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Erdős–Rényi random graphs

n labelled vertices {1, 2, . . . , n}

Gn,p: each edge is present with
probability p ∈ [0, 1]
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Evolution of random graphs

Sn
1 ≥ Sn

2 ≥ Sn
3 . . . : sizes of connected components

Different regimes for sizes as n→∞:

np = 1− ε: Sn
1 = O(log n)

np = 1: ∀k ≥ 1 fixed Sn
k = Θ(n2/3)

np = 1 + ε: Sn
1 = Θ(n), Sn

2 = O(log n)
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Component sizes and component structure

Important observation:

Given its size m, a connected component of G(n, p) is distributed as G(m, p)
conditioned on being connected.
⇒ Study separately:

sizes of connected components

their structure given the size
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What does a component look like?
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Inside the critical window: np = 1 + λn−1/3 for λ ∈ R

Theorem (Aldous, 1997)

(Sn
i ;Nn

i ) the size and surplus of the i-th largest component of Gn,p

((n−2/3Sn
i ;Nn

i ) : i ≥ 1) d−−−→
n→∞

((Si;Ni) : i ≥ 1)

as a sequence in `2
↘ = {x = (x1, x2, . . . ) : x1 ≥ x2 ≥ · · · ≥ 0,

∑
i≥1 x2

i <∞}.

t

Wλ(t)

Wλ(t) = W(t) + tλ− t2
2

t

Bλ(t)

Bλ(t) = Wλ(t)− inf0<s<t Wλ(s)
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Graph exploration and a branching process/random walk

Exposure vertices one after another:

Initialization:
one active vertex A0 = 1

At each time step:
Ai+1 = Ai − 1 + Bin(n− i− Ai, p)

The walk Ai and sizes of components

For k ≥ 0, set ξk := inf{i : Ai = 1− k}
ξk − ξk−1 size of the k-th explored component n− i− Ai

unexplored vertices
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Asymptotics for Ai and phases in random graphs

Random walk with step distribution

Ai+1 − Ai = Bin(n− i− Ai, p)− 1

The regimes when np = c
E [Ai+1 − Ai] = EBin(n−i−Ai, p)−1 ≈ c−1

c < 1: Ai → −∞

c = 1: approx recurrent

c > 1: Ai →∞

Branching process point of view
New vertices: EBin(n− i− Ai, p) ≈ c

c < 1: subcritical

c = 1: critical

c > 1: supercritical
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The critical window

Parametrization of the probability for the critical window

p = 1/n + λn−4/3 with λ ∈ R

Ai+1 − Ai = Bin
(

n− i− Ai,
1
n
+ λn−4/3

)
− 1

So for i ∼ tn2/3,

E [Ai+1 − Ai] ∼ (λ− t)n−1/3 and Var [Ai+1 − Ai] ∼ 1

Central Limit Theorem for martingales:(
Atn2/3

n1/3

)
t≥0
→
(
λt − t2

2
+ W(t)

)
t≥0
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Strategy to describe random graphs

1 Decompose into connected components
2 Extract a tree from each connected component
3 Describe the trees
4 Describe how to put back surplus edges
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Real trees

x
y

z t

x
y

z t

The tree in a continuous excursion

continuous excursion f (0) = f (1) = 0, f (s) > 0, s ∈ (0, 1)

metric df (x, y) = f (x) + f (y)− 2 infs∈[x,y] f (s).

x ∼f y iff df (x, y) = 0

the metric space ([0, 1]/ ∼f , df ) has a tree structure
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Comparing subsets of a metric space: Hausdorff distance

For two points x, y ∈ (M, d)

d(x, y) = inf{ε > 0 : y ∈ B(x, ε) and x ∈ B(y, ε)}
x

y

For two subsets P,Q of a metric space (M, d): Hausdorff distance

dH(P,Q) = inf

ε > 0 : P ⊆
⋃
x∈Q

B(x, ε) and Q ⊆
⋃
y∈P

B(y, ε)

 .

P

Q
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Comparing metric spaces: Gromov–Hausdorff distance

Using isometries

Embed both spaces isometrically into the same bigger space M:

dGH((M1, d1); (M2, d2)) = inf dH(M1,M2),

where the infimum is over all metric spaces M containing both (M1, d1) and
(M2, d2).

Using distortions of correspondences

Map each space inside the other using a correspondenceR ⊆ M1 ×M2

dist(R) = sup
(x1,x2),(y1,y2)∈R

{|d1(x1, y1)− d2(x2, y2)|}

dGH((M1, d1); (M2, d2)) =
1
2

inf
R

dist(R)

The scaling limit of critical random graphs 14 / 31



The Brownian continuum random tree (CRT)

Let T (2e) be the real tree encoded by twice a standard Brownian excursion e

Theorem (Aldous)

Let Tn be a Cayley tree of size n, seen as a metric space with the graph
distance. Then,

n−1/2Tn
d−−−→

n→∞
T (2e)

with the Gromov–Hausdorff distance.

Some remarks:

extends to all Galton–Watson trees with finite variance progeny

the trees in random maps

if infinite variance: Lévy trees, stable trees.
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Representation of trees

A canonical order for the nodes:

sort children by increasing label

Depth-first order 1

3 5 8

9 6 7

2 4

1

2 6 7

3 8 9

4 5

Three different encodings of trees as nonnegative paths:

Contour process C Height process H Depth-first walk X
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Walks associated with large random trees

Aldous, Le Gall, Marckert–Mokkadem

Let Tn be a Cayley tree of size n.

Theorem (Marckert–Mokkadem)

Let e = (e(t), 0 ≤ t ≤ 1) be a standard Brownian excursion. Then,(
X(bn · c)√

n
;

H(bn · c)√
n

;
C(b2n · c)√

n

)
d−−−→

n→∞
(e( · ); 2e( · ); 2e( · ))
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Understanding Depth-first search in graphs

X(0) = 0 and X(i + 1)− X(i) = #children of i minus 1

Question:

what can we change without changing the tree we obtain?

Answer:

Can add any of the a(T) edges between two vertices active at the same time
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Canonical tree and sampling random graphs

Partition the all the graphs G according to their canonical tree T(G)

Gn =
⋃

T∈Tn

{G : T(G) = T}

Each graph G has a unique canonical tree T(G)

Each canoninal tree T yields 2a(T) graphs: #{G : T(G) = T} = 2a(T)

Uniform connected component of Gn,p with m vertices
Pick T̃m = T with probability ∝ (1− p)−a(T)

Add each allowed edge with probability p.

Uniform connected connected graph with m vertices and m− 1 + s edges
Pick T̃m = T with probability ∝

(a(T)
s

)
Add s random allowed edges.
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Limit of canonical trees

In the critical regime: p ∼ 1/n and m ∼ n2/3:

(1− p)−a(Tm) ∼ exp(m−3/2a(Tm)) ∼ exp(
∫ 1

0 e(s)ds)

Definition (Tilted excursion)

Let e be a standard Brownian excursion:

P (ẽ ∈ B) =
E
[
1[e ∈ B] exp(

∫ 1
0 e(s)ds)

]
E
[
exp(

∫ 1
0 e(s)ds)

] .

Let T̃m be picked such that P
(
T̃m = T

)
∝ (1− m−3/2)−a(T)

Theorem(
X̃n(bn · c)√

n
;

C̃n(b2n · c)√
n

;
H̃n(bn · c)√

n

)
d−−−→

n→∞
(ẽ( · ); 2ẽ( · ); 2ẽ( · )).

The scaling limit of critical random graphs 20 / 31



The limit of tilted trees

Let T (ẽ(σ)) the real tree encoded by a tilted excursion ẽ(σ) of length σ.

Theorem

Let p ∼ 1/n and m ∼ σn2/3, σ > 0. Let Gp
m be a uniform connected

component of Gn,p on m vertices.

T(Gp
m)

n1/3
d−−−→

n→∞
T (2ẽ(σ)),

with the Gromov–Hausdorff distance.
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Connected graphs as marked excursions

Bijection between:

Excursion of length m with some points under X: (X,P).

Connected graphs on m vertices GX(X,P)

X(s)

s
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The limit of connected components: convergence

Need both X and H

X provides a bijection

H provides the metric structure

i

i i

GX GH

Limit using the “Depth-First construction” GX

m−1/2X̃m(bm · c)→ ẽ and marks converge to a Poisson point process P
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Limit of connected components: construction

•ξ

Metric characterization using the “height construction”GH

T (2ẽ) where each point (ξx, ξy) of P identifies the leaf ξx with the point at
distance ξy from the root on the path J0, ξxK.
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The limit of critical random graphs

Mn
i the i-th largest connected component of Gn,p and Sn

i its size.
Mn = (Mn

1 ,M
n
2 , . . . ) as a sequence of metric spaces, with distance

d(A,B) =

∑
i≥1

dGH(Ai,Bi)
4

1/4

n−2/3Sn = (n−2/3Sn
1, . . . ) in

`2
↘ = {(x1, x2, . . . ) : x1 ≥ 0, . . . ,

∑
i≥1 x2

i <∞}.

Theorem

(n−1/3Mn, n−2/3Sn)
d−−−→

n→∞
(M,S) where

S is the ordered sequence of excursion lengths of Bλ

Given S = (S1, S2, . . . ), (M1,M2, . . . ) are independent g(ẽ(Si),Pi).
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