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motivation: alien detection

n satellites search for signs of extraterrestrial invasion.

Satellite i receives Zi = (Zi,1, . . . ,Zi,d).

If there is no signal, all Zi,t are i.i.d. standard normal.

Alternatively, a small subset S ⊂ {1, . . . , n} of satellites receives
a common signal embedded in noise:

Zi,t =

{
Ni,t if i /∈ S

(Ni,t + Yt)/
√

1 + σ2 if i ∈ S

where the Ni,t are i.i.d. standard normal and the Yt are
independent normal (0, σ2).
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random correlation graph

For the testing problem, it is natural to calculate pairwise
correlations

(Zi,Zi)

‖Zi‖ · ‖Zj‖
and define a graph by connecting i and j if the correlation is large
enough.

Under the null hypothesis, the Xi = Zi/‖Zi‖ are uniformly
distributed on the sphere and we have a random geometric graph
in Rd.



random geometric graph

Given n i.i.d. points in Rd, connect two with an edge if their
distance is ≤ r.

Well understood if d is fixed and n→∞.

We are interested in the behavior of the graph when the dimension
is large.



random geometric graph

Model: Let X1, . . . ,Xn be independent vectors, uniform on
Sd−1 = {x ∈ Rd : ‖x‖ = 1}.

For a given p ∈ (0, 1), we define the random geometric graph
G(n, d, p)

Vertex set V = {1, . . . , n}.

i and j are connected by an edge if an only if

(Xi,Xj) ≥ tp,d

where tp,d is such that

P {(Xi,Xj) ≥ tp,d} = p .

Equivalently, i ∼ j if and only if ‖Xi − Xj‖ ≤
√

2(1− tp,d).



edge probability
For p = 1/2, tp,d = 0.

Let µd−1 be the uniform probability measure over Sd−1.
For u ∈ Sd−1 and 0 ≤ t ≤ 1, a spherical cap of height 1− t
around u is

Cd−1(u, t) = {x ∈ Rd : x ∈ Sd−1, (x, u) ≥ t}

t u
1− t

Cd−1(u, t)
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edge probability

p = µd−1(Cd−1(e, tp,d)) is the normalized surface area of a
spherical cap of height 1− tp,d.

It is useful to represent

X =
Z

‖Z‖

with Z ∈ Rd standard normal.

Clearly, E‖Z‖2 = d.

Since ‖Z‖ is a Lipschitz function of Z, var(‖Z‖) ≤ 1.

In particular, ‖Z‖/
√

d→ 1 in probability.

This implies X1

√
d is approximately standard normal.
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edge probability

Consequence: for any s > 0,

µd−1(Cd−1(e, s/
√

d)) = P{X1 > s/
√

d} → 1− Φ(s)

as d→∞.

For any fixed p ∈ (0, 1),

lim
d→∞

tp,d

√
d = Φ−1(1− p) .
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very large dimension

G(n, p) denotes the Erdős-Rényi random graph. (n vertices, egdes
are present independently, with probability p.)

Total variation distance between two random graphs G and G′:

dTV(G,G′) = max
G
|P{G ∈ G} − P{G′ ∈ G}|

where the maximum is over all 2(n
2) sets of graphs over n vertices.

THEOREM. Fix n and p. Then

lim
d→∞

dTV(G(n, d, p),G(n, p)) = 0 .

Follows from a multivariate central limit theorem.
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clique number of G(n, d, p)

For fixed d and p, the clique number ω(n, d, p) grows linearly with
n.
For d =∞ the behavior is very different:

ω(n,∞, p) = 2 log1/p n− 2 log1/p log1/p n + O(1).

How fast does ω(n, d, p) approach the clique number of G(n, p)?

How large does d need to be for similar behavior?



clique number bounds

p is fixed, n grows.

if d ∼ const., then ω(n, d, p) = Ωp(n)

if d→∞, then ω(n, d, p) = op(n)

if d = o(log n), then ω(n, d, p) ≥ n1−op(1)

if d ∼ log2 n, then ω(n, d, p) = Op(log3 n)

if d� log3 n, then ω(n, d, p) = (2 + op(1)) log1/p n

if d ∼ log5 n, then
ω(n, d, p) = 2 log1/p n− 2 log1/p log1/p n + Op(1)



proof ideas

first three statements are easy (from area estimate of a spherical
cap)

third follows from Jung’s theorem and Vapnik-Chervonenkis
inequality

Jung’s theorem (1901): For every set A ⊂ Rd of diameter at most
1 there exists a closed ball of radius

√
d/(2(d + 1)) that includes

A.

last two statements are the main result.
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upper bound for p = 1/2

Nk is the number of cliques of size k. For G(n, p),

ENk =

(
n

k

)
2−(k

2)

Let δ > 0 and K > 2. If

d ≥
K3

δ2
,

then, for 1 ≤ k ≤ K,

ENk(n, d, 1/2) ≤
(

n

k

)
Φ(δ)

(k−1)(k−2)
2 .

Follows from an inductive argument, using approximate
orthogonality of X1, . . . ,Xn.
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clique number estimates

The upper bounds for ω(n, d, p) follow from the first moment
method:

P{ω(n, d, 1/2) ≥ k} = P{Nk ≥ 1} ≤ ENk ,

Lower bounds for ω(n, d, p) follow from the second moment
method.
First we prove a similar lower bound for ENk and then show

var(Nk)

(ENk)2
→ 0

for the relevant values of k.



ω(n, d, p) as a function of d
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ω(n, d, p) as a function of p
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testing hidden dependencies

Zi = (Zi,1, . . . ,Zi,d), i = 1, . . . , n.

Null hypothesis: all Zi,t are i.i.d. standard normal.

Alternative hypothesis: ∃S ⊂ {1, . . . , n} with |S| ≥ m such
that

Zi,t =

{
Ni,t if i /∈ S

(Ni,t + Yt)/
√

1 + σ2 if i ∈ S

where the Ni,t are i.i.d. standard normal and the Yt are
independent normal (0, σ2).
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test

Define Xi = Zi/‖Zi‖ and form the graph G(n, d, 1/2).
accept the null hypothesis if and only if ω(n, d, 1/2) ≤ 3 log2 n.

∃C, εn → 0 such that if

d ≥ C max

(
ln m

σ4
, log3

2 n

)
and m > 3 log2 n

then the test errs with probability < εn under both the null and
alternative hypotheses.

This test is computationally very expensive.
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questions

sharper bounds for the value of d?

conjecture: Eω(n, d, p) is nonincreasing in d for fixed n, p.

when does two-point concentration kick in?

connectivity threshold? giant component?

a computationally efficient test? (related to hidden clique problem
of Alon, Krivelevich, and Sudakov).


