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Speed Dating using Least-Squares

• A deluge of data

• Fast algorithms are needed

• We must rely on simple models
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Speed Dating using Least-Squares

• A deluge of data

Dozens of thousands of virus sequences (eg 40,000 in the UK HIV database)

Origin of epidemics, phylodynamics, resistance mutations, surveillance

Dating is essential in all of these tasks

• Fast algorithms are needed

Linear in time and space (i.e. proportional to the number of taxa)

• We must rely on simple models

Gaussian, (truncated) normal distribution of the noise

Strict molecular clock (SMC), but robust
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Dating is essential in all of these tasks

• Fast algorithms are needed

Linear in time and space (i.e. proportional to the number of taxa)

• We must rely on simple models

Gaussian, (truncated) normal distribution of the noise

Strict molecular clock (SMC), but robust

• Suprizingly accurate!
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Speed Dating using Least-Squares

• Quick survey of dating models and methods

• The distance-based approach, root-to-tip regression and LF model

• A simple (but robust) Gaussian model

• Dating using linear algebra (LD, unconstrained)

• Quadratic programming dating (QPD, temporal constraints)

• Tree rooting

• Simulation results

• Application to a large H1N1 influenza data set

• Discussion

Quick survey – Basic principle
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Quick survey – Basic principle

Much more difficult than this with real data:

Phylogenetic uncertainty

Non molecular clock (unrooted) trees

Several (incompatible) calibration points

High uncertainty depending on the calibration point position

Quick survey – Basic principle
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Quick survey – Basic principle

Much more difficult than this with real data:

Phylogenetic uncertainty

Non molecular clock (unrooted) tree

Several (incompatible) sampling times

High uncertainty depending on sampling times, tree shape …

Quick survey – Basic principle
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Quick survey – Basic principle

Lader shape still visible, 
but dating is more difficult

Quick survey – Basic principle

Lader shape still visible, 
but dating is more difficult
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Quick survey – Input data

• Sequences/pairwise distances/topology/phylogeny

• Outgroup/ingroup only

• Rooted/unrooted phylogeny

• Internal calibration points/tips sampled through time

Quick survey – Main attempts

• Estimating the global rate of evolution

• Estimating several rates (before/after treatment) 

Constraints needed! 

• Estimating the root position and its date

• Estimating the dates of all nodes in the tree

• Estimating a complete, time-scaled tree (e.g. BEAST)
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Quick survey – Clock models

• Strict molecular clock: the time is proportional to the 
number of substitutions per site (plus noise)

• Uncorrelated rates, with known distribution (e.g. 
lognormal, with mean and variance to be estimated)

• Correlated under some model (e.g. the mean of 
daughter branch is drawn from a distribution with 
mean equal to mother’s rate)

Slow                 Fast

Relaxed, correlated clock models
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Relaxed, correlated clock models

Quick survey – Clock models

• Strict molecular clock: the time is proportional to the 
number of substitutions per site (plus noise)

• Uncorrelated rates, with known distribution (e.g. 
lognormal, with mean and variance to be estimated)

• Correlated under some model (e.g. the mean of 
daughter branch is drawn from a distribution with 
mean equal to mother’s rate)

• Models of increasing complexity, typically requiring 
MCMC or ABC algorithms, usually slow and limited to 
a few hundred taxa-sequences
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Quick survey – Clock models

• Strict molecular clock: the time is proportional to the 
number of substitutions per site (plus noise)

• Uncorrelated rates, with known distribution (e.g. 
lognormal, with mean and variance to be estimated)

• Correlated under some model (e.g. the mean of 
daughter branch is drawn from a distribution with 
mean equal to mother’s rate)

• No evidence that correlated models are useful for 
viruses (Drummond et al. 2006)

Quick survey – Clock models

• Strict molecular clock: the time is proportional to the 
number of substitutions per site (plus noise)

• Uncorrelated rates, with known distribution (e.g. 
lognormal, with mean and variance to be estimated)

• Correlated under some model (e.g. the mean of 
daughter branch is drawn from a distribution with 
mean equal to mother’s rate)

• No model, just smoothing (e.g. PathD8)
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Distance-based approach: root-to-tip regression

tr

• Input: rooted tree, dated tips

• Strict molecular clock

• Model: root-to-tip distances 
are affected by i.i.d. normal noise

• Output: rate () and root date

• Simple and fast (O(n))

• Highly sensitive to root position

• Evolutionary correlation not 
accounted for

tr

tr

tr)

• Standard regression (GLS does not work)

• Able to select the root position in O(n2)

Distance-based approach: root-to-tip regression
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Distance-based, Langley-Fitch (LF) model - r8s

• Input: a rooted tree, with branch lengths and dated tips

• Output: substitution rate () and all nodes dates

• Strict molecular clock

• Substitutions on each tree branch (i, a(i)) follow a Poisson 
distribution with mean s(ti – ta(i))

• Multi-dimensional optimisation of the likelihood function, 
using the Powell algorithm (r8s, Sanderson 2003)

• Relatively fast (but not fast enough for tree rooting)

A simple Gaussian approximation of LF model

• The length bi of branch (i, a(i)) is normally distributed
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Robust to some violation of SMC

• Uncorrelated, normal, relaxed clock model

bi is still normally distributed
its variance is again an increasing function of bi
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Least-squares criterion – Temporal constraint

• Log-Likelihood (Weighted Least Squares) criterion:

• Precedence constraint for every node/leaf i (except the root):
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LD (unconstrained)

The unique, optimal (OLS) solution satisfies

A linear system that is solved in linear 
time (using bottom-up and top-down tree 
traversals – just as with parsimony), thus 
providing the value of ti given :

We use these equalities in WLS criterion to obtain in linear 
time , and then all dates ti
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QPD (with temporal constraints)

Quadratic function of the (changed) variables:

Subject to:

Unique solution, obtained using an active set method
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QPD (with temporal constraints)

Active set method (summary)

1. Run LD

2. All violated constraints are put in the active set 

3. Compute the optimal solution x* and the Lagrange multipliers 
corresponding to the active constraints
Use a variant of LD on the collapsed tree

4. If x* is feasible and all constraints are useful, then output x*, 
else remove the most useless constraint               and go to 3

5. If x* is not feasible, add to the active set the most violated 
constraint and go to 3

Time complexity O(n  x k)
k = # iterations << n  (~70 with ~900 influenza strains)
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Tree rooting

• For any given edge, we use a slightly modified versions of LD and 
QPD to find the best rooting position on that edge (i.e. minimizing 
WLS).

• Run LD or QPD on every edge of the tree, and find the best root 
position in O(n2)

• Still quite fast with LD

• With QPD, we first run LD to find an initial solution, and then run 
QPD in a hill-climbing fashion to improve that solution (most of 
the time LD solution is best, or nearly best)

Simulation results

• Birth-death trees with various death rates (DR), 70 to 110 taxa

• Uncorrelated, log-normal relaxed clock model

• F84+ substitution model, 500 sites

• "HIV" parameters (in between Pol and env)

inter-host
DR = 0.75

intra-host
DR = 0.995
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Rate

tMRCA

Low impact of topological 
errors

No obvious advantage in 
using PhyML, rather than 
FastME (distance-based)

Rate

tMRCA

Outgroup-based rooting 
makes a big difference

Rate – Rooted 

LF* > QPD* ≈ LD* > RTT*

tMRCA – Rooted

LF* ≈ QPD* ≈ LD* > RTT*

Unrooted

QPD ≈ LD ≈ RTT
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Rate

tMRCA

Desappointing results with 
BEAST (no outgroup, 
complete time-scaled tree)

All dates True rooted tree topology

BEAST-RMC is consistently 
best to estimate all node dates

(but tiny differences, and still 
some trouble with rate estim.)
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Computing times (in seconds - 110 taxa)

Same methods and options as with simulated data

We also ran BEAST with fixed rooted PhyML topology

100 bootstrap replicates to obtain confidence intervals

1,195 H1N1 influenza strains + outgroup
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Results are mostly consistent with simulations

Large intervals with unrooted input tree (LD, QPD, RTT)

QPD* and LF* are very close, and compatible with BEAST*

LD+PhyML : ~7% of violated temporal constraints (> 1month)

QPD has a clear advantage!

BEAST + TreeAnnotator : ~2% - BEAST* + TreeAnnotator : 0%
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BEAST : 5 (*) to 20 days (Beagle, GPU …)

PhyML : 4 days (desktop, not parallelized)

FastME : 1 hour

RTT, LD, QPD, LF* : 1 hour

QPD* : 2 mn

RTT*, LD* : 10 sec.

Computing times (with 100 boostrap rep.)

Summary

Ability to deal with rooted and unrooted trees

Provide estimates for the rate and all node dates

Similar accuracy as LF (despite normal approximation) 
and BEAST (still unexplained)

Fast and already used with very large datasets

– Mourad et al. (AIDS 2015), transmission of resistance mutations 
in HIV, 24,000 strains, rooted tree, ~30 minutes (LF > 2 weeks)

– PANGEA_HIV consortium to estimate phylodynamics 
parameter from rooted/unrooted trees (→ 20,000 strains)
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To be done - To be finished-published

Fast confidence intervals (e.g. based on the second 
derivative of the likelihood function, parametric 
bootstrap …)

Extension to time calibration points 
(see also Xia 2011)

Analyse the LS residues (e.g. to check for MC)

Extend to correlated rate models (Sanderson 2002)

http://www.atgc-montpellier.fr/LSD/


