Beyond random graphs ：random simplicial complexes．Applications to sensor networks

L．Decreusefond E．Ferraz P．Martins

H．Randriambololona A．Vergne

Telecom ParisTech
Workshop on random graphs，April 5th， 2011

Sensor networks

Algebraic topology

Poisson homologies
Euler characteristic
Asymptotic results
Robust estimate

Sensor networks

A wireless sensor network (WSN) is a wireless network consisting of spatially distributed autonomous devices using sensors to cooperatively monitor physical or environmental conditions.

Wikipedia

A sensor

A sensor is defined by

1. position
2. coverage radius
at each time.

A sensor

A sensor is defined by

1. position
2. coverage radius
at each time.

Some questions

All positions known : Domain covered?
Some positions known : Optimal locations of other sensors
Positions varying with time : Creation of holes?
Fault-tolerance/ Power-saving : Can we support failure (or switch-off) without creating holes?

Some questions

All positions known : Domain covered?
Some positions known : Optimal locations of other sensors
Positions varying with time : Creation of holes?
Fault-tolerance/ Power-saving : Can we support failure (or switch-off) without creating holes?

Some questions

All positions known : Domain covered?
Some positions known : Optimal locations of other sensors
Positions varying with time : Creation of holes?
Fault-tolerance/ Power-saving : Can we support failure (or switch-off) without creating holes?

Some questions

All positions known : Domain covered?
Some positions known : Optimal locations of other sensors
Positions varying with time: Creation of holes?
Fault-tolerance/ Power-saving : Can we support failure (or switch-off) without creating holes?

LAlgebraic topology

Mathematical framework

Homology : Algebraization of the topology
Coverage : reduces to compute the rank of a matrix
Detection of hole, redundancy : reduces to the computation of a basis of a vector matrix, obtained by matrix reduction (as in Gauss algorithm).

Mathematical framework

Homology ：Algebraization of the topology
Coverage ：reduces to compute the rank of a matrix
Detection of hole，redundancy ：reduces to the computation of a basis of a vector matrix，obtained by matrix reduction （as in Gauss algorithm）．

Cech complex

$$
C_{k}=\bigcup\left\{\left[x_{0}, \cdots, x_{k-1}\right], x_{i} \in \omega, \cap_{i=0}^{k} B\left(x_{i}, \epsilon\right) \neq \emptyset\right\}
$$

Nerve theorem
The set $\bigcup_{x \in \omega} B(x, \epsilon)$ has the same homology groups as the simplicial complex ($C_{k}, k \geq 0$).

L Algebraic topology

Rips complex

TELECOM

LAlgebraic topology

Rips complex

TELECOM Parisrech

LAlgebraic topology

Rips complex

TELECOM Paristech

LAlgebraic topology

Rips complex

TELECOM Paristech

$\left\llcorner_{\text {Algebraic topology }}\right.$

Rips complex

TELECOM Paristech

Beyond random graphs : random simplicial complexes. Applications to sensor networks
$\left\llcorner_{\text {Algebraic topology }}\right.$

Rips complex

$\left\llcorner_{\text {Algebraic topology }}\right.$

Rips complex

LAlgebraic topology

Rips complex of sensor network (cf. [dSG07, dSG06, GM05])

$\left\llcorner_{\text {Algebraic topology }}\right.$

Rips complex

Vertices: a, b, c, d, e.
Edges : ab, bc, ca, ae, be, ec, bd, ed.
Triangles: abc, abe, bee, aec, bed.

LAlgebraic topology

Rips complex

Vertices: a, b, c, d, e.
Edges : ab, bc, ca, ae, be, ec, bd, ed.
Triangles : abc, abe, bec, aec, bed.

Rips complex

Vertices: a, b, c, d, e.
Edges : ab, bc, ca, ae, be, ec, bd, ed.
Triangles: abc, abe, bec, aec, bed.

Rips complex

Vertices: a, b, c, d, e.
Edges : ab, bc, ca, ae, be, ec, bd, ed.
Triangles : abc, abe, bec, aec, bed.
Tetrahedron: abec.

LAlgebraic topology

Rips and Cech

- No hole in Cech implies no hole in Rips complex.
- The converse does not hold.
- For ${ }^{\infty}$ distance, Rips=Cech.

Rips and Cech

- No hole in Cech implies no hole in Rips complex.
- The converse does not hold.
- For ${ }^{\infty}$ distance, Rips=Cech.

Rips and Cech

- No hole in Cech implies no hole in Rips complex.
- The converse does not hold.
- For ${ }^{\infty}$ distance, Rips=Cech.

டAlgebraic topology

Simplices algebra [Hat02, ZC05]

- $a b=-b a$
- 3ab means three times the edge $a b$.

Boundary operator

Simplices algebra [Hat02, ZC05]

- $a b=-b a$
- $3 a b$ means three times the edge $a b$.

Boundary operator

Simplices algebra [Hat02, ZC05]

- $a b=-b a$
- $3 a b$ means three times the edge $a b$.

Boundary operator

$$
\partial_{n-1} a_{1} a_{2} \ldots a_{n}=\sum_{i=1}^{n}(-1)^{i} a_{1} a_{2} \ldots \widehat{a}_{i} \ldots a_{n}
$$

Simplices algebra [Hat02, ZC05]

- $a b=-b a$
- $3 a b$ means three times the edge $a b$.

Boundary operator

$$
\partial_{n-1} a_{1} a_{2} \ldots a_{n}=\sum_{i=1}^{n}(-1)^{i} a_{1} a_{2} \ldots \widehat{a}_{i} \ldots a_{n} .
$$

Example :

$$
\partial_{2} a b e=b e-a e+a b .
$$

LAlgebraic topology

Main result

Main observation

$$
\partial_{n} \partial_{n+1}=0
$$

$$
\begin{aligned}
\partial_{1} \partial_{2} a b e & =\partial_{1}(b e-a e+a b) \\
& =e-b-(e-a)+b-a=0 .
\end{aligned}
$$

LAlgebraic topology

Cycles and boundaries

- A triangle is a cycle of edges.
- A tetrahedron is a cycle of triangles.
- A triangle is a boundary of a tetrahedron.

Cycles and boundaries

－A triangle is a cycle of edges．
－A tetrahedron is a cycle of triangles．
－A triangle is a boundary of a tetrahedron．

Cycles and boundaries

- A triangle is a cycle of edges.
- A tetrahedron is a cycle of triangles.
- A triangle is a boundary of a tetrahedron.

LAlgebraic topology

Betti numbers

$\beta_{0}=$ number of connected components

$\beta_{0}=\mathrm{Nb}$ of vertices -Nb of independent edges.

Betti numbers

$\beta_{0}=$ number of connected components

$\beta_{0}=\mathrm{Nb}$ of vertices -Nb of independent edges.

$$
\beta_{0}=5-3=2 .
$$

Betti numbers

$\beta_{0}=$ number of connected components

$\beta_{0}=\mathrm{Nb}$ of vertices -Nb of independent edges.

$$
\beta_{0}=5-4=1
$$

Betti numbers

$\beta_{0}=$ number of connected components

$\beta_{0}=\mathrm{Nb}$ of vertices -Nb of independent edges.

$$
\beta_{0}=5-4=1
$$

$\beta_{1}=$ number of «holes »

$\beta_{1}=\mathrm{Nb}$ of independent polygons -Nb of independent triangles.

$\beta_{1}=$ number of « holes »

$\beta_{1}=\mathrm{Nb}$ of independent polygons -Nb of independent triangles.

$$
\beta_{1}=1-1=0 .
$$

$\beta_{1}=$ number of « holes »

$\beta_{1}=\mathrm{Nb}$ of independent polygons -Nb of independent triangles.

$$
\beta_{1}=2-1=1 .
$$

$\beta_{1}=$ number of «holes »

$$
\beta_{1}=\mathrm{Nb} \text { of independent polygons }-\mathrm{Nb} \text { of independent triangles. }
$$

$$
\beta_{1}=3-3=0 .
$$

LAlgebraic topology

For larger n

- $\beta_{n}=\operatorname{dim}$ ker $\partial_{n}-\operatorname{dim}$ range ∂_{n+1}.
- Hard to visualize the intuitive meaning
- But relatively easy to compute.
- Existence of tetrahedron in Rips complex means over-coverage.

LAlgebraic topology

For larger n

- $\beta_{n}=\operatorname{dim}$ ker $\partial_{n}-\operatorname{dim}$ range ∂_{n+1}.
- Hard to visualize the intuitive meaning
- But relatively easy to compute.
- Existence of tetrahedron in Rips complex means over-coverage.

For larger n

- $\beta_{n}=\operatorname{dim}$ ker $\partial_{n}-\operatorname{dim}$ range ∂_{n+1}.
- Hard to visualize the intuitive meaning
- But relatively easy to compute.
- Existence of tetrahedron in Rips complex means over-coverage.

For larger n

- $\beta_{n}=\operatorname{dim}$ ker $\partial_{n}-\operatorname{dim}$ range ∂_{n+1}.
- Hard to visualize the intuitive meaning
- But relatively easy to compute.
- Existence of tetrahedron in Rips complex means over-coverage.

Random setting

- Sensors $=$ Poisson process (λ)
- Domain $=d$ dimensional torus of width a
- Coverage $=$ square of width ε
- r-dilation of P.P. $(\lambda)=$ P.P. $\left(\lambda r^{-d}\right)$, one can choose $a=1$.
$[0, a] \times[0, a]$

$$
\mathbb{T}_{a \times a}^{2}
$$

Random setting

- Sensors $=$ Poisson process (λ)
- Domain $=d$ dimensional torus of width a
- Coverage $=$ square of width
- r-dilation of P.P. $(\lambda)=$ P.P. $\left(\lambda r^{-d}\right)$, one can choose $a=1$.
$[0, a] \times[0, a]$

$$
\mathbb{T}_{a \times a}^{2}
$$

Random setting

- Sensors $=$ Poisson process (λ)
- Domain $=d$ dimensional torus of width a
- Coverage $=$ square of width ε
- r-dilation of P.P. $(\lambda)=$ P.P. $\left(\lambda r^{-d}\right)$, one can choose $a=1$.
$[0, a] \times[0, a]$

$$
\mathbb{T}_{a \times a}^{2}
$$

Random setting

- Sensors $=$ Poisson process (λ)
- Domain $=d$ dimensional torus of width a
- Coverage $=$ square of width ε
- r-dilation of P.P. $(\lambda)=$ P.P. $\left(\lambda r^{-d}\right)$, one can choose $a=1$.
$[0, a] \times[0, a]$

$$
\mathbb{T}_{a \times a}^{2}
$$

Euler characteristic

$$
\chi=\sum_{k=0}^{d}(-1)^{k} \beta_{k}
$$

- $\mathrm{d}=1:\left\{\chi=0 \cap \beta_{0} \neq 0\right\} \Leftrightarrow\{$ circle is covered $\}$
$\Rightarrow \mathrm{d}=2:\left\{\chi=0 \cap \beta_{0} \neq \beta_{1}\right\} \Leftrightarrow\{$ domain is covered $\}$
- $\mathrm{d}=3:\left\{\chi=0 \cap \beta_{0}+\beta_{2} \neq \beta_{1}\right\} \Leftrightarrow\{$ space is covered $\}$

Euler characteristic

$$
\chi=\sum_{k=0}^{d}(-1)^{k} \beta_{k} .
$$

- $\mathrm{d}=1:\left\{\chi=0 \cap \beta_{0} \neq 0\right\} \Leftrightarrow\{$ circle is covered $\}$
- $\mathrm{d}=2:\left\{\chi=0 \cap \beta_{0} \neq \beta_{1}\right\} \Leftrightarrow\{$ domain is covered $\}$
- $\mathrm{d}=3:\left\{\chi=0 \cap \beta_{0}+\beta_{2} \neq \beta_{1}\right\} \Leftrightarrow\{$ space is covered $\}$

Euler characteristic

$$
\chi=\sum_{k=0}^{d}(-1)^{k} \beta_{k}
$$

- $\mathrm{d}=1:\left\{\chi=0 \cap \beta_{0} \neq 0\right\} \Leftrightarrow\{$ circle is covered $\}$
- $\mathrm{d}=2:\left\{\chi=0 \cap \beta_{0} \neq \beta_{1}\right\} \Leftrightarrow\{$ domain is covered $\}$
- $\mathrm{d}=3:\left\{\chi=0 \cap \beta_{0}+\beta_{2} \neq \beta_{1}\right\} \Leftrightarrow\{$ space is covered $\}$

Euler characteristic

$$
\chi=\sum_{k=0}^{d}(-1)^{k} \beta_{k}
$$

- $\mathrm{d}=1:\left\{\chi=0 \cap \beta_{0} \neq 0\right\} \Leftrightarrow\{$ circle is covered $\}$
- $\mathrm{d}=2:\left\{\chi=0 \cap \beta_{0} \neq \beta_{1}\right\} \Leftrightarrow\{$ domain is covered $\}$
- $\mathrm{d}=3:\left\{\chi=0 \cap \beta_{0}+\beta_{2} \neq \beta_{1}\right\} \Leftrightarrow\{$ space is covered $\}$

Euler characteristic

$$
\chi=\sum_{k=0}^{d}(-1)^{k} \beta_{k}
$$

- $\mathrm{d}=1:\left\{\chi=0 \cap \beta_{0} \neq 0\right\} \Leftrightarrow\{$ circle is covered $\}$
- $\mathrm{d}=2:\left\{\chi=0 \cap \beta_{0} \neq \beta_{1}\right\} \Leftrightarrow\{$ domain is covered $\}$
- $\mathrm{d}=3:\left\{\chi=0 \cap \beta_{0}+\beta_{2} \neq \beta_{1}\right\} \Leftrightarrow\{$ space is covered $\}$

$$
\chi=\sum_{k=1}^{\infty}(-1)^{k} s_{k} .
$$

Euler characteristic

- $B_{d}(x)$: Bell polynomial

$$
B_{d}(x)=\left\{\begin{array}{l}
d \\
1
\end{array}\right\} x+\left\{\begin{array}{l}
d \\
2
\end{array}\right\} x^{2}+\ldots+\left\{\begin{array}{l}
d \\
d
\end{array}\right\} x^{d}
$$

Euler characteristic

Euler characteristic

- $B_{d}(x)$: Bell polynomial

$$
B_{d}(x)=\left\{\begin{array}{l}
d \\
1
\end{array}\right\} x+\left\{\begin{array}{l}
d \\
2
\end{array}\right\} x^{2}+\ldots+\left\{\begin{array}{l}
d \\
d
\end{array}\right\} x^{d}
$$

Euler characteristic

$$
\mathbf{E}[\chi]=-\frac{\lambda e^{-\theta}}{\theta} B_{d}(-\theta) \text { where } \theta=\lambda \epsilon^{d}
$$

k simplices

- Define $h\left(x_{1}, \ldots, x_{k}\right) \triangleq \frac{1}{k!} \mathbb{I}_{\left\{\left\|x_{i}-x_{j}\right\|<\epsilon, i \neq j\right\}}\left(x_{1}, \ldots, x_{k}\right)$
- Then (Campbell)

k simplices

- Define $h\left(x_{1}, \ldots, x_{k}\right) \triangleq \frac{1}{k!} \mathbb{I}_{\left\{\left\|x_{i}-x_{j}\right\|<\epsilon, i \neq j\right\}}\left(x_{1}, \ldots, x_{k}\right)$
- Then (Campbell) :

$$
\begin{aligned}
\overline{s_{k}} & =\lambda^{k+1} \int_{\mathbb{T}} \cdots \int_{\mathbb{T}} h\left(x_{1}, \ldots, x_{k+1}\right) d x_{k+1} \ldots d x_{1} \\
& =\frac{(k+1)^{d}}{(k+1)!} \lambda \theta^{k}
\end{aligned}
$$

Dimension 5

Second order moments

$$
\begin{aligned}
\left.\operatorname{Cov}\left(s_{k}, s_{l}\right)=\left(\frac{1}{2 \epsilon}\right)^{d} \sum_{i=0}^{I-1} \frac{1}{i!(k-I}+i\right)!(I-i)! & \theta^{k+i} \\
& \times\left(k+i+2 \frac{i(k-I+i)}{I-i+1}\right)^{d} .
\end{aligned}
$$

LEuler characteristic

Euler characteristic

Euler characteristic

$$
\operatorname{Var}(\chi)=\left(\frac{1}{d}\right)^{d} \sum_{i=1}^{\infty} c_{i} \theta^{i}
$$

Euler characteristic

Euler characteristic

$$
\operatorname{Var}(\chi)=\left(\frac{1}{d}\right)^{d} \sum_{i=1}^{\infty} c_{i} \theta^{i}
$$

In dimension 1,

$$
\operatorname{Var}(\chi)=\left(\theta e^{-\theta}-2 \theta^{2} e^{-2 \theta}\right)
$$

-Asymptotic results

Asymptotic results

If $\lambda \rightarrow \infty, \beta_{i}(\omega) \xrightarrow{\text { p.s. }} \beta_{i}\left(\mathbb{T}^{d}\right)=\binom{d}{i}$.

Limit theorems

CLT for Euler characteristic

$$
\text { distance }_{T V}\left(\frac{\chi-\mathbf{E}[\chi]}{\sqrt{V_{\chi}}}, \mathfrak{N}(0,1)\right) \leq \frac{c}{\sqrt{\lambda}} .
$$

$\left\llcorner_{\text {Asymptotic results }}\right.$

Limit theorems

CLT for Euler characteristic

$$
\text { distance }_{T V}\left(\frac{\chi-\mathbf{E}[\chi]}{\sqrt{V_{\chi}}}, \mathfrak{N}(0,1)\right) \leq \frac{c}{\sqrt{\lambda}} .
$$

Method

- Stein method
- Malliavin calculus for Poisson process
-Asymptotic results

Limit theorems

CLT for Euler characteristic

$$
\operatorname{distance}_{T V}\left(\frac{\chi-\mathbf{E}[\chi]}{\sqrt{V_{\chi}}}, \mathfrak{N}(0,1)\right) \leq \frac{c}{\sqrt{\lambda}} .
$$

Method

- Stein method
- Malliavin calculus for Poisson process
$L_{\text {Asymptotic results }}$

Limit theorems

CLT for Euler characteristic

$$
\operatorname{distance}_{T V}\left(\frac{\chi-\mathrm{E}[\chi]}{\sqrt{V_{\chi}}}, \mathfrak{N}(0,1)\right) \leq \frac{c}{\sqrt{\lambda}}
$$

Method

- Stein method
- Malliavin calculus for Poisson process

Concentration inequality

- Discrete gradient $D_{x} F(\omega)=F(\omega \cup\{x\})-F(\omega)$

$\left\llcorner_{\text {Robust estimate }}\right.$

Concentration inequality

- Discrete gradient $D_{x} F(\omega)=F(\omega \cup\{x\})-F(\omega)$
- $D_{x} \beta_{0} \in\{1,0,-1,-2,-3\}$

ᄂ Poisson homologies
$L_{\text {Robust estimate }}$

Concentration inequality

- Discrete gradient $D_{x} F(\omega)=F(\omega \cup\{x\})-F(\omega)$
- $D_{x} \beta_{0} \in\{1,0,-1,-2,-3\}$

$c>E\left[\beta_{0}\right]$

$$
P\left(\beta_{0} \geq c\right) \leq \exp \left[-\frac{c-\mathbf{E}\left[\beta_{0}\right]}{6} \log \left(1+\frac{c-\mathbf{E}\left[\beta_{0}\right]}{3 \lambda}\right)\right]
$$

Dimension 2

- $\beta_{0} \leq \mathrm{Nb}$ of points in a MHC process

$$
\mathrm{E}\left[\beta_{0}\right] \leq \lambda \frac{1-e^{-\theta}}{\theta}=\tau
$$

ᄂ Poisson homologies
$\left\llcorner_{\text {Robust estimate }}\right.$

Dimension 2

- $\beta_{0} \leq \mathrm{Nb}$ of points in a MHC process

$$
\begin{gathered}
\mathrm{E}\left[\beta_{0}\right] \leq \lambda \frac{1-e^{-\theta}}{\theta}=\tau \\
P\left(\beta_{0} \geq c\right) \leq \exp \left[-\frac{c-\tau}{6} \log \left(1+\frac{c-\tau}{3 \lambda}\right)\right]
\end{gathered}
$$

Références I

國 V. de Silva and R. Ghrist.
Coordinate-free coverage in sensor networks with controlled boundaries via homology. Intl. Journal of Robotics Research, 25(12) :1205-1222, 2006.
國 V. de Silva and R. Ghrist.
Coverage in sensor networks via persistent homology. Algebr. Geom. Topol., 7 :339-358, 2007.
E
R. Ghrist and A. Muhammad.

Coverage and hole-detection in sensor networks via homology. Information Processing in Sensor Networks, 2005. IPSN 2005. Fourth International Symposium on, pages 254-260, 2005.

LPoisson homologies
$L_{\text {Robust estimate }}$

Références II

R A. Hatcher.
Algebraic topology.
Cambridge University Press, Cambridge, 2002.
目 A. Zomorodian and G. Carlsson.
Computing persistent homology.
Discrete Comput. Geom., 33(2) :249-274, 2005.

