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= Data streams are massive data arriving in streams, and if they
are not analyzed immediately or stored, then they are lost
forever.

®» In many scientific and real applications, large amount of raw
data can be collected extremely easily so that experiments
typically yield to a huge number of data points.

®» |n those situations, the data arrive so rapidly that it is
impossible for the user to store them all in disk (as a
traditional database), and then interact with them at the time
of our choosing.
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Wind directions data.

®» A dataset of wind directions
recorded minutely in June 2012 in

; Mourela, the north of Spain.
®» Many observed data points can be
- . 0 available in a very short period of
time.
®» The computational time of many
270 classical methods can quickly

become large.

= |f the wind directions are recorded continuously (and minutely), a
single week yields around 10080 observations on the unit circle.

oo I



Introduction
Density estimation for directional data

NASA MAGSAT dataset .

®» The NASA MAGSAT dataset consists in directions of the
magnetic field.

®» Measurements were made by the NASA's MAGSAT spacecraft
between Nov. 2, 1979 and May 6,1980.

T. Available from : http ://omniweb.gsfc.nasa.gov/ftpbrowser/magsat.html. This home page pro-
vides listing for magnetic field vectors, with a resolution around one observation per 0.5 second.
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A scatterplot of directional data streams :
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Listing for magsat data from 198001010000 to 198001012359

Selected parameters :

1 Geocentric Lat.
2 Geocentric Long.
3 Radial distance

MILLISEC
14181
14672
15164
15655
16147
16638
17130
17621
18604
19096
19587
20079
18604
19096
19587

oo I

i
68.296
68.326
68.355
68.384
68.414
68.443
68.472
68.502
68.560
68.589
68.619
68.648
68.560
68.589
68.619

2
-111.378
-111.406
-111.435
-111.464
-111.493
-111.523
-111.552
-111.581
-111.640
-111.669
-111.699
-111.728
-111.640
-111.669
-111.699

3
6881.902
6881.914
6881.922
6881.934
6881.949
6881.961
6881.969
6881.980
6882.004
6882.016
6882.027
6882.035
6882.004
6882.016
6882.027

20079
20571
21062
21554
22045
22537
23028
23520
24011
24503
24994
25486
25978
26469
26961
27452
27944
28435

68.648
68.677
68.707
68.736
68.765
68.794
68.824
68.853
68.882
68.911
68.941
68.970
68.999
69.028
69.057
69.087
69.116
69.145

-111.728
-111.758
-111.788
-111.818
-111.848
-111.878
-111.908
-111.938
-111.968
-111.998
-112.029
-112.059
-112.090
-112.120
-112.151
-112.182
-112.212
-112.243

170604 obs/day. |

6882.035
6882.051
6882.059
6882.070
6882.082
6882.094
6882.105
6882.113
6882.125
6882.137
6882.148
6882.160
6882.168
6882.184
6882.195
6882.203
6882.215
6882.227
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Density estimation for directional data

®» Many observed data points can be available in a very short
period of time.

» The sample size can rapidly becomes huge.

®» For example, if the data are recorded continuously, a single
week yields around 1194228 observations.

10,51/ —
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Intel Lab dataset !
®» Data collected from 54 sensors deployed in the Intel Berkeley
Research Laboratory.

Spatial positions of the 54 sensors in the Intel Berkeley Research
Laboratory

1. http ://db.csail.mit.edu/labdata/labdata.html.
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of a space-varying distribution

Simulations studies

Intel Lab dataset

121/


file:/Users/aboubacar/Desktop/animateIntel/index.html

Introduction

Density estimation for directional

sion estimation by local polynomi
Estimation of a space ying distribution
Simulations studies

®» The data consist of humidity, temperature, light and voltage
measurements recorded every 31 seconds between February
28th and April 5th, 2004.

®» Some data might be missing for specific times due to sensor
failures.

®» A single day yields a number of observations ranging from 0 to
2615 over one sensor.
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» The computational time of many classical methods can quickly
become large, so that a practitioner will not be able to obtain
a prediction rapidly.

= After a certain period of time, the statistician who has to
perform estimation based on traditional techniques can be
tempted by throwing away a part of the sample since the
estimation will start to take too much time to be updated.

141/
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» Consequently, to deal with such massive data, the traditional
nonparametric techniques rapidly require a lot of time to be
computed and therefore become useless in practice if real time
forecasts are expected.

®» How to process and analyze these data streams effectively and
efficiently 7

Aggarwal (Springer 2007), Domingos and Hulten (JCGS
2003), Cao et al. (IEEE TNNLS 2012), Xu et al. (Front
Comput Sci 2014)

151/
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Density estimation for directional data streams

®» Spherical or directional data are concerned with multivariate
data for which only the directions (and not the magnitudes)
are observed.

» The resulting data points belong to the unit sphere
SFli={veRl vv=1}

of RP.

16/81] Nonparametric estimation for multivariate data strea
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®» Assume that we sequentially observe independent random
matrices (called windows)

Wi = (X1, Xin, )1,

such that the columns Xy1,..., X1y, - Xp1 ... X, of
Wi,..., W, are i.i.d. absolutely continuous (with respect to

the usual surface area measure w, on SP~!) random vectors
on SP~1 with density f.

17,1/
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» |etting f(Wl, ..., W,,) stand for a kernel density estimator
computed from the first n windows.

= How to provide an estimator f such that
f(Wl, .oy Wy, W, 11) can be computed extremely quickly
from f(Wl, ..., W,,) (on-line estimation) while keeping nice
efficiency properties with respect to its natural competitors ?

15,1/ —



Density estimation for directional data streams

R.M. algorithm for the kernel density estimation

» | etting ft stand for the estimator constructed using the
windows W1, ..., W,.

» The Robbins-Monro recursivity yields to consider
Fi) = Foa () + 3 (fulx) = fia ()
where f,(x) is an appropriate estimator of f(x) computed

from W; only.

Robbins and Monro (AOS 1951).

19/81] Nonparametric estimation for multivariate data strea



Density estimation for directional data streams

w Hall et al. (1987), kernel-based estimator :

~ B C()(ht) Al ]
fi(x) = N, Zth (x, X5 ,
=1

where

)
Kp(u,v) =K (1%) )

with K is the directional kernel, h; > 0 a sequence of
bandwidth parameters and ¢((.) a normalizing constant
defined by

co(h)~ = i K2 (x,y)wp(dy).

20/81] Nonparametric estimation for multivariate data strea
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® The choice of step sizes :

t
Ve ::Nt/ZNS, t=1,...,n
s=1

leads to the centroid form of the estimator of f based on all
the information available at the time n

—~ n—1 -
R fn—l(x) Z N8+ann(x)
f’n(x) = 821n
>N,
s=1

151
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n Ng
) = S co(he) 3 Ko (x, Xo).
> Ny s=1 j=1

» When the W;'s have widths V; = 1 and if a single bandwith
parameter is used (hy = h), for all t =1,...,n, we get

Fu) = 25 K W),

which is nothing more than the kernel density estimator of Hall
et al. (1987).

/5
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Bias-variance decomposition

and

23/81 Nonparametric estimation for multivariate data strea
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where : N, —»r; — <S) — 04 as n — 00
1

and




Density estimation for directional data streams

Almost sure convergence

Proposition

nh™t ~ _
limsup | lnhf;m <fn(x) — Efn(X)) = \/261rpf(X)R(K) a.s.

In particular, if hy,, = ho (lnl%)l/ (P+3) ,ho > 0, then

n

tim sup () (£ - 60 = \/ 20y P8 ) ROK) RO ()W, B2

n—oo \nlnn

4

25/81] Nonparametric estimation for multivariate data strea
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Asymptotic normality

Proposition

If there exists hg > 0 such that nhPt3 ho, then

ke (fn(x) - f(x)) QN(\/h_onu(K)‘If(f, X%w)

as n — oQ. )

26/81] Nonparametric estimation for multivariate data strea



Density estimation for directional data streams

Optimal bandwidth

®» Minimizing the mean integrated square error
with respect to h,, yields to the optimal choice of bandwidth

)

01, (» — D)R(K) } 1/(p+8)

"B B [y VX dn

for which we obtain that for which we obtain that

n

_ 1 —2/(p+3) _ P+3
e, ) Z_; N T p+i

0
and 91_p = 52

27/81] Nonparametric estimation for multivariate data strea
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= For r =1, we obtain that the Asymptotic Relative Error
between f,(x) and f,(x) is given by

(2p+2)

s @ NG (p43)
ARE(fn(x)/ fu(x)) = 1, 796,777 = (2) <§+1> '

» A plot of ARE(f,(x)/fn(x)) for various values of p > 2 is
provided in the next figure.

o5
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Estimat

Asymptotic Relative Efficiency

1.08
1

ARE

AMISE( fn (x))

Plot of the ARE between f,,(x) and fr (x) <m

20,1 | ——

) for various
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Estima

®» Inspection of the Figure reveals that the non-recursive
estimator is slightly more efficient than its recursive
counterpart.

= The maximum value of ARE(fn(x)/ﬁ(x)) in (2.1) (viewed
as a continuous function of p) is given by 1.08896 and is
obtained for

p=(3—elT82) /(171082 _ 1) & 4.56.

®» The maximum loss of efficiency of the recursive estimator with
respect to its non-recursive counterpart is quite small.
®» |t is also easy to show that
lim ARE(f,(x)/fn(x)) =1

p—o0

so that the loss of efficiency vanishes as the dimension p
increases.

3o/
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Regression estimation by local polynomial fitting for
multivariate data streams

Wt = {(Xt17}/tl)7"‘7(XtNt)Y;th)}7 tZl""’”’

the sub-sample (X1, Y1), ..., (Xin,, Yin,) is a sequence of
random vectors identically distributed as a stationary
stochastic process (X,Y) valued in R x R (d > 1).

» \We assume that the (Xyj,Y;;)'s have a common joint density

f(X,Y)('? )

31/81] Nonparametric estimation for multivariate data strea
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» The goal is to provide a local polynomial estimator of the
regression function

r(x) =E(Y|X = x)

and its derivatives in the data streams framework.

Ruppert and Wand (AOS 1994), Fan and Gijbels (Chapman & Hall
1996), Masry (SPA 1996), Vilar and Vilar (TEST 2000), Gu et al.
(Econ. Rev. 2015),...

/o
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= Given x € R? and p € N, assume that the regression function
has derivatives of total order p + 1 at x.

®» The multivariate Taylor formula provides an approximation of
r(X) by a multivariate polynomial of total order p as :

Kl
FX) =+ Y 11'%x1<(x) (X —x)* (3.1)
{keNd : 1<k|<p}

where :

d d d
K| =) ki kl=]]k! andx*=]]a.
i=1 i=1 i=1

3/



Regression esti

®» Taking into account the observations available in

Wi, ..., W, we can derive the locally weighted least squares
estimators of the quantities
1 olkly
k:E@X, 0< |kl <p

by minimizing the objective function

2
n N,
S A T Ayt e
t] k (X5 — %) Wy (x),
t=1j=1 {keNd : 0<[k|<p}
(3.2)
where the weights wt(;’) are defined by
(n) _ 1 Xy — X
Wij (X) = N(")th < jht > ) (33)

205



Regression estimation by local polynomial fitting for multivar

Notations

» Foru=0,...,p, let

p
Ly={keN, [k =u} andq:Z(u;—fIl)
u=0

Define L as the set of ¢ d-tuples obtained by rearranging the

elements of the sets Ly, ..., L, with respect to the
lexicographic order and concatenating them as a triangular
array.

35/81 Nonparametric estimation for multivariate data strea
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®» For example, if d =2 :

) Y

)
1), (1,0),
) 1,1
)

Y (
o (1,2), (2,1), (3,0),

9

N N S N
o O O O
W N = O

)

(0,]9), (1,])*1), (Q,pr), (3,]?*3), ...,(p,())

o5 I
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®» |et g be a continuous bijective function such that :

g: L—{0,...,q—1}
k—i ’

where 7 denotes the index of the d-tuples k in the set L.
= \We note that

g Hi)=1i] forany i =0,...,q — 1.

7/
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= According to the above notation, for any t € {1

. y...,N}, one
can define the matrices
8 1 Xa-xl (X —x)lal Ea
(0] 1 (X2 — X)m cee (X2 — X)[qil] XtT‘Z
8= : and X, = | = :
Brg—1] 1 (Xew, — el (Xon, — x)la=1] XtTNt

» Finally, set

tht

V= <Y}1,...,Y}Nt>T and Q( —dlélg(&)ﬂ),.. (n)> t=1,...,n.

oo I
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= Then, the derivative of (3.2) with respect to j3 is simply the
empirical counterpart of

QZNt (wtl X XI5 — Yﬂwt(l);cﬂ> — 2F (8).

= The intention of the exercise is to solve F'(3) = 0.

oo
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Local polynomial regression estimation

» et Bn = (ﬁ(g]L), e ,B[q 1]) be an estimator of /3 based on

Iy---y W
®» The the multivariate Newton-Raphson procedure yields to

consider

B\n = gn—l - D;Iﬁn (B\n—l) 5 (3-4)J

where D,, is an estimate of the matrix % (ﬁ) based on
Wi1,...,W, and E, (-) is an estimator of F (-) based on the
sub-sample W, only, that is, the observations received at

“time"" n.

Ruppert (AOS 1985).
+0, 1/ S
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®» QObserve that :

®» Then the empirical counterparts of gg (B) and F (p) are

respectively defined by :

D, = Z xrom x,
t=1

and
Fo (Boer) = X702, (B - (T0002) " 2T,

151 R —
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which together with (3.4) indicate that

B\n = (Iq - Fn)gnfl + Fan (35)

where
~ —1

and I is the unit matrix of size ¢.

2o
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= The vector 3, is simply the weighted least squares estimator of
3 based on the bach

W, = { (Xn1, Y1) -5 (XnNnv YnNn) }
® The expression (3.5) bears a resemblance in its structure to

the exponential smoothing scheme, except for the fact that in
(3.5), the smoothing parameter is a matrix.

= This relation can be understood as a multivariate
Robbins-Monro recursivity, with a step size in a matrix form.

/0
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» Setting V; = N(”)an), D,, can be reformulated as
I = 7
Dn - W ;Xt %Xt
®» Using the relation

T
Xn+1 Vn+1 Xn+1

1
N (n+1)

Np11
Dn+1 = |:1 - ]\/'(T:Lil):| D, +

and the Woodbury matrix identity, we found that :

oy
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N, 1
1 _ n+l 1 1/2 1y7,1/2 1
-t (1 + ) ) |:Dn 7]\7(”) D, V C Vn 1 X1 D,

where
C = In VlJ/rQanJranl n—‘,—l‘/l/2

n—+1 ( ) n

o
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n
» Computational coast : O ZNS
s=1
In the traditional case N; = 1 for all ¢, our estimator En is a
sequential version of the local weighted estimator which is
obtained by considering a sequence a of bandwidth parameters

ht > 0 rather than a single bandwidth parameter in the
(n)

definition of the Wy

oo
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®» Set :
H, = diag (1, oy B2, ... h?fl)’
1< R\
0 — lim — Y = | WK (w)du; gy =
J 7L1~>H<}o n tz:; hn Hi Rd ( ) 7 R4

7,1/ —
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®» Arrange the elements of the set :

1 olkly

E@(X)i kl=p+1,,

Dpt1 =

using the lexicographic order and refer to them as a column
vector byy1(x).

» Set Q = #Dp+1 + ¢+ 1 and define the matrix A whose
(i,7)-th component is

aij = O 14—y Hii—1]+[j—1y With 1 <i<gand ¢+ 1 <5 < Q.
®» Let B and V represent g X ¢ matrices defined by the entries :

2 2 .
bij = O 14— Hi-+p-y  and Vi = O 1) o) -d V- 1)+ [-1)5

oo



Regression estimation by local polynomial fitting for multivar

Under weak assumptions, we have

\/Th;{ [Hn (En - ,6) -~ hg“B—lApr(x)} 25 N (0,,9),

where )
5.e X poappor
K X(X)

49/81] Nonparametric estimation for multivariate data strea
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Algorithms for numerical computations

1. | Fix an integer ng > 1 (resp. n > n) as the starting (resp. the ending) time of the estimation
procedure ;

2. | Choose a tolerance level ¢ > 0 and a kernel K ;

3. | Initialization : kK — ng

(a) ‘ observe the windows Wy, ..., W ;
(b). ‘ compute N (¥) the total number of observations available at the time k.
(c) | compute the bandwidth hy ;
(d) |fort=1,...,k:
i. ‘ compute the sample size N of the sub-sample W, ;
ii. | extract the design matrix X; and the response vector ); ;
i | forj=1,...Ny:
compute the weights wg?) (x)
| end for
iv. ‘ define the diagonal matrix of weights Qik) = diag (willc) (z),... ,wéi}t (:L‘)),
| end for;
(e) ‘ concatenate the matrices of weights in a quasi-diagonal matrix QL ;
(f) ‘ define the initial design matrix and response vector : X,;r and y,ﬁ
. T T —
(g) ‘compute the matrices T}, = XII ngl, Dy = X,;r QLX,I and D 1;
(h) ‘ compute the recursive estimator as 8, = D;lTk
i ‘save Ng, hg, D;l, Ek

estimation for multivariate data strea

50/81]



Introducti
ty estimation for directional data str
Regression estlmatlon by local polynomial fitting for multiva

on of a space-varying distribut
Simulations studi

lifk4+1<n:
| observe Wi,
| compute the sample size N of the sub-sample Wy ;
‘ update the total number of observations : Nk = n(k=1) + Ng.
| extract the current design matrix X}, and the response vector Y ;
| update the bandwidth : hy_ 1 — hy;
It — k
‘ repeat steps 3(d)i — 3(d)iv to obtain V;, = N(k)Qgck) H
compute the matrix C},, its inverse C;] and the matrix T}, = N(k) X,‘ Vi X
update D; 1

compute the step-size matrix Iy, = D;lTk.
update the local linear estimator Eh =(Iq — rk’)Ek71 + X;Iflik)yk
k -1 7
|save Ny, N®) hy, Dt By
if 1Bk — Br—1ll > €

| repeat 4(a)
end if

end if

1/
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Bandwidth selector

bandwidth

o At step 3(c) of the preview algorithm, compute hj using the subsample W, (by cross
validation or other method) ;
At step 4(a)v of the preview algorithm, update the bandwidth using a recursive estimator
given by the convex combination

—~ 1\ ~ 1.
hp =(1— — | hp_ —h(Wp),
k ( k) k1+k( k)

where h(W},) is the bandwidth selected based on the data available in the window W, ;
end bandwidth

52/81] metric estimation for multivariate data strea




Estimation of a space-varying distribution

Estimation of a space-varying distribution

®» | et 7,, be a surface of cardinal n, which is a finite subset of a
potentially observable region D C Z", where Z" is endowed
with the uniform metric.

®» Assume that we observe a sequence of arrays

Wisy) = {X(s,t)la - 7X(s,t)k(s,t)}7

(s,t) € Z, x {1,...,T} := Dy, 1, where the sub-sample
X(s,t)15 -+ s X(s,t)k(s,t) IS @ sequence of R?-valued random
vectors identically distributed with distribution G s ) and
density g(s ) with respect to Lebesgue measure.

» k(s,t) may be random.

53/81] Nonparametric estimation for multivariate data strea
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= Here g(s ) depends on an overall density function f with
distribution function F" such that

9 () = () (). (4.6)

® The aim is to provide an estimator fof the density f based on
the independent samples W), (s,t) € Dy 7.

oo
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» |et

(u7v)€Dn,T

be the overall sample size and

p(s,t) :==k(s,t)/n

the proportion of the observations at the site s and time ¢
relative to the overall sample.

®» Define

1 k(s,t)
G (@) = k(s,t) Z Lix o <o}

j=1
the local empirical distribution.

5o
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= From (4.6), one may write :
Z p<s7t)g(s,t) (.’E)
(S:t)epn,T

Y sty ()

(Svt)GDn,T

flx) = (4.7)

or
fa = Y p(s,t)gs (@) (4.8)
Dy CE0(®)
since
> plst)=1
(S,t)e'Dn?T

oo I
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= | et us focus to (4.7), and write :

Z p(S, t)g(s,t) (Z’)
(S t E/Dn T
Fy= [ fl da
/ / p(s,t)as ()

(s t)epn T
- Z p(s t)E ]I{X(s,t)lﬁu}
(s,t)EDn T Z p(s,t)a(svt) (X(s,t)l)
(s,t)E€Dp

(4.9)
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Plu) = & ki) .
n ; > pls sy (X ;)

(S:t) E’Z)'n,,T

®» The indicator function Liu—xX( ;>0 MAY be modified by a
smoothed asymptotically unbiased replacement
U — X(gt)i
H (b(st)ﬂ> such that H <%> — L0y as b — ot.
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= So that if b := b(s4); (a single bandwidth is traditionally used

in temporal case)
U — X(s)i
k(s.t) q < (S:t)J>

= bs,1)j
(s,t)€D, 7 =1 Z k‘(svﬂo‘(s,t) (X(s¢)j)

(SJ,)E'Dn’T

®» Take for instance,
v “+00
H(v) = / K (z)dz with K(z)dz = 1.

—0o0
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_ u— X(s,)j
k(s,t) b(s‘ft)jK (b(])

fup=ct Y .
(s,;t)€Dp 1 j=1 Z k'(s?t)a(s,t) (X(s,t)j)
(S,t)E’Dn’T

(4.10)

C= > ks, Do (Xe.;)

(S¢t)€Dn T -7:1 (Svt)GD'rL,T
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= Following the same idea as in Amiri (2012), the quantity b(jt)j
in (4.10) can be substituted by

pd “b(;if) with € € [0,1], bs > 0.

®» The parameter /¢ plays a role of regulation in quality
improvement of the estimator regarding the variance and the
estimation errors.

Amiri (JNPS, 2012)
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®» |n this case,

—de u— Xs)j
fluy=Cy :
(s,)€Dn. 1 j=1 Z k(s )as (X))
(S,t)GDn’T

(4.11)
and the normalization constant is :

-1

Cy = Z Z (s f)j Z k(s )as) (Xs;)

(Svt)E/DnﬁT J 1 (Svt)EDn,T

= Eq. (4.10) corresponds to the case ¢ = 1.
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» To simplify, the notations, let us consider the simple case
s,t) (1) = ap : case of data stream without concept drift.

» For £ € [0, 1], set

k(s,t)
l d(1-¢ In 4
im0 o e 3ol
7=1 se€Z,
14 d l ¢ 14
T n, T
UL. V= ZO’L;; i Z Ugl.
t=1 (Svt)GDn,T
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Then from (4.11), the estimator of f is of the form :

¢ 1 0~
Fir@ = el 2 out A}s},t) (), (4.12)
g (S$t)€D7L,T
where
k(s,t)
A‘[E] _ 1 1 X — X(S,t)j
Jsat j:1 (S’t)j (Svt)]
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= Easy computations show that from (4.12), the overall density
estimator at the time 1" can be computed recursively via a
Robbins-Monro stochastic algorithm as

@) = e @) + (=) £ (4.14)
where
[6,n,T—1]
ag..
T = [,n,T)
ag..

is the step-size and

N 1
f~T: [e.n] Z FST)( )

O seI,

is the density estimator based on the observations recorded
over the spatial domain Z,, at time T
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= Therefore, (4.14) indicates how to update the estimator from
its immediate past when n new observations are recorded over
the spatial domain Z,,.
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Increasing domain and infill asymptotics

®» The growth of the sample in increasing domain asymptotics is
a consequence of an unbounded expansion of the sample
region Z,,.

= Under infill asymptotics the sample region is fixed and the
growth of the sample size is due to sampling that is dense in
the region D.

®» Here, we consider the increasing domain asymptotics and for
simplicity the bivariate regular lattice (N = 2), described as :
D is a regular lattice and

I, ={s=(s1,82), 1 <s; <mj,j=1,2}
is rectangular.

Cressie (Wiley 1993).
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(171> (27 1) (nlvl)a
(1)2) (2’2) (n172)

(Lng), (2ma) .. (n1,mo)

= For simplicity, renumber (using a lexicographic order) the
observations {X();, s € Z,} as a triangular array

{X(k,t,n)ja k= 1, ,n}
= In this case, each site s = (s1, 52) € Z,, is identified by an
indice K = ny(i — 1) 4 j in the triangular array setting.
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= Equation (4.14) allows us to update the estimation whenever a
new additional observation site appears.

. U[é,n—l,T—l] . U[f n]
fn,T($) = T nd fn¥1,T_1($) [MT fir_1(z)
g..
———— \_ —
¢ (@)
A/’VL,T ’Yn,T
[6,T] o
Os,,- * sn, T 71
+ SlenT] o () + U[M,T} f(Sn,T) (z),
7(3) 7(4)
n,T n,T
where f;”.( — eT] [él sn, (@

=» Observe that Z%% =1.
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Particular cases

™ Ns,t)j = sy, for any 1< j < k(s,t) (choice of the same
value of smooth parameter for each window) :

k(s,t)

710 — X, m)
Fiam(@) = Z K( e (4.15)

and

ol = k(s, by

70/81] Nonparametric estimation for multivariate data strea
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® |n particular, if k(s,t) =1 for all (s,t) € D,, 7, then we get :

1 1 T — X(s t)
Fuip (@) = — > K ( 7 ) _
E b(s(vt) ) (S’t)EDrL,T b(svt) b(s’t)

(Svt) ED'n,.,T

= Furthermore, in the special case when b ;) = by
1 xr — X ,t
fn T( ) -~ Z K &0
nbs bs
(S7t)epn,T

is simply the classic Parzen- Rosenblatt kernel density
estimator in the spatio-temporal framework.

Wang and Wang (JNPS, 2009), Wang et al. (JNPS, 2012).
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Simulations studies

= The von Mises kernel K(t) = et is considered in the
implementation of both algorithms.

®» \We estimated the bandwidths hq, ..., h, by using the rule of
thumb described previously and a recursive version of the cross
validation method based on the squared-error loss.

B = (1 —y)he—1 + 'YtECV(Wt),

where ﬁcv(Wt) is the bandwidth selected by a
cross-validation based on the data available in the window W.

72/81] Nonparametric estimation for multivariate data strea
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N
hov (W) = argmin 2N 3 fy () = [ R x)ep(a)
j=1 Sp-1

where

Fii(x) = CO (h) ZKhz (x, X41)

is the density estimate constructed over the observations contained
in W, leaving out the sample value X;.
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Cross-validation Rule of thumb
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Boxplots of the average (over the M replications) mean square errors
(computed at the various times ¢t = 1,...,100) of the recursive (red boxes) and the
non recursive (blue boxes) density estimators computed at x = (0, 1) using the
cross-validation bandwidth selection (on the left) and the rule of thumb bandwidth
selection (on the right) with observations distributed as bivariate Fisher-von Mises
vectors (sampling scheme (i)) .

741/



Simulations studies
. Rule of thumb
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Boxplots of the average (over the M replications) mean square errors
(computed at the various times ¢ = 1,...,100) of the recursive (red boxes) and the
non recursive (blue boxes) density estimators computed at x = (0,0, 1) using the
cross-validation bandwidth selection (on the left) and the rule of thumb (on the right)
with observations distributed as (p =)3-dimensional Fisher-von Mises vectors
(sampling scheme (ii)) .
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A simulation study

=» \We generated M = 100 data streams from the model
Y, = Sin(0.57TXi) + i, € =0.5e;_1 + i,

Xi~U sy, mi~B05), i=1,..,7200

®» Once any simulated database is created and saved on disk, we
opened a connection to the file where it was written and
treated it as a stream$ such that N; = 24 and n = 300.

» Goal : estimate (S0}, B1) -

§. https ://cran.r-project.org/web/packages/stream/stream.pdf
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®» Then, at any instant ¢, the row data W, is replayed back.

®» |n this context, in which there is a time-varying sample size,
our estimation procedure is started at the instant ¢t = 1 and
the density estimator has been continuously updated with
respect to the time until they reach the final instant n.

®» Also, in order to avoid unnecessary calculations, the algorithm
has been stopped if the absolute distance between two values
of the density estimator obtained in two successive steps is less
than 107°.
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= Denoting by BL(:L’Z-)[’”] the value of an estimator of [(x;)
computed (from the mth replication of the Monte-Carlo
procedure) at the point z;,7 = 1,...100 receiving the sample
Wi, t € {1,...,n}, the efficiency (at the step t) of the
estimators is evaluated using the average mean square error

MSE (5t> 1()OM Z ZHﬁ (v:) = Bi(a [m]H (5.16)
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» We provide the sequence MSE (Bt) ,t=1,...,300.

t 10 50 100 200 300

Recursive estimator 0.9238 0.2525 0.2403 0.2308 0.2301
Non recursive estimator  0.1619 0.1561 0.1537 0.1516  0.1438

MSE for comparing recursive and non recursive estimators
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®» \We also added the computational time elapsed for the
estimation of the density at one point using the usual kernel
estimator and its recursive version proposed here.

t 10 50 100 200 300
Recursive estimator 0.0012 0.0012 0.0012 0.0011 0.0012
Non recursive estimator  0.0241 0.236 0.9582 3.1297 7.5868

Computational time in seconds for comparing recursive and non
recursive estimators
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Conclusion

We proposed algorithms for nonparametric estimation such that :

®» the estimation procedure can only store a very limited amount
of data to summarize the data stream.

®» the incoming data points cannot be permanently stored

® the estimation procedure can process data points as fast as the
data is arriving.

®» the estimation procedure is able to deal with a data generating
process which evolves over space and time (e.g., distributions
change or new structure in the data appears.

81/81] Nonparametric estimation for multivariate data strea



Simulations studies

Extensions

» Asymptotic results with bandwidths obtained by stochastic
approximation ;

Data stream in continuous time;
Other choices of the step-size matrix T’
Data stream with random batch size V; ;

Inference with non-stationary data streams (Concept drift) :

Y Y VY

82/81] Nonparametric estimation for multivariate data strea
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