# The scaling limit of critical random graphs 

L. Addario-Berry ${ }^{1} \quad$ N. Broutin ${ }^{2} \quad$ C. Goldschmidt ${ }^{3}$

${ }^{1}$ Department of Mathematics and Statistics
McGill University
${ }^{2}$ Projet Algorithms
INRIA Paris-Rocquencourt
${ }^{3}$ Department of Statistics
University of Warwick

April 5, 2011

## Plan

(1) Random graphs
(2) Exploration and branching processes
(3) Large random trees
(9) Comparing trees and Gromov-Hausdorff distance
(3) Continuum random tree
(0) Depth-first search and metric structure of large graphs

## Erdős-Rényi random graphs

- $n$ labelled vertices $\{1,2, \ldots, n\}$
- $G_{n, p}$ : each edge is present with probability $p \in[0,1]$



## Evolution of random graphs

$S_{1}^{n} \geq S_{2}^{n} \geq S_{3}^{n} \ldots$ sizes of connected components
Different regimes for sizes as $n \rightarrow \infty$ :

## Evolution of random graphs

$$
S_{1}^{n} \geq S_{2}^{n} \geq S_{3}^{n} \ldots: \text { sizes of connected components }
$$

```
Different regimes for sizes as n->\infty
```

- $n p=1-\epsilon: S_{1}^{n}=O(\log n)$



## Evolution of random graphs

$$
S_{1}^{n} \geq S_{2}^{n} \geq S_{3}^{n} \ldots: \text { sizes of connected components }
$$

```
Different regimes for sizes as n->\infty:
```

- $n p=1-\epsilon: S_{1}^{n}=O(\log n)$
- $n p=1: \forall k \geq 1$ fixed $S_{k}^{n}=\Theta\left(n^{2 / 3}\right)$



## Evolution of random graphs

$$
S_{1}^{n} \geq S_{2}^{n} \geq S_{3}^{n} \ldots: \text { sizes of connected components }
$$

```
Different regimes for sizes as n->\infty:
```

- $n p=1-\epsilon: S_{1}^{n}=O(\log n)$
- $n p=1: \forall k \geq 1$ fixed $S_{k}^{n}=\Theta\left(n^{2 / 3}\right)$
- $n p=1+\epsilon: S_{1}^{n}=\Theta(n), S_{2}^{n}=O(\log n)$


The scaling limit of critical random graphs

## Evolution of random graphs

$S_{1}^{n} \geq S_{2}^{n} \geq S_{3}^{n} \ldots:$ sizes of connected components
Different regimes for sizes as $n \rightarrow \infty$ :

- $n p=1-\epsilon: S_{1}^{n}=O(\log n)$
- $n p=1: \forall k \geq 1$ fixed $S_{k}^{n}=\Theta\left(n^{2 / 3}\right)$
- $n p=1+\epsilon: S_{1}^{n}=\Theta(n), S_{2}^{n}=O(\log n)$


## Component sizes and component structure

Important observation:
Given its size $m$, a connected component of $G(n, p)$ is distributed as $G(m, p)$ conditioned on being connected.
$\Rightarrow$ Study separately:

- sizes of connected components
- their structure given the size


## What does a component look like?



## Inside the critical window: $n p=1+\lambda n^{-1 / 3}$ for $\lambda \in \mathbb{R}$

## Theorem (Aldous, 1997)

$\left(S_{i}^{n} ; N_{i}^{n}\right)$ the size and surplus of the $i$-th largest component of $G_{n, p}$

$$
\left(\left(n^{-2 / 3} S_{i}^{n} ; N_{i}^{n}\right): i \geq 1\right) \xrightarrow[n \rightarrow \infty]{d}\left(\left(S_{i} ; N_{i}\right): i \geq 1\right)
$$

as a sequence in $\ell^{2}=\left\{x=\left(x_{1}, x_{2}, \ldots\right): x_{1} \geq x_{2} \geq \cdots \geq 0, \sum_{i \geq 1} x_{i}^{2}<\infty\right\}$.

$W^{\lambda}(t)=W(t)+t \lambda-\frac{t^{2}}{2}$

$B^{\lambda}(t)=W^{\lambda}(t)-\inf _{0<s<t} W^{\lambda}(s)$

## Graph exploration and a branching process/random walk

Exposure vertices one after another:

- Initialization: one active vertex $A_{0}=1$
- At each time step:

$$
A_{i+1}=A_{i}-1+\operatorname{Bin}\left(n-i-A_{i}, p\right)
$$

The walk $A_{i}$ and sizes of components
For $k \geq 0$, set $\xi_{k}:=\inf \left\{i: A_{i}=1-k\right\}$
$\xi_{k}-\xi_{k-1}$ size of the $k$-th explored component

$n-i-A_{i}$ unexplored vertices

## Asymptotics for $A_{i}$ and phases in random graphs

Random walk with step distribution

$$
A_{i+1}-A_{i}=\operatorname{Bin}\left(n-i-A_{i}, p\right)-1
$$

## The regimes when $n p=c$

$\mathbf{E}\left[A_{i+1}-A_{i}\right]=\mathbf{E B i n}\left(n-i-A_{i}, p\right)-1 \approx c-1$

- $c<1: A_{i} \rightarrow-\infty$
- $c=1$ : approx recurrent
- $c>1: A_{i} \rightarrow \infty$

Branching process point of view
New vertices: $\mathbf{E} \operatorname{Bin}\left(n-i-A_{i}, p\right) \approx c$

- $c<1$ : subcritical
- $c=1$ : critical
- $c>1$ : supercritical


## The critical window

Parametrization of the probability for the critical window

$$
p=1 / n+\lambda n^{-4 / 3} \text { with } \lambda \in \mathbb{R}
$$

$$
A_{i+1}-A_{i}=\operatorname{Bin}\left(n-i-A_{i}, \frac{1}{n}+\lambda n^{-4 / 3}\right)-1
$$

So for $i \sim t n^{2 / 3}$,

$$
\mathbf{E}\left[A_{i+1}-A_{i}\right] \sim(\lambda-t) n^{-1 / 3} \quad \text { and } \quad \operatorname{Var}\left[A_{i+1}-A_{i}\right] \sim 1
$$

Central Limit Theorem for martingales:

$$
\left(\frac{A_{t n^{2 / 3}}}{n^{1 / 3}}\right)_{t \geq 0} \rightarrow\left(\lambda t-\frac{t^{2}}{2}+W(t)\right)_{t \geq 0}
$$

## Strategy to describe random graphs

- Decompose into connected components
- Extract a tree from each connected component
- Describe the trees
- Describe how to put back surplus edges


## Real trees




The tree in a continuous excursion

- continuous excursion $f(0)=f(1)=0, f(s)>0, s \in(0,1)$
- metric $d_{f}(x, y)=f(x)+f(y)-2 \inf _{s \in[x, y]} f(s)$.
- $x \sim_{f} y$ iff $d_{f}(x, y)=0$
- the metric space $\left([0,1] / \sim_{f}, d_{f}\right)$ has a tree structure


## Comparing subsets of a metric space: Hausdorff distance

For two points $x, y \in(M, d)$

$$
d(x, y)=\inf \{\epsilon>0: y \in B(x, \epsilon) \text { and } x \in B(y, \epsilon)\}
$$



For two subsets $P, Q$ of a metric space $(M, d)$ : Hausdorff distance

$$
d_{H}(P, Q)=\inf \left\{\epsilon>0: P \subseteq \bigcup_{x \in Q} B(x, \epsilon) \text { and } Q \subseteq \bigcup_{y \in P} B(y, \epsilon)\right\} .
$$



## Comparing subsets of a metric space: Hausdorff distance

For two points $x, y \in(M, d)$

$$
d(x, y)=\inf \{\epsilon>0: y \in B(x, \epsilon) \text { and } x \in B(y, \epsilon)\}
$$



For two subsets $P, Q$ of a metric space $(M, d)$ : Hausdorff distance

$$
d_{H}(P, Q)=\inf \left\{\epsilon>0: P \subseteq \bigcup_{x \in Q} B(x, \epsilon) \text { and } Q \subseteq \bigcup_{y \in P} B(y, \epsilon)\right\} .
$$

## Comparing metric spaces: Gromov-Hausdorff distance

Using isometries
Embed both spaces isometrically into the same bigger space $M$ :

$$
d_{G H}\left(\left(M_{1}, d_{1}\right) ;\left(M_{2}, d_{2}\right)\right)=\inf d_{H}\left(M_{1}, M_{2}\right),
$$

where the infimum is over all metric spaces $M$ containing both $\left(M_{1}, d_{1}\right)$ and $\left(M_{2}, d_{2}\right)$.

## Using distortions of correspondences

Map each space inside the other using a correspondence $\mathcal{R} \subseteq M_{1} \times M_{2}$

$$
\begin{gathered}
\operatorname{dist}(\mathcal{R})=\sup _{\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \mathcal{R}}\left\{\left|d_{1}\left(x_{1}, y_{1}\right)-d_{2}\left(x_{2}, y_{2}\right)\right|\right\} \\
d_{G H}\left(\left(M_{1}, d_{1}\right) ;\left(M_{2}, d_{2}\right)\right)=\frac{1}{2} \inf _{\mathcal{R}} \operatorname{dist}(\mathcal{R})
\end{gathered}
$$

## The Brownian continuum random tree (CRT)

Let $\mathcal{T}(2 e)$ be the real tree encoded by twice a standard Brownian excursion $e$

## Theorem (Aldous)

Let $T_{n}$ be a Cayley tree of size $n$, seen as a metric space with the graph distance. Then,

$$
n^{-1 / 2} T_{n} \xrightarrow[n \rightarrow \infty]{d} \mathcal{T}(2 e)
$$

with the Gromov-Hausdorff distance.

Some remarks:

- extends to all Galton-Watson trees with finite variance progeny
- the trees in random maps
- if infinite variance: Lévy trees, stable trees.


## Representation of trees

A canonical order for the nodes:

- sort children by increasing label
- Depth-first order


Three different encodings of trees as nonnegative paths:


## Walks associated with large random trees

## Aldous, Le Gall, Marckert-Mokkadem

Let $T_{n}$ be a Cayley tree of size $n$.

## Theorem (Marckert-Mokkadem)

Let $e=(e(t), 0 \leq t \leq 1)$ be a standard Brownian excursion. Then,

$$
\left(\frac{X(\lfloor n \cdot\rfloor)}{\sqrt{n}} ; \frac{H(\lfloor n \cdot\rfloor)}{\sqrt{n}} ; \frac{C(\lfloor 2 n \cdot\rfloor)}{\sqrt{n}}\right) \xrightarrow[n \rightarrow \infty]{d}(e(\cdot) ; 2 e(\cdot) ; 2 e(\cdot))
$$

## Understanding Depth-first search in graphs

$$
X(0)=0 \text { and } X(i+1)-X(i)=\# \text { children of } i \text { minus } 1
$$


$\qquad$

## Understanding Depth-first search in graphs

$$
X(0)=0 \text { and } X(i+1)-X(i)=\# \text { children of } i \text { minus } 1
$$




## Understanding Depth-first search in graphs

$$
X(0)=0 \text { and } X(i+1)-X(i)=\# \text { children of } i \text { minus } 1
$$




## Understanding Depth-first search in graphs

$$
X(0)=0 \text { and } X(i+1)-X(i)=\# \text { children of } i \text { minus } 1
$$




## Understanding Depth-first search in graphs

$$
X(0)=0 \text { and } X(i+1)-X(i)=\# \text { children of } i \text { minus } 1
$$




## Understanding Depth-first search in graphs

$$
X(0)=0 \text { and } X(i+1)-X(i)=\# \text { children of } i \text { minus } 1
$$




## Understanding Depth-first search in graphs

$$
X(0)=0 \text { and } X(i+1)-X(i)=\# \text { children of } i \text { minus } 1
$$




## Understanding Depth-first search in graphs

$$
X(0)=0 \text { and } X(i+1)-X(i)=\# \text { children of } i \text { minus } 1
$$



## Understanding Depth-first search in graphs

$X(0)=0$ and $X(i+1)-X(i)=$ \#children of $i$ minus 1



## Question:

what can we change without changing the tree we obtain?

## Understanding Depth-first search in graphs

$X(0)=0$ and $X(i+1)-X(i)=$ \#children of $i$ minus 1


## Question:

what can we change without changing the tree we obtain?

## Understanding Depth-first search in graphs

$$
X(0)=0 \text { and } X(i+1)-X(i)=\# \text { children of } i \text { minus } 1
$$




## Question:

what can we change without changing the tree we obtain?

## Understanding Depth-first search in graphs

$$
X(0)=0 \text { and } X(i+1)-X(i)=\# \text { children of } i \text { minus } 1
$$



## Question:

what can we change without changing the tree we obtain?

## Understanding Depth-first search in graphs

$$
X(0)=0 \text { and } X(i+1)-X(i)=\# \text { children of } i \text { minus } 1
$$



## Question:

what can we change without changing the tree we obtain?

## Understanding Depth-first search in graphs

$$
X(0)=0 \text { and } X(i+1)-X(i)=\# \text { children of } i \text { minus } 1
$$




## Question:

what can we change without changing the tree we obtain?

## Understanding Depth-first search in graphs

$$
X(0)=0 \text { and } X(i+1)-X(i)=\# \text { children of } i \text { minus } 1
$$




## Question:

what can we change without changing the tree we obtain?

## Understanding Depth-first search in graphs

$$
X(0)=0 \text { and } X(i+1)-X(i)=\# \text { children of } i \text { minus } 1
$$




## Question:

what can we change without changing the tree we obtain?

## Understanding Depth-first search in graphs

$$
X(0)=0 \text { and } X(i+1)-X(i)=\# \text { children of } i \text { minus } 1
$$




Question:
what can we change without changing the tree we obtain?

## Understanding Depth-first search in graphs

$X(0)=0$ and $X(i+1)-X(i)=$ \#children of $i$ minus 1



Question:
what can we change without changing the tree we obtain?

## Answer:

Can add any of the $a(T)$ edges between two vertices active at the same time

## Canonical tree and sampling random graphs

Partition the all the graphs $G$ according to their canonical tree $T(G)$

$$
\mathbb{G}_{n}=\bigcup_{T \in \mathbb{T}_{n}}\{G: T(G)=T\}
$$

- Each graph $G$ has a unique canonical tree $T(G)$
- Each canoninal tree $T$ yields $2^{a(T)}$ graphs: $\#\{G: T(G)=T\}=2^{a(T)}$

Uniform connected component of $G_{n, p}$ with $m$ vertices

- Pick $\tilde{T}_{m}=T$ with probability $\propto(1-p)^{-a(T)}$
- Add each allowed edge with probability $p$.

Uniform connected connected graph with $m$ vertices and $m-1+s$ edges

- Pick $\tilde{T}_{m}=T$ with probability $\propto\binom{a(T)}{s}$
- Add $s$ random allowed edges.


## Limit of canonical trees

In the critical regime: $p \sim 1 / n$ and $m \sim n^{2 / 3}$ :

$$
(1-p)^{-a\left(T_{m}\right)} \sim \exp \left(m^{-3 / 2} a\left(T_{m}\right)\right) \sim \exp \left(\int_{0}^{1} e(s) d s\right)
$$

## Definition (Tilted excursion)

Let $e$ be a standard Brownian excursion:

$$
\mathbb{P}(\tilde{e} \in \mathcal{B})=\frac{\mathbf{E}\left[\mathbf{1}[e \in \mathcal{B}] \exp \left(\int_{0}^{1} e(s) d s\right)\right]}{\mathbf{E}\left[\exp \left(\int_{0}^{1} e(s) d s\right)\right]} .
$$

Let $\tilde{T}_{m}$ be picked such that $\mathbb{P}\left(\tilde{T}_{m}=T\right) \propto\left(1-m^{-3 / 2}\right)^{-a(T)}$

## Theorem

$$
\left(\frac{\tilde{X}^{n}(\lfloor n \cdot\rfloor)}{\sqrt{n}} ; \frac{\tilde{C}^{n}(\lfloor 2 n \cdot\rfloor)}{\sqrt{n}} ; \frac{\tilde{H}^{n}(\lfloor n \cdot\rfloor)}{\sqrt{n}}\right) \xrightarrow[n \rightarrow \infty]{d}(\tilde{e}(\cdot) ; 2 \tilde{e}(\cdot) ; 2 \tilde{e}(\cdot)) .
$$

## The limit of tilted trees

Let $\mathcal{T}\left(\tilde{e}^{(\sigma)}\right)$ the real tree encoded by a tilted excursion $\tilde{e}^{(\sigma)}$ of length $\sigma$.

## Theorem

Let $p \sim 1 / n$ and $m \sim \sigma n^{2 / 3}, \sigma>0$. Let $G_{m}^{p}$ be a uniform connected component of $G_{n, p}$ on $m$ vertices.

$$
\frac{T\left(G_{m}^{p}\right)}{n^{1 / 3}} \xrightarrow[n \rightarrow \infty]{d} \mathcal{T}\left(2 \tilde{e}^{(\sigma)}\right)
$$

with the Gromov-Hausdorff distance.

## Connected graphs as marked excursions

Bijection between:

- Excursion of length $m$ with some points under $X:(X, \mathcal{P})$.
- Connected graphs on $m$ vertices $G^{X}(X, \mathcal{P})$



## Connected graphs as marked excursions

Bijection between:

- Excursion of length $m$ with some points under $X:(X, \mathcal{P})$.
- Connected graphs on $m$ vertices $G^{X}(X, \mathcal{P})$



## Connected graphs as marked excursions

Bijection between:

- Excursion of length $m$ with some points under $X:(X, \mathcal{P})$.
- Connected graphs on $m$ vertices $G^{X}(X, \mathcal{P})$



## Connected graphs as marked excursions

Bijection between:

- Excursion of length $m$ with some points under $X:(X, \mathcal{P})$.
- Connected graphs on $m$ vertices $G^{X}(X, \mathcal{P})$



## Connected graphs as marked excursions

Bijection between:

- Excursion of length $m$ with some points under $X:(X, \mathcal{P})$.
- Connected graphs on $m$ vertices $G^{X}(X, \mathcal{P})$



## The limit of connected components: convergence

Need both $X$ and $H$

- $X$ provides a bijection
- H provides the metric structure


Limit using the "Depth-First construction" $G^{X}$
$m^{-1 / 2} \tilde{X}^{m}(\lfloor m \cdot\rfloor) \rightarrow \tilde{e}$ and marks converge to a Poisson point process $\mathcal{P}$

## Limit of connected components: construction



Metric characterization using the "height construction" $G^{H}$
$\mathcal{T}(2 \tilde{e})$ where each point $\left(\xi_{x}, \xi_{y}\right)$ of $\mathcal{P}$ identifies the leaf $\xi_{x}$ with the point at distance $\xi_{y}$ from the root on the path $\llbracket 0, \xi_{x} \rrbracket$.

## The limit of critical random graphs

$M_{i}^{n}$ the $i$-th largest connected component of $G_{n, p}$ and $S_{i}^{n}$ its size. $\mathbf{M}^{n}=\left(M_{1}^{n}, M_{2}^{n}, \ldots\right)$ as a sequence of metric spaces, with distance

$$
d(\mathbf{A}, \mathbf{B})=\left(\sum_{i \geq 1} d_{G H}\left(A_{i}, B_{i}\right)^{4}\right)^{1 / 4}
$$

$$
\begin{aligned}
& n^{-2 / 3} \mathbf{S}^{n}=\left(n^{-2 / 3} S_{1}^{n}, \ldots\right) \text { in } \\
& \ell_{ \pm}^{2}=\left\{\left(x_{1}, x_{2}, \ldots\right): x_{1} \geq 0, \ldots, \sum_{i \geq 1} x_{i}^{2}<\infty\right\} .
\end{aligned}
$$

## Theorem

$$
\left(n^{-1 / 3} \mathbf{M}^{n}, n^{-2 / 3} \mathbf{S}^{n}\right) \xrightarrow[n \rightarrow \infty]{d}(\mathbf{M}, \mathbf{S}) \quad \text { where }
$$

- S is the ordered sequence of excursion lengths of $B^{\lambda}$
- Given $S=\left(S_{1}, S_{2}, \ldots\right),\left(M_{1}, M_{2}, \ldots\right)$ are independent $g\left(\tilde{e}^{\left(S_{i}\right)}, \mathcal{P}_{i}\right)$.

