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Sensor networks

Sensor networks

A wireless sensor network (WSN) is a wireless network consisting of
spatially distributed autonomous devices using sensors to
cooperatively monitor physical or environmental conditions.

Wikipedia



Beyond random graphs : random simplicial complexes. Applications to sensor networks

Sensor networks

A sensor

A sensor is defined by
1. position
2. coverage radius

at each time.
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Fig. 1. A collection of sensor nodes generates a cover in the workspace [bottom]. The Rips complex of the network is an
abstract simplicial complex which has no localization or coordinate data [top]. In the example illustrated, the Rips complex
encodes the communication network as one closed 3-simplex, eleven closed 2-simplices, and seven closed 1-simplices
connected as shown. The ‘holes’ in this Rips complex reflect the holes in the sensor cover, below.

Fig. 2. [left] The Rips complex has the property that all 2-simplices determine triangles in the domain which lie within the
radius rc cover. However, the Rips complex does not capture the topology of the cover. A contractible union of rc balls can
have Rips complex with nontrivial homology in dimension one [center, in which R is a quadrilateral], two [right, in which R
is the boundary of a solid octahedron], or higher.

Fig. 3. In a sensor network with a sufficiently large hole in coverage [left], the communication graph [center] has a cycle that
cannot be ‘filled in’ by triangles. The filled in Rips complex [right] ‘sees’ this hole, even as an abstract complex devoid of
sensor node location data.
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Sensor networks

Some questions

All positions known : Domain covered ?

Some positions known : Optimal locations of other sensors

Positions varying with time : Creation of holes ?

Fault-tolerance/ Power-saving : Can we support failure (or
switch-off) without creating holes ?
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Algebraic topology

Mathematical framework

Homology : Algebraization of the topology
Coverage : reduces to compute the rank of a matrix

Detection of hole, redundancy : reduces to the computation of a
basis of a vector matrix, obtained by matrix reduction
(as in Gauss algorithm).
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Algebraic topology

Cech complex

Ck =
⋃
{[x0, · · · , xk−1], xi ∈ ω,∩k

i=0B(xi , ε) 6= ∅}

Nerve theorem
The set

⋃
x∈ω B(x , ε) has the same homology groups as the

simplicial complex (Ck , k ≥ 0).
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Algebraic topology

Rips complex of sensor network (cf. [dSG07, dSG06, GM05])
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Algebraic topology

Rips complex

a

b

c

d

e

Vertices : a, b, c, d, e.
Edges : ab, bc, ca, ae, be, ec, bd, ed.

Triangles : abc, abe, bec, aec, bed.
Tetrahedron : abec.
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Algebraic topology

Rips and Cech

I No hole in Cech implies no hole in Rips complex.
I The converse does not hold.
I For l∞ distance, Rips=Cech.
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Algebraic topology

Simplices algebra [Hat02, ZC05]

I ab = −ba
I 3ab means three times the edge ab.

Boundary operator

∂n−1 a1a2 . . . an =
n∑

i=1

(−1)ia1a2 . . . âi . . . an.
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Algebraic topology

Simplices algebra [Hat02, ZC05]

I ab = −ba
I 3ab means three times the edge ab.

Boundary operator

∂n−1 a1a2 . . . an =
n∑

i=1

(−1)ia1a2 . . . âi . . . an.

Example :
∂2 abe = be − ae + ab.
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Algebraic topology

Main result

Main observation

∂n∂n+1 = 0

∂1∂2 abe = ∂1(be − ae + ab)
= e − b − (e − a) + b − a = 0.
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Algebraic topology

Cycles and boundaries

I A triangle is a cycle of edges.
I A tetrahedron is a cycle of triangles.
I A triangle is a boundary of a tetrahedron.

a

b

c

d
e
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Algebraic topology

Betti numbers

β0=number of connected components

β0 = Nb of vertices− Nb of independent edges.
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Algebraic topology

β1=number of « holes »

β1 = Nb of independent polygons− Nb of independent triangles.
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Algebraic topology

β1=number of « holes »

β1 = Nb of independent polygons− Nb of independent triangles.

β1 = 3− 3 = 0.
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Algebraic topology

For larger n

I βn = dim ker ∂n − dim range ∂n+1.
I Hard to visualize the intuitive meaning
I But relatively easy to compute.
I Existence of tetrahedron in Rips complex means over-coverage.
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Poisson homologies

Random setting

I Sensors = Poisson process (λ)
I Domain = d dimensional torus of width a
I Coverage = square of width ε
I r -dilation of P.P.(λ)=P.P.(λr−d ), one can choose a = 1.

x1
a

a

a

a x1

[0, a]× [0, a] T2
a×a



Beyond random graphs : random simplicial complexes. Applications to sensor networks

Poisson homologies

Random setting

I Sensors = Poisson process (λ)
I Domain = d dimensional torus of width a
I Coverage = square of width ε
I r -dilation of P.P.(λ)=P.P.(λr−d ), one can choose a = 1.

x1
a

a

a

a x1

[0, a]× [0, a] T2
a×a



Beyond random graphs : random simplicial complexes. Applications to sensor networks

Poisson homologies

Random setting

I Sensors = Poisson process (λ)
I Domain = d dimensional torus of width a
I Coverage = square of width ε
I r -dilation of P.P.(λ)=P.P.(λr−d ), one can choose a = 1.

x1
a

a

a

a x1

[0, a]× [0, a] T2
a×a



Beyond random graphs : random simplicial complexes. Applications to sensor networks

Poisson homologies

Random setting

I Sensors = Poisson process (λ)
I Domain = d dimensional torus of width a
I Coverage = square of width ε
I r -dilation of P.P.(λ)=P.P.(λr−d ), one can choose a = 1.

x1
a

a

a

a x1

[0, a]× [0, a] T2
a×a



Beyond random graphs : random simplicial complexes. Applications to sensor networks

Poisson homologies

Euler characteristic

Euler characteristic

χ =
d∑

k=0

(−1)kβk .

I d=1 : {χ = 0 ∩ β0 6= 0} ⇔ { circle is covered }
I d=2 : {χ = 0 ∩ β0 6= β1} ⇔ { domain is covered }
I d=3 : {χ = 0 ∩ β0 + β2 6= β1} ⇔ { space is covered }
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Euler characteristic

χ =
d∑
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(−1)kβk .

I d=1 : {χ = 0 ∩ β0 6= 0} ⇔ { circle is covered }
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Poisson homologies

Euler characteristic

Euler characteristic

I Bd (x) : Bell polynomial

Bd (x) =
{

d
1

}
x +

{
d
2

}
x2 + ...+

{
d
d

}
xd

Euler characteristic

E [χ] = −λe−θ

θ
Bd (−θ) where θ = λεd .
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Poisson homologies

Euler characteristic

k simplices

I Define h(x1, ..., xk) ,
1
k!I{‖xi−xj‖<ε,i 6=j}(x1, ..., xk)

I Then (Campbell) :

sk = λk+1
∫
T
· · ·
∫
T

h(x1, ..., xk+1)dxk+1...dx1

=
(k + 1)d

(k + 1)!
λθk
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∫
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· · ·
∫
T
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=
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Poisson homologies

Euler characteristic

Dimension 5
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Poisson homologies

Euler characteristic

Second order moments

Cov(sk , sl ) =
(

1
2ε

)d l−1∑
i=0

1
i !(k − l + i)!(l − i)!

θk+i

×
(

k + i + 2
i(k − l + i)
l − i + 1

)d

.
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Poisson homologies

Euler characteristic

Euler characteristic

Euler characteristic

Var(χ) =
(
1
d

)d ∞∑
i=1

ciθ
i
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Poisson homologies

Euler characteristic

Euler characteristic

Euler characteristic

Var(χ) =
(
1
d

)d ∞∑
i=1

ciθ
i

In dimension 1,

Var(χ) =
(
θe−θ − 2θ2e−2θ

)
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Poisson homologies

Asymptotic results

Asymptotic results

If λ→∞, βi (ω)
p.s.−→ βi (Td ) =

(d
i

)
.
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Poisson homologies

Asymptotic results

Limit theorems

CLT for Euler characteristic

distanceTV

(
χ− E[χ]√

Vχ
, N(0, 1)

)
≤ c√

λ
·
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Poisson homologies

Robust estimate

Concentration inequality

I Discrete gradient DxF (ω) = F (ω ∪ {x})− F (ω)
I Dxβ0 ∈ {1, 0, −1, −2, −3}
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Poisson homologies

Robust estimate

Concentration inequality

I Discrete gradient DxF (ω) = F (ω ∪ {x})− F (ω)
I Dxβ0 ∈ {1, 0, −1, −2, −3}

c > E[β0]

P(β0 ≥ c) ≤ exp
[
− c − E[β0]

6
log
(
1+

c − E[β0]

3λ

)]



Beyond random graphs : random simplicial complexes. Applications to sensor networks

Poisson homologies

Robust estimate

Dimension 2

I β0 ≤ Nb of points in a MHC process

E[β0] ≤ λ
1− e−θ

θ
= τ
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Poisson homologies

Robust estimate

Dimension 2

I β0 ≤ Nb of points in a MHC process

E[β0] ≤ λ
1− e−θ

θ
= τ

P(β0 ≥ c) ≤ exp
[
− c − τ

6
log
(
1+

c − τ
3λ

)]
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Poisson homologies

Robust estimate
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