Speed Dating using Least-Squares

Thu Hien TO, Matthieu JUNG, Samantha LYCETT, Olivier GASCUEL
Bioinformatique Evolutive, C3BI USR3756 Institut Pasteur \& CNRS, Paris Institut de Biologie Computationnelle, Montpellier - France Institute of Evolutionary Biology, Edinburgh - United Kingdom

Speed Dating using Least-Squares

- A deluge of data
- Fast algorithms are needed
- We must rely on simple models

Speed Dating using Least-Squares

- A deluge of data

Dozens of thousands of virus sequences (eg 40,000 in the UK HIV database)
Origin of epidemics, phylodynamics, resistance mutations, surveillance
Dating is essential in all of these tasks

- Fast algorithms are needed

Linear in time and space (i.e. proportional to the number of taxa)

- We must rely on simple models

Gaussian, (truncated) normal distribution of the noise
Strict molecular clock (SMC), but robust

Speed Dating using Least-Squares

- A deluge of data

Dozens of thousands of virus sequences (eg 40,000 in the UK HIV database) Origin of epidemics, phylodynamics, resistance mutations, surveillance Dating is essential in all of these tasks

- Fast algorithms are needed

Linear in time and space (i.e. proportional to the number of taxa)

- We must rely on simple models

Gaussian, (truncated) normal distribution of the noise
Strict molecular clock (SMC), but robust

- Suprizingly accurate!

Speed Dating using Least-Squares

- Quick survey of dating models and methods
- The distance-based approach, root-to-tip regression and LF model
- A simple (but robust) Gaussian model
- Dating using linear algebra (LD, unconstrained)
- Quadratic programming dating (QPD, temporal constraints)
- Tree rooting
- Simulation results
- Application to a large H1N1 influenza data set
- Discussion

Quick survey - Basic principle

Much more difficult than this with real data:
Phylogenetic uncertainty
Non molecular clock (unrooted) trees
Several (incompatible) calibration points
High uncertainty depending on the calibration point position

Quick survey - Basic principle

Quick survey - Basic principle

Much more difficult than this with real data:
Phylogenetic uncertainty
Non molecular clock (unrooted) tree
Several (incompatible) sampling times
High uncertainty depending on sampling times, tree shape ...

Serial virus phylogenies

Serial virus phylogenies

HIV within patient

env gene, sampled
over 5 time points
Lader shape still visible, but dating is more difficult

Quick survey - Input data

- Sequences/pairwise distances/topology/phylogeny
- Outgroup/ingroup only
- Rooted/unrooted phylogeny
- Internal calibration points/tips sampled through time

Quick survey - Main attempts

- Estimating the global rate of evolution
- Estimating several rates (before/after treatment)

Constraints needed!

- Estimating the root position and its date
- Estimating the dates of all nodes in the tree
- Estimating a complete, time-scaled tree (e.g. BEAST)

Quick survey - Clock models

- Strict molecular clock: the time is proportional to the number of substitutions per site (plus noise)
- Uncorrelated rates, with known distribution (e.g. lognormal, with mean and variance to be estimated)
- Correlated under some model (e.g. the mean of daughter branch is drawn from a distribution with mean equal to mother's rate)

Relaxed, correlated clock models

Quick survey - Clock models

- Strict molecular clock: the time is proportional to the number of substitutions per site (plus noise)
- Uncorrelated rates, with known distribution (e.g. lognormal, with mean and variance to be estimated)
- Correlated under some model (e.g. the mean of daughter branch is drawn from a distribution with mean equal to mother's rate)
- Models of increasing complexity, typically requiring MCMC or ABC algorithms, usually slow and limited to a few hundred taxa-sequences

Quick survey - Clock models

- Strict molecular clock: the time is proportional to the number of substitutions per site (plus noise)
- Uncorrelated rates, with known distribution (e.g. lognormal, with mean and variance to be estimated)
- Correlated under some model (e.g. the mean of daughter branch is drawn from a distribution with mean equal to mother's rate)
- No evidence that correlated models are useful for viruses (Drummond et al. 2006)

Quick survey - Clock models

- Strict molecular clock: the time is proportional to the number of substitutions per site (plus noise)
- Uncorrelated rates, with known distribution (e.g. lognormal, with mean and variance to be estimated)
- Correlated under some model (e.g. the mean of daughter branch is drawn from a distribution with mean equal to mother's rate)
- No model, just smoothing (e.g. PathD8)

Distance-based, Langley-Fitch (LF) model - r8s

- Input: a rooted tree, with branch lengths and dated tips
- Output: substitution rate (ω) and all nodes dates
- Strict molecular clock
- Substitutions on each tree branch (i, a(i)) follow a Poisson distribution with mean $s \omega\left(t_{i}-t_{a(i)}\right)$
- Multi-dimensional optimisation of the likelihood function, using the Powell algorithm (r8s, Sanderson 2003)
- Relatively fast (but not fast enough for tree rooting)

A simple Gaussian approximation of LF model

- The length b_{i} of branch ($\left.i, a(i)\right)$ is normally distributed

$$
\begin{aligned}
& b_{i}=\omega\left(t_{i}-t_{a(i)}\right)+N\left(0, \sigma_{i}^{2}\right) \\
& \sigma_{i}^{2}=\frac{\omega\left(t_{i}-t_{a(i)}\right)}{s} \propto E\left(b_{i}\right) \\
& \widehat{\sigma_{i}^{2}} \propto \widehat{b_{i}}+C / s \underbrace{}_{\text {Pseudo-count }}
\end{aligned}
$$

Robust to some violation of SMC

- Uncorrelated, normal, relaxed clock model

$$
\begin{aligned}
& \omega_{i}=\omega+N\left(0, \xi^{2}\right) \\
& b_{i}=\omega_{i}\left(t_{i}-t_{a(i)}\right)+N\left(0, \frac{\omega\left(t_{i}-t_{a(i)}\right)}{s}\right) \\
& b_{i}=\omega\left(t_{i}-t_{a(i)}\right)+N\left(0, \xi^{2}\left(t_{i}-t_{a(i)}\right)^{2}+\frac{\omega\left(t_{i}-t_{a(i)}\right)}{s}\right)
\end{aligned}
$$

b_{i} is still normally distributed its variance is again an increasing function of $\boldsymbol{b}_{\boldsymbol{i}}$

Least-squares criterion - Temporal constraint

- Log-Likelihood (Weighted Least Squares) criterion:

$$
\begin{aligned}
L L\left(\omega, t_{1}, \ldots, t_{n-1}\right) & \propto \sum_{i} \frac{1}{\sigma_{i}^{2}}\left(b_{i}-\omega\left(t_{i}-t_{a(i)}\right)\right)^{2} \\
& \propto \sum_{i}\left(\frac{1}{b_{i}+C / s}\right)\left(b_{i}-\omega\left(t_{i}-t_{a(i)}\right)\right)^{2}
\end{aligned}
$$

- Precedence constraint for every node/leaf i (except the root):

$$
t_{i} \geq t_{a(i)}
$$

LD (unconstrained)

The unique, optimal (OLS) solution satisfies

$$
\begin{aligned}
t_{i} & =\frac{1}{3}\left[\left(t_{l(i)}-b_{l(i)} / \omega\right)+\left(t_{r(i)}-b_{r(i)} / \omega\right)+\left(t_{a(i)}+b_{a(i)} / \omega\right)\right] \\
t_{\text {root }} & =\frac{1}{2}\left[\left(t_{l(\text { root })}-b_{l(\text { root })} / \omega\right)+\left(t_{r(\text { root })}-b_{r(\text { root })} / \omega\right)\right]
\end{aligned}
$$

A linear system that is solved in linear time (using bottom-up and top-down tree traversals - just as with parsimony), thus
 providing the value of t_{i} given ω :

$$
t_{i}=c_{i}+k_{i} / \omega
$$

We use these equalities in WLS criterion to obtain in linear time ω, and then all dates t_{i}

LD (unconstrained)

The unique, optimal (OLS) solution satisfies

$$
t_{i}=\frac{1}{3}\left[\left(t_{l(i)}-b_{l(i)} / \omega\right)+\left(t_{r(i)}-b_{r(i)} / \omega\right)+\left(t_{a(i)}+b_{a(i)} / \omega\right)\right]
$$

$$
t_{\text {root }}=\frac{1}{2}\left[\left(t_{l(\text { root })}-b_{l(\text { root })} / \omega\right)+\left(t_{r(\text { root })}-b_{r(\text { root })} / \omega\right)\right]
$$

A linear system that is solved in linear time (using bottom-up and top-down tree traversals - just as with parsimony), thus providing the value of t_{i} given ω :

$$
t_{i}=c_{i}+k_{i} / \omega \downarrow
$$

$$
t_{i}=w_{i} t_{a(i)}+v_{i} / \omega+u_{i}
$$

We use these equalities in WLS criterion to obtain in linear time ω, and then all dates t_{i}

QPD (with temporal constraints)

Quadratic function of the (changed) variables:

$$
\begin{aligned}
L L & =\sum_{i}\left(b_{i}-\omega\left(t_{i}-t_{a(i)}\right)\right)^{2} \\
& =\sum_{i \in \text { leaves }}\left(b_{i}-\omega t_{i}+\beta_{a(i)}\right)^{2}+\sum_{i \in \text { internal }}\left(b_{i}-\beta_{i}+\beta_{a(i)}\right)^{2} \\
\beta_{i} & =\omega t_{i} \text { for the internal nodes }
\end{aligned}
$$

Subject to: internal nodes: $\beta_{i} \geq \beta_{a(i)}$ tree leaves: $\quad \omega t_{i} \geq \beta_{a(i)}$

Unique solution, obtained using an active set method

QPD (with temporal constraints)

Active set method (summary)

1. Run LD
2. All violated constraints are put in the active set $\left(t_{i}=t_{a(i)}\right)$
3. Compute the optimal solution x^{*} and the Lagrange multipliers corresponding to the active constraints
Use a variant of LD on the collapsed tree $\left(b_{i}=0\right)$
4. If \mathbf{x}^{*} is feasible and all constraints are useful, then output \mathbf{x}^{*}, else remove the most useless constraint $\left(\lambda_{i}<0\right)$ and go to 3
5. If \mathbf{x}^{*} is not feasible, add to the active set the most violated constraint and go to 3

Time complexity $\mathbf{O}(\mathbf{n} \times k)$
k = \# iterations $\ll \mathrm{n}$ (~ 70 with ~ 900 influenza strains)

Tree rooting

- For any given edge, we use a slightly modified versions of LD and QPD to find the best rooting position on that edge (i.e. minimizing WLS).
- Run LD or QPD on every edge of the tree, and find the best root position in $O\left(n^{2}\right)$
- Still quite fast with LD
- With QPD, we first run LD to find an initial solution, and then run QPD in a hill-climbing fashion to improve that solution (most of the time LD solution is best, or nearly best)

Simulation results

- Birth-death trees with various death rates (DR), 70 to 110 taxa
- Uncorrelated, log-normal relaxed clock model
- F84+ Γ substitution model, $\mathbf{5 0 0}$ sites
- "HIV" parameters (in between Pol and env)

Computing times (in seconds - 110 taxa)

围 \qquad
Phylogeny inference
DNAdist+FastME
5
PhyML
8 mn

Dates and rate estimation

LD	0.1
LD*	<0.1
QPD	0.2
QPD*	<0.1
Root-to-tip	<0.1
Root-to-tip*	<0.1
LF*	3.5
BEAST with a strict molecular clock	4 h
BEAST with a relaxed molecular clock	17 h
*outgroup-based rooted tree	

Computing times (with 100 boostrap rep.)

```
BEAST : 5 (*) to 20 days (Beagle, GPU ...)
PhyML: 4 days (desktop, not parallelized)
FastME : 1 hour
RTT, LD, QPD, LF* : 1 hour
QPD* : 2 mn
RTT*, LD*: }10\mathrm{ sec.
```


Summary

Ability to deal with rooted and unrooted trees
Provide estimates for the rate and all node dates
Similar accuracy as LF (despite normal approximation) and BEAST (still unexplained)

Fast and already used with very large datasets

- Mourad et al. (AIDS 2015), transmission of resistance mutations in HIV, 24,000 strains, rooted tree, ~ 30 minutes (LF > 2 weeks)
- PANGEA_HIV consortium to estimate phylodynamics parameter from rooted/unrooted trees ($\rightarrow 20,000$ strains)

To be done - To be finished-published

Fast confidence intervals (e.g. based on the second derivative of the likelihood function, parametric bootstrap ...)

Extension to time calibration points (see also Xia 2011)

Analyse the LS residues (e.g. to check for MC)
Extend to correlated rate models (Sanderson 2002)

