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The SIR spreading model

A rumor is propagating along the edges of a graph G = (V, E). A
vertex may either be

- (S)usceptible i.e. not aware of the rumor,

- (I)nfected, aware of the rumor and spreading it to its neighbours,

- (R)ecovered, aware of the rumor but not spreading it.

=⇒ rumor spreading, epidemic, prey and predator, information
dissemination ...



Standard SIR dynamics

Consider the Markov process :

- a (S)-vertex becomes (I) at rate λ times the number of
(I)-neighbors,

- a (I)-vertex becomes (R) at rate 1.
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=⇒ The states without (I)-vertices are absorbing.

Assume that the initial state is a single (I)-vertex and all other
vertices are (S).



Absorbing States

=⇒ The states without (I)-vertices are absorbing.

Assume that the initial state is a single (I)-vertex and all other
vertices are (S).

In final state : (R)-vertices = vertices that have been infected.

This final absorbing state is random, what can be said about it ?
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Assume that the graph is Kn.

Infection rate is λ/n.



On the Complete Graph

Let Gn be the graph spanned by the vertices that have been infected
and Zn = |Gn|.

There is a well-known scaling limit of Gn as n → ∞.
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The graph Gn converges weakly to a Galton-Watson tree with
Geometric offspring distribution with parameter 1/(λ + 1).



Scaling limit and phase transition

=⇒ If λ < 1, then Zn converges weakly to Z and

lim
n

EZn = EZ = 1/(1 − λ).

=⇒ Subcritical regime : the number of infected vertices remains small.



Scaling limit and phase transition

=⇒ If λ > 1, then Zn/n converges weakly to W and

W
d
= ρδ0 + (1 − ρ)δ1−ρ,

where
ρ = 1/λ = probability of extinction.

=⇒ Supercritical regime : with 0 < probability the number of infected
vertices is macroscopic.

(there are also finer finite size estimates on Zn)
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Tail of distribution

For λ < 1, define tail exponent

γ(λ) = sup{k > 0 : E[Zk] < ∞}.

For all λ < 1,
γ(λ) = ∞

=⇒ the r.v. Z takes exceptionally large values compared to EZ.

In fact : for all n > 1, t > 0, with c(λ) = λ − 1 − lnλ,

P(Zn > t) 6 λ−1e−c(λ)t.
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Rumor Scotching Process

We change the dynamic as follows :

- a (S)-vertex becomes (I) at rate λ times the number
(I)-neighbors,

- a (I)-vertex becomes (R) at rate 1 times the number of
neighboring (R)-vertices.

a variant :

- a (I)-vertex becomes (R) at rate 1 times the number of
neighboring (R)-vertices that have infected the vertex.

=⇒ The rumor is confidential.
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On the Complete Graph

Infection rate is λ/n.

0

1

Absorbing states = no (I)-vertex.

Gn = graph of vertices that have been infected, Zn = |Gn|.

Again, it is possible to compute the scaling limit as n → ∞.
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Birth and Assassination Process

(Aldous and Krebs 1990)

The tree starts with the root at time 0

The root produces offsprings at rate λ.

Each new vertex produces offsprings at rate λ.

The root is at risk at time 0 and dies at time D, an exponential
variable with parameter 1.

Other vertices are at risk when its ancestor dies, and dies after an
independent copy of D.



Birth and Assassination Process



Phase transition

Theorem (Aldous & Krebs 1990)

If 0 < λ < 1/4, the tree is a.s. finite, if λ > 1/4 the process is infinite
with 0 < probability.



Phase transition

Theorem (Aldous & Krebs 1990)

If 0 < λ < 1/4, the tree is a.s. finite, if λ > 1/4 the process is infinite
with 0 < probability.

=⇒ on the complete graph, we get

Theorem
If λ > 1/4, there exists δ > 0 such that

lim inf
n

Pλ(Zn > δn) > 0.



A First Problem

One can guess that Zn/n converges weakly to W with

W
d
= ρδ0 + (1 − ρ)δ1,

with
ρ(λ) = Pλ (extinction in the BA process) .

=⇒ Either quick extinction or total invasion.



Subcritical phase

For 0 < λ < 1/4, Zn converges weakly to Z = total population in the
BA process.

As before, we set

γ(λ) = sup{k > 0 : E[Zk] < ∞}.
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Total Infected Population

Theorem

(i) For all 0 < λ 6 1/4,

γ(λ) =
1 +

√
1 − 4λ

1 −
√

1 − 4λ
.

(ii) If λ ∈ (0, 1/4],

Eλ[Z] =
2√

1 − 4λ + 1
.

(iii) If λ ∈ (0, 2/9),

Eλ[Z2] =
2

3
√

1 − 4λ − 1
.

(iv) If λ ∈ (0, 3/16),
Eλ[Z3] = · · ·
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First Moment

Assume that EY (t) < ∞ for all t > 0. Taking expectation, we get
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First Moment

Assume that EY (t) < ∞ for all t > 0. Taking expectation, we get

EY (t) = 1 + λ

∫ t

0

∫ ∞

0

EY (x + s)e−sdsdx

= 1 + λ

∫ t

0

ex

∫ ∞

x

EY (s)e−sdsdx

Taking derivative twice, we get that EY (t) solves

x′′ − x′ + λx = 0.

with initial condition x(0) = 1.

If 0 < λ 6 1/4, the roots of X2 − X + λ = 0 are real 0 < α 6 β · · ·

EY (t) = eαt.

If λ > 1/4 no admissible solution of the integral equation.



Probability of Extinction

For λ > 1/4, can we compute the probability of extinction,

ρ(λ) = Pλ(Z < ∞) ?

Through
x(t) = − ln Pλ(Z < ∞|root dies at time t),

we get
x′′ − x′ + λ − λe−x = 0,

with x(0) = 0.



Second Problem

There is no real hope to solve the non-linear differential equation.

1 − ρ(λ) ≃
λ↓1/4

f

(
λ − 1

4

)
?

−→ For the standard SIR dynamics, for λ > 1,

1 − ρ(λ) = 1 − 1

λ
≃

λ↓1
(λ − 1) .



Dynamics on graphs

Same type of results for some graph ensembles.



Graph with Prescribed Degree Distribution

Let d1, · · · , dn such that for some graph G on V = {1, · · · , n} such
that

deg(i; G) = di.

Define the random graph sampled uniformly over all graph with
degree sequence d1, · · · , dn.

Assume that the empirical degree distribution converges :

Fn =
1

n

n∑

i=1

δdi
⇒ F .



Limit of Diluted Random Graphs

Galton Watson tree with degree distribution F = GW branching
process with

- the root has offspring distribution F ,

- all other genitors have offspring distribution F̂ with

F̂ (k − 1) =
kF (k)∑
ℓ ℓF (ℓ)

.



Limit of Diluted Random Graphs

Galton Watson tree with degree distribution F = GW branching
process with

- the root has offspring distribution F ,

- all other genitors have offspring distribution F̂ with

F̂ (k − 1) =
kF (k)∑
ℓ ℓF (ℓ)

.

=⇒ The uniform graph with degree sequence Fn converges locally to a
GWT with degree distribution F .



Back to the SIR Dynamics

=⇒ As n → ∞, at small time scale,

SIR dynamic on the graph ≃ SIR dynamic on the GWT



Standard SIR Dynamics
Set

ϕ(x) =
∑

k

F (k)xk and ν =
ϕ′′(1)

ϕ′(1)
=

ED(D − 1)

ED
.

...

...

...

...

...

The graph of infected vertices Gn converges weakly to a
Galton-Watson tree with degree distribution with generating function

ϕ

(
λx + 1

λ + 1

)
.



Phase transition for Standard SIR Dynamics

If ν 6 1 or

0 < λ <
1

ν − 1

then subcritical regime and Zn = |Gn| converges to Z.



Phase transition for Standard SIR Dynamics

If ν 6 1 or

0 < λ <
1

ν − 1

then subcritical regime and Zn = |Gn| converges to Z.

In supercritical regime, probability of extinction given by
ρ = ϕ((λρ̂ + 1)/(λ + 1))

ϕ′(1)ρ̂(λ) = ϕ′

(
λρ̂(λ) + 1

λ + 1

)
.

and
Zn

n
⇒ W = ρδ0 + (1 − ρ)δ1−ρ.



Tail Behavior

The tail behavior of Z is ± the tail behavior of

F̂ (k − 1) =
kF (k)∑
ℓ>1 ℓF (ℓ)

.

If
γF = sup{k > 0 :

∑

ℓ

kℓF (ℓ) < ∞} = γ bF + 1,

Then
γ(λ) = sup

{
k > 0 : Eλ[Zk] < ∞

}
= γF − 1.



Rumor scotching process

1

0

We can also define the limit SIR dynamics on the GWT

ϕ(x) =
∑

k

F (k)xk and ν =
ϕ′′(1)

ϕ′(1)
=

ED(D − 1)

ED
.



Rumor scotching process

1

0

We can also define the limit SIR dynamics on the GWT

ϕ(x) =
∑

k

F (k)xk and ν =
ϕ′′(1)

ϕ′(1)
=

ED(D − 1)

ED
.

Theorem
If

0 < λ 6 λ1 = (2ν − 1) −
√

(2ν − 1)2 − 1,

subcritical regime, if λ > λ1 supercritical regime.



Rumor scotching process

On a GWT, again,

- explicit computation of integer moments,

- probability of extinction related to a non-linear second order
differential equation.



Tail Exponent

If 0 < λ 6 λ1, let Z be the total infected population on the GWT,

γ(λ) = sup{k > 0 : E[Zk] < ∞},

γF = sup{u > 0 :
∑

ℓ

ℓkF (ℓ) < ∞}.

Theorem

γ(λ) = min

(
λ2 − 2νλ + 1 − (1 − λ)

√
λ2 − 2λ(2ν − 1) + 1

2λ(ν − 1)
, γF − 1

)
.
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Concluding Remarks

- Probability of extinction ?

- Finite size estimates ?

◮ Bring back the particles !

- Rumor scotching process on a lattice ?


