L. Decreusefond E. Ferraz P. Martins H. Randriambololona A. Vergne

Telecom ParisTech

Workshop on random graphs, April 5th, 2011

イロト スポト メヨト メヨト

Plan

Sensor networks

Algebraic topology

Poisson homologies Euler characteristic Asymptotic results Robust estimate

(日)

Sensor networks

A wireless sensor network (WSN) is a wireless network consisting of spatially distributed autonomous devices using sensors to cooperatively monitor physical or environmental conditions.

Wikipedia

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

A sensor

A sensor is defined by

- 1. position
- 2. coverage radius

at each time.

・ロト ・ 個 ト ・ ヨト ・ ヨト

A sensor

- A sensor is defined by
 - 1. position
 - 2. coverage radius
- at each time.

All positions known : Domain covered?

Some positions known : Optimal locations of other sensors

Positions varying with time : Creation of holes?

Fault-tolerance/ Power-saving : Can we support failure (or switch-off) without creating holes?

All positions known : Domain covered?

Some positions known : Optimal locations of other sensors

Positions varying with time : Creation of holes?

Fault-tolerance/ Power-saving : Can we support failure (or switch-off) without creating holes?

All positions known : Domain covered?

Some positions known : Optimal locations of other sensors

Positions varying with time : Creation of holes?

Fault-tolerance/ Power-saving : Can we support failure (or switch-off) without creating holes?

All positions known : Domain covered?

Some positions known : Optimal locations of other sensors

Positions varying with time : Creation of holes?

Fault-tolerance/ Power-saving : Can we support failure (or switch-off) without creating holes?

Mathematical framework

Homology : Algebraization of the topology

Coverage : reduces to compute the rank of a matrix Detection of hole, redundancy : reduces to the computation of a basis of a vector matrix, obtained by matrix reductior (as in Gauss algorithm).

Mathematical framework

Homology : Algebraization of the topology Coverage : reduces to compute the rank of a matrix Detection of hole, redundancy : reduces to the computation of a basis of a vector matrix, obtained by matrix reduction (as in Gauss algorithm).

Cech complex

$$C_k = \bigcup \{ [x_0, \cdots, x_{k-1}], \ x_i \in \omega, \cap_{i=0}^k B(x_i, \epsilon) \neq \emptyset \}$$

Nerve theorem

The set $\bigcup_{x \in \omega} B(x, \epsilon)$ has the same homology groups as the simplicial complex $(C_k, k \ge 0)$.

ヘロト ヘロト ヘモト ヘモト

ヘロト ヘロト ヘモト ヘモト

Rips complex of sensor network (cf. [dSG07, dSG06, GM05])

Vertices : a, b, c, d, e.

Edges : ab, bc, ca, ae, be, ec, bd, ed. Triangles : abc, abe, bec, aec, bed. Tetrahedron : abec.

Vertices : a, b, c, d, e. Edges : ab, bc, ca, ae, be, ec, bd, ed. Triangles : abc, abe, bec, aec, bed. Tetrahedron : abec.

Vertices : a, b, c, d, e. Edges : ab, bc, ca, ae, be, ec, bd, ed. Triangles : abc, abe, bec, aec, bed. Fetrahedron : abec.

Vertices : a, b, c, d, e. Edges : ab, bc, ca, ae, be, ec, bd, ed. Triangles : abc, abe, bec, aec, bed. Tetrahedron : abec.

Rips and Cech

- ► No hole in Cech implies no hole in Rips complex.
- ► The converse does not hold.
- For I^{∞} distance, Rips=Cech.

ヘロト ヘロト ヘモト ヘモト

Rips and Cech

► No hole in Cech implies no hole in Rips complex.

ヘロト ヘロト ヘモト ヘモト

э

500

- The converse does not hold.
- For I^{∞} distance, Rips=Cech.

Rips and Cech

- ► No hole in Cech implies no hole in Rips complex.
- ► The converse does not hold.
- For I^{∞} distance, Rips=Cech.

Simplices algebra [Hat02, ZC05]

▶ *ab* = −*ba*

▶ 3*ab* means three times the edge *ab*.

Boundary operator

$$\partial_{n-1} a_1 a_2 \dots a_n = \sum_{i=1}^n (-1)^i a_1 a_2 \dots \widehat{a_i} \dots a_n$$

ヘロト ヘロト ヘモト ヘモト

Simplices algebra [Hat02, ZC05]

► 3*ab* means three times the edge *ab*.

Boundary operator

$$\partial_{n-1} a_1 a_2 \dots a_n = \sum_{i=1}^n (-1)^i a_1 a_2 \dots \widehat{a_i} \dots a_n.$$

(日)

Simplices algebra [Hat02, ZC05]

► 3*ab* means three times the edge *ab*.

Boundary operator

$$\partial_{n-1} a_1 a_2 \dots a_n = \sum_{i=1}^n (-1)^i a_1 a_2 \dots \widehat{a_i} \dots a_n.$$

(日)

Simplices algebra [Hat02, ZC05]

► 3*ab* means three times the edge *ab*.

Boundary operator

$$\partial_{n-1} a_1 a_2 \dots a_n = \sum_{i=1}^n (-1)^i a_1 a_2 \dots \widehat{a_i} \dots a_n.$$

Example :

$$\partial_2 abe = be - ae + ab.$$

Main result

Main observation

$$\partial_n \partial_{n+1} = 0$$

$$\partial_1 \partial_2 abe = \partial_1 (be - ae + ab)$$

= $e - b - (e - a) + b - a = 0.$

・ロト ・ 理ト ・ モト ・ モト

Cycles and boundaries

• A triangle is a cycle of edges.

- A tetrahedron is a cycle of triangles.
- A triangle is a boundary of a tetrahedron.

Cycles and boundaries

- A triangle is a cycle of edges.
- A tetrahedron is a cycle of triangles.
- A triangle is a boundary of a tetrahedron.

Cycles and boundaries

- A triangle is a cycle of edges.
- A tetrahedron is a cycle of triangles.
- A triangle is a boundary of a tetrahedron.

Betti numbers

β_0 =number of connected components

$$\beta_0 = \text{Nb of vertices} - \text{Nb of independent edges.}$$

ヘロト ヘロト ヘモト ヘモト
Betti numbers

β_0 =number of connected components

 β_0 = Nb of vertices – Nb of *independent* edges.

(日)

Betti numbers

β_0 =number of connected components

 β_0 = Nb of vertices – Nb of *independent* edges.

(日)

Betti numbers

β_0 =number of connected components

 β_0 = Nb of vertices – Nb of *independent* edges.

$$\beta_0 = 5 - 4 = 1.$$

$\beta_1 =$ Nb of *independent* polygons - Nb of independent triangles.

$\beta_1 =$ Nb of *independent* polygons – Nb of independent triangles.

 $\beta_1 = 1 - 1 = 0.$

$\beta_1 = \text{Nb of independent polygons} - \text{Nb of independent triangles.}$

 $\beta_1 = 2 - 1 = 1.$

$\beta_1 =$ Nb of *independent* polygons - Nb of independent triangles.

 $\beta_1 = 3 - 3 = 0.$

• $\beta_n = \dim \ker \partial_n - \dim \operatorname{range} \partial_{n+1}$.

- Hard to visualize the intuitive meaning
- But relatively easy to compute.
- Existence of tetrahedron in Rips complex means over-coverage.

- $\beta_n = \dim \ker \partial_n \dim \operatorname{range} \partial_{n+1}$.
- Hard to visualize the intuitive meaning
- But relatively easy to compute.
- Existence of tetrahedron in Rips complex means over-coverage.

- $\beta_n = \dim \ker \partial_n \dim \operatorname{range} \partial_{n+1}$.
- Hard to visualize the intuitive meaning
- But relatively easy to compute.
- Existence of tetrahedron in Rips complex means over-coverage.

- $\beta_n = \dim \ker \partial_n \dim \operatorname{range} \partial_{n+1}$.
- Hard to visualize the intuitive meaning
- But relatively easy to compute.
- Existence of tetrahedron in Rips complex means over-coverage.

- Sensors = Poisson process (λ)
- Domain = d dimensional torus of width a
- Coverage = square of width ε
- ► *r*-dilation of P.P.(λ)=P.P.(λr^{-d}), one can choose a = 1.

- Sensors = Poisson process (λ)
- Domain = d dimensional torus of width a
- Coverage = square of width ε
- ► *r*-dilation of P.P.(λ)=P.P.(λr^{-d}), one can choose a = 1.

- Sensors = Poisson process (λ)
- Domain = d dimensional torus of width a
- Coverage = square of width ε
- ► *r*-dilation of P.P.(λ)=P.P.(λr^{-d}), one can choose a = 1.

- Sensors = Poisson process (λ)
- Domain = d dimensional torus of width a
- Coverage = square of width ε
- ► *r*-dilation of P.P.(λ)=P.P.(λr^{-d}), one can choose a = 1.

Poisson homologies

Euler characteristic

Euler characteristic

$$\chi = \sum_{k=0}^d (-1)^k \beta_k.$$

- d=1 : { $\chi = 0 \cap \beta_0 \neq 0$ } \Leftrightarrow { circle is covered }
- ▶ d=2 : { $\chi = 0 \cap \beta_0 \neq \beta_1$ } ⇔ { domain is covered }
- ▶ d=3 : { $\chi = 0 \cap \beta_0 + \beta_2 \neq \beta_1$ } ⇔ { space is covered }

・ロト ・ 同ト ・ ヨト ・ ヨト

Poisson homologies

Euler characteristic

Euler characteristic

$$\chi = \sum_{k=0}^d (-1)^k \beta_k.$$

- d=1 : { $\chi = 0 \cap \beta_0 \neq 0$ } \Leftrightarrow { circle is covered }
- d=2 : { $\chi = 0 \cap \beta_0 \neq \beta_1$ } \Leftrightarrow { domain is covered }
- ▶ d=3 : { $\chi = 0 \cap \beta_0 + \beta_2 \neq \beta_1$ } ⇔ { space is covered }

Poisson homologies

Euler characteristic

Euler characteristic

$$\chi = \sum_{k=0}^d (-1)^k \beta_k.$$

- ▶ d=1 : { $\chi = 0 \cap \beta_0 \neq 0$ } ⇔ { circle is covered }
- d=2 : { $\chi = 0 \cap \beta_0 \neq \beta_1$ } \Leftrightarrow { domain is covered }
- ► d=3 : { $\chi = 0 \cap \beta_0 + \beta_2 \neq \beta_1$ } \Leftrightarrow { space is covered }

Poisson homologies

Euler characteristic

Euler characteristic

$$\chi = \sum_{k=0}^d (-1)^k \beta_k.$$

- d=1 : { $\chi = 0 \cap \beta_0 \neq 0$ } \Leftrightarrow { circle is covered }
- d=2 : { $\chi = 0 \cap \beta_0 \neq \beta_1$ } \Leftrightarrow { domain is covered }
- d=3 : { $\chi = 0 \cap \beta_0 + \beta_2 \neq \beta_1$ } \Leftrightarrow { space is covered }

Poisson homologies

Euler characteristic

Euler characteristic

$$\chi = \sum_{k=0}^d (-1)^k \beta_k.$$

- ► d=1 : { $\chi = 0 \cap \beta_0 \neq 0$ } \Leftrightarrow { circle is covered }
- d=2 : { $\chi = 0 \cap \beta_0 \neq \beta_1$ } \Leftrightarrow { domain is covered }
- ► d=3 : { $\chi = 0 \cap \beta_0 + \beta_2 \neq \beta_1$ } \Leftrightarrow { space is covered }

$$\chi = \sum_{k=1}^{\infty} (-1)^k s_k.$$

- Poisson homologies
 - Euler characteristic

Euler characteristic

► B_d(x) : Bell polynomial

$$B_d(x) = \begin{cases} d \\ 1 \end{cases} x + \begin{cases} d \\ 2 \end{cases} x^2 + \dots + \begin{cases} d \\ d \end{cases} x^d$$

Euler characteristic

$$\mathbf{E}[\chi] = -\frac{\lambda e^{-\theta}}{\theta} B_d(-\theta) \text{ where } \theta = \lambda \epsilon^d.$$

ヘロト ヘロト ヘモト ヘモト

Poisson homologies

Euler characteristic

Euler characteristic

• $B_d(x)$: Bell polynomial

$$B_d(x) = \begin{cases} d \\ 1 \end{cases} x + \begin{cases} d \\ 2 \end{cases} x^2 + \dots + \begin{cases} d \\ d \end{cases} x^d$$

Euler characteristic

$$\mathsf{E}[\chi] = -\frac{\lambda e^{-\theta}}{\theta} B_d(-\theta) \text{ where } \theta = \lambda \epsilon^d.$$

Э

ヘロト ヘロト ヘモト ヘモト

- Poisson homologies
 - Euler characteristic

► Define $h(x_1, ..., x_k) \triangleq \frac{1}{k!} \mathbb{I}_{\{||x_i - x_j|| < \epsilon, i \neq j\}}(x_1, ..., x_k)$ ► Then (Campbell) :

$$\overline{s_k} = \lambda^{k+1} \int_{\mathbb{T}} \cdots \int_{\mathbb{T}} h(x_1, ..., x_{k+1}) dx_{k+1} ... dx_1$$
$$= \frac{(k+1)^d}{(k+1)!} \lambda \theta^k$$

(日)

- Poisson homologies
 - Euler characteristic

k simplices

► Define $h(x_1, ..., x_k) \triangleq \frac{1}{k!} \mathbb{I}_{\{||x_i - x_j|| < \epsilon, i \neq j\}}(x_1, ..., x_k)$ ► Then (Campbell) :

$$\overline{s_k} = \lambda^{k+1} \int_{\mathbb{T}} \cdots \int_{\mathbb{T}} h(x_1, ..., x_{k+1}) dx_{k+1} ... dx_1$$
$$= \frac{(k+1)^d}{(k+1)!} \lambda \theta^k$$

(日)

- Poisson homologies
 - Euler characteristic

Dimension 5

Poisson homologies

Euler characteristic

Second order moments

$$\operatorname{Cov}(s_k, s_l) = \left(\frac{1}{2\epsilon}\right)^d \sum_{i=0}^{l-1} \frac{1}{i!(k-l+i)!(l-i)!} \theta^{k+i} \times \left(k+i+2\frac{i(k-l+i)}{l-i+1}\right)^d$$

.

・ロト ・ 理ト ・ モト ・ モト

Poisson homologies

Euler characteristic

Euler characteristic

Euler characteristic

$$\mathsf{Var}(\chi) = \left(rac{1}{d}
ight)^d \sum_{i=1}^\infty c_i heta^i$$

・ロト ・ 理ト ・ モト ・ モト

-Poisson homologies

Euler characteristic

Euler characteristic

Euler characteristic

$$\mathsf{Var}(\chi) = \left(rac{1}{d}
ight)^d \sum_{i=1}^\infty c_i heta^i$$

In dimension 1,

$$\operatorname{Var}(\chi) = \left(\theta e^{-\theta} - 2\theta^2 e^{-2\theta}\right)$$

ヘロト ヘロト ヘモト ヘモト

Poisson homologies

-Asymptotic results

Asymptotic results

If
$$\lambda \to \infty$$
, $\beta_i(\omega) \xrightarrow{p.s.} \beta_i(\mathbb{T}^d) = \binom{d}{i}$.

・ロト ・ 理ト ・ モト ・ モト

Poisson homologies

-Asymptotic results

Limit theorems

CLT for Euler characteristic

distance
$$_{TV}\left(\frac{\chi - \mathbf{E}[\chi]}{\sqrt{V_{\chi}}}, \ \mathfrak{N}(0, 1)\right) \leq \frac{c}{\sqrt{\lambda}}$$

・ロト ・ 理ト ・ モト ・ モト

Poisson homologies

Asymptotic results

Limit theorems

CLT for Euler characteristic

$$\mathsf{distance}_{TV}\left(\frac{\chi-\mathsf{E}[\chi]}{\sqrt{V_{\chi}}}, \ \mathfrak{N}(0,1)\right) \leq \frac{c}{\sqrt{\lambda}} \cdot$$

Method

- Stein method
- Malliavin calculus for Poisson process

・ロト ・ 個 ト ・ ヨト ・ ヨト

Poisson homologies

Asymptotic results

Limit theorems

CLT for Euler characteristic

distance
$$_{TV}\left(rac{\chi-\mathsf{E}[\chi]}{\sqrt{V_{\chi}}}, \ \mathfrak{N}(0,1)
ight) \leq rac{c}{\sqrt{\lambda}} \cdot$$

Method

- Stein method
- Malliavin calculus for Poisson process

Poisson homologies

Asymptotic results

Limit theorems

CLT for Euler characteristic

distance
$$_{TV}\left(rac{\chi-\mathsf{E}[\chi]}{\sqrt{V_{\chi}}}, \ \mathfrak{N}(0,1)
ight) \leq rac{c}{\sqrt{\lambda}} \cdot$$

Method

- Stein method
- Malliavin calculus for Poisson process

Poisson homologies

Robust estimate

Concentration inequality

Discrete gradient D_xF(ω) = F(ω ∪ {x}) - F(ω)
 D_xβ₀ ∈ {1, 0, -1, -2, -3}

Poisson homologies

Robust estimate

Concentration inequality

- Discrete gradient $D_x F(\omega) = F(\omega \cup \{x\}) F(\omega)$
- $D_x\beta_0 \in \{1, 0, -1, -2, -3\}$

Poisson homologies

Robust estimate

Concentration inequality

• Discrete gradient $D_x F(\omega) = F(\omega \cup \{x\}) - F(\omega)$

•
$$D_x \beta_0 \in \{1, 0, -1, -2, -3\}$$

$c > \mathsf{E}[\beta_0]$

$$P(eta_0 \geq c) \leq \exp\left[-rac{c - \mathsf{E}[eta_0]}{6}\log\left(1 + rac{c - \mathsf{E}[eta_0]}{3\lambda}
ight)
ight]$$

-Poisson homologies

Robust estimate

Dimension 2

• $\beta_0 \leq \text{Nb}$ of points in a MHC process

$$\mathsf{E}[\beta_0] \le \lambda \, \frac{1 - e^{-\theta}}{\theta} = \tau$$

ヘロト ヘロト ヘモト ヘモト

-Poisson homologies

Robust estimate

Dimension 2

• $\beta_0 \leq \text{Nb}$ of points in a MHC process

$$\mathsf{E}[\beta_0] \le \lambda \, \frac{1 - e^{-\theta}}{\theta} = \tau$$

$$P(eta_0 \geq c) \leq \exp\left[-rac{c- au}{6}\log\left(1+rac{c- au}{3\lambda}
ight)
ight]$$

ヘロト ヘロト ヘモト ヘモト

- Poisson homologies
 - Robust estimate

Références I

V. de Silva and R. Ghrist.

Coordinate-free coverage in sensor networks with controlled boundaries via homology.

Intl. Journal of Robotics Research, 25(12) :1205-1222, 2006.

V. de Silva and R. Ghrist.

Coverage in sensor networks via persistent homology. *Algebr. Geom. Topol.*, 7 :339–358, 2007.

🔋 R. Ghrist and A. Muhammad.

Coverage and hole-detection in sensor networks via homology. Information Processing in Sensor Networks, 2005. IPSN 2005. Fourth International Symposium on, pages 254–260, 2005.

・ロット (雪) ・ (日) ・ (日)

Poisson homologies

Robust estimate

Références II

A. Hatcher.

Algebraic topology. Cambridge University Press, Cambridge, 2002.

A. Zomorodian and G. Carlsson. Computing persistent homology. Discrete Comput. Geom., 33(2) :249–274, 2005.

イロト イポト イヨト イヨト