High-dimensional random geometric graphs

Gábor Lugosi

ICREA and Pompeu Fabra University, Barcleona joint work with Luc Devroye (McGill University, Montréal) András György (SZTAKI, Budapest) Frederic Udina (Pompeu Fabra University, Barcelona),

n satellites search for signs of extraterrestrial invasion.

n satellites search for signs of extraterrestrial invasion. Satellite i receives $\mathsf{Z}_i = (\mathsf{Z}_{i,1}, \ldots, \mathsf{Z}_{i,d}).$

n satellites search for signs of extraterrestrial invasion. Satellite i receives $\mathsf{Z}_i = (\mathsf{Z}_{i,1}, \ldots, \mathsf{Z}_{i,d}).$

If there is no signal, all $Z_{i,t}$ are i.i.d. standard normal.

n satellites search for signs of extraterrestrial invasion. Satellite **i** receives $Z_i = (Z_{i,1}, \dots, Z_{i,d})$.

If there is no signal, all $Z_{i,t}$ are i.i.d. standard normal.

Alternatively, a small subset $S \subset \{1, \ldots, n\}$ of satellites receives a common signal embedded in noise:

$$\mathsf{Z}_{i,t} = \left\{ \begin{array}{ll} \mathsf{N}_{i,t} & \text{if } i \notin \mathsf{S} \\ (\mathsf{N}_{i,t} + \mathsf{Y}_t) / \sqrt{1 + \sigma^2} & \text{if } i \in \mathsf{S} \end{array} \right.$$

where the $N_{i,t}$ are i.i.d. standard normal and the Y_t are independent normal $(0, \sigma^2)$.

random correlation graph

For the testing problem, it is natural to calculate pairwise correlations

 $\frac{(\mathsf{Z}_i,\mathsf{Z}_i)}{\|\mathsf{Z}_i\|\cdot\|\mathsf{Z}_j\|}$

and define a graph by connecting ${\bf i}$ and ${\bf j}$ if the correlation is large enough.

Under the null hypothesis, the $X_i = Z_i / ||Z_i||$ are uniformly distributed on the sphere and we have a random geometric graph in \mathbb{R}^d .

Given n i.i.d. points in $\mathbb{R}^d,$ connect two with an edge if their distance is $\leq r.$

Well understood if **d** is fixed and $\mathbf{n} \to \infty$.

We are interested in the behavior of the graph when the dimension is large.

random geometric graph

Model: Let X_1,\ldots,X_n be independent vectors, uniform on $S_{d-1}=\{x\in \mathbb{R}^d: \|x\|=1\}.$

For a given $p\in(0,1),$ we define the random geometric graph $\overline{G}(n,d,p)$

Vertex set $V = \{1, \ldots, n\}$.

i and j are connected by an edge if an only if

 $(X_i,X_j) \geq t_{p,d}$

where $\mathbf{t}_{\mathbf{p},\mathbf{d}}$ is such that

 $\mathbb{P}\left\{ \left(X_i,X_j\right) \geq t_{p,d} \right\} = p \;.$

Equivalently, $\mathbf{i} \sim \mathbf{j}$ if and only if $\|\mathbf{X}_{\mathbf{i}} - \mathbf{X}_{\mathbf{j}}\| \leq \sqrt{2(1 - t_{p,d})}$.

edge probability $\label{eq:probability} \text{For } p = 1/2, \, t_{p,d} = 0.$

For p = 1/2, $t_{p,d} = 0$.

Let μ_{d-1} be the uniform probability measure over $S_{d-1}.$ For $u\in S_{d-1}$ and $0\leq t\leq 1,$ a spherical cap of height 1-t around u is

 $\textbf{C}_{d-1}(\textbf{u},t) = \{\textbf{x} \in \mathbb{R}^d : \textbf{x} \in \textbf{S}_{d-1}, (\textbf{x},\textbf{u}) \geq t\}$

 $p = \mu_{d-1}(C_{d-1}(e, t_{p,d}))$ is the normalized surface area of a spherical cap of height $1 - t_{p,d}$.

 $p = \mu_{d-1}(C_{d-1}(e, t_{p,d}))$ is the normalized surface area of a spherical cap of height $1 - t_{p,d}$.

It is useful to represent

$$\mathsf{X} = \frac{\mathsf{Z}}{\|\mathsf{Z}\|}$$

with $\boldsymbol{Z} \in \mathbb{R}^d$ standard normal.

 $p = \mu_{d-1}(C_{d-1}(e, t_{p,d}))$ is the normalized surface area of a spherical cap of height $1 - t_{p,d}$.

It is useful to represent

$$\mathsf{X} = \frac{\mathsf{Z}}{\|\mathsf{Z}\|}$$

with $\boldsymbol{Z} \in \mathbb{R}^d$ standard normal.

Clearly, $\mathbb{E} \|\mathbf{Z}\|^2 = \mathbf{d}$.

 $p = \mu_{d-1}(C_{d-1}(e, t_{p,d}))$ is the normalized surface area of a spherical cap of height $1 - t_{p,d}$.

It is useful to represent

$$\mathsf{X} = \frac{\mathsf{Z}}{\|\mathsf{Z}\|}$$

with $\boldsymbol{Z} \in \mathbb{R}^d$ standard normal.

Clearly, $\mathbb{E} \|\mathbf{Z}\|^2 = \mathbf{d}$.

Since $\|\mathbf{Z}\|$ is a Lipschitz function of \mathbf{Z} , $var(\|\mathbf{Z}\|) \leq 1$.

 $p = \mu_{d-1}(C_{d-1}(e, t_{p,d}))$ is the normalized surface area of a spherical cap of height $1 - t_{p,d}$.

It is useful to represent

$$\mathsf{X} = \frac{\mathsf{Z}}{\|\mathsf{Z}\|}$$

with $\textbf{Z} \in \mathbb{R}^d$ standard normal.

Clearly, $\mathbb{E} \|\mathbf{Z}\|^2 = \mathbf{d}$.

Since $\|\mathbf{Z}\|$ is a Lipschitz function of \mathbf{Z} , $var(\|\mathbf{Z}\|) \leq 1$. In particular, $\|\mathbf{Z}\|/\sqrt{d} \rightarrow 1$ in probability. This implies $\mathbf{X}_1 \sqrt{d}$ is approximately standard normal.

Consequence: for any $\mathbf{s} > \mathbf{0}$,

$$\label{eq:multiplicative} \begin{split} \mu_{d-1}(\mathsf{C}_{d-1}(e,s/\sqrt{d})) &= \mathbb{P}\{\mathsf{X}_1 > s/\sqrt{d}\} \to 1-\Phi(s) \\ \text{as } \mathsf{d} \to \infty. \end{split}$$

Consequence: for any $\mathbf{s} > \mathbf{0}$,

$$\label{eq:main_def} \begin{split} \mu_{d-1}(\mathsf{C}_{d-1}(e,s/\sqrt{d})) &= \mathbb{P}\{\mathsf{X}_1 > s/\sqrt{d}\} \to 1-\Phi(s) \\ \text{as } d \to \infty. \end{split}$$

For any fixed $p \in (0, 1)$,

$$\lim_{d\to\infty} t_{p,d}\sqrt{d} = \Phi^{-1}(1-p) \; .$$

very large dimension

G(**n**, **p**) denotes the Erdős-Rényi random graph. (**n** vertices, egdes are present independently, with probability **p**.)

Total variation distance between two random graphs G and G':

$$\mathsf{d}_{\mathsf{TV}}(\mathsf{G},\mathsf{G}') = \max_{\mathcal{G}} |\mathbb{P}\{\mathsf{G} \in \mathcal{G}\} - \mathbb{P}\{\mathsf{G}' \in \mathcal{G}\}|$$

where the maximum is over all $2^{\binom{n}{2}}$ sets of graphs over **n** vertices.

very large dimension

G(n, p) denotes the Erdős-Rényi random graph. (n vertices, egdes are present independently, with probability p.)

Total variation distance between two random graphs G and G':

$$\mathsf{d}_{\mathsf{TV}}(\mathsf{G},\mathsf{G}') = \max_{\mathcal{G}} |\mathbb{P}\{\mathsf{G}\in\mathcal{G}\} - \mathbb{P}\{\mathsf{G}'\in\mathcal{G}\}|$$

where the maximum is over all $2^{\binom{n}{2}}$ sets of graphs over **n** vertices. THEOREM. Fix **n** and **p**. Then

$\lim_{d\to\infty}d_{\mathsf{TV}}(\overline{\mathsf{G}}(n,d,p),\mathsf{G}(n,p))=0\ .$

Follows from a multivariate central limit theorem.

clique number of $\overline{G}(n, d, p)$

For fixed **d** and **p**, the clique number $\omega(\mathbf{n}, \mathbf{d}, \mathbf{p})$ grows linearly with **n**. For $\mathbf{d} = \infty$ the behavior is very different:

 $\omega(\mathsf{n},\infty,\mathsf{p}) = 2\log_{1/\mathsf{p}}\mathsf{n} - 2\log_{1/\mathsf{p}}\log_{1/\mathsf{p}}\mathsf{n} + \mathsf{O}(1).$

How fast does $\omega(n, d, p)$ approach the clique number of G(n, p)?

How large does **d** need to be for similar behavior?

clique number bounds

p is fixed, **n** grows.

if $\mathbf{d} \sim \text{const.}$, then $\omega(\mathbf{n}, \mathbf{d}, \mathbf{p}) = \Omega_{\mathbf{p}}(\mathbf{n})$ if $\mathbf{d} \to \infty$, then $\omega(\mathbf{n}, \mathbf{d}, \mathbf{p}) = \mathbf{o}_{\mathbf{n}}(\mathbf{n})$ if $\mathbf{d} = \mathbf{o}(\log \mathbf{n})$, then $\omega(\mathbf{n}, \mathbf{d}, \mathbf{p}) > \mathbf{n}^{1-\mathbf{o}_{\mathbf{p}}(1)}$ if $\mathbf{d} \sim \log^2 \mathbf{n}$, then $\omega(\mathbf{n}, \mathbf{d}, \mathbf{p}) = O_{\mathbf{n}}(\log^3 \mathbf{n})$ if $\mathbf{d} \gg \log^3 \mathbf{n}$, then $\omega(\mathbf{n}, \mathbf{d}, \mathbf{p}) = (2 + o_p(1)) \log_{1/p} \mathbf{n}$ if $\mathbf{d} \sim \log^5 \mathbf{n}$, then $\omega(\mathsf{n},\mathsf{d},\mathsf{p}) = 2\log_{1/p}\mathsf{n} - 2\log_{1/p}\log_{1/p}\mathsf{n} + \mathsf{O}_{\mathsf{p}}(1)$

first three statements are easy (from area estimate of a spherical cap)

first three statements are easy (from area estimate of a spherical cap)

third follows from Jung's theorem and Vapnik-Chervonenkis inequality

first three statements are easy (from area estimate of a spherical cap)

third follows from Jung's theorem and Vapnik-Chervonenkis inequality

Jung's theorem (1901): For every set $A \subset \mathbb{R}^d$ of diameter at most 1 there exists a closed ball of radius $\sqrt{d/(2(d+1))}$ that includes A.

first three statements are easy (from area estimate of a spherical cap)

third follows from Jung's theorem and Vapnik-Chervonenkis inequality

Jung's theorem (1901): For every set $A \subset \mathbb{R}^d$ of diameter at most 1 there exists a closed ball of radius $\sqrt{d/(2(d+1))}$ that includes A.

last two statements are the main result.

upper bound for p = 1/2

 N_k is the number of cliques of size k. For G(n, p),

$$\mathbb{E}\mathsf{N}_{\mathsf{k}} = \binom{\mathsf{n}}{\mathsf{k}} 2^{-\binom{\mathsf{k}}{2}}$$

Let $\delta > 0$ and $\mathsf{K} > 2$. If

$$\mathsf{d} \geq \frac{\mathsf{K}^3}{\delta^2} \; ,$$

then, for $1 \leq k \leq K$,

$$\mathbb{E}\mathsf{N}_{\mathsf{k}}(\mathsf{n},\mathsf{d},1/2) \leq \binom{\mathsf{n}}{\mathsf{k}} \Phi(\delta)^{rac{(\mathsf{k}-1)(\mathsf{k}-2)}{2}} \; .$$

upper bound for p = 1/2

 N_k is the number of cliques of size k. For G(n, p),

$$\mathbb{E}\mathsf{N}_{\mathsf{k}} = \binom{\mathsf{n}}{\mathsf{k}} 2^{-\binom{\mathsf{k}}{2}}$$

Let $\delta > 0$ and $\mathsf{K} > 2$. If

$$\mathsf{d} \geq \frac{\mathsf{K}^3}{\delta^2}$$

then, for $1 \leq k \leq K$,

$$\mathbb{E}\mathsf{N}_{\mathsf{k}}(\mathsf{n},\mathsf{d},1/2) \leq inom{\mathsf{n}}{\mathsf{k}} \Phi(\delta)^{rac{(\mathsf{k}-1)(\mathsf{k}-2)}{2}}$$
 .

Follows from an inductive argument, using approximate orthogonality of X_1, \ldots, X_n .

clique number estimates

The upper bounds for $\omega(\mathbf{n}, \mathbf{d}, \mathbf{p})$ follow from the first moment method:

 $\mathbb{P}\{\omega(\mathsf{n},\mathsf{d},1/2)\geq\mathsf{k}\}=\mathbb{P}\{\mathsf{N}_{\mathsf{k}}\geq1\}\leq\mathbb{E}\mathsf{N}_{\mathsf{k}}\;,$

Lower bounds for $\omega(n, d, p)$ follow from the second moment method.

First we prove a similar lower bound for $\mathbb{E} N_k$ and then show

$$\frac{\operatorname{var}(\mathsf{N}_k)}{(\mathbb{E}\mathsf{N}_k)^2} \to 0$$

for the relevant values of \mathbf{k} .

$\omega(n, d, p)$ as a function of d

p= 0.025

$\omega(n, d, p)$ as a function of p

testing hidden dependencies

$\mathsf{Z}_i = (\mathsf{Z}_{i,1}, \dots, \mathsf{Z}_{i,d}), i = 1, \dots, n.$

Null hypothesis: all Z_{i,t} are i.i.d. standard normal.

testing hidden dependencies

$\mathsf{Z}_i = (\mathsf{Z}_{i,1}, \dots, \mathsf{Z}_{i,d}), i = 1, \dots, n.$

Null hypothesis: all Z_{i,t} are i.i.d. standard normal.

Alternative hypothesis: $\exists S \subset \{1, \ldots, n\}$ with $|S| \geq m$ such that

$$\mathsf{Z}_{i,t} = \left\{ \begin{array}{ll} \mathsf{N}_{i,t} & \text{if } i \notin \mathsf{S} \\ (\mathsf{N}_{i,t} + \mathsf{Y}_t) / \sqrt{1 + \sigma^2} & \text{if } i \in \mathsf{S} \end{array} \right.$$

where the $N_{i,t}$ are i.i.d. standard normal and the Y_t are independent normal $(0, \sigma^2)$.

Define $X_i = Z_i / ||Z_i||$ and form the graph $\overline{G}(n, d, 1/2)$. accept the null hypothesis if and only if $\omega(n, d, 1/2) \le 3 \log_2 n$.

test

Define $X_i = Z_i / ||Z_i||$ and form the graph $\overline{G}(n, d, 1/2)$. accept the null hypothesis if and only if $\omega(n, d, 1/2) \leq 3 \log_2 n$. $\exists C, \epsilon_n \to 0$ such that if

$$\mathsf{d} \geq \mathsf{C}\max\left(\frac{\mathsf{ln}\,\mathsf{m}}{\sigma^4},\mathsf{log}_2^3\,\mathsf{n}\right) \quad \mathsf{and} \quad \mathsf{m} > 3\,\mathsf{log}_2\,\mathsf{n}$$

then the test errs with probability $<\epsilon_{\rm n}$ under both the null and alternative hypotheses.

Define $X_i = Z_i / ||Z_i||$ and form the graph $\overline{G}(n, d, 1/2)$. accept the null hypothesis if and only if $\omega(n, d, 1/2) \leq 3 \log_2 n$. $\exists C, \epsilon_n \to 0$ such that if

$$\mathsf{d} \geq \mathsf{C}\max\left(\frac{\mathsf{ln}\,\mathsf{m}}{\sigma^4},\mathsf{log}_2^3\,\mathsf{n}\right) \quad \mathsf{and} \quad \mathsf{m} > 3\,\mathsf{log}_2\,\mathsf{n}$$

then the test errs with probability $<\epsilon_{\rm n}$ under both the null and alternative hypotheses.

This test is computationally very expensive.

questions

- sharper bounds for the value of **d**?
- conjecture: $\mathbb{E}\omega(\mathbf{n}, \mathbf{d}, \mathbf{p})$ is nonincreasing in **d** for fixed **n**, **p**.
- when does two-point concentration kick in?
- connectivity threshold? giant component?
- a computationally efficient test? (related to hidden clique problem of Alon, Krivelevich, and Sudakov).