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Epidemiology and Phylogenetics

Phylodynamics

“...how pathogen genetic variation, modulated by host immunity, transmission
bottlenecks, and epidemic dynamics, determines the wide variety of pathogen phylogenies
observed...from individual host to population. We call the melding of immunodynamics,
epidemiology, and evolutionary biology required to achieve this synthesis pathogen
phylodynamics.”[Grenfell et al., 2004]

Viral phylodynamics

“...the study of how epidemiological, immunological, and evolutionary processes act and
potentially interact to shape viral phylogenies”[Volz et al., 2013]

Phylodynamic models

“... population models relating the complex demographics of pathogens to the structure
of their phylogenetic trees.”[Scarpino, 2016]
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Motivation from epidemiology: phylodynamics

Need to understand: interaction between epidemiological and evolutionary
mechanisms

Few models exist linking pathogen sequence data and prevalence time series

Many of the existing phylodynamic applications are rooted in a classical Kingman’s
coalescent framework: poor realism in epidemiology (dense sampling, population size
varies stochastically)

Recent works on modeling and inferring population dynamics from phylogenetic
trees (reconstructed from viral sequences), based on birth-death or SIR processes:
[Volz et al., 2009, Rasmussen et al., 2011, Stadler et al., 2012, Lambert et al., 2014]
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Some conventions
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Motivation from the statistical point of view

Data:

Prevalence time series: host
population size at deterministic
times (not necessarily equidistant)

Reconstructed transmission tree:
Coalescence times (t1, t2, . . . , tn)
estimated from pathogen sequences

Goal:

To characterize the joint distribution of I := (It , 0 ≤ t ≤ T ) and the reconstructed tree
(t1, t2, . . . , tn)
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Birth-death models

Birth-death (BD) process

Individuals

have i.i.d. duration of
infectiousness ∼ Exp(d)

transmit at constant rate b while
infectious

behave independently from one
another

We consider for a fixed time T :

T : the BD tree starting from one ancestor

T (T ): the BD tree truncated up to time T

(ξt (T ) , t ≥ 0): the population size process
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Birth-death models

Random forests

Forest F :
A finite sequence of i.i.d BD trees (T1, . . . , Tn)
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Birth-death models

Random forests

Convention for F∗:
A forest stopped at the first surviving tree (up to time T )
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Birth-death models

Random forests

Forest F :
A finite sequence of i.i.d BD trees (T1, . . . , Tn)

Forest F∗:
A sequence of i.i.d. BD trees stopped at the first tree that survives up until time T

For any forest F , the population size process is denoted by,

(ξt (F) , t ≥ 0)
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Time reversal for birth-death processes

Outline

1 Birth-death models

2 Time reversal for birth-death processes

3 Application to epidemiology

4 Generalization for non-exponential infectiousness periods

5 Ingredients of the proof

6 Conclusions, perspectives and some insight
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Time reversal for birth-death processes

Time-reversal duality

Fix b ≥ d and T > 0

F∗ := Forest stopped at 1st surviving tree
with birth and death parameters (b, d)

F̃∗ := Forest stopped at 1st surviving tree
with birth and death parameters (d , b)

Theorem [D.F. and Lambert, 2015]

We have the following identity in distribution,

(ξT−t (F∗) , 0 ≤ t ≤ T )
d
=
(
ξt
(
F̃∗
)
, 0 ≤ t ≤ T

)
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Space-time-reversal duality
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Application to epidemiology
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Application to epidemiology

Phylodynamics

Goal:

To infer the parameters on the model from:

prevalence time series: (IT0 , IT1 . . . , ITN ), i.e. the host population size at
deterministic times
T0 > T1 . . . > TN > 0, where T0 = T is present time

sequence data =⇒ the reconstructed tree
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Application to epidemiology

Conditional on the reduced tree: applications to epidemiology

We want to characterize the population size process conditional on the coalescence times
between extant hosts at present time T to be t1, t2, . . . , tn
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Application to epidemiology

Conditional on the reduced tree: applications to epidemiology

When we return the time, thanks to the duality property, coalescence times become life
durations
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Application to epidemiology

Conditional on the reduced tree: applications to epidemiology

Theorem [D.F. and Lambert, 2015]

The population size process conditional on the coalescence times to be t1, . . . , tn,
backward in time, is that of a sum of n BD trees, each conditioned on dying out at ti for
1 ≤ i ≤ n, plus an additional tree conditioned on surviving up until time T .
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Application to epidemiology

Conditional on the reduced tree: applications to epidemiology

Theorem [D.F. and Lambert, 2015]

Let b ≥ d , P := Pb,d , P̃ := Pd,b and F∗ be a forest stopped at 1st surviving tree with
parameters b and d . Let (Hi )1≤i≤N be the coalescence times from individuals at T and
define

P̃(i) := P̃(·|TExt = ti ), ∀1 ≤ i ≤ N and P̃(N+1) := P̃(·|TExt > T ).

Then

(ξT−t(F∗), P(·|Hi = ti , 1 ≤ i ≤ N)) =

(
N+1∑
i=1

ξt (Ti ) , (P̃(1) ∗ . . . ∗ P̃(N+1))(·)

)
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Generalization non-exponential case

Outline

1 Birth-death models

2 Time reversal for birth-death processes

3 Application to epidemiology

4 Generalization for non-exponential infectiousness periods

5 Ingredients of the proof

6 Conclusions, perspectives and some insight

Reversing time in epidemics 16 / 34



Generalization non-exponential case

Splitting trees

Individuals

have i.i.d. infectiousness durations
with general distribution

transmit at constant rate b while
infectious

behave independently from one
another

A splitting tree is characterized by a σ-finite measure Π on (0,∞) satisfying∫
(0,∞)

(1 ∧ r)Π(dr) <∞ (the lifespan measure).

We consider Π finite with mass b: individuals give birth (transmit) at rate b and have life
(infectiousness) durations distributed as Π(·)/b.
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Generalization non-exponential case

Time reversal duality for splitting trees

Define for Π:

The Laplace exponent: ψ(λ) := λ−
∫∞
0

(
1− e−λr

)
Π(dr), λ ≥ 0

η the Malthusian parameter of the epidemic (largest root of ψ)

m :=
∫∞
0 rΠ(dr)

A new measure Π̃(dr) := e−ηrΠ(dr)

The scale function W :

The unique continuous function W : [0,+∞)→ [0,+∞), characterized by its Laplace
transform,

+∞∫
0

e−λxW (x) =
1

ψ(λ)
, λ > η

Define:

γ =
1

W (T )
γ̃ =

1

W̃ (T )
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Generalization non-exponential case

Time reversal duality for splitting trees

Forest Fp:

A sequence of independent splitting trees
(
T1, . . . , TNp , T

(T )
Np+1

)
⊥⊥ Np, where,

- T1, . . . TNp : are i.i.d. conditioned on extinction before T

- TNp+1: is conditionned on survival up until time T

- Np: is a geometric random variable with P(Np = k) = (1− p)kp, k ≥ 0
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- Np: is a geometric random variable with P(Np = k) = (1− p)kp, k ≥ 0

Fp
>,F

p
⊥:

∼ Fp, but lifetimes of the ancestors have a specific distribution µ>, µ⊥, 6= from Π(·)/b

Lemma (Supercritical case: m ≥ 1, η > 0) [D.F. and Lambert, 2015]

F γ̃⊥ = a forest stopped at first surviving tree with ancestors and individuals ∼ (⊥,Π)

F̃γ> = a forest stopped at first surviving tree with ancestors and individuals (>, Π̃).
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F̃γ> = a forest stopped at first surviving tree with ancestors and individuals (>, Π̃).

Theorem [D.F. and Lambert, 2015]

We have the following identity in distribution,(
ξT−t

(
F γ̃⊥
)
, 0 ≤ t ≤ T

)
d
=
(
ξt
(
F̃γ>
)
, 0 ≤ t ≤ T

)
In the subcritical and critical cases (i.e. m ≤ 1), then,

(ξT−t (Fγ⊥) , 0 ≤ t ≤ T )
d
= (ξt (Fγ>) , 0 ≤ t ≤ T )

and actually in this case µ⊥(dr) = µ>(dr) =
Π(r)

m
dr .
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Generalization non-exponential case

Conditional on the reduced tree: applications to epidemiology

Theorem [D.F. and Lambert, 2015]

Let F γ̃⊥ and (Hi )i≥1 the coalescence times from individuals at T . Define

P̃>,i := P̃>(·|TExt = ti ), ∀i ≥ 1 and P̃>,∗ := P̃>(·|TExt > T ).

Then(
ξT−t(F γ̃⊥), P(·|Hi = ti , 1 ≤ i ≤ N)

)
=

(
N+1∑
i=1

ξt (Ti ) , (P̃>,1 ∗ . . . ∗ P̃>,∗)(·)

)
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Ingredients of the proof

The jumping chronological contour process [Lambert, 2010]

Example of a finite splitting tree and its contour process1

1Figures from C. Delaporte - Aussois 2013
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Ingredients of the proof

The contour of splitting trees is a Lévy process

Let Y be a a finite variation Lévy process with Lévy measure Π and drift -1.

Theorem [Lambert, 2010]

Conditional on the lifespan of the ancestor to be x , the contour of T (T ), is distributed as
Y, started at x ∧ T , reflected below T and killed upon hitting 0.

The contour of T , conditional on extinction, has the law of Y started at x , conditioned
on, and killed upon hitting 0.
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Ingredients of the proof

Time reversal duality for spectrally positive Lévy processes

Theorem [Bertoin, 1992]

The excursion measure has the following property of invariance under time reversal:
under P0

(
·
∣∣∣−Y(τ+0 )− = u

)
the reverted excursion,

(
−Y(τ0−t)−, 0 ≤ t < τ0

)
has the same

distribution that (Yt , 0 ≤ t < τ0) under Pu (·|τ0 < +∞).
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Time reversal duality for spectrally positive Lévy processes

Theorem [Bertoin, 1992]

The excursion measure has the following property of invariance under time reversal:
under P0

(
·
∣∣∣−Y(τ+0 )− = u

)
the reverted excursion,

(
−Y(τ0−t)−, 0 ≤ t < τ0

)
has the same

distribution that (Yt , 0 ≤ t < τ0) under Pu (·|τ0 < +∞).

From [Bertoin, 1996, Lambert, 2010]:

In the supercritical case, under P (·|τ0 < +∞), Y is subcritical with Lévy measure Π̃.
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Ingredients of the proof

Undershoot and overshoot

Fp
>,F

p
⊥:

Lifetimes of the ancestors have a specific distribution, different from Π(·)/b:

The undershoot and overshoot at 0 of an excursion starting at 0 and conditional on
τ+0 < +∞, are distributed as follows,

Overshoot (⊥): ∼ eηv Π̃(v)dv
m ∧ 1

Undershoot (>): ∼ e−ηuΠ(u)du
m ∧ 1
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Ingredients of the proof

Time reversal duality for splitting trees

Define for a Lévy measure Π:

The Laplace exponent: ψ(λ) := λ−
∫∞
0

(
1− e−λr

)
Π(dr), λ ≥ 0

η the largest root of ψ

A new measure Π̃(dr) := e−ηrΠ(dr)

τA =∈ {t ≥ 0 : Yt ∈ A} the first hitting time of the real Borel set A

The scale function W :

The unique continuous function W : [0,+∞)→ [0,+∞), characterized by its Laplace
transform,

+∞∫
0

e−λxW (x) =
1

ψ(λ)
, λ > η

Why?:

γ =
1

W (T )
γ̃ =

1

W̃ (T )
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transform,

+∞∫
0

e−λxW (x) =
1

ψ(λ)
, λ > η

Why?:

γ =
1

W (T )
γ̃ =

1

W̃ (T )
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Ingredients of the proof

Excursions of spectrally positive Lévy processes

Two-sided-exit problem [Bertoin, 1996]

For 0 ≤ x ≤ a,

Px

(
τ0 < τ+a

)
=

W (a− x)

W (a)
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Two-sided-exit problem [Bertoin, 1996]

For 0 ≤ x ≤ a,

Px

(
τ0 < τ+a

)
=

W (a− x)

W (a)

Supercritica case:

γ =
1

W (T )
= P

(
ξT
(
T̃>
)
6= 0
)

= P̃µ>

(
τ+T < τ0

)
= PT

(
τ0 < τ+T

)
γ̃ =

1

W̃ (T )
= P (ξT (T⊥) 6= 0) = Pµ⊥

(
τ+T < τ0

)
= P̃T

(
τ0 < τ+T

)
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Ingredients of the proof

Contour of a forest

Y Lévy process with measure Π and drift −1, reflected at T and stopped at

τ := inf{t ≥ τT : Y
(T )
t = 0}
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Ingredients of the proof

Contour of a forest

Define the time change

At :=

t∫
0

1{Yu>0}du

and its right-continuous inverse, α(t) := inf {u ≥ 0 : Au > t}.
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Ingredients of the proof

Contour of a forest

Consider
Y (T ) ◦ α
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Ingredients of the proof

Contour of a forest

Then we have Y (T ) ◦ α d
= C

(
F γ̃⊥
)
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Ingredients of the proof

Contour of a forest

Now consider χ
(
Y (T ) ◦ α

)
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Ingredients of the proof

Contour of a forest

And the space-time-reversed process ρ ◦ χ
(
Y (T ) ◦ α

)

Reversing time in epidemics 28 / 34



Ingredients of the proof

Contour of a forest

And we have again ρ ◦ χ
(
Y (T ) ◦ α

)
d
= C

(
F̃γ>
)
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Conclusions, perspectives and some insight

Conclusions and perspectives

Conclusions

We have obtained a duality under time-reversal for BD and general branching forests
(Crump-Mode-Jagers’s processes), stopped at their first surviving tree. The duality
concerns the population size processes and the genealogies.
Applications to phylodynamic modeling:

- the results allow to characterize the population size process distribution conditionally
on the reconstructed transmission tree;

- access to the likelihood to allow inference using prevalence time series and sequence
data

Ongoing work

Consequent results on epidemics seen from their end. In particular, invariance by time
reversal of the excursion away from 0 of the critical Feller diffusion, which is the width
process of the continuum random tree.
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Conclusions, perspectives and some insight

Traveling backwards in time: insight on duality

Figures from [Raup et al., 1973]
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