How to scotch a Rumor in a network?

Charles Bordenave

CNRS \& University of Toulouse

THE SIR spreading model

A rumor is propagating along the edges of a graph $G=(V, E)$. A vertex may either be

- (S)usceptible i.e. not aware of the rumor,

THE SIR spreading model

A rumor is propagating along the edges of a graph $G=(V, E)$. A vertex may either be

- (S)usceptible i.e. not aware of the rumor,
- (I)nfected, aware of the rumor and spreading it to its neighbours,

THE SIR spreading model

A rumor is propagating along the edges of a graph $G=(V, E)$. A vertex may either be

- (S)usceptible i.e. not aware of the rumor,
- (I)nfected, aware of the rumor and spreading it to its neighbours,
- (R)ecovered, aware of the rumor but not spreading it.

THE SIR SpREADING MODEL

A rumor is propagating along the edges of a graph $G=(V, E)$. A vertex may either be

- (S)usceptible i.e. not aware of the rumor,
- (I)nfected, aware of the rumor and spreading it to its neighbours,
- (R)ecovered, aware of the rumor but not spreading it.
\Longrightarrow rumor spreading, epidemic, prey and predator, information dissemination ...

STANDARD SIR DYNAMICS

Consider the Markov process :

- a (S)-vertex becomes (I) at rate λ times the number of (I)-neighbors,
- a (I)-vertex becomes (R) at rate 1 .

AbSORBING StATES

\Longrightarrow The states without (I)-vertices are absorbing.
Assume that the initial state is a single (I)-vertex and all other vertices are (S).

Absorbing States

\Longrightarrow The states without (I)-vertices are absorbing.
Assume that the initial state is a single (I)-vertex and all other vertices are (S).

In final state : (R)-vertices $=$ vertices that have been infected.

This final absorbing state is random, what can be said about it?

On the Complete Graph

Assume that the graph is K_{n}.
Infection rate is λ / n.

On the Complete Graph

Let G_{n} be the graph spanned by the vertices that have been infected and $Z_{n}=\left|G_{n}\right|$.

There is a well-known scaling limit of G_{n} as $n \rightarrow \infty$.

$\underline{\text { SCALING LIMIT }}$

$D_{1}=$ number of vertices infected by the initial (I)-vertex before becoming (R).

$$
\mathbb{P}\left(D_{1}=k\right) \underset{n \rightarrow \infty}{\simeq} \frac{\lambda^{k}}{(\lambda+1)^{k}}=\operatorname{Geo}_{\frac{1}{\lambda+1}}(\{k\}) .
$$

$\underline{\text { SCALING LIMIT }}$

$D_{1}=$ number of vertices infected by the initial (I)-vertex before becoming (R).

$$
\mathbb{P}\left(D_{1}=k\right) \underset{n \rightarrow \infty}{\simeq} \frac{\lambda^{k}}{(\lambda+1)^{k}}=\operatorname{Geo}_{\frac{1}{\lambda+1}}(\{k\}) .
$$

The graph G_{n} converges weakly to a Galton-Watson tree with Geometric offspring distribution with parameter $1 /(\lambda+1)$.

SCALING LIMIT AND PHASE TRANSITION

\Longrightarrow If $\lambda<1$, then Z_{n} converges weakly to Z and

$$
\lim _{n} \mathbb{E} Z_{n}=\mathbb{E} Z=1 /(1-\lambda) .
$$

\Longrightarrow Subcritical regime : the number of infected vertices remains small.

SCALING LIMIT AND PHASE TRANSITION

\Longrightarrow If $\lambda>1$, then Z_{n} / n converges weakly to W and

$$
W \stackrel{d}{=} \rho \delta_{0}+(1-\rho) \delta_{1-\rho},
$$

where

$$
\rho=1 / \lambda=\text { probability of extinction. }
$$

\Longrightarrow Supercritical regime : with $0<$ probability the number of infected vertices is macroscopic.
(there are also finer finite size estimates on Z_{n})

TAIL OF DISTRIBUTION

For $\lambda<1$, define tail exponent

$$
\gamma(\lambda)=\sup \left\{k \geqslant 0: \mathbb{E}\left[Z^{k}\right]<\infty\right\} .
$$

TAIL OF DISTRIBUTION

For $\lambda<1$, define tail exponent

$$
\gamma(\lambda)=\sup \left\{k \geqslant 0: \mathbb{E}\left[Z^{k}\right]<\infty\right\} .
$$

For all $\lambda<1$,

$$
\gamma(\lambda)=\infty
$$

\Longrightarrow the r.v. Z takes exceptionally large values compared to $\mathbb{E} Z$.

TAIL OF DISTRIBUTION

For $\lambda<1$, define tail exponent

$$
\gamma(\lambda)=\sup \left\{k \geqslant 0: \mathbb{E}\left[Z^{k}\right]<\infty\right\} .
$$

For all $\lambda<1$,

$$
\gamma(\lambda)=\infty
$$

\Longrightarrow the r.v. Z takes exceptionally large values compared to $\mathbb{E} Z$.

In fact : for all $n \geqslant 1, t \geqslant 0$, with $c(\lambda)=\lambda-1-\ln \lambda$,

$$
\mathbb{P}\left(Z_{n} \geqslant t\right) \leqslant \lambda^{-1} e^{-c(\lambda) t} .
$$

Rumor Scotching Process

We change the dynamic as follows :

- a (S)-vertex becomes (I) at rate λ times the number (I)-neighbors,
- a (I)-vertex becomes (R) at rate 1 times the number of neighboring (R)-vertices.

Rumor Scotching Process

We change the dynamic as follows :

- a (S)-vertex becomes (I) at rate λ times the number (I)-neighbors,
- a (I)-vertex becomes (R) at rate 1 times the number of neighboring (R)-vertices.
a variant :
- a (I)-vertex becomes (R) at rate 1 times the number of neighboring (R)-vertices that have infected the vertex.
\Longrightarrow The rumor is confidential.

On the Complete Graph

Infection rate is λ / n.

Absorbing states $=$ no (I)-vertex.
$G_{n}=$ graph of vertices that have been infected, $Z_{n}=\left|G_{n}\right|$.

On the Complete Graph

Infection rate is λ / n.

Absorbing states $=$ no (I)-vertex.
$G_{n}=$ graph of vertices that have been infected, $Z_{n}=\left|G_{n}\right|$.
Again, it is possible to compute the scaling limit as $n \rightarrow \infty$.

Birth and Assassination Process

(Aldous and Krebs 1990)
The tree starts with the root at time 0

Birth and Assassination Process

(Aldous and Krebs 1990)
The tree starts with the root at time 0
The root produces offsprings at rate λ.

Birth and Assassination Process

(Aldous and Krebs 1990)
The tree starts with the root at time 0
The root produces offsprings at rate λ.
Each new vertex produces offsprings at rate λ.

Birth and Assassination Process

(Aldous and Krebs 1990)
The tree starts with the root at time 0
The root produces offsprings at rate λ.
Each new vertex produces offsprings at rate λ.
The root is at risk at time 0 and dies at time D, an exponential variable with parameter 1 .

Birth and Assassination Process

(Aldous and Krebs 1990)
The tree starts with the root at time 0
The root produces offsprings at rate λ.
Each new vertex produces offsprings at rate λ.
The root is at risk at time 0 and dies at time D, an exponential variable with parameter 1 .

Other vertices are at risk when its ancestor dies, and dies after an independent copy of D.

Birth and Assassination Process

PHASE TRANSITION

Theorem (Aldous \& Krebs 1990)
If $0<\lambda<1 / 4$, the tree is a.s. finite, if $\lambda>1 / 4$ the process is infinite with $0<$ probability.

PHASE TRANSITION

Theorem (Aldous \& Krebs 1990)
If $0<\lambda<1 / 4$, the tree is a.s. finite, if $\lambda>1 / 4$ the process is infinite with $0<$ probability.
\Longrightarrow on the complete graph, we get

Theorem
If $\lambda>1 / 4$, there exists $\delta>0$ such that

$$
\liminf _{n} \mathbb{P}_{\lambda}\left(Z_{n} \geqslant \delta n\right)>0
$$

A First Problem

One can guess that Z_{n} / n converges weakly to W with

$$
W \stackrel{d}{=} \rho \delta_{0}+(1-\rho) \delta_{1},
$$

with

$$
\rho(\lambda)=\mathbb{P}_{\lambda} \text { (extinction in the BA process) } .
$$

\Longrightarrow Either quick extinction or total invasion.

SUBCRITICAL PHASE

For $0<\lambda<1 / 4, Z_{n}$ converges weakly to $Z=$ total population in the BA process.

As before, we set

$$
\gamma(\lambda)=\sup \left\{k \geqslant 0: \mathbb{E}\left[Z^{k}\right]<\infty\right\}
$$

Total Infected Population

Theorem
(i) For all $0<\lambda \leqslant 1 / 4$,

$$
\gamma(\lambda)=\frac{1+\sqrt{1-4 \lambda}}{1-\sqrt{1-4 \lambda}}
$$

Total Infected Population

Theorem
(i) For all $0<\lambda \leqslant 1 / 4$,

$$
\gamma(\lambda)=\frac{1+\sqrt{1-4 \lambda}}{1-\sqrt{1-4 \lambda}} .
$$

(ii) If $\lambda \in(0,1 / 4]$,

$$
\mathbb{E}_{\lambda}[Z]=\frac{2}{\sqrt{1-4 \lambda}+1} .
$$

Total Infected Population

Theorem
(i) For all $0<\lambda \leqslant 1 / 4$,

$$
\gamma(\lambda)=\frac{1+\sqrt{1-4 \lambda}}{1-\sqrt{1-4 \lambda}}
$$

(ii) If $\lambda \in(0,1 / 4]$,

$$
\mathbb{E}_{\lambda}[Z]=\frac{2}{\sqrt{1-4 \lambda}+1} .
$$

(iii) If $\lambda \in(0,2 / 9)$,

$$
\mathbb{E}_{\lambda}\left[Z^{2}\right]=\frac{2}{3 \sqrt{1-4 \lambda}-1} .
$$

(iv) If $\lambda \in(0,3 / 16)$,

$$
\mathbb{E}_{\lambda}\left[Z^{3}\right]=\cdots
$$

Recursive Distributional Equation

$Y(t)=$ the total population given that the root dies at time t.
If D is an exponential variable with parameter 1 , independent of Y

$$
Z \stackrel{d}{=} Y(D) .
$$

Recursive Distributional Equation

$Y(t)=$ the total population given that the root dies at time t.
If D is an exponential variable with parameter 1 , independent of Y

$$
Z \stackrel{d}{=} Y(D) .
$$

If $\left\{\xi_{i}\right\}_{i \geqslant 1}$ is a Poisson point process of intensity λ, independent of $\left(Y_{i}, D_{i}\right)_{i \geqslant 1}$, a sequence of independent copies of (Y, D).

$$
Y(t) \stackrel{d}{=} 1+\sum_{0 \leqslant \xi_{i} \leqslant t} Y_{i}\left(t-\xi_{i}+D_{i}\right)
$$

Recursive Distributional Equation

$Y(t)=$ the total population given that the root dies at time t.
If D is an exponential variable with parameter 1 , independent of Y

$$
Z \stackrel{d}{=} Y(D) .
$$

If $\left\{\xi_{i}\right\}_{i \geqslant 1}$ is a Poisson point process of intensity λ, independent of $\left(Y_{i}, D_{i}\right)_{i \geqslant 1}$, a sequence of independent copies of (Y, D).

$$
\begin{aligned}
Y(t) & \stackrel{d}{=} 1+\sum_{0 \leqslant \xi_{i} \leqslant t} Y_{i}\left(t-\xi_{i}+D_{i}\right) \\
& \stackrel{d}{=} 1+\sum_{0 \leqslant \xi_{i} \leqslant t} Y_{i}\left(\xi_{i}+D_{i}\right)
\end{aligned}
$$

First Moment

Assume that $\mathbb{E} Y(t)<\infty$ for all $t \geqslant 0$. Taking expectation, we get

$$
\begin{aligned}
\mathbb{E} Y(t) & =1+\lambda \int_{0}^{t} \int_{0}^{\infty} \mathbb{E} Y(x+s) e^{-s} d s d x \\
& =1+\lambda \int_{0}^{t} e^{x} \int_{x}^{\infty} \mathbb{E} Y(s) e^{-s} d s d x
\end{aligned}
$$

First Moment

Assume that $\mathbb{E} Y(t)<\infty$ for all $t \geqslant 0$. Taking expectation, we get

$$
\begin{aligned}
\mathbb{E} Y(t) & =1+\lambda \int_{0}^{t} \int_{0}^{\infty} \mathbb{E} Y(x+s) e^{-s} d s d x \\
& =1+\lambda \int_{0}^{t} e^{x} \int_{x}^{\infty} \mathbb{E} Y(s) e^{-s} d s d x
\end{aligned}
$$

Taking derivative twice, we get that $\mathbb{E} Y(t)$ solves

$$
x^{\prime \prime}-x^{\prime}+\lambda x=0 .
$$

with initial condition $x(0)=1$.

First Moment

Assume that $\mathbb{E} Y(t)<\infty$ for all $t \geqslant 0$. Taking expectation, we get

$$
\begin{aligned}
\mathbb{E} Y(t) & =1+\lambda \int_{0}^{t} \int_{0}^{\infty} \mathbb{E} Y(x+s) e^{-s} d s d x \\
& =1+\lambda \int_{0}^{t} e^{x} \int_{x}^{\infty} \mathbb{E} Y(s) e^{-s} d s d x
\end{aligned}
$$

Taking derivative twice, we get that $\mathbb{E} Y(t)$ solves

$$
x^{\prime \prime}-x^{\prime}+\lambda x=0 .
$$

with initial condition $x(0)=1$.
If $0<\lambda \leqslant 1 / 4$, the roots of $X^{2}-X+\lambda=0$ are real $0<\alpha \leqslant \beta \cdots$

$$
\mathbb{E} Y(t)=e^{\alpha t}
$$

If $\lambda>1 / 4$ no admissible solution of the integral equation.

Probability of Extinction

For $\lambda>1 / 4$, can we compute the probability of extinction,

$$
\rho(\lambda)=\mathbb{P}_{\lambda}(Z<\infty) \quad ?
$$

Through

$$
x(t)=-\ln \mathbb{P}_{\lambda}(Z<\infty \mid \text { root dies at time } t),
$$

we get

$$
x^{\prime \prime}-x^{\prime}+\lambda-\lambda e^{-x}=0,
$$

with $x(0)=0$.

SECOND Problem

There is no real hope to solve the non-linear differential equation.

$$
1-\rho(\lambda) \underset{\lambda \downarrow \overline{1} / 4}{\sim} f\left(\lambda-\frac{1}{4}\right) ?
$$

\longrightarrow For the standard SIR dynamics, for $\lambda>1$,

$$
1-\rho(\lambda)=1-\frac{1}{\lambda} \underset{\lambda \downarrow 1}{\simeq}(\lambda-1) .
$$

DYNAMICS ON GRAPHS

Same type of results for some graph ensembles.

Graph with Prescribed Degree Distribution

Let d_{1}, \cdots, d_{n} such that for some graph G on $V=\{1, \cdots, n\}$ such that

$$
\operatorname{deg}(i ; G)=d_{i} .
$$

Define the random graph sampled uniformly over all graph with degree sequence d_{1}, \cdots, d_{n}.

Assume that the empirical degree distribution converges :

$$
F_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{d_{i}} \Rightarrow F .
$$

Limit of Diluted Random Graphs

Galton Watson tree with degree distribution $F=$ GW branching process with

- the root has offspring distribution F,
- all other genitors have offspring distribution \widehat{F} with

$$
\widehat{F}(k-1)=\frac{k F(k)}{\sum_{\ell} \ell F(\ell)} .
$$

Limit of Diluted Random Graphs

Galton Watson tree with degree distribution $F=$ GW branching process with

- the root has offspring distribution F,
- all other genitors have offspring distribution \widehat{F} with

$$
\widehat{F}(k-1)=\frac{k F(k)}{\sum_{\ell} \ell F(\ell)} .
$$

\Longrightarrow The uniform graph with degree sequence F_{n} converges locally to a $G W T$ with degree distribution F.

BACK TO THE SIR DYNAMICS

\Longrightarrow As $n \rightarrow \infty$, at small time scale,

SIR dynamic on the graph \simeq SIR dynamic on the GWT

STANDARD SIR DYnAmics

Set

$$
\varphi(x)=\sum_{k} F(k) x^{k} \quad \text { and } \quad \nu=\frac{\varphi^{\prime \prime}(1)}{\varphi^{\prime}(1)}=\frac{\mathbb{E} D(D-1)}{\mathbb{E} D} .
$$

The graph of infected vertices G_{n} converges weakly to a Galton-Watson tree with degree distribution with generating function

$$
\varphi\left(\frac{\lambda x+1}{\lambda+1}\right)
$$

Phase transition for Standard SIR Dynamics

If $\nu \leqslant 1$ or

$$
0<\lambda<\frac{1}{\nu-1}
$$

then subcritical regime and $Z_{n}=\left|G_{n}\right|$ converges to Z.

Phase transition for Standard SIR Dynamics

If $\nu \leqslant 1$ or

$$
0<\lambda<\frac{1}{\nu-1}
$$

then subcritical regime and $Z_{n}=\left|G_{n}\right|$ converges to Z.

In supercritical regime, probability of extinction given by $\rho=\varphi((\lambda \widehat{\rho}+1) /(\lambda+1))$

$$
\varphi^{\prime}(1) \widehat{\rho}(\lambda)=\varphi^{\prime}\left(\frac{\lambda \widehat{\rho}(\lambda)+1}{\lambda+1}\right) .
$$

and

$$
\frac{Z_{n}}{n} \Rightarrow W=\rho \delta_{0}+(1-\rho) \delta_{1-\rho}
$$

TAIL BEHAVIOR

The tail behavior of Z is \pm the tail behavior of

$$
\widehat{F}(k-1)=\frac{k F(k)}{\sum_{\ell \geqslant 1} \ell F(\ell)} .
$$

If

$$
\gamma_{F}=\sup \left\{k \geqslant 0: \sum_{\ell} k^{\ell} F(\ell)<\infty\right\}=\gamma_{\widehat{F}}+1,
$$

Then

$$
\gamma(\lambda)=\sup \left\{k \geqslant 0: \mathbb{E}_{\lambda}\left[Z^{k}\right]<\infty\right\}=\gamma_{F}-1 .
$$

We can also define the limit SIR dynamics on the GWT

$$
\varphi(x)=\sum_{k} F(k) x^{k} \quad \text { and } \quad \nu=\frac{\varphi^{\prime \prime}(1)}{\varphi^{\prime}(1)}=\frac{\mathbb{E} D(D-1)}{\mathbb{E} D} .
$$

We can also define the limit SIR dynamics on the GWT

$$
\varphi(x)=\sum_{k} F(k) x^{k} \quad \text { and } \quad \nu=\frac{\varphi^{\prime \prime}(1)}{\varphi^{\prime}(1)}=\frac{\mathbb{E} D(D-1)}{\mathbb{E} D} .
$$

Theorem
If

$$
0<\lambda \leqslant \lambda_{1}=(2 \nu-1)-\sqrt{(2 \nu-1)^{2}-1},
$$

subcritical regime, if $\lambda>\lambda_{1}$ supercritical regime.

Rumor scotching Process

On a GWT, again,

- explicit computation of integer moments,
- probability of extinction related to a non-linear second order differential equation.

TAIL Exponent

If $0<\lambda \leqslant \lambda_{1}$, let Z be the total infected population on the GWT,

$$
\begin{gathered}
\gamma(\lambda)=\sup \left\{k \geqslant 0: \mathbb{E}\left[Z^{k}\right]<\infty\right\} \\
\gamma_{F}=\sup \left\{u \geqslant 0: \sum_{\ell} \ell^{k} F(\ell)<\infty\right\}
\end{gathered}
$$

Theorem

$$
\gamma(\lambda)=\min \left(\frac{\lambda^{2}-2 \nu \lambda+1-(1-\lambda) \sqrt{\lambda^{2}-2 \lambda(2 \nu-1)+1}}{2 \lambda(\nu-1)}, \gamma_{F}-1\right) .
$$

Concluding REmARKS

- Probability of extinction?
- Finite size estimates?

Concluding REmARKS

- Probability of extinction?
- Finite size estimates?
- Bring back the particles!

Concluding REmARKS

- Probability of extinction?
- Finite size estimates?
- Bring back the particles!
- Rumor scotching process on a lattice?

