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O. What are we talking about? - Pictures
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The talk deals with these situations when simulating random combinatorial objects with
size 10%,10°, 10” in a window of fixed size, one sees essentially the same picture

Questions :

= What sense can we give to this:

— a sequence of (normalized) combinatorial structures converges?

— a sequence of random normalized combinatorial structures converges” ?
= If we are able to prove such a result...:

— What can be deduced?

— What cannot be deduced?
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O. What are we talking about? - Pictures

= What sense can we give to this:

— a sequence of normalized combinatorial structure converges?

answer: this is a question of topology...

— a sequence of random normalized combinatorial structure converges”?
answer: this is a question of weak convergence associated with the topology.
= If we are able to prove such a result...:

What can be deduced?

answer: infinitely many things... but it depends on the topology

What cannot be deduced?

answer: infinitely many things: but it depends on the topology



First - we recall what means convergence in distribution
-in R
- in a Polish space

— Then we treat examples... and see the byproducts



e A distribution ;2 on R is a (positive) measure on (R, B(R)) with total mass 1.
e a real random variable X is a function X : (Q, A, P) — (R, B(R)), measurable.
e distribution of X: the measure p,

wA) =P(X(A) =P(X € A).
Characterization of the distributions on R
— the way they integrate some classes of functions (by duality)

Frs BUO0) = [ faldno)

e.g. Continuous bounded functions

Other characterizations : Characteristic function = Fourier transform, distribution func-
tion z — F(x) = P(X < z), Moments (sometimes)



Convergence of random variables / Convergence in distribution

Convergence in probability

(proba.)

X, X if Ve>0, P(|X,—X|>¢)—0.

n

X, X1, Xo,... are to be defined on the same probability space €2

Archetype = strong law of large number: if Y; i.i.d. mean m,
X o izt i (o),
n <« I4

mn n

m
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Convergence of random variables / Convergence in distribution
Convergence in distribution (duality)
X, % X it B(f(X) = E(f(X))

for any f : R — R bounded, continuous
The variables need not to be defined on the same ()
characterizations: Convergence of cumulative functions, Fourier tranforms, etc.

Archetype = the central limit theorem: if Y; i.i.d. mean m, variance o* € (0, +00)

CmYi=m) @
Xy = =5 = N(0,1)

0 10000

\ The sequence (X,,) does not converge!
J (Exercise)




we need a nice topological space :
— that contains the rescaled discrete objects and the continuous limits

— on which probability measures and weak convergences must be not too difficult!!

Nice topological spaces on which everything works like on R are Polish spaces. I



Nice topological spaces on which everything works like on R are Polish spaces. I

Polish space (S5, p) : metric + separable + complete

— open balls, topology, Borelians, Borelian measures, integration theory, can be de-
fined as on R

Examples : — R with the usual distance,

—(C10, 1, 1loo), d(f, 9) = [If = glloc

Distribution y on (S, B(S)): measure with total mass 1.
S valued Random variable : X : (Q, A,P) — (.5, B(.S)) measurable.
Distribution of X, u(B) =P(X € B).

Characterization of measures (by duality)
— The way they integrate continuous bounded functions. E(f(X)) = [ f(x)du(x).

f continuous in z; means:Ve > 0,3dn > 0, p(z,z9) < n = |f(x) — f(xo)| < €.



Polish space (S, p) : metric + separable + complete

Convergence in probability

Ve >0, P(p(X,,X)>¢e)—0.

Convergence in distribution (duality)

E(f(X,)) = E(f(X)), for any continuous bounded function f : S — R

Byproduct : if X, @ X then h(X,) @, h(X) for any h : S — S’ continuous

n



Paths are fundamental objects in combinatorics.
Paths with step 1, or other increments, Dyck paths, bridges,etc.

AN

A question is :

do they converge in distribution (after rescaling)?

Here

distribution = distribution on C'|0, 1] (up to encoding + normalisation).

Here, we choose C|0, 1] as Polish space to work in...



How are characterized the distributions on C|0, 1]7

— a distribution © on C|0, 1] gives weight to the Borelians of C|0, 1].

Ball:= B(f,r) ={g | I/ = glle <7}

Let X = (X (¢),t € ]0,1]) a process, with distribution .

Proposition 1 The distribution of X is characterized by the finite dimen-
sional distribution FDD:

i.e. the distribution of (X (t1),..., X(tg)), k>1,t1 < - <t




II. Convergence of rescaled paths

How are characterized the convergence in distributions on C|0,1]?:
Convergence of FDD.

+ A tightness argument is needed



Convergence to Brownian processes
A) X1, ..., X,=i.i.d.random variables. E(X;) = 0, Var(X;) = 0% € (0, +00).

Sp=X1+ -+ Xp

then

o n

Sn
(Donsker's Theorem) ( t ) @, (Bt)eefo.1]
n t€[0,1]

where (B5;);c(o,1) is the Brownian motion.

The Brownian motion has for FDD: for 0 < ¢} < --- < t, By, — By, ..., By, — By,_,
are independent, By, — By, | ~ N(0,t; — t;_1).

(%) does not converge in probability!
"/ te0,1]

AN
RV




Convergence to Brownian processes
B) Xi,..., X,= iid.random variables. E(X;) =0, Var(X;) = 0 € (0, +00), + X;'s
lattice support.

Sp=X1+---+ Xy

then under the condition S; > 0,7 <n, 5, =0,

o

Sn
(Kaigh's Theorem) ( t ) —> (€¢)tefo.1]
N/ tefo1]

where (e;)c(o,1] is the Brownian excursion .
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Similar results for numerous models of random paths appearing in combinatoricsl




Byproducts of X, ﬂ X in C|0,1] .

1) E(f(X,)) — E(f(X)) for any f bounded continuous.

An infinity of byproducts (as much as bounded continuous functions)

g HgHoo/\l

E ( /0 1 sin(Xn(t))dt> —E ( /0 1 sin(X(t))dt)



Byproducts of X, % X in C0,1]

2) f(X,) @, f(X) for any f: C|0,1] — S’ continuous.

n

An infinity of byproducts (as much as continuous functions onto some Polish spaces).

Example :

2/3
g (maxw), /1 , 9" (t)dt, g(m/ 14)792>

is continuous from C10, 1] into R? x C[0,1]... Then

2/3 (d) 2/3
max X, / XB(#)dt, X, (m/14), X2 max X, XB(t)dt, X(n/14), X*

” 1/2

Examples of non-continuous functions :

g — min argmax(g) (the first place where the max is reached),
g 1/9(1/3)



II. Convergence of rescaled paths

“Contraction of information” at the limit :

If X, is a rescaled random discrete object, knowing X, ﬂ X in C|0,1] says

nothing about any phenomenon which is not a the *“same scale”.

Example: Almost surely the Brownian motion reaches is maximum once, traverses the
origin an infinite number of times, is nowhere differentiable...

This is not the case in the discrete case



Question : do trees have a limit shape? How can we describe it?
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(Luc’s Devroye trees)

To prove that rescaled trees converge we search a Polish space containing discrete
trees and their limits (continuous trees).



Example of model of random trees : uniform rooted planar tree with n nodes

Trees as element of a Polish space : embedding in C[0, 1].

The contour process (C'(k), k =

2(n — 1)t
The normalized contour process (C< (n—1) )> .
t€[0,1]



Notion of real tree

Let C700, 1] ={f € C[0,1], f =0, f(0) = f(1) = 0}.

With any function f € C*[0, 1], we associate a tree A(f) : /

A(f) =10,1]/ ~ where

vy <= flo) = fly) = floy) = min o)
u€lzNy,xVy]

*x A(f) equipped with the distance
d(@,7) = f(2) + f(y) — 2f(2,y)

Is a compact metric space, loop free, connected: it is a tree!

The space A is equipped with the distance:

d(A(f), Alg)) = IIf = gllee-

It is then a Polish space



Theorem [Aldous: Convergence of the rescaled contour process].

C'(2(n — 1)15)) (d) 2
— — (&)
( tef0,1] o el

n

/n

RW: M & Mokkadem, Duquesne.
Result valid for critical GW tree conditioned by the size, including

Binary tree with n nodes, ...

Theorem [Aldous: convergence of rescaled tree to the Continuum random tree]

., (0(2%— m) 9, 420

in the space of real trees.

This is a convergence (in distribution) of the
whole macroscopic structure




Byproducts : Explanation of most phenomenons at scale y/n.

» Convergence of the height:
2
H,/\/n @, 2 maxe
n o
(Found before by Flajolet & Odlyzko (1982) + CV moments)

= convergence of the matrix of the distances d(U;, U;)/+/n of 12000 random nodes,

But : It does not explain the phenomenons at a different scale: the continuum random
tree is a tree having only binary branching points, degree(root)=1...



The GH topology = topology on compact metric spaces.

The GH distance is a distance on the set K of classes of isometry of compact
metric spaces K.

— See the talk of Nicolas Broutin.

(K,dgm) is a Polish space

Intuition : take k points U;,2 = 1, ...,k and show that the matrix of distance
17 () 17 )
(ds”(U“Uj))gz‘,jgk o (dSOO(UZ’U]> 1<ij<k



The GH-topology is a quite weak topology...

Theorem Normalized Galton-Watson trees converge to the CRT for the Gromov-
Hausdorff topology.




Convergence of rooted non-planar binary trees for the GH topology

A non-planar-binary tree is a leaf or a multiset
of two non-planar-binary trees

Theorem (M & Miermont). Under the uniform distr. on U, the metric space
(E, ﬁdﬁ) converge in distribution to (73, d2.) the CRT for the GH topology.

Related work: Otter, Drmota, Gittenberger, Broutin & Flajolet



Convergence to the CRT for objects that are not trees:
Model of uniform stacked triangulations

A

= uniform stack-triangulation with 2n faces seen as a metric space;
DMn: graph-distance in M,

Theorem (Albenque & M)

Dy, (d)
- > (T2es dae),
( \/Gn/ﬂ) 2 (Toe )

for the Gromov-Hausdorff topology on compact metric spaces.

Related works: Bodini, Darasse, Soria



Convergence of quadrangulations with n faces?

Seen as metric spaces, do they converges in distribution 7 I

What is known : subsequences converge in distribution to some random metric on

the sphere (Le Gall, Miermont) for GH.

Related works : Chassaing-Schaeffer, M-Mokkadem, Bouttier - Di Francesco - Guitter,
Miermont, Le Gall...



Convergence of quadrangulations with n faces?




Another topology a la mode : the Gromov-Hausdorff topology

Connected component in “critical G(n,p)”

See the talk of Nicolas Broutin



IV. Other examples!

convergence of rescaled combinatorial structures to deterministic limit
» Limit shape of a uniform square Young-tableau: Pittel-Romik

source: Dan Romik's page
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Convergence for the topology of uniform convergence (functions defined on [0, 1]%).
» limit for Ferrer diagram (Pittel)

= Limit shape for plane partitions in a box (Cohn, Larsen, Propp)



DLA: diffusion limited aggregation
source:Vincent Beffara's page

Other model: internal DLA; the limit is the circle (CV in proba), Bramson, Griffeath,
Lawler



Unknown limits

Directed animal




SLE related process:limit of loop erased random walk, self avoiding random walks,
contour process of percolation cluster, uniform spanning tree,...
Works of Lawler, Schramm, Werner
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Convergence for the Hausdorft topology to conformally invariant distribution

Other models

Voter models, Ising models, First passage percolation, Richardson’s growth model,...



That’s all...
Thanks



