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Equipe Lille 3 (1/2)
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è Sophie Dabo-Niang : "Statistique non-paramétrique,
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è Jean Michel Zakoan : "Séries Temporelles, Econométrie,

Finance".
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è Olivier Torres : "Econométrie" .
è Emmanuel Thilly : "Processus Stochastiques, Processus

Gaussiens, Processus de Levy,
è Camille Sabbah : "Statistique non-paramétrique, Statistique

directionnelle".
è Baba Thiam : "Statistique non-paramétrique, Statistique

spatiale, Statistique directionnelle".
è Aboubacar Amiri : "Statistique non-paramtrique, Statistique

spatiale, Statistique directionnelle".
è Ophlie Guin : "Statistique baysienne".
è Aurore Lavigne : "Statistique baysienne".
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Data streams

1 Simulation 1
2 Simulation 2
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è Data streams are massive data arriving in streams, and if they
are not analyzed immediately or stored, then they are lost
forever.

è In many scientific and real applications, large amount of raw
data can be collected extremely easily so that experiments
typically yield to a huge number of data points.

è In those situations, the data arrive so rapidly that it is
impossible for the user to store them all in disk (as a
traditional database), and then interact with them at the time
of our choosing.
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Wind directions data.

90

270

180 0+

è A dataset of wind directions
recorded minutely in June 2012 in
Mourela, the north of Spain.

è Many observed data points can be
available in a very short period of
time.

è The computational time of many
classical methods can quickly
become large.

è If the wind directions are recorded continuously (and minutely), a
single week yields around 10080 observations on the unit circle.
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NASA MAGSAT dataset †.

è The NASA MAGSAT dataset consists in directions of the
magnetic field.

è Measurements were made by the NASA’s MAGSAT spacecraft
between Nov. 2, 1979 and May 6,1980.

†. Available from : http ://omniweb.gsfc.nasa.gov/ftpbrowser/magsat.html. This home page pro-
vides listing for magnetic field vectors, with a resolution around one observation per 0.5 second.
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A scatterplot of directional data streams :

8/81 Nonparametric estimation for multivariate data streams



Introduction
Density estimation for directional data streams

Regression estimation by local polynomial fitting for multivariate data streams
Estimation of a space-varying distribution

Simulations studies

Listing for magsat data from 198001010000 to 198001012359
Selected parameters :
1 Geocentric Lat.
2 Geocentric Long.
3 Radial distance

MILLISEC 1 2 3
14181 68.296 -111.378 6881.902
14672 68.326 -111.406 6881.914
15164 68.355 -111.435 6881.922
15655 68.384 -111.464 6881.934
16147 68.414 -111.493 6881.949
16638 68.443 -111.523 6881.961
17130 68.472 -111.552 6881.969
17621 68.502 -111.581 6881.980
18604 68.560 -111.640 6882.004
19096 68.589 -111.669 6882.016
19587 68.619 -111.699 6882.027
20079 68.648 -111.728 6882.035
18604 68.560 -111.640 6882.004
19096 68.589 -111.669 6882.016
19587 68.619 -111.699 6882.027

20079 68.648 -111.728 6882.035
20571 68.677 -111.758 6882.051
21062 68.707 -111.788 6882.059
21554 68.736 -111.818 6882.070
22045 68.765 -111.848 6882.082
22537 68.794 -111.878 6882.094
23028 68.824 -111.908 6882.105
23520 68.853 -111.938 6882.113
24011 68.882 -111.968 6882.125
24503 68.911 -111.998 6882.137
24994 68.941 -112.029 6882.148
25486 68.970 -112.059 6882.160
25978 68.999 -112.090 6882.168
26469 69.028 -112.120 6882.184
26961 69.057 -112.151 6882.195
27452 69.087 -112.182 6882.203
27944 69.116 -112.212 6882.215
28435 69.145 -112.243 6882.227
.
.
.

.

.

.
.
.
.

.

.

.

170604 obs/day.
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è Many observed data points can be available in a very short
period of time.

è The sample size can rapidly becomes huge.
è For example, if the data are recorded continuously, a single

week yields around 1194228 observations.
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Intel Lab dataset ‡

è Data collected from 54 sensors deployed in the Intel Berkeley
Research Laboratory.

Figure: Spatial positions of the 54 sensors in the Intel Berkeley Research
Laboratory

‡. http ://db.csail.mit.edu/labdata/labdata.html.
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Intel Lab dataset
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è The data consist of humidity, temperature, light and voltage
measurements recorded every 31 seconds between February
28th and April 5th, 2004.

è Some data might be missing for specific times due to sensor
failures.

è A single day yields a number of observations ranging from 0 to
2615 over one sensor.
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è The computational time of many classical methods can quickly
become large, so that a practitioner will not be able to obtain
a prediction rapidly.

è After a certain period of time, the statistician who has to
perform estimation based on traditional techniques can be
tempted by throwing away a part of the sample since the
estimation will start to take too much time to be updated.
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è Consequently, to deal with such massive data, the traditional
nonparametric techniques rapidly require a lot of time to be
computed and therefore become useless in practice if real time
forecasts are expected.

è How to process and analyze these data streams effectively and
efficiently ?

Aggarwal (Springer 2007), Domingos and Hulten (JCGS
2003), Cao et al. (IEEE TNNLS 2012), Xu et al. (Front
Comput Sci 2014)
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Density estimation for directional data streams

è Spherical or directional data are concerned with multivariate
data for which only the directions (and not the magnitudes)
are observed.

è The resulting data points belong to the unit sphere

Sp−1 := {v ∈ Rp,v′v = 1}

of Rp.
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è Assume that we sequentially observe independent random
matrices (called windows)

Wt := (Xt1, . . . ,XtNt)t≥1,

such that the columns X11, . . . ,X1N1 · · ·Xn1 . . .XnNn of
W1, . . . ,Wn are i.i.d. absolutely continuous (with respect to
the usual surface area measure ωp on Sp−1) random vectors
on Sp−1 with density f .
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è Letting f̂(W1, . . . ,Wn) stand for a kernel density estimator
computed from the first n windows.

è How to provide an estimator f̂ such that
f̂(W1, . . . ,Wn,Wn+1) can be computed extremely quickly
from f̂(W1, . . . ,Wn) (on-line estimation) while keeping nice
efficiency properties with respect to its natural competitors ?
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R.M. algorithm for the kernel density estimation

è Letting f̂t stand for the estimator constructed using the
windows W1, . . . ,Wt.

è The Robbins-Monro recursivity yields to consider

f̂t(x) = f̂t−1(x) + γt

(
f̃t(x)− f̂t−1(x)

)
,

where f̃t(x) is an appropriate estimator of f(x) computed
from Wt only.

Robbins and Monro (AOS 1951).
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è Hall et al. (1987), kernel-based estimator :

f̃t(x) =
c0(ht)

Nt

Nt∑
j=1

Kh2
t

(x,Xtj) ,

where

Kh(u,v) := K

(
1− u′v

h

)
,

with K is the directional kernel, ht > 0 a sequence of
bandwidth parameters and c0(.) a normalizing constant
defined by

c0(h)−1 =

∫
Sp−1

Kh2(x,y)ωp(dy).
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è The choice of step sizes :

γt := Nt

/ t∑
s=1

Ns, t = 1, . . . , n

leads to the centroid form of the estimator of f based on all
the information available at the time n

f̂n(x) =

f̂n−1(x)
n−1∑
s=1

Ns +Nnf̃n(x)

n∑
s=1

Ns

.
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è As a direct consequence, we get :

f̂n(x) =
1

n∑
s=1

Ns

n∑
s=1

c0(hs)

Ns∑
j=1

Kh2
s
(x,Xsj).

è When the Wt’s have widths Nt = 1 and if a single bandwith
parameter is used (ht = h), for all t = 1, . . . , n, we get

f̄n(x) =
c0(h)

n

n∑
t=1

Kh2(x,Wt),

which is nothing more than the kernel density estimator of Hall
et al. (1987).
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Bias-variance decomposition

Proposition

E
(
f̂n(x)

)
− f(x) = h2

nθ2µ(K)Ψ(f,x) + o(1),

and

Var
(
f̂n(x)

)
=

1

nhp−1
n

θ1−p
r
R(K)f(x) + o(1),

as n→∞
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where : Nn → r;
1

n

n∑
s=1

(
hs
hn

)q
→ θq as n→∞

Ψ(f,x) = p−1
[
∇2f(x)− x′H(x)x

]
,

µ(K) =

∫ ∞
0

v(p−1)/2K(v)dv(∫ ∞
0

v(p−3)/2K(v)dv

)
and

R(K) =

∫ ∞
0

v(p−3)/2K2(v)dv

2(p−3)/2ωp−1

(∫ ∞
0

v(p−3)/2K(v)dv

)2 .
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Almost sure convergence

Proposition

lim sup
n→∞

√
nhp−1

n

ln lnn

(
f̂n(x)− Ef̂n(x)

)
=

√
2
θ1−p
r
f(x)R(K) a.s.

In particular, if hn = h0

(
ln lnn
n

)1/(p+3)
, h0 > 0, then

lim sup
n→∞

( n

ln lnn

)2/(p+3) (
f̂n(x)− f(x)

)
=

√
2h1−p

0

θ1−p

r
f(x)R(K)+h2

0θ2µ(K)Ψ(f,x)a.s.
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Asymptotic normality

Proposition

If there exists h0 ≥ 0 such that nhp+3
n → h0, then√

nhp−1
n

(
f̂n(x)− f(x)

)
D→ N

(√
h0θ2µ(K)Ψ(f,x),

θ1−pR(K)f(x)
r

)
as n→∞.
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Optimal bandwidth

è Minimizing the mean integrated square error
with respect to hn yields to the optimal choice of bandwidth

hn =

[
θ1−p
rθ2

2

· (p− 1)R(K)

4µ(K)2
∫
Sp−1 Ψ2(f,x)ωp(dx)n

]1/(p+3)

,

for which we obtain that for which we obtain that

θ2 = lim
n→∞

1

n1−2/(p+3)

n∑
s=1

s−2/(p+3) =
p+ 3

p+ 1

and θ1−p =
θ2

2
.
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è For r = 1, we obtain that the Asymptotic Relative Error
between f̄n(x) and f̂n(x) is given by

ARE(f̄n(x)/f̂n(x)) = θ1−p
4

(p+3) θ
(2p−2)
(p+3)

2 =

(
1

2

) 4
(p+3)

(
p+ 3

p+ 1

) (2p+2)
(p+3)

.

è A plot of ARE(f̄n(x)/f̂n(x)) for various values of p ≥ 2 is
provided in the next figure.
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Figure: Plot of the ARE between f̄n(x) and f̂n(x)

(
AMISE(f̂n(x))
AMISE(f̄n(x))

)
for various

values of p ≥ 2.
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è Inspection of the Figure reveals that the non-recursive
estimator is slightly more efficient than its recursive
counterpart.

è The maximum value of ARE(f̄n(x)/f̂n(x)) in (2.1) (viewed
as a continuous function of p) is given by 1.08896 and is
obtained for

p = (3− e1−log 2)/(e1−log 2 − 1) ≈ 4.56.

è The maximum loss of efficiency of the recursive estimator with
respect to its non-recursive counterpart is quite small.

è It is also easy to show that

lim
p→∞

ARE(f̄n(x)/f̂n(x)) = 1

so that the loss of efficiency vanishes as the dimension p
increases.
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Regression estimation by local polynomial fitting for
multivariate data streams

è

Wt := {(Xt1, Yt1) , . . . , (XtNt , YtNt)} , t = 1, . . . , n,

the sub-sample (Xt1, Yt1) , . . . , (XtNt , YtNt) is a sequence of
random vectors identically distributed as a stationary
stochastic process (X, Y ) valued in Rd × R (d ≥ 1).

è We assume that the (Xtj , Ytj)’s have a common joint density
f(X,Y )(·, ·).
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è The goal is to provide a local polynomial estimator of the
regression function

r(x) = E (Y |X = x)

and its derivatives in the data streams framework.

Ruppert and Wand (AOS 1994), Fan and Gijbels (Chapman & Hall
1996), Masry (SPA 1996), Vilar and Vilar (TEST 2000), Gu et al.
(Econ. Rev. 2015),. . .
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è Given x ∈ Rd and p ∈ N, assume that the regression function
has derivatives of total order p+ 1 at x.

è The multivariate Taylor formula provides an approximation of
r(X) by a multivariate polynomial of total order p as :

r(X) ' r(x) +
∑

{k∈Nd : 1≤|k|≤p}

1

k!

∂|k|r

∂xk
(x) (X− x)k (3.1)

where :

|k| =
d∑
i=1

ki; k! =

d∏
i=1

ki! and xk =

d∏
i=1

xkii .
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è Taking into account the observations available in
W1, . . . ,Wn, we can derive the locally weighted least squares
estimators of the quantities

βk =
1

k!

∂|k|r

∂xk
(x), 0 ≤ |k| ≤ p

by minimizing the objective function

n∑
t=1

Nt∑
j=1

Ytj −
∑

{k∈Nd : 0≤|k|≤p}
βk (Xtj − x)k


2

ω
(n)
tj (x),

(3.2)
where the weights ω(n)

tj are defined by

ω
(n)
tj (x) =

1

N (n)hdt
K

(
Xtj − x

ht

)
, (3.3)
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Notations

è For u = 0, . . . , p, let

Lu =
{
k ∈ Nd, |k| = u

}
and q =

p∑
u=0

(
u+ d− 1

d− 1

)
.

Define L as the set of q d-tuples obtained by rearranging the
elements of the sets L0, . . . , Lp with respect to the
lexicographic order and concatenating them as a triangular
array.
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è For example, if d = 2 :

L =



(0, 0),
(0, 1), (1, 0),
(0, 2), (1, 1), (2, 0),
(0, 3), (1, 2), (2, 1), (3, 0),

...
(0, p), (1, p− 1), (2, p− 2), (3, p− 3), . . . , (p, 0)


.
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è Let g be a continuous bijective function such that :

g : L −→ {0, . . . , q − 1}
k 7−→ i

,

where i denotes the index of the d-tuples k in the set L.
è We note that

g−1(i) = [i] for any i = 0, . . . , q − 1.
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è According to the above notation, for any t ∈ {1, . . . , n}, one
can define the matrices

β =


β[0]

...
β[q−1]

 and Xt =


1 (Xt1 − x)[1] . . . (Xt1 − x)[q−1]

1 (Xt2 − x)[1] . . . (Xt2 − x)[q−1]

...
1 (XtNt − x)[1] . . . (XtNt − x)[q−1]

 :=


XT
t1
XT
t2
...
XT
tNt

 .

è Finally, set

Yt =
(
Yt1, . . . , YtNt

)T
and Ω

(n)
t = diag

(
ω

(n)
t1 , . . . , ω

(n)
tNt

)
, t = 1, . . . , n.
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è Then, the derivative of (3.2) with respect to β is simply the
empirical counterpart of

2

n∑
t=1

NtE
(
ω

(n)
t1
Xt1XT

t1β − Yt1ω
(n)
t1
Xt1
)

=: 2F (β) .

è The intention of the exercise is to solve F (β) = 0.
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Local polynomial regression estimation

è Let β̂n =
(
β̂

(n)
[0] , · · · , β̂

(n)
[q−1]

)T
be an estimator of β based on

W1, . . . ,Wn.
è The the multivariate Newton-Raphson procedure yields to

consider

β̂n = β̂n−1 −D−1
n F̂n

(
β̂n−1

)
, (3.4)

where Dn is an estimate of the matrix
∂F

∂β
(β) based on

W1, . . . ,Wn and F̂n (·) is an estimator of F (·) based on the
sub-sample Wn only, that is, the observations received at
“time” n.

Ruppert (AOS 1985).
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è Observe that :

∂F

∂β
(β) =

n∑
t=1

NtE
(
ω

(n)
t1
Xt1XT

t1

)
.

è Then the empirical counterparts of
∂F

∂β
(β) and F (β) are

respectively defined by :

Dn =

n∑
t=1

XT
t Ω

(n)
t Xt

and

F̂n

(
β̂n−1

)
= XT

n Ω(n)
n Xn

[
β̂n−1 −

(
XT
n Ω(n)

n Xn
)−1
XT
n Ω(n)

n Yn
]
,
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which together with (3.4) indicate that

β̂n = (Iq − Γn)β̂n−1 + Γnβ̃n, (3.5)

where

Γn = D−1
n XT

n Ω(n)
n Xn, β̃n =

(
XT
n Ω(n)

n Xn
)−1
XT
n Ω(n)

n Yn

and Iq is the unit matrix of size q.
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è The vector β̃n is simply the weighted least squares estimator of
β based on the bach
Wn :=

{
(Xn1, Yn1) , . . . , (XnNn , YnNn)

}
.

è The expression (3.5) bears a resemblance in its structure to
the exponential smoothing scheme, except for the fact that in
(3.5), the smoothing parameter is a matrix.

è This relation can be understood as a multivariate
Robbins-Monro recursivity, with a step size in a matrix form.
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è Setting Vt = N (n)Ω
(n)
t , Dn can be reformulated as

Dn =
1

N (n)

n∑
t=1

XT
t VtXt.

è Using the relation

Dn+1 =

[
1− Nn+1

N (n+1)

]
Dn +

1

N (n+1)
XT
n+1Vn+1Xn+1

and the Woodbury matrix identity, we found that :
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D−1
n+1 =

(
1 +

Nn+1

N (n)

)[
D−1
n −

1

N (n)
D−1
n XT

n+1V
1/2
n+1C

−1V
1/2
n+1Xn+1D

−1
n

]
,

where
C = INn+1 +

1

N (n)
V

1/2
n+1Xn+1D

−1
n XT

n+1V
1/2
n+1.
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è Computational coast : O

(
n∑
s=1

Ns

)
è In the traditional case Nt = 1 for all t, our estimator β̂n is a

sequential version of the local weighted estimator which is
obtained by considering a sequence a of bandwidth parameters
ht > 0 rather than a single bandwidth parameter in the
definition of the ω(n)

tj .
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è Set :
Hn = diag

(
1, hn, h

2
n, . . . , h

q−1
n

)
,

θj = lim
n→∞

1

n

n∑
t=1

(
ht
hn

)j
;µi =

∫
Rd

uiK(u)du; γi =

∫
Rd

uiK2(u)du;
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è Arrange the elements of the set :

Dp+1 =

{
1

k!

∂|k|r

∂xk
(x) : |k| = p+ 1

}
,

using the lexicographic order and refer to them as a column
vector bp+1(x).

è Set Q = #Dp+1 + q + 1 and define the matrix A whose
(i, j)-th component is

aij = θ[i−1]+[j−1]µ[i−1]+[j−1] with 1 ≤ i ≤ q and q + 1 ≤ j ≤ Q.

è Let B and V represent q × q matrices defined by the entries :

bij = θ2
[i−1]+[j−1]µ

2
[i−1]+[j−1] and vij = θ[i−1]+[j−1]−dγ[i−1]+[j−1];
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Under weak assumptions, we have

√
nhdn

[
Hn

(
β̂n − β

)
− hp+1

n B−1Abp+1(x)
]
D−→ N (0q,Σ) ,

where

Σ :=
σ2
Y (x)

κfX(x)
B−1V B−1.

49/81 Nonparametric estimation for multivariate data streams



Introduction
Density estimation for directional data streams

Regression estimation by local polynomial fitting for multivariate data streams
Estimation of a space-varying distribution

Simulations studies

Algorithms for numerical computations
1. Fix an integer n0 ≥ 1 (resp. n > n0) as the starting (resp. the ending) time of the estimation

procedure ;
2. Choose a tolerance level ε > 0 and a kernel K ;
3. Initialization : k −→ n0

(a) observe the windows W1, . . . ,Wk ;

(b). compute N(k), the total number of observations available at the time k.
(c) compute the bandwidth hk ;
(d) for t = 1, . . . , k :

i. compute the sample size Nt of the sub-sample Wt ;
ii. extract the design matrix Xt and the response vector Yt ;
iii. for j = 1, . . . Nt :

compute the weights ω(k)
tj (x)

end for
iv. define the diagonal matrix of weights Ω

(k)
t = diag

(
ω
(k)
t1 (x), . . . , ω

(k)
tNt

(x)
)
;

end for ;
(e) concatenate the matrices of weights in a quasi-diagonal matrix Ω

†
k
;

(f) define the initial design matrix and response vector : X†
k

and Y†
k

(g) compute the matrices Tk = X†
k

T
Ω
†
k
Y†
k
, Dk = X†

k

T
Ω
†
k
X†

k
and D−1

k
;

(h) compute the recursive estimator as β̂k = D−1
k
Tk

i. save Nk, hk, D−1
k
, β̂k.
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4. if k + 1 < n :

(a) k −→ k + 1

i. observe Wk
ii. compute the sample size Nk of the sub-sample Wk ;
iii. update the total number of observations : N(k) = N(k−1) +Nk.
iv. extract the current design matrix Xk and the response vector Yk ;
v. update the bandwidth : hk−1 −→ hk ;
vi. t −→ k

repeat steps 3(d)i – 3(d)iv to obtain Vk = N(k)Ω
(k)
k

;

vii. compute the matrix Ck, its inverse C
−1
k

and the matrix Tk =
1

N(k)
XT

kVkXk.

viii. update D−1
k

:

ix. compute the step-size matrix Γk = D
−1
k Tk.

x. update the local linear estimator β̂k = (Iq − Γk)β̂k−1 + XT
k Ω

(k)
k
Yk

xi. save Nk, N
(k), hk, D

−1
k
, β̂k.

(b) if ‖β̂k − β̂k−1‖ > ε
repeat 4(a)

end if

end if
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Bandwidth selector

bandwidth
1 At step 3(c) of the preview algorithm, compute hk using the subsample Wk (by cross

validation or other method) ;
2 At step 4(a)v of the preview algorithm, update the bandwidth using a recursive estimator

given by the convex combination

ĥk =

(
1−

1

k

)
ĥk−1 +

1

k
h̃(Wk),

where h̃(Wk) is the bandwidth selected based on the data available in the window Wk ;

end bandwidth

52/81 Nonparametric estimation for multivariate data streams



Introduction
Density estimation for directional data streams

Regression estimation by local polynomial fitting for multivariate data streams
Estimation of a space-varying distribution

Simulations studies

Estimation of a space-varying distribution

è Let In be a surface of cardinal n, which is a finite subset of a
potentially observable region D ⊂ ZN , where ZN is endowed
with the uniform metric.

è Assume that we observe a sequence of arrays

W(s,t) :=
{
X(s,t)1, . . . , X(s,t)k(s,t)

}
,

(s, t) ∈ In × {1, . . . , T} := Dn,T , where the sub-sample
X(s,t)1, . . . , X(s,t)k(s,t) is a sequence of Rd-valued random
vectors identically distributed with distribution G(s,t) and
density g(s,t) with respect to Lebesgue measure.

è k(s, t) may be random.

53/81 Nonparametric estimation for multivariate data streams



Introduction
Density estimation for directional data streams

Regression estimation by local polynomial fitting for multivariate data streams
Estimation of a space-varying distribution

Simulations studies

è Here g(s,t) depends on an overall density function f with
distribution function F such that

g(s,t)(·) = α(s,t)(·)f(·). (4.6)

è The aim is to provide an estimator f̂ of the density f based on
the independent samples W(s,t), (s, t) ∈ Dn,T .
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è Let
n̂ :=

∑
(u,v)∈Dn,T

k(s, t)

be the overall sample size and

p(s, t) := k(s, t)/n̂

the proportion of the observations at the site s and time t
relative to the overall sample.

è Define

Ĝ(s,t)(x) :=
1

k(s, t)

k(s,t)∑
j=1

1{X(s,t)j≤x}

the local empirical distribution.

55/81 Nonparametric estimation for multivariate data streams



Introduction
Density estimation for directional data streams

Regression estimation by local polynomial fitting for multivariate data streams
Estimation of a space-varying distribution

Simulations studies

è From (4.6), one may write :

f(x) =

∑
(s,t)∈Dn,T

p(s, t)g(s,t)(x)

∑
(s,t)∈Dn,T

p(s, t)α(s,t)(x)
(4.7)

or

f(x) =
∑

(s,t)∈Dn,T

p(s, t)g(s,t)(x)

α(s,t)(x)
(4.8)

since ∑
(s,t)∈Dn,T

p(s, t) = 1.
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è Let us focus to (4.7), and write :

F (u) =

∫ u

−∞
f(x)dx =

∫ u

−∞

∑
(s,t)∈Dn,T

p(s, t)g(s,t)(x)

∑
(s,t)∈Dn,T

p(s, t)α(s,t)(x)
dx

=
∑

(s,t)∈Dn,T

p(s, t)E

 1{X(s,t)1≤u}∑
(s,t)∈Dn,T

p(s, t)α(s,t)

(
X(s,t)1

)
 .

(4.9)
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è Replacing (4.9) by its empirical conterpart, we get

F̂ (u) =
1

n̂

∑
(s,t)∈Dn,T

k(s,t)∑
j=1

1{X(s,t)j≤u}∑
(s,t)∈Dn,T

p(s, t)α(s,t)

(
X(s,t)j

) .
è The indicator function 1{u−X(s,t)j≥0} may be modified by a

smoothed asymptotically unbiased replacement

H

(
u−X(s,t)j

b

)
such that H

(v
b

)
→ 1{v≥0} as b→ 0+.
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è So that if b := b(s,t)j (a single bandwidth is traditionally used
in temporal case)

F̂ (u) =
∑

(s,t)∈Dn,T

k(s,t)∑
j=1

H

(
u−X(s,t)j

b(s,t)j

)
∑

(s,t)∈Dn,T

k(s, t)α(s,t)

(
X(s,t)j

) .
è Take for instance,

H(v) =

∫ v

−∞
K(x)dx with

∫ +∞

−∞
K(x)dx = 1.
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è Consequently :

f̂(u) = C−1
∑

(s,t)∈Dn,T

k(s,t)∑
j=1

b−d(s,t)jK

(
u−X(s,t)j

b(s,t)j

)
∑

(s,t)∈Dn,T

k(s, t)α(s,t)

(
X(s,t)j

)
(4.10)

where

C =
∑

(s,t)∈Dn,T

k(s,t)∑
j=1

 ∑
(s,t)∈Dn,T

k(s, t)α(s,t)

(
X(s,t)j

)−1

.
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è Following the same idea as in Amiri (2012), the quantity b−d(s,t)j

in (4.10) can be substituted by

b
d(`−1)
n̂ b−d`(s,t)j , with ` ∈ [0, 1], bn̂ > 0.

è The parameter ` plays a role of regulation in quality
improvement of the estimator regarding the variance and the
estimation errors.

Amiri (JNPS, 2012)
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è In this case,

f̂(u) = C−1
`

∑
(s,t)∈Dn,T

k(s,t)∑
j=1

b−d`(s,t)jK

(
u−X(s,t)j

b(s,t)j

)
∑

(s,t)∈Dn,T

k(s, t)α(s,t)

(
X(s,t)j

)
(4.11)

and the normalization constant is :

C` =
∑

(s,t)∈Dn,T

k(s,t)∑
j=1

bd(1−`)
(s,t)j

∑
(s,t)∈Dn,T

k(s, t)α(s,t)

(
X(s,t)j

)−1

è Eq. (4.10) corresponds to the case ` = 1.
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è To simplify, the notations, let us consider the simple case
α(s,t) (·) = α0 : case of data stream without concept drift.

è For ` ∈ [0, 1], set

σ
[`]
s,t :=

k(s,t)∑
j=1

b
d(1−`)
(s,t)j ; σ

[`,n]
·t :=

∑
s∈In

σ
[`]
s,t;

σ
[`,T ]
s· :=

T∑
t=1

σ
[`]
s,t; σ

[`,n,T ]
·· :=

∑
(s,t)∈Dn,T

σ
[`]
s,t.
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Then from (4.11), the estimator of f is of the form :

f̂
[`]
n,T (x) =

1

σ
[`,n,T ]
··

∑
(s,t)∈Dn,T

σ
[`]
s,tf̃

[`]
(s,t)(x), (4.12)

where

f̃
[`]
(s,t)(x) =

1

σ
[`]
s,t

k(s,t)∑
j=1

1

bd`(s,t)j

K

(
x−X(s,t)j

b(s,t)j

)
(4.13)
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è Easy computations show that from (4.12), the overall density
estimator at the time T can be computed recursively via a
Robbins-Monro stochastic algorithm as

f
[`]
n,T (x) = γT f

[`]
n,T−1(x) + (1− γT ) f?·T , (4.14)

where

γT =
σ

[`,n,T−1]
··

σ
[`,n,T ]
··

is the step-size and

f?·T =
1

σ
[`,n]
·T

∑
s∈In

σ
[`]
s,T f̃

[`]
(s,T )(x)

is the density estimator based on the observations recorded
over the spatial domain In at time T .
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è Therefore, (4.14) indicates how to update the estimator from
its immediate past when n new observations are recorded over
the spatial domain In.
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Increasing domain and infill asymptotics

è The growth of the sample in increasing domain asymptotics is
a consequence of an unbounded expansion of the sample
region In.

è Under infill asymptotics the sample region is fixed and the
growth of the sample size is due to sampling that is dense in
the region D.

è Here, we consider the increasing domain asymptotics and for
simplicity the bivariate regular lattice (N = 2), described as :
D is a regular lattice and

In = {s = (s1, s2), 1 ≤ sj ≤ nj , j = 1, 2}

is rectangular.

Cressie (Wiley 1993).
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è More precisely, we have from top to bottom and right to left :

In =


(1, 1) (2, 1) (n1, 1),
(1, 2) (2, 2) (n1, 2)
...

...
...

(1, n2), (2, n2) . . . (n1, n2)

 .

è For simplicity, renumber (using a lexicographic order) the
observations {X(s,t)j , s ∈ In} as a triangular array
{X(k,t,n)j , k = 1, ..., n}.

è In this case, each site s = (s1, s2) ∈ In is identified by an
indice k = n2(i− 1) + j in the triangular array setting.
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è Equation (4.14) allows us to update the estimation whenever a
new additional observation site appears.

f
[`]
n,T (x) =

σ
[`,n−1,T−1]
··

σ
[`,n,T ]
··︸ ︷︷ ︸
γ

(1)
n,T

f
[`]
n−1,T−1(x) +

σ
[`,n]
·T−1

σ
[`,n,T ]
··︸ ︷︷ ︸
γ

(2)
n,T

f?·T−1(x)

+
σ

[`,T ]
sn·

σ
[`,n,T ]
··︸ ︷︷ ︸
γ

(3)
n,T

f?sn·(x) +
σ

[`]
sn,T

σ
[`,n,T ]
··︸ ︷︷ ︸
γ

(4)
n,T

f̃
[`]
(sn,T )(x),

where f?sn·(x) =
1

σ
[`,T ]
sn·

T−1∑
t=1

σ
[`]
sn,tf̃

[`]
(sn,t)

(x).

è Observe that
4∑

k=1

γ
(k)
n,T = 1.
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Particular cases

è h(s,t)j = h(s,t), for any 1 ≤ j ≤ k(s, t) (choice of the same
value of smooth parameter for each window) :

f̃
[`]
(s,t)(x) =

1

k(s, t)bd(s,t)

k(s,t)∑
j=1

K

(
x−X(s,t)j

b(s,t)

)
(4.15)

and
σ

[`]
s,t = k(s, t)b

d(1−`)
(s,t)

70/81 Nonparametric estimation for multivariate data streams



Introduction
Density estimation for directional data streams

Regression estimation by local polynomial fitting for multivariate data streams
Estimation of a space-varying distribution

Simulations studies

è In particular, if k(s, t) = 1 for all (s, t) ∈ Dn,T , then we get :

f
[`]
n,T (x) :=

1∑
(s,t)∈Dn,T

b
d(1−`)
(s,t)

∑
(s,t)∈Dn,T

1

bd`(s,t)

K

(
x−X(s,t)

b(s,t)

)
.

è Furthermore, in the special case when b(s,t) = bn̂

f
[`]
n,T (x) :=

1

n̂bn̂

∑
(s,t)∈Dn,T

K

(
x−X(s,t)

bn̂

)

is simply the classic Parzen- Rosenblatt kernel density
estimator in the spatio-temporal framework.

Wang and Wang (JNPS, 2009), Wang et al. (JNPS, 2012).
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è The von Mises kernel K(t) = e−t is considered in the
implementation of both algorithms.

è We estimated the bandwidths h1, . . . , hn by using the rule of
thumb described previously and a recursive version of the cross
validation method based on the squared-error loss.

ĥt = (1− γt)ĥt−1 + γtĥCV(Wt),

where ĥCV(Wt) is the bandwidth selected by a
cross-validation based on the data available in the window Wt.
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ĥCV(Wt) = arg min
h

2N−1
t

Nt∑
j=1

f̃tj(Xtj)−
∫
Sp−1

f̃2
tj(x)ωp(dx),

where

f̃tj(x) =
c0(ht)

Nt − 1

Nt∑
i 6=j

Kh2
t
(x,Xti)

is the density estimate constructed over the observations contained
in Wt leaving out the sample value Xtj .
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Figure: Boxplots of the average (over the M replications) mean square errors
(computed at the various times t = 1, . . . , 100) of the recursive (red boxes) and the
non recursive (blue boxes) density estimators computed at x = (0, 1) using the
cross-validation bandwidth selection (on the left) and the rule of thumb bandwidth
selection (on the right) with observations distributed as bivariate Fisher-von Mises
vectors (sampling scheme (i)) .
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Figure: Boxplots of the average (over the M replications) mean square errors
(computed at the various times t = 1, . . . , 100) of the recursive (red boxes) and the
non recursive (blue boxes) density estimators computed at x = (0, 0, 1) using the
cross-validation bandwidth selection (on the left) and the rule of thumb (on the right)
with observations distributed as (p =)3-dimensional Fisher-von Mises vectors
(sampling scheme (ii)) .
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A simulation study

è We generated M = 100 data streams from the model

Yi = sin(0.5πXi) + εi, εi = 0.5εi−1 + ηi,

Xi ∼ U[−3,3], ηi ∼ B(0.5), i = 1, . . . , 7200

è Once any simulated database is created and saved on disk, we
opened a connection to the file where it was written and
treated it as a stream § such that Nt = 24 and n = 300.

è Goal : estimate
(
β[0], β[1]

)
.

§. https ://cran.r-project.org/web/packages/stream/stream.pdf
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è Then, at any instant t, the row data Wt is replayed back.
è In this context, in which there is a time-varying sample size,

our estimation procedure is started at the instant t0 = 1 and
the density estimator has been continuously updated with
respect to the time until they reach the final instant n.

è Also, in order to avoid unnecessary calculations, the algorithm
has been stopped if the absolute distance between two values
of the density estimator obtained in two successive steps is less
than 10−5.
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è Denoting by β̂t(xi)[m] the value of an estimator of β(xi)
computed (from the mth replication of the Monte-Carlo
procedure) at the point xi, i = 1, . . . 100 receiving the sample
Wt, t ∈ {1, . . . , n}, the efficiency (at the step t) of the
estimators is evaluated using the average mean square error

MSE
(
β̂t

)
=

1

100M

M∑
m=1

100∑
i=1

∥∥∥β(xi)− β̂t(xi)[m]
∥∥∥2
, (5.16)
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è We provide the sequence MSE
(
β̂t

)
, t = 1, . . . , 300.

t 10 50 100 200 300
Recursive estimator 0.9238 0.2525 0.2403 0.2308 0.2301

Non recursive estimator 0.1619 0.1561 0.1537 0.1516 0.1438

Table: MSE for comparing recursive and non recursive estimators
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è We also added the computational time elapsed for the
estimation of the density at one point using the usual kernel
estimator and its recursive version proposed here.

t 10 50 100 200 300
Recursive estimator 0.0012 0.0012 0.0012 0.0011 0.0012

Non recursive estimator 0.0241 0.236 0.9582 3.1297 7.5868

Table: Computational time in seconds for comparing recursive and non
recursive estimators
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Conclusion

We proposed algorithms for nonparametric estimation such that :
è the estimation procedure can only store a very limited amount

of data to summarize the data stream.
è the incoming data points cannot be permanently stored
è the estimation procedure can process data points as fast as the

data is arriving.
è the estimation procedure is able to deal with a data generating

process which evolves over space and time (e.g., distributions
change or new structure in the data appears.
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Extensions

è Asymptotic results with bandwidths obtained by stochastic
approximation ;

è Data stream in continuous time ;
è Other choices of the step-size matrix Γt

è Data stream with random batch size Nt ;
è Inference with non-stationary data streams (Concept drift) :
è ...
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