (2003)) via

pseudo-M: Qθ(θ) ∝ exp
(
φ(θ)′ {EQZ

[u(X,Z)] + ν}
)

pseudo-E: QZ (Z) ∝ exp{EQθ
[φ(θ)]′u(X,Z)}

See Latouche et al. (2010) for binary SBM inference.
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Variational Bayes inference Operon network

Operon network: Comparison of VEM and VB

VEM estimates for the K = 5 group model lie within the VB approximate
90% credibility intervals (Gazal et al. (2011)).

γk` 1 2 3 4 5

1 0.03 0.00 0.03 0.00 0.00
2 6.40 1.50 1.34 0.44 0.00
3 1.21 0.89 0.58 0.00 0.00
4 0.00 0.09 0.00 0.95 0.00
5 8.64 17.65 0.05 72.87 11.01

π 65.49 5.18 7.92 21.10 0.30

S. Robin (AgroParisTech / INRA) Variational inference for SBM Random Graphs, Lille 18 / 37



Variational Bayes inference Operon network

Operon network: Comparison of VEM and VB

VEM estimates for the K = 5 group model lie within the VB approximate
90% credibility intervals (Gazal et al. (2011)).

γk` 1 2 3 4 5

1 0.03 0.00 0.03 0.00 0.00
2 6.40 1.50 1.34 0.44 0.00
3 1.21 0.89 0.58 0.00 0.00
4 0.00 0.09 0.00 0.95 0.00
5 8.64 17.65 0.05 72.87 11.01

π 65.49 5.18 7.92 21.10 0.30

1 [0.02;0.04] [0.00;0.10] [0.01;0.08] [0.00;0.03] [0.02;1.34]
2 [6.14;7.60] [0.61;3.68] [1.07;3.50] [0.05;0.54] [0.33;17.62]
3 [1.20;1.72] [0.35;2.02] [0.56;1.92] [0.03;0.30] [0.19;10.57]
4 [0.01;0.07] [0.04;0.51] [0.01;0.20] [0.76;1.27] [0.08;4.43]
5 [6.35;12.70] [4.60;33.36] [4.28;24.37] [63.56;81.28] [5.00;95.00]

π [59.65;74.38] [2.88;6.74] [5.68;10.77] [16.02;24.04] [0.11;1.42]

VEM and VB estimates for the K = 5 group model (approximate 90%
credibility intervals).
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Variational Bayes inference Quality of the variational Bayes approximation

Variational Bayes approximation: Simulation Study

Few is known about the properties of variational-Bayes inference:

Consistency is proved for some incomplete data models (McGrory and
Titterington (2009)).

In practice, VB-EM often under-estimates the posterior variances.
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Variational Bayes approximation: Simulation Study

Few is known about the properties of variational-Bayes inference:

Consistency is proved for some incomplete data models (McGrory and
Titterington (2009)).

In practice, VB-EM often under-estimates the posterior variances.

Simulation design:

2-group binary SBM with parameters with 2 scenarios

π =
(

0.6 0.4
)
, γ =

(
0.8 0.2
0.2 0.5/0.3

)
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Variational Bayes inference Quality of the variational Bayes approximation

Variational Bayes approximation: Simulation Study

Few is known about the properties of variational-Bayes inference:

Consistency is proved for some incomplete data models (McGrory and
Titterington (2009)).

In practice, VB-EM often under-estimates the posterior variances.

Simulation design:

2-group binary SBM with parameters with 2 scenarios

π =
(

0.6 0.4
)
, γ =

(
0.8 0.2
0.2 0.5/0.3

)

Comparison of 4 methods: EM (when possible), VEM, BP and VB
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Variational Bayes inference Quality of the variational Bayes approximation

Variational Bayes approximation: Simulation Study

Few is known about the properties of variational-Bayes inference:

Consistency is proved for some incomplete data models (McGrory and
Titterington (2009)).

In practice, VB-EM often under-estimates the posterior variances.

Simulation design:

2-group binary SBM with parameters with 2 scenarios

π =
(

0.6 0.4
)
, γ =

(
0.8 0.2
0.2 0.5/0.3

)

Comparison of 4 methods: EM (when possible), VEM, BP and VB

Belief Propagation (BP) algorithm:

EQ [log P(X,Z)] =
∑

i ,k

EQ [Zik ]︸ ︷︷ ︸
τik

log πk+
∑

i ,j

∑

k,`

EQ [ZikZj`]︸ ︷︷ ︸
∆ijk` 6=τikτj`

log f (Xij ; γk`).
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Variational Bayes inference Quality of the variational Bayes approximation

Variational Bayes approximation: Simulation Study

Few is known about the properties of variational-Bayes inference:

Consistency is proved for some incomplete data models (McGrory and
Titterington (2009)).

In practice, VB-EM often under-estimates the posterior variances.

Simulation design:

2-group binary SBM with parameters with 2 scenarios

π =
(

0.6 0.4
)
, γ =

(
0.8 0.2
0.2 0.5/0.3

)

Comparison of 4 methods: EM (when possible), VEM, BP and VB

Belief Propagation (BP) algorithm:

EQ [log P(X,Z)] =
∑

i ,k

EQ [Zik ]︸ ︷︷ ︸
τik

log πk+
∑

i ,j

∑

k,`

EQ [ZikZj`]︸ ︷︷ ︸
∆ijk` 6=τikτj`

log f (Xij ; γk`).

500 graphs are simulated for each scenario and each graph size.
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Variational Bayes inference Quality of the variational Bayes approximation

Estimates, standard deviation and likelihood

Comparison on small graphs (n = 18):
π1 γ11 γ12 γ22 log P(X )

Scenario 1 60% 80% 20% 50%
EM 59.1 (13.1) 78.5 (13.5) 20.9 (8.4) 50.9 (15.4) -90.68
VEM 57.7 (16.6) 78.8 (12.4) 22.4 (10.7) 50.3 (14.6) -90.87
BP 57.9 (16.2) 78.9 (12.3) 22.2 (10.5) 50.3 (14.5) -90.85
VB 58.1 (13.3) 78.2 (9.7) 21.6 (7.7) 50.8 (13.3) -90.71

Scenario 2 60% 80% 20% 30%
EM 59.5 (14.1) 78.7 (15.6) 21.2 (8.7) 30.3 (14.3) -88.18
VEM 55.6 (19.0) 80.1 (14.0) 24.0 (11.8) 30.8 (13.8) -88.54
BP 56.6 (17.8) 80.0 (13.6) 23.2 (11.0) 30.8 (13.8) -88.40
VB 58.4 (14.6) 77.9 (12.0) 22.3 (9.3) 32.1 (12.3) -88.26
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Variational Bayes inference Quality of the variational Bayes approximation

Estimates, standard deviation and likelihood

Comparison on small graphs (n = 18):
π1 γ11 γ12 γ22 log P(X )

Scenario 1 60% 80% 20% 50%
EM 59.1 (13.1) 78.5 (13.5) 20.9 (8.4) 50.9 (15.4) -90.68
VEM 57.7 (16.6) 78.8 (12.4) 22.4 (10.7) 50.3 (14.6) -90.87
BP 57.9 (16.2) 78.9 (12.3) 22.2 (10.5) 50.3 (14.5) -90.85
VB 58.1 (13.3) 78.2 (9.7) 21.6 (7.7) 50.8 (13.3) -90.71

Scenario 2 60% 80% 20% 30%
EM 59.5 (14.1) 78.7 (15.6) 21.2 (8.7) 30.3 (14.3) -88.18
VEM 55.6 (19.0) 80.1 (14.0) 24.0 (11.8) 30.8 (13.8) -88.54
BP 56.6 (17.8) 80.0 (13.6) 23.2 (11.0) 30.8 (13.8) -88.40
VB 58.4 (14.6) 77.9 (12.0) 22.3 (9.3) 32.1 (12.3) -88.26

All methods provide similar results.

EM achieves the best ones.

Belief propagation (BP) does not significantly improve VEM.
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Variational Bayes inference Quality of the variational Bayes approximation

Influence of the graph size

Comparison of VEM: • and VB: + in scenario 2 (most difficult).
Left to right: π1, γ11, γ12, γ22.

Means.
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Variational Bayes inference Quality of the variational Bayes approximation

Influence of the graph size

Comparison of VEM: • and VB: + in scenario 2 (most difficult).
Left to right: π1, γ11, γ12, γ22.

Means.

Standard deviations.

VB estimates converge more rapidly than VEM estimates.

Their precision is also better.
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Variational Bayes inference Quality of the variational Bayes approximation

VB Credibility intervals

Actual level as a function of n: π1: +, γ11: 4, γ12: ◦, γ22: •
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Variational Bayes inference Quality of the variational Bayes approximation

VB Credibility intervals

Actual level as a function of n: π1: +, γ11: 4, γ12: ◦, γ22: •

For all parameters, VB posterior credibility intervals achieve the
nominal level (90%), as soon as n ≥ 30.

→ The VB approximation seems to work well.
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Variational Bayes inference Quality of the variational Bayes approximation

Convergence rate of the VB estimates

Width of the posterior credibility intervals. π1, γ11, γ12, γ22
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Variational Bayes inference Quality of the variational Bayes approximation

Convergence rate of the VB estimates

Width of the posterior credibility intervals. π1, γ11, γ12, γ22

The width decreases as 1/
√

n for π1.

It decreases as 1/n = 1/sqrtn2 for γ11, γ12 and γ22.

Consistent with the penalty of the ICL criterion proposed by Daudin
et al. (2008) (see next slide).
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Variational Bayes inference Quality of the variational Bayes approximation

Few more about inference

Identifiability. Even for binary edges, MixNet (SBM) is identifiable (Allman
et al. (2009)) ... although mixtures of Bernoulli are not.

S. Robin (AgroParisTech / INRA) Variational inference for SBM Random Graphs, Lille 24 / 37



Variational Bayes inference Quality of the variational Bayes approximation

Few more about inference

Identifiability. Even for binary edges, MixNet (SBM) is identifiable (Allman
et al. (2009)) ... although mixtures of Bernoulli are not.

Model selection.

Daudin et al. (2008) propose the penalised criterion

ICL(K ) = EQ∗ [log P(Z,X)]−1

2

{
(K − 1) log n + K 2 log[n(n − 1)/2]

}
.

S. Robin (AgroParisTech / INRA) Variational inference for SBM Random Graphs, Lille 24 / 37



Variational Bayes inference Quality of the variational Bayes approximation

Few more about inference

Identifiability. Even for binary edges, MixNet (SBM) is identifiable (Allman
et al. (2009)) ... although mixtures of Bernoulli are not.

Model selection.

Daudin et al. (2008) propose the penalised criterion

ICL(K ) = EQ∗ [log P(Z,X)]−1

2

{
(K − 1) log n + K 2 log[n(n − 1)/2]

}
.

The difference between ICL and BIC is the entropy term H(Q∗) ...
which is almost zero (due to the concentration of P(Z|X)).
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Variational Bayes inference Quality of the variational Bayes approximation

Few more about inference

Identifiability. Even for binary edges, MixNet (SBM) is identifiable (Allman
et al. (2009)) ... although mixtures of Bernoulli are not.

Model selection.

Daudin et al. (2008) propose the penalised criterion

ICL(K ) = EQ∗ [log P(Z,X)]−1

2

{
(K − 1) log n + K 2 log[n(n − 1)/2]

}
.

The difference between ICL and BIC is the entropy term H(Q∗) ...
which is almost zero (due to the concentration of P(Z|X)).

BIC and ICL-like criteria are also considered in Latouche et al.
(2011b) for SBM in the context of variational Bayes inference.
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Covariates in weighted networks

Covariates in weighted networks
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Covariates in weighted networks Accouting for covariates

Weighted network

Understanding the mixture components: Observed clusters may be related
to exogenous covariates.

Model-based clustering (such as SBM) provides a comfortable set-up to
account for covariates.
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Covariates in weighted networks Accouting for covariates

Weighted network

Understanding the mixture components: Observed clusters may be related
to exogenous covariates.

Model-based clustering (such as SBM) provides a comfortable set-up to
account for covariates.

Generalised linear model. In the context of exponential family, covariates y
can be accounted for via a regression term

g(EXij) = µk` + yijβ, if ZikZj` = 1

where β does not depend on the group (Mariadassou et al. (2010)).
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Covariates in weighted networks Accouting for covariates

Weighted network

Understanding the mixture components: Observed clusters may be related
to exogenous covariates.

Model-based clustering (such as SBM) provides a comfortable set-up to
account for covariates.

Generalised linear model. In the context of exponential family, covariates y
can be accounted for via a regression term

g(EXij) = µk` + yijβ, if ZikZj` = 1

where β does not depend on the group (Mariadassou et al. (2010)).

Both VEM or VBEM inference can be performed.
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Covariates in weighted networks Accouting for covariates

Tree interaction network

Data: n = 51 tree species,
Xij = number of shared para-
sites (Vacher et al. (2008)).
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Covariates in weighted networks Accouting for covariates

Tree interaction network

Data: n = 51 tree species,
Xij = number of shared para-
sites (Vacher et al. (2008)).

Model:

Xij ∼ P(λk`),

λk` = mean number of shared
parasites.

Results: ICL selects K = 7
groups

λ̂k` T1 T2 T3 T4 T5 T6 T7
T1 14.46 4.19 5.99 7.67 2.44 0.13 1.43
T2 14.13 0.68 2.79 4.84 0.53 1.54
T3 3.19 4.10 0.66 0.02 0.69
T4 7.42 2.57 0.04 1.05
T5 3.64 0.23 0.83
T6 0.04 0.06
T7 0.27

π̂k 7.8 7.8 13.7 13.7 15.7 19.6 21.6
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Covariates in weighted networks Accouting for covariates

Tree interaction network

Data: n = 51 tree species,
Xij = number of shared para-
sites (Vacher et al. (2008)).

Model:

Xij ∼ P(λk`),

λk` = mean number of shared
parasites.

Results: ICL selects K = 7
groups that are strongly re-
lated with phylums.

λ̂k` T1 T2 T3 T4 T5 T6 T7
T1 14.46 4.19 5.99 7.67 2.44 0.13 1.43
T2 14.13 0.68 2.79 4.84 0.53 1.54
T3 3.19 4.10 0.66 0.02 0.69
T4 7.42 2.57 0.04 1.05
T5 3.64 0.23 0.83
T6 0.04 0.06
T7 0.27

π̂k 7.8 7.8 13.7 13.7 15.7 19.6 21.6

T1 T2 T3 T4 T5 T6 T7

Conipherophyta
Magnoliophyta

0

4

8

12

Mean number
 of interactions

Group size and composition
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Covariates in weighted networks Accouting for covariates

Accounting for taxonomic distance

Model: dij = dtaxo(i , j),

Xij ∼ P(λk`e
βdij ).
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Covariates in weighted networks Accouting for covariates

Accounting for taxonomic distance

Model: dij = dtaxo(i , j),

Xij ∼ P(λk`e
βdij ).

Results: β̂ = −0.317.

→ for d = 3.82,

eβ̂d = .298

→ The mean number of
shared parasites decreases
with taxonomic distance.
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Covariates in weighted networks Accouting for covariates

Accounting for taxonomic distance

Model: dij = dtaxo(i , j),

Xij ∼ P(λk`e
βdij ).

Results: β̂ = −0.317.

→ for d = 3.82,

eβ̂d = .298

→ The mean number of
shared parasites decreases
with taxonomic distance.

λ̂k` T’1 T’2 T’3 T’4
T’1 0.75 2.46 0.40 3.77
T’2 4.30 0.52 8.77
T’3 0.080 1.05
T’4 14.22

π̂k 17.7 21.5 23.5 37.3

β̂ -0.317
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Covariates in weighted networks Accouting for covariates

Accounting for taxonomic distance

Model: dij = dtaxo(i , j),

Xij ∼ P(λk`e
βdij ).

Results: β̂ = −0.317.

→ for d = 3.82,

eβ̂d = .298

→ The mean number of
shared parasites decreases
with taxonomic distance.

λ̂k` T’1 T’2 T’3 T’4
T’1 0.75 2.46 0.40 3.77
T’2 4.30 0.52 8.77
T’3 0.080 1.05
T’4 14.22

π̂k 17.7 21.5 23.5 37.3

β̂ -0.317

T’1 T’2 T’3 T’4
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0

5

10

15

20

Mean number
 of interactions

Group size and composition

→ Groups are no longer associated with the phylogenetic structure.
→ Mixture = residual heterogeneity of the regression.
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Conclusion
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Conclusion Conclusion

Conclusion

Stochastic block-model: flexible and already widely used mixture model to
uncover some underlying heterogeneity in networks.
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Conclusion Conclusion

Conclusion

Stochastic block-model: flexible and already widely used mixture model to
uncover some underlying heterogeneity in networks.

Variational inference

Efficient and scalable (Daudin (2011): n > 2000) in terms of
computation times (as opposed to MCMC).

Seems to work well, because the conditional distribution P(Z|X) (and
therefore P(Z,θ|X)) asymptotically belongs to the class Q within
which the optimisation if achieved.

Due to the specific asymptotic framework of networks.
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Conclusion Conclusion

Conclusion

Stochastic block-model: flexible and already widely used mixture model to
uncover some underlying heterogeneity in networks.

Variational inference

Efficient and scalable (Daudin (2011): n > 2000) in terms of
computation times (as opposed to MCMC).

Seems to work well, because the conditional distribution P(Z|X) (and
therefore P(Z,θ|X)) asymptotically belongs to the class Q within
which the optimisation if achieved.

Due to the specific asymptotic framework of networks.

Alternative methods. Faster algorithms do exist for large graphs:

Based on the degree distribution (Channarond (2011))

Based on spectral clustering (Rohe et al. (2010)).
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Conclusion Future work

Future work

Theoretical properties of variational estimates. Although the graph
context seems favourable, we still need more understanding about
variational and variational Bayes inference properties.
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Conclusion Future work

Future work

Theoretical properties of variational estimates. Although the graph
context seems favourable, we still need more understanding about
variational and variational Bayes inference properties.

SBM = discrete version of W -graph. Let

φ : [0, 1]2 → [0, 1]

{Zi} i.i.d. ∼ U [0, 1]

{Xij} indep.|{Zi} ∼ B[φ(Zi ,Zj)]

Approximation of the φ(u, v) function by a step function γk` (SBM)

Model averaging based on optimal variational weights (Volant (2011))
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Appendix Understanding network structure

Understanding network structure

Network constitute a natural way to depict interactions between
entities.

They are now present in many scientific fields (biology, sociology,
communication, economics, ...).

Most observed networks display an heterogeneous topology, that one
would like to decipher and better understand.
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Network constitute a natural way to depict interactions between
entities.

They are now present in many scientific fields (biology, sociology,
communication, economics, ...).

Most observed networks display an heterogeneous topology, that one
would like to decipher and better understand.

Dolphine social network.

Newman and Girvan (2004)

Hyperlink network.
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SBM for a binary social network
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Results. The split is recovered
and the role of few leaders is
underlined.

S. Robin (AgroParisTech / INRA) Variational inference for SBM Random Graphs, Lille 34 / 37



Appendix Understanding network structure

SBM for a binary social network

 1

 2

 3

 4

 5

 6  7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21
22

23

24 25

2627

28

29

30

31

32

33

34

 1

 2
 3

 4
 5 6 7

 8

 9
10

11

12
13

14

1516

1718

19

20

21

22

23
24
25
26

272829
30
31
32

3334

Zachary data. Social binary
network of friendship within a
sport club.

Results. The split is recovered
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Xij |Zi = q,Zj = ` ∼ B(γq`)

(%) γ̂k`

k/` 1 2 3 4
1 100 53 16 16
2 - 12 0 7
3 - - 8 73
4 - - - 100
π̂` 9 38 47 6
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Appendix Alternatives, extensions and variations

Extensions and variations

Algorithmic approaches: Looking for communities

Graph clustering (Girvan and Newman (2002), Newman (2004));

Spectral clustering (von Luxburg et al. (2007)).
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Extensions and variations

Algorithmic approaches: Looking for communities

Graph clustering (Girvan and Newman (2002), Newman (2004));

Spectral clustering (von Luxburg et al. (2007)).

Variations around SBM:

Community structure (Hofman and Wiggins (2008)),

Mixed-membership (Airoldi et al. (2008)), overlapping groups
(Latouche et al. (2011a))

Continuous version (Daudin et al. (2010)),

SBM = Step-function version of W -random graphs (Lovász and
Szegedy (2006))
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Extensions and variations

Algorithmic approaches: Looking for communities

Graph clustering (Girvan and Newman (2002), Newman (2004));

Spectral clustering (von Luxburg et al. (2007)).

Variations around SBM:

Community structure (Hofman and Wiggins (2008)),

Mixed-membership (Airoldi et al. (2008)), overlapping groups
(Latouche et al. (2011a))

Continuous version (Daudin et al. (2010)),

SBM = Step-function version of W -random graphs (Lovász and
Szegedy (2006))

In this talk:

Variational inference for SBM;

Variational Bayes inference for SBM;

Including covariates.
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Appendix Alternatives, extensions and variations

Approximate posterior distribution Q∗
θ
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Appendix Alternatives, extensions and variations

Comparison of classifications and G-O-F

Accounting for taxonomy deeply mod-
ifies the group structure:

T’1 T’2 T’3 T’4

T1 - - - 4
T2 - - - 4
T3 2 5 - -
T4 - 2 - 5
T5 - 2 - 6
T6 - - 10 -
T7 7 2 2 -
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Accounting for taxonomy deeply mod-
ifies the group structure:

T’1 T’2 T’3 T’4

T1 - - - 4
T2 - - - 4
T3 2 5 - -
T4 - 2 - 5
T5 - 2 - 6
T6 - - 10 -
T7 7 2 2 -

Goodness of fit can be assessed via the
predicted intensities X̂ij or degrees K̂i .
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