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Introduction

Any germ of a holomorphic function f : (X,z) — (C,0) on an analylic space
germ (X, z) defines an (algebraic) monodromy:

by : H{(F;,C) - H'(F},C),

where Fy is the Milnor fibre of f.

We investigate throughout this thesis the Lefschctz number A(hy) of the
monodromy of functions on singular germs and also the Tefschetz number of
higher powers of the monodromy.

If the space germ is smooth, then the problem concerning the Lefschetz
number A(ks) has a short answer: by a result of A’Campo [A’C-1], A(hs) =0
if f is singular and A(h;) = 1 if f is regular.

The situation becomes more complicated if (X, x} is not smooth, as re-
marked already in [L&-3]. The importance of this subject would come from the
increasing interest for (particular) singular spaces and their slices.

In Chapter I of this thesis we prove results on the Lefschetz number and the
zeta-function in full generality by using an improved version of L& ’s “carrousel”
construction. Let I : (X,z) — (C,0) be a sufficiently general linear function.
First, we prove that, if none of the Puiscux ratios for the branches of the Cerf
diagram A(!, f) is integer, then the Lefschetz number A(hy) is equal to the
Lefschetz number of the monodromy of the restriction fi(i-o) ;[Theorem 3.2).

This result has some interesting consequences, stated e.g. in Corollary 3.6,
Proposition 3.7. We prove, in the general case, a formula for the Lefschetz
number (Theorem 3.12) and a formula for the zeta-function (Theorem 4.10).
They depend on knowledge of the respective invariants for a finite number of
carrousel monodromies (see Definition 4.4). These formulae are general bnt,
of course, the computations involved can be very hard in particular cases.

Qur construction in Chapter [ yiclds a fine “polar decomposition” of the
Milnor fibre which has some similarity with the decomposition of the Milnor
fibre defined by A’Campo [A’C-2], see Chapter II, 1.2.

Chapter I1 of the thesis is based on the method of A’Campo [A’C-2], which
involves the resolution of singularities.

In Section 1 of Chapter II we prove that, if f : (X,2) — (C,0) is a
smoothing, then the Lefschetz number A(h;)} depends only on the residuc class
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of fin mx ./Fx,., where mx ; is the maximal ideal of the local algebra and
Fx.z is an ideal defined by using some resolution of the space (X, z). It turns
out that Fx . does not depend on the resolution. Moreover, Fx . is an inter-
section of a finite number of “minimal ideals” and these ideals do not depend
on the resolution as well (see Proposition 1.12, Theorem 1.18 and the remark
1.20(b)). In particular, if (X,0) is isolated, then Fx . contains m¥% .; hence
the Lefschetz number A(k,) depends only on the residue class of f, modulo
m% ..

Beginning with Section 2 we focus on the particular case when (X,0) >~
(C"/G,0) is an isolated cyclic quotient singularity (where G is a finite cyclic
group). In this case, the results proved in Section 1 have a particularly nice
form: the Lefschetz number of a function has a sum decomposition into Lef-
schetz numbers of well-defined “pieces” of our function (Theorem 2.6). To each
such piece there corresponds a G-invariant weighted-homogeneous polynomial,
the weights depending only on the group action.

We take advantage of the finite group action and construct a toric resolution
of the cyclic quoticnt varicty together with a special diagram (see 3.1). This
construction replaces a hypothetical succession of G-equivariant blowing-ups
Y — C" along G-stable nonsingular subvaricties such that the quotient Y/G
is nonsinglar, which, unfortunately, one cannot construct in general (see [Oda,
p. 31]).

In Section 4 we prove Theorem 2.6 and some annihilation criteria which
facilitate the study of the Lefschetz number.

In Section 5 a class of nondegenerate functions is defined, for which we
are able to prove a more practical formula for the zeta-function. The formula
is based on the previous results and on Varchenko’s approach to the zeta-
function {Var]. In particular, we get a formula for the zeta-function of a general
linear slice.

Restricting to the Lefschetz number, we define a much larger class of func-
tions for which we prove the corresponding formula (Proposition 5.27).

Examples which illustrate results obtained in Sections 1-5 are given in
Section 6. In particular, Example 6.1 shows that the equality () = Q(td)
is not true, even for a general linear function f, where f is the corresponding
G-invariant function and d = |G]|.

In the last Section we restrict to 2-dimensional cyclic quotients. In this
situation, the previous results are more explicit and the Lefschetz number can
effectively be computed. In particular, we are able to determine the range
of the Lefschetz number. Finally, we obtain a splitting formula for the zeta-



function (Theorem 7.20).

To give an idea about the subject, we show here an example of the com-
putation of the Lefschetz number.

Example Let (X,0) be the germ of the affine cone over a smooth pro-
jective hypersurface H := {g = 0} C P*, n > 2. Ilere g is a homogeneous
polynomial of degree k and we assume that k¥ > 2. Next, consider a function
u:C*! — C, u =+ ¢, where [ is linear and g contains all the higher order
terms. The restriction of u to (X,0) gives a function f : (X,0) — (C,0).
Denote by L the projective hyperplane defined by 1.

To compute the Lefschetz number, we first resolve the singularity of the
space (X 0); this is done by a single one-point-blowing-up 7 : (Y,E) — (X,0).

Let {f 0} C Y be the proper transform of {f =0} by =.

In some small enough neighbourhood of a point zp € E \ { f= 0}, the
Milnor fibre of f o 7 has equation f o = = tv, where w is a local coordinate in
2o € Y. Thus the piece of the Milnor fibre which is in the neighbourhood of
E\ {f = 0} is pointwise fixed by a geometric monodromy and counts in the
computation of the Lefschetz number. By the results in Chapter II, Section 1,
there are no other contributions to A(hy), hence:

Alhs) = X(E\ {f = 0}).

The exceptional divisor E is isomorphic to the projective hypersurface H and
one may also notice the isomorphism E\{ = 0} ~ H\L. Moreover, x(H\L) =
x(H) — x(H n L), hence our Lefschetz number A(hy) depends essentially on
how H and L mutually intersect.

S

3]

The space Hy := HNL is a projective hypersurface in L = P~ with
at most isolated singularities at some points a;, ¢ € /, for a finite set of
indices 1. If L is a general hyperplane, then Hp is smooth of degree &, hence
x(Ho) = n=[1+(=1)""'(k—1)"]/k. The hypersurfacc H C P" is also smooth



of degree k, so:
Alhy) = x(H) = x(Ho) = 1+ (=1)""(k~1)".

If f is not general, then Hy has isolated singularities and the formula for y(Hp)
must be corrected: for each singular point a; € Hy, © € I, there is, roughly
speaking, a contribution equal to the Milnor number #(Ho, a;) of the isolated
singularity germ (Hg, e;). Therefore, when isolated singularities are present,
the complete expression, using a result of Dimca [Di, Corollary 2.3]), is:

Ahy) = (B Be) = 1+ (-1 (k= U + (<1 3 u(Hov ).



Chapter I

Lefschetz number and Lé’s carrousel

1 Preliminaries

1.1 Let (X, z) be a complex analytic set germ. We usually assume that (X, z)
is embedded in (CV,0), for some sufficiently large N € N.

Let f: (X,0) — (C,0) be an analytic function germ. The same symbol f
is used for a representative of the function on a small enough representative X'
of the germ (X,0). Denote by B, the open ball of radius £ > 0 in CV, centred
at 0 and by D, the open disc of radius > 0 in C, centred at 0. A theorem of
Lé [Lé-3, Theorem 1.1] asserts that there exists a topological fibration induced
by f:

\I'f=‘1!f(€,17):XﬂBgﬂf'l(D,,\{O})—»D,,‘\{O], (1)
for small enough ¢ and 7 < ¢.

The fibre Fy of this fibration is called the Milnor fibre, since Milnor was
the first one who proved a C®-fibration theorem [Mi] in the case when (X, 0)
is smooth.

The Milnor fibre is certainly not smooth in the general case; however, it is
a CW-complex of dimension < dim(X,0) — 1, see [Ha].

1.2 The (algebraic) monodromy hy of the local fibration (1) is the character-
istic linear endomorphism of the {co)homology of the fibre F;. We consider
cohomology with C-coefficients.

For any integer k > 0, the Lefschetz number A(h;) of the monodromy is

defined by: ‘ .
A(ky) ==Y (1) tracelhy; H'(Fy,C)). (2)
i>0
We alternatively denote it by A(f).
A finer invariant is the zeta-function (;(t) of the monodromy:
Cr(t) = [T detlT— ¢t - hy; H'(Fy, C)ICI™. (3)

i>0
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We alternatively denote it by Ca, (2).

1.3 Knowledge of the zeta-function implies knowledge of the Lefschetz number
A(h%) of any nonnegative power £ of the monodromy; conversely, the zeta
function is determined by the set of these Lefschetz numbers, as follows (see
e.g. [Mi, p.77], [A’C-2, p.234]).

If 51,82,... are integers defined inductively by:

AR =Y s, k21,

t|k

then the zeta-function of f is given by:

oty =IO - )7

i>1

1.4 Let mx ¢ denote the maximal ideal of the local ring Ox o of (X, 0).

The monodromy h; need not be of finite order; however, it is quasi-uni-
potent. This result, known as the monodromy theorem, was proved by several
authors (Grothendieck, Brieskorn, Nilsson, Landman, L&) in the case of smooth
Milnor fibre and by Lé [L&-4] in the general case. Lé’s proof is hased on
the interesting carrousel construction and does not involve the resolution of
singularities. Lé&’s construction was published in [Lé-1] shortly after A’Campo
proved the following:

Theorem [A’C-1, Théoréme 1]
If (X,0) is smooth and f € m%k , then A(f) = 0. O

The proof by Lé of this theorem in [Lé-1] is based on the construction
of a geometric monodromy without fixed points (see also 3.1). We mention
that there is a more general version of the theorem cited above, in the same
paper [A'C-1, Théoréme 1bis]; we shall discuss it in the next chapter.

L5 If (X,0) is smooth and f € mxp \ m¥,, then it is obvious that the
Lefschetz number A(f) is 1.

If (X, 0) is a singular space, then the Lefschetz number A : mxo\m%, — Z
may have a much larger range (even if (X, 0) is irreducible), as we shall see in
many examples (the first one is Example 3.5). This is an important point for
our study.
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2 The carrousel

2.1 Here is a brief description of the carrousel construction, which follows
closely [Lé&-2] and [Lé-4]. We assume from now on, unless otherwise stated,
that all the irreducible components of (X, 0) have dimensions greater than 1.

2.2 Let § = {5;}icr be a finite Whitney stratification of X such that it satishes
the Thom condition relative to f : X — C [Th], [Hi-2]. One may suppose that
{f = 0} is a union of strata; denote by I the subset {i€ I | S; C A\ {[f =
0}} of I. There exists a Zariski open set 1y in the space of linear germs
I:(CV,0) — (C,0) such that any small enough representative of the germ of
the critical locus of the restriction of the morphism:

& := (1, f): (X,0) = (C%,0)
to a stratum S;, i € I, is either a curve I';(l, f) or it is void.

Note There is one more condition imposed by Lé: the curve Ti({, f) should
be reduced, for any i € I and I € §};. This additional condition defines a
proper subset 0 1 of £, which is also Zariski-open.

As a rule, we work with the (larger) set Q;; the exceptions will be em-
phasized. The reason is that, in many examples, one might get the Lefschetz
number more quickly while working with elements of {1, see e.g. Example 3.5.
Moreover, one can enlarge {;: modify its definition by allowing also nonlinear
functions. However, we work only with the first-given definition above.

Definition The closed germ T'(l, f) := Uier, Ti(l, f) is called the polar curve
of f with respect to I, relative to the stratification S. The image A({, f) =
&(I'(l, f)) is called the Cerf diagram of f with respect to I, relative to S.

2.3 Let | € ©; and let (u, ) denote the pair of coordinates on C2. Tlence @,
is given by u = l(z), A = f(z).

There is a fundamental system of “privileged” open polydiscs in CV, cen-
tred at 0, of the form (D4 % Pa)aeca and a corresponding fundamental system
(Da X D,)oga of 2-discs at 0 in C?, such that ® induces, for any o € A, a
topological fibration:

®, : XN (Do x Pa) N @YD, x DL\ (A, flu{r =0})) —
— Do x DL\ (A(l, f)U {r=0}).
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One can stratify the source and the target of ®, such that the stratifications
satisfy the Whitney condition and that the stratification of the source satisfics
the Thom condition relative to ®,.

Moreover, f induces a topological fibration:

fa: X0 (Do x Fo) N f7YD,\ {0}) = D; \ {0},
respectively:
fa: XN ({0} x P)n f7H(DL N\ {0}) — D, \ {0},

which is fibre homotopic to the fibration of f defined in (1), respectively to the
fibration of fj(;=0}, defined analogously. The disc D, has been chosen small

enough such that A(Z, f)NdD, x D', = 0.

2.4 One can build an integrable smooth vector field on D, x S’ —where S is
some circle in Dy of radius sufficiently close to the radius of §D_,—such tha.t
mainly, it is tangent to A(l, f) N (D, x §) and it lifts the unit vector field
of S, by the projection D, x §, — S. Lifting the former vector field by ¢,
and integrating it, one gets a characteristic homeomorphism of the fibration
induced by f, over S, hence a geometric monodromy of the fibre Fy. We call
it the (geometric) carrousel monodromy.

2.5 Lé’s construction, although being very technical, has more pleasant, prop-
erties: The integration of the vector field on D, x S’ produces a “carrousel”
of the disc D, x {5}, for some n € §’.. Let

L: X0 (D x {pH)NI"YDy) = Dy x {5} (4)

be the restriction of ®,. Notice that Fy ~ I1(D, x {n}).

Lé gives a description of the motions of the “important” points of the
carrousel disc, that is: the trajectory inside Dy x S, of some point a € Dy x {n}
prOJects onto S' one turn around the circle S, moves the point a to some other
point ¢’ € D, x {r,} By construction, the vector field restricted to {0} x S’
is the unit vector field of S, hence the centre (0,7n) of the carrousel disc is
indeed fixed; the circle D, x {n} is also pointwise fixed (if one extends the
vector field on a slightly larger carrousel disc).

The distinguished points A(l, f) N Do x {5} of the disc have a complex
motion around (0,7); these motions depend on the Puiseux parametrizations
of the branches of A which are not included in {u = 0}. Moreover, these
Puiseux parametrizations determine the motion of any “important” point in
the carrousel. We briefly describe this phenomenon in the following.
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The Puiseux pairs and the carrousel

2.6 We refer to the excellent textbook [BK] for the terminology and the proofs
of some of the facts we use in this piece.

Let A = A(l, f) be the Cerf diagram and let A’ = Uieqa,...r} A be the union
of those irreducible components of A which are not included in {u = 0}.

For i € {l,...,r}, we consider a Puiseux parametrization of A; (with
reduced structure):

A=ttt
u= Y ct’, forsomem,n € Zy, c; € C, cm #0. (5)
izm

Note that n is not necessarily the multiplicity of A; in 0 and that m can be
smaller than n.

The Puiseux parametrization enables one to write u as a function of A,
formally:

[}
U = aklAmnf'n: + E bllM(ml-H)/m + ak-‘»/\mz/mnz-{-
=1 (6]
iz
+ Z ng,A(mz+f)/n1n2 +.-- 4+ ak’,\“"!“""“a + E bg‘;A(mg'””““““ﬂ,

=1 >0

where g is a positive integer, ged(m;,n;) = 1, V5 € {1,...,,g} and n; # 1,
Vj € {2,...,9}. Notice that m;/n, = m/n and ai, = cm.

The pairs (m;,n;) are called the Puiseuz pairs of A;. They determine the
topology of A; {but not its analytic type). Each link A; N (Dg x 55) is an
iterated torus knot. The type of the knot is described for instance in [Lé-6,
p. 7.

The topology of a single knot depends only on the Puiseux pairs, but in
case of more branches, the link depends on more data than just the Puiseux
pairs.

Note There is an action of the group fis,..n, of the ny - - - ng-roots of unity on
the coefficients of the equation {6}):

g - @, =g T gy,
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P b“ = a.(m.+l)n.+1---n, bi I

for any o € pin,..m,, any i € {1,...,g} and [ as in (6).

Two Puiseux parametrizations (5), which give two equations of typc (6)
with coefficients ag;, i, resp. a} , ¥, define the same curve if there is a o €
finy-ng Such that af = o -ay,, b, =0 - ¥,

2.7 We define two types of successive approximations of A, i € {1,...,r}.
The first approximations are:

C;(l)i u = ay, /\mnlnx’

!
c“,i(l): u = ay, /\m,/n. + Zl: bl,l)\(ml—'-”/m‘
=1

The second ones are:

t
c®: u= ap, A/ 4 i: b AUmHm o g Ama/mne
1=1

. iy 173
C‘_(z): u = ay, Amufm + Z bl,gz\(m'“)/"‘ + aka)\mzlﬂlﬂz + Z b2,1/\(m2+”/nm2

=1 I=1

and so on, the last ones being C¥) and G, (where ¢ = A;).

The curve C{" intersects the carrousel disc Dy x {5} in n; points situated
on a circle and their carrousel movement is a rotation of angle 2xm;/n,y. If
we take C‘f” instead, we get also n, intersection points but their position is a
slight perturbation of the previous one.

Each of the points C!V N (D, x {n}) is the centre of a small disc which
contains just one point from the set ¢! N (D, x {n}). This latter point, called
a distinguished point, becomes the centre of a new (smaller) carrousel.

2.8 Definition We call (smaller) carrousel disc of order k a sufficiently small
open disc centred at some point ¢ € C¥'N (D, x {n}),i € {1,...,7}. This disc
is supposed to contain all the points C"J(H")ﬂ(Da x{n}),VI>0,Vje {1,...,7}
such that C‘,(k) = CA'-(k), which are close enough (“satellites”) to ¢. By definition,

1
if 81, 8; are two smaller carrousel discs (not necessarily of the same order), then
either one is included in the other, or they are disjoint.
We may and do assume that the carrousel discs of order k centred in the

points C*¥ n (D, x {n}) are of equal radii.
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Remark It is p;ossible that a small carrousel disc of order k, say with centre
at some ¢ € ¥ (D, x {1}), contains other carrousel discs of the same order.
Here is an example:

Ap  w = 24T o280 A, =CP,
Ay wy =324\ o =M =D, A, =P

A carrousel disc of order 1 corresponding to Az contains a carrousel disc of
order 1 corresponding to Aj.

2.9 Finally, a simultaneous parametrization of all the analytic branches of A”:

A=t",
U = Livmy 01,58,
U, = EjZmr a; ;i

leads to the construction of the full carrousel.
If we {formally) dcfine the “essential” curve associated to A; by:

A?s: u = aklx-ndﬂl 1 akz)‘mglnplg 4o akg/\mgjnl...ng’

.....

of the carrousel defined by A'.

2.10 Denote by (m;;,mi;)jef1,..g:;) the Puiseux pairs of Ay, Vie {1,...,r}.
Suppose that we have the following ordering among the first Puiseux pairs
(eventually after some permutation of indices):

mi, LU N > My

ny1 | M2 T neg

To each branch A; there corresponds an annulus A;—with central symmetry
in (0,n)—inside the carrousel disc, such that A; contains A, M (Da x {n}),
see [Lé-2]. We define also Ag to be an arbitrarily small open disc centred in
(0,7). By definition, A; = A; if and only if mi1/niy = mjy/n;.; moreover,
the set of annuli give a partition of the carrousel disc.

For any i € {1,...,r}, there are n;; carrousel discs &;;, 7 € {1,... ,nia},of
order 1, centred at the n;; points ¢ A (D, x {n}). The annulus A; contains
all the carrousel discs 6, ; such that C{!) = C™M. Each point of the annulus A;,
which is not inside some disc §; ;, is fixed by the n; ™ power of the carrousel;
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in the case of the “ideal” carrousel (i.e. the one associated to A*), these points
have a carrousel motion which is a rotation of angle 2z 75t The disc A is
just pointwise fixed. '

Of course, one needs a continuous transition between two successive armuli,
but this is something easy to do. In fact, two successive annuli are separatcd
by a circle (centered at (0,7)). We may replace this circle by a sufficiently
thin annulus, which we call “transition zone”; because here the continuous
transition between rotations of two different angles takes place.

2.11 Example Let (X,0) be a 2-dimensional isolated cyclic quotient singu
larity, where X is the algebraic quotient of C?2 by a cyclic group of order 5,
denoted by X5, and defined in Chapter I1, Section 7.

Let f:(C?%0) > (C,0), f =y + 2%* and let f : (X,0) — (C,0) bhe the
induced function on the quotient.

Take a function { : (C2,0) — (C,0), i = z° and let I be the induced one on
(X,0). Then I defines a linear slice of (X, 0). The polar curve T(l, f) is covered
by the curve I'(J, f) := {2 = 0} U {z - i\/ﬁys =0}u{z+ i\/ﬁy:’ = 0}.

Notice that T'(Z, f) has a nonreduced structure, because of the component
{z* = 0} of ['(, f). 1t follows that I is not in (1, but it is still an element of

The Cerf diagram A = A(!, f) has only 2 analytic branches which are
parametrized as follows:

A=t

= {u=0, A0¢A’;
- §2
A]I {A_t,

u=t% n;;=2 m,=3.

One can find the nonzero constant y by some easy computations. (Notice that
—7 is good as well, see Note 2.6). The important thing is that we get just a
1-term Puiseux expansion, i.e. C{l) = Ay.

However, A, is not tangent to the {A = 0} axis and, for any x € A\ {0},
sufficiently close to 0, there are two points on the polar curve [(f, f) which
project to z; the fibre $2(z,7) has two singularities of type A;.
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3 The Lefschetz number via the carrousel

3.1 The carrousel construction can be used to get information on the Lefschetz
number. This was the original idea of Lé&, who showed that, if f € mk o, then
the carrousel monodromy has no fixed points outside the slice {I = 0}, so
A(f) = 0, by induction. As far as we know, he explicitly stated this result
only in the case when f is a smoothing [Lé-2].

We presume that, in the general case, the result (see Corollary 3.6) might
have been evident to him after he proved the existence of the fibration (1).
The main point is that, as in the smooth case, the Cerf diagram is tangent to
the {\ = 0}-axis and this implies that no point of the carrousel disc is fixed
(except its origin).

We extend this result by studying the set of fixed points, in the case f €
mx o \ m¥, We start with the particular case: none of the Puiseur ratios
pia = maafnia, i € {1,...,7}, is integral (see Theorem 3.2). At the end, we
give a general result (Theorem 3.12).

We keep the previous notations. We recall that, for some fixed { € Qy,
(mi1,n:,1) denotes the first Puiseux pair of the analytic branch A,, where
i € {1,...,r}, of the Cerf diagram A := A(l, f); by definition (see 2.6) the
collection A’ = Jieq,..r) Ai does not contain {u = 0}.

3.2 Theorem Let all the irreducible components of (X,0) have dimensions
greater than 1. If n;y > 1, Vi € {1,...,r}, then we have the equality of
Lefschetz numbers:

Proof If A C {u = 0} then the Milnor fibration of f is homotopy equivalent
to the Milnor fibration of fi{i=0}, hence A(f) = A(fiyi=0})-

Assume that A ¢ {u = 0}. Since n;; > 1, the carrousel construction tells
us that the discs 6, ; (defined in 2.10), where n,; = n;,, are cyclically permuted
(by a cycle of length n;:). Moreover, the hypothesis in our statement implies
that p;, € Z, Vie {1,...,r}.

Using the facts in 2.10 we may conclude that no point in the carrousel disc
is fixed, except the centre and, possibly, some subsets in the transition zones.
In the following, we show that the latter have no contribution to the Lefschetz
number.
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If the interval (p; 1, piy1,1) contains some integer, then there are s; := #Zn
(i1, Pis1,1) concentric circles of fixed points inside the transition zone between
the annuli A; and A;;,. Something similar is happening inside the transition
zones between Ag and Ay, resp. A, and the circle D, x {n}.

Let S be such a circle of fixed points. There is an annular neighbourhood
As of § which is globally fixed by the carrousel. Since the fibration (defined
in (4)):

lai XN (Do x {n}) NI (Da) — Do x {n}

is locally trivial over As, we have H*(I71(S)) =~ H*(I7'(As)), hence:
Alhg; 151 As)) = Ak 121(S5)).

One can decompose the Milnor fibre into suitable pieces on which the geometric
monodromy acts and such that the Mayer—Vietoris argument can be applied.
Actually, we first cover the carrousel disc by some annuli like those defined
in 2.10, but slightly “thicker”, such that two “consecutive” ones intersect over
a transition zone; then lift this patching to the Milnor fibre.

We may conclude: A(f) = A(fjq=0}), provided that the Lefschetz number
of the restriction of the monodromy on any piece of F; which is the lift (by
lo) of some circle of fixed points is zero. But this fact is proved by the next
Lemma 3.3, hence we are through. o

3.3 Definition Let a € (D, \0) x {#} and let F! be the fibre of I, over a. If
a is fixed by the carrousel, then the monodromy h; restricts to an action on
H*(F}), denoted by A’.

Lemma If the carrousel disc D, x {1} contains a circle S of fized points, all
of them reguler values for the map l,, then A(hy; H*(I;1(S))) = 0.

Proof The smooth space E := I71(S) is the total space of a fibration over the
circle S, with F} as fibre, where a is some point in S. Let A, be the algebraic
monodromy of this fibration; one has the Wang exact sequence:

v — HI(E) - Hi(F)) 22 gi(Fy - HIYYE) - -

on which & acts. Indeed, the two monodromies ; and h, commute, since they
are defined over a meridian, resp. a longitude, of a torus S! x S? consisting of
regular points of @,.

We may apply the Lefschetz functor A(ks) to the Wang sequence above

and get:
Alhs; HY(E)) = A(hL) — A(KL) = 0.
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3.4 Example Consider again the data in Example 2.11. Since ny, is greater
than 1, we get that A(f) = A(fi=0y)-

It is easy to see that A(fiju=o}) = 0, hence A(f) = 0. This last equality
follows also by the next Corollary 3.6, since f € m¥% .

3.5 Example Let’s modify the functions in Example 2.11: instead of f and
i, consider f, := z® + y® and I; := zy?. Then |, ¢ Qy,, but I € Q. Notice
that f; € mx \ mk .
We get that A’(ly, f1) is irreducible and has a 1-term Puiseux parametriza-
tion; the (first) Puiseux pair is (3,5). It follows that A(f1) = A(f1)y,=0))-
The Milnor fibre of fi;, =) has two components: each of them is the Milnor
fibre of a linear function on (C,0). This implies that A{fi|,=0)) = 2, hence

3.6 Corollary Let (X,0) be an enalytic germ of dimension 2 1.
If f € m%, then A(f) = 0.

Proof Let (X,0) = (X;,0) U (X3,0), where (X,0) is the union of the irre
ducible components of (X,0) which are of dimension > 2 and (X;,0) is the
union of the 1-dimensional branches of (X,0).

We slice (X3, 0) by a general hyperplane defined by some [ € §); and treat
separately (later) the 1-dimensional components of the slice. If f € m%, o then
each component of the Cerf diagram A(l, f) is tangent to the axis {} = 0},
provided that ! is general enough. (It is possible that not every l € has this
property, see also Note 2.2 and Example 3.5.) The proof of this fact is similar
to the proof of (Lé-5, Proposition 1.2, but one must be more careful, since our
underlying space is not smooth; it goes as follows. Let (T';,0) be a component
of the polar curve I'({, f). Let p; : (C,0) — (I';,0) be a parametrization i..,
if (X,0) is embedded in (CV,0), then some point on I'; in the neighbourhood
of 0 has coordinates z,(p;(7)),...,zn{p;(7))-

Next, for any extension F : (CV,0) — (C,0) of f (i.e. Fyxo) = f), we
have F € m}y ,, which means that ordF > 2. Let k; := min{ord(z;op;) |t €
{1,...,N}}. Then ord(F op;) > 2%;.

If 1 is the restriction on (X,0) of a general linear function L : (CN,0) —
(C,0), then ord(L o p;) = k;. Hence:

lim f(ps(r)) - limm =0
=0 I(p;(r)) =0 L(p;(7)) ~
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The tangency to {A = 0} means exactly that m;;/n;, < 1, in particular
ni1 > 1, Vi€ {1,...,r}. Thus, our proof relays on a decreasing induction: at
each step, we may apply Theorem 3.2.

The only thing we have to do more is to prove the assertion for 1-dimen-
sional branches. This is done in the next lemma. ()

Lemma Jf (X,0) is 1-dimensional, irreducible and if f € m¥% , then there is
a geometric monodromy of f without fired points.

Proof If (X,0) is smooth, then it is clear that f has a fixed-point-free ge-
ometric monodromy. If (X,0) is not smooth, let n : (X,a} = (X,0) be its
normalization. It follows that fon & mg-h, hence we may conclude as above,

since (X, a) is smooth. a

As a complement to Theorem 3.2, for dim(X, 0) = 1, we have the following
precise determination of the Lefschetz number:

3.7 Proposition Jf(X,0) = U;cr(Ci,0) is a curve and ifs decomposition into
irreducible components, then, for any f € mx,\ m% ,, we have:

A(f) =#{i € R|(C;,0) is smooth and f € mg, o\ m%ho}.

Proof Let f; := fic,0). Then the Milnor fibre of f is a finite set, the disjoint
union of the Milnor fibres of f;, i € R. Hence, A(f) = ;e A(f:).
Ii (C:,0) is smooth, then one has: A(f;) = 1if and only if f; € m¢,p\m ,.
If (C;,0) is not smooth, let n : (C, a;) — (C;,0) be its normalization. Then
fion; € mém‘, since the Milnor fibre of f; o n; contains more than one point.
It follows that we have a fixed-point-free monodromy of f; and Alfi)=0. O

3.8 In the following, we focus on the determination of the fixed points of the
carrousel. For this problem, the important Puiseux pairs are those (m; 1, n;,),
i€ {1,...,7} such that n;, = 1.

Consider the partition of the set of indices {1, ..., r} of the components of
A’, into the following two subsets:

PWi={i|ny=1},  PD:={i|n;>1}.

The set of fixed points in the carrousel disc may be not a union of concentric
circles any more.
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3.9 We identify the fixed points inside a given annulus A;, i € P():

Let B; be the union of all carrousel discs of order 1 included in A;. Then
the carrousel construction tells us that the set A; \ B; is pointwise fixed.

Further, let 6(1) C A; be a carrousel disc of order 1 defined as in the
next 3.11. If there are no carrousel discs of order 1 included in é(i), then the
only fixed point of &(7) is its centre.

If §(2) contains some carrousel disc of order 1, then we decompose §(¢) into
annuli, since §(z) is itself a carrousel. For any such annulus, we may adapt the
present argument, from the beginning of 3.9.

3.10 It is easily seen that the set A;\ B;, as in 3.9, has as deformation retract

the set:
s\ U ou U o, (7)
sexiV sextM
where
X .= lsc A & is a carrousel disc of order 1 which is (8)
A * | not included (strictly) in any other carrousel disc |’

and S; is a closed curve homotopic to a circle which intersects 8, Vé € IC,(-I).

The picture shows a
possible shape of

the retract of the set of fixed
points inside A;:

the “thick” curves and the
“fat” points are fixed.

Then a neighbourhood of the set of fixed points after one turn of the (hig)
carrousel retracts to a set such that each connected component of it is either:

(a) a circle centred in (0,7) or in a centre of some carrousel disc of order 1,
or

(b) a set having a definition similar to the one in (7), or
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(c) the centre of a carrousel of order 1 inside A;, for some i € P(), or

(d) the centre (0,7) of the big carrousel.

3.11 Definition Let Z{} be a maximal set of indices : € PV such that, if
i1,i2 € I0), then CV # CV.

For any ¢ € I1), denote by &(:) the carrousel disc of order 1 centred at a
fixed (arbitrarily chosen) point of the set C{") N (D, x {}); denote by c(t) the
centre of 6(1).

Let a(7) be an arbitrarily chosen point on 88(i). It is, by definition, a
regular value for /.

With the notations in 3.3 and 3.11, we have the next:

3.12 Theorem If f € mx and | € Qy, then:

A(f) = Alfig=a)) + {/\(h;(;)) - A[h'a(.')ﬂ .

rith :

Proof The Lefschetz number A(f) splits into a sum, following the decom-
position of the set of fixed points into connected components, see 3.10. We
define a suitable open covering of a set defined as in (7) and then apply the
Mayer-Vietoris exact sequence. By a straightforward computation, using also
Lemma 3.3, we get the formula above. a

Notice that, by Theorem 3.12 above, only the first “hat” approximations
G count for the Lefschetz number A(f). In general, the Lefschetz numbers
Ahgy), A(R, ) are not easy to compute; we refer to Remarks 4.11. At the
end of the next section, there is an example where the computations can be
carried out.
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4 The zeta-function and the carrousel monodromies

4.1 We show that, within the present point of view, there is just a little step
from the formula for the Lefschetz number (Theorem 3.12) to a formula for
the zeta-function ¢;(t). We mention first some related and similar results.

A theorem of Eisenbud and Neumann [EN, Theorem 4.3] asserts that the
zeta-function of a fibred multilink L is the product of the zeta-functions over
all splice components of L. If the multilink is defined by some Cerf diagram
A(l, f), then the zeta-function (;(t) becomes the zeta-function, this time with
coefficients in a local system, of the multilink L. This observation leads to
a formula of Némethi [Ne]; compare his formula to the one of Eisenbud and
Neumann, as cited by Schrauwen [Sch, p.16].

Our approach is rather elementary: it uses only the carrousel method and
not the deep results in the theory of links. However, we mention that in the
paper [EN], the authors worked and, in particular, defined explicitly their
splicing diagram, only when the Puiseux expansion of any component of the
link is equal to the essential one (see 2.9). This was noticed also by Schrauwen
in his thesis [Sch, p.8]. In general, as we have more than one knot in the link,
the actual Puiseuz expansion (that is, also the nonessential terms) effectively
count for the understanding of the link. This well-known fact has an evident
reflection in our approach.

4.2 One of the most important properties of the carrousel construction is that,
loosely speaking, each “important point” of the carrousel disc is fixed after a
finite number of turns of the carrousel.

We have seen that the set of fixed points after one turn is the only important
set for the Lefschetz number A(ky). One can easily figure out that the set of
fixed points after k turns is the one responsible for the number A{h’}}; we make
this more clear in the following.

The set of fixed points of some power k of the carrousel motion may contain
a finite number of circles consisting of regular values for the map l,. Actually,
these circles do not count in the computation of A(h’}), as shown by Lemma 3.3
(where h; has to be replaced by A%).

4.3 The Lefschetz numbers A(h'}) are topological invariants of f, they do not
depend on the slice I € ;. However, preserving the notations before, there is
the following:
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Proposition Ifn;; t k, Vi€ {1,...,r}, then:

kY — A(Bk
A(h}) = A(h,m:o}).
Proof If n;; is not a divisor of k then the annulus 4; contains no fixed points
of the k** power of the carrousel. There may be circles of fixed points in some
“transition zones”, but they give no contribution in A(RE). o

Note that Theorem 3.2 becomes a posteriori a special case of Proposi-
tion 4.3, for k = 1.

4.4 If a point € D, x {n} is fixed by a certain power of the carrousel motion,
then a whole (small enough) disc around z is globally {maybe not pointwise)
fixed.

Definition Let U C D, x {n} and let ky := min{k | U is globally fixed by the
k*® power of the carrousel}. Then h’}” restricts to an action on H*(I;'(U)),
which we denote by A};. We call such actions carrousel monodromies.

4.5 The zeta-function is determined by the set of Lefschetz numbers A(h'}),
k> 1, see 1.3.

On the other hand, if B*) denotes some neighbourhood of the set of fixed
points of the k*" power of the carrousel, then h’} acts on the cohomology

H*(I71(B™)) and, with the definition above, we get:
A(RE) = Alhgm). (9)

4.6 Let’s consider the annulus A; , as before, in the big carrousel disc. By the
proof of Proposition 4.3, if z € A, is fixed by some power k of the carrousel,
then this power has to be a multiple of n; ;.

Denote by k4, the restriction of &y to H*(I;1(A,)). Then, by the formulae
in 1.3, we get:

[Gha, (D57 = G (47). (10)

Definition Foranyi € {1,...,r}, denote by §(:)V the carrousel disc of order
1 centred in an arbitrarily chosen point of C{" N (Da x {n}), but fixed once
and for all.

Let 7 = {§ = 6(1)V |i € {1,... .7}, 8(2)™ is not strictly contained in
any other carrousel disc of order 1}.

Finally, let for § € JM), a(6) be an arbitrarily chosen point on the circle
38.
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Then we have the next:

4.7 Theorem

Cr(t) = Cpmny (t)- H c"z (t™) - C’:f,lta)(tn'." )-

seg)

Proof We apply the Mayer—Vietoris exact sequences to the covering by annuli
A; described before. Since the fixed circles do not count for the Lefschetz
numbers, we get that the zeta-function is a product over all different annuli,
each factor being of the form (s, (£).

To get (a,, (t), we compute (hn.l(t), in view of (10). Here the situation

is similar to the one in 3.9: the carrousel discs of order 1 included in A; are
globally fixed and the complement of their union in A; is pointwise fixed.
It follows that A; retracts to the set:

R;:=5U U 8,
sex)

where §; is homotopic (in A;) to a circle and S;N & # B, V6 € K. The set
K™ has been defined in (8).
Moreover we get that:

Ch:.‘_,l (t) = C";z,(t)'

Let 7 := {6 € JO, 6 C A;}. Ifé € I, then notice that there are n;,
carrousel discs in A; of the same radius as §; if 8;, §; are any two of them, then
Cng, (2) = Qg ()

"An open covering of R; and a Mayer-Vietoris argument lead to the con-

clusion:
Gy () =TI [Gay (™ - G, (O™
seg
Using (10), the formula in our theorem gets its proof. Notice that the factor
Cfimoy (2) corresponds to the disc Ao, defined in 2.10. O

4.8 It is relatively easy to figure out how the process started in the proof above

may continue: each § € J() is a small carrousel (of order 1); the algebraic

monodromy on H*(I7'(8)) is h;. We apply Theorem 4.7 with hy replaced by
% and get a formula for the zeta-functlon (u(t), forany 6 € J ),
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In a finite number of steps, going through the carrousel discs of order
1,2,...,m, where m := max{g; | i € {1,...,r}}, we get a formula for ¢;(t).
(We recall that g; is the number of Puiseux pairs in our parametrization of
A;). To write it down, we just need some more notation.

4.9 Definition Let §(i)*) denote the carrousel disc of order & centred in a
fixed (arbitrarily chosen) point of the set C*! n (D, x {7}). ( Note that this
later set contains exactly n;, - - n;; points). Denote by:

C(A") :={6()® |ie{1,...,r}, ke {1,...,m}}.

For any § € C(A'), denote by c(é) its centre and by a(6) an arbitrarily
chosen point on 98.
Let § € C(A'), where § = (i), for some indices ¢ and k as above. Then
define:
n(6) =R NGk

We get the following conclusion:
4.10 Theorem
)= G () 11 Ch;m(t"(ﬁ)) : C"—L:a)(tn(s))-
sec(ar)
0

4.11 Remarks (a) The points a(6), § € C(A’) may be defined as follows:
Let § = 6(1)® and let C*) be (formally) defined by the equation (see (6)):

lx
wp = ap Ay Z by (ACPE D Mg nik (11)
=1
Then define a curve Gig, by slightly perturbing in (11) just the last
coefficient by, , such that G, # C'J(k), Vi€ {l,...,r}. For k = g;, we
cut the Puiseux expansion at a sufficiently high power of A and modify
the last coefficient.
It follows that a(6(:){¥)) may be identified to the point in G; N (Dq x {n})
which is in the closest neighbourhood of ¢(§(z)*)).

(b) Let 6 := 6()¥). Then ¢(é) is a regular value for the map I, if and only
if, for any j € {1,...,r} such that é';k) = C!®, we have g; > k.

It is possible that a(6) cannot be chosen arbitrarily close to ¢(§), see also
Remark 2.8.
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(c) The carrousel monodromies k'), A (s) may be defined as monodromies of
functions. For instance, if § = §(i)*) and (ugk)(t), A(t)) is the parametriza-
tion of C(¥) defined in 2.7, then the pull-back diagram:

x®,00 — (X0

] le (12)
(“(.k)‘x)

(C,O) —— (0210)

defines a space (ng),O) and a function f,—“‘) on it. Then hs is just the
monodromy of f,-(k).

A pull-back diagram similar to (12) was used by L& in his proof of the
Monodromy Theorem {Lé-2].

4.12 In general, it is difficult to compute the zeta-function by the formula4.10.
One of the reasons is that the Cerf diagram and its Puiseux parametrization
are hard jobs in practice.

4.13 We rather illustrate the formula on a simple particular case: any com-
ponent A; has just one Puiseux pair, ie. gi =1, Vi € {1,... T}

In this case, we have é‘,;’) = A; and a carrousel disc §(z)(!) is just an
arbitrarily small disc centred in c(§(:)() € A:iN(Da x {n}), which is pointwise
fixed by the n; 't power of the big carrousel.

It follows that the point a(8(i)")) can be chosen arbitrarily close to the
point ¢(6(z)M). The centres c(6), 6 € C(A") are, of course, critical values for
the map I,.

The fibre F( is also topologically equivalent to the fibre of the fibration
defined by I, over Uys \ {c(6)}, where Us) is a small enough neighbourhood
of ¢(6) in DM x {n}.

It follows that, after attaching a finite number of cells to F;,, one gets a
space which is homotopy equivalent to Fy.

There is a long exact sequence corresponding to the pair of fibres

(Fesy Fayhs
on which the restrictions of the monodromy £ ; are acting:
3 I} 3
- Hk(Fc'(s)) - Hk(F;(s)) S HM( ;(6)?Fu(5):| - Hk+1(Fc{£]) -

T ks T ki) T it T i)
(13)
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There is a well defined relative monodromy:
hfos) : H*( J(s)aF.:(s)) o H.(Fi.f(b')! F;(a}:l-

We get:
iy (0= Ga 1) G2, (1)

o{4)
Let ¢(i) denote an arbitrarily chosen point of the set A; N (Da % {n}). Then
C(A’) can be identified to the set {¢(z) | i € {1,...,7}}. With these notations,
the zeta-function formula becomes:

)= Cu=oy(®)- TI  Guem (2™9). (14)

iE{l,..r}

The Lefschetz number formula is also easier:

Af) = Al fip=0y) + 5 A(RE).

g =1, I'vE{l,...,r}

In particular cases, these relative monodromies may have interesting inter-
pretations, as in the paper [Si] of Siersma (which, actually, was at the origin
of this investigation).

We end by an example:

4.14 Example Let X := {23+ y*+ 22 =0} C C®and let f € myx, be the
function induced by f € mesp, f = z.

Consider the linear function { induced by { = y. Then I € 1y. We get that
A(l, f) is irreducible and has the Puiseux parametrization: [ = av®, A = v,
where o is a nonzero constant, easy to determine.

Let c € A(l, /)N(Dax {n}) and let @ & A(l, £)N(Dq x {n}) be a neighbour
point of .

By Remark 4.11(c), in our case k! can be identified to the monaodromy of
the function: f, : (X.,0) — (C,0) induced by fo = v, where X, := {z =
v,y = av®}. Thus { (1) = (1 —¢)-L.

Next, the monodromy & can be identified to the monodromy of the func-
tion f, : (X,,0) — (C,0) induced by f, = v, where X, := {fz=viy=1032=
V2yv*} and v is a 3-root of —1. We get Gy (t) = (1-1)73, hence (on = (1—1)2

By using (14), the final result is:

G =01 -87- (1=t
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We also get: A(f) = 3.

Notice that there is another way of computing the zeta function in this
example, by using the usual C*-action on X, which fixes the zero set { f=
0}. Tt follows that the monodromy Ay of f is equal to the 3™ power of the
monodromy A, of the function g : (C?,0) — (C,0), g = y* + 2° and (j3(t) can
be computed from the eigenvalues of &,.

If we change the above function f into f; := z + y, then the set {fi =0}
is no more invariant under the above-mentioned C*-action. The computations
for the zeta-function of hj, are slightly more complicated, since we get two
Puiseux pairs, with ny; = 1, ny 2 = 3. This time, the final result is:

() =01 -1 -2y 1-1)
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Chapter II

Lefschetz number and isolated cyclic
quotient singularities

1 Leftschetz number and resolution of singularities

1.1 Let (X, z) be a reduced analytic germ and let i : (X, z) — (CV,0) be an
embedding, for some large enough N € N. Denote by (Xsing,0) the germ of
the singular locus of (X,0). Let H be a divisor, defined as the germ in 0 of
the zero set of a function f : (X,0) — (C,0). Denote by O := Ox the local
algebra of (X,0) and by m := mx o its maximal ideal.

Let X denote some small enough representative of the germ (X, 0) and let
‘H denote the zero locus of some representative of f on A

By the work of Hironaka [Hi-1], there is a local resolution:

r: (W, Wy) = (X, H)

such that: Wy := r~1(H) is a normal crossings divisor (abbreviated n.c. divi-
sor) in the smooth space W.

The set S := r~1(0) is a compact subvariety of W, since r is proper (by
definition). Also by definition, r induces an isomorphism:

r WA (7~ Xaing) U Wo) = X'\ (Xsing U H).

1.2 In general, the Milnor fibre Fy of f is not smooth and r~'(Fy) is not
homotopy equivalent to Fy. Nevertheless, if f is a smoothing of H then Fyis
smooth and r~1(Fy) =~ Fy.

The construction of A’Campo [A’C-2] yields a model for the Milnor fibre
FYy, in the case when f is a smoothing, that is when:

(Xsing, 0) C (H,0). (1)

Let Ix, o C Ox, be the reduced ideal of (Xing, 0).

Sing s

27
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The model constructed by A’Campo also provides a decomposition of the
Milnor fibre r=1(F) of f or into certain “pieces”, as we roughly show in the
following:

Let E := Uje;, E; be the exceptional divisor of r (which is not compact,
unless X, = {0}) and its decomposition into irreducible components. Denote
by ¥ the proper transform of H by r. Then we have the equality of divisors:

Wo=H+ Y ny(E;E;, (2)

J‘EJr

where n;(f}j) 1s a positive integer, for any j € J;, by the condition (1).

Let U be a small enough tubular neighbourhood of Wj; then r~I(Fy) c U.
Since W is a germ in S of a n.c. divisor, this neighbourhood U/ can be retracted
to a neighbourhood U’ of § and the retraction is compatible with the Milnor
fibration of f o r. Next, S intersects all the exceptional divisors E; and also
H; we consider the set of all the points where a fixed divisor E,-D intersects S
but no other component of W, does. Take a small tubular neighbourhood U,
of this smooth set and consider the intersection of +—1( ;) with U;,. This is
one of the pieces in the decomposition of F; produced by A’Campo.

The decomposition behaves nicely with respect to the monodromy: each
piece has a well defined geometric monodromy which makes the computation
of the Lefschetz number of any power of the algebraic monodromy easy.

It follows that the zeta-function is a product over all the pieces in the
decomposition. Actually, A’Campo defines:

S. .= {s cs ‘ the equation of Wj in s is of the form 2f = O,}
v for a local coordinate z in the point s € W.

and is able to prove, under the condition (1 J—which is, however, not explicitly
stated in [A’C-2]—the formula:

1.3 Theorem [A’C-2, Théoréme 3).
Gr(t) = [T - ¢y X,

i>1

O

This is a consequence of the formula for the Lefschetz number of a power of
the algebraic monodromy &/
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1.4 Theorem [A’C-2, Théoréme 1j.
(a) A(R}) =Tt~ x(Ss), fork21,
(b) A(h?) =x(Fy) = E.‘gl t- x(8:). ]

1.5 Remark In [A’C-2], A’Campo applies his nice construction to functions
on smooth spaces. An attempt to make it work beyond the limit given in our
condition (1) is by replacing the resolution r by a modification over H. We do
not intend to discuss about this aspect here.

We assume from now on that f is a smoothing, i.e. f € Ix,, 0.

1.6 For any component E;, there is a well defined valuation ordg_on Oy, E,
For any f € Ix,,, 0, we say that ordEJ(f o r) is the multiplicity of for along

the component E;. According to the relation (2), we have:
ordg (f o 7) = ny(E;).

These multiplicities enter in the zeta-function formula of A’Campo (Theo-
rem 1.3) together with the Euler characteristic of each component of E minus
its intersections with other components of the set {f or = 0}.

The Lefschetz number formula, as part of the zeta-function formula, re-
quires only the data for those components of E for which the multiplicity (in
the sense above) is 1. Our first aim is to identify them.

1.7 We hope not to confuse the reader by using sometimes the same notation
for a (space) germ and for some small enough representative of it. We find the
following way convenient to produce a resolution r as in 1.1:

(i) resolve the space germ (X,0) by 7 : (X', E) = (X, Xqing) such that E is
a n.c. divisor and then

(ii) resolve the divisor {f o ¥ = 0} on the smooth space germ (X', 7~%(0))
into a normal crossings divisor.

The second stage (ii) is necessary since {f o r = 0} may be not a n.c. divisor;
hence one has to blow-up further. By [Hi-1], there is indeed a sequence of
blowing-ups which leads to the final resolution r with the desired properties:

rr Xp3Xe - oXB3XISX
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Each step r; : X; — X;_, is a blowing-up along a smooth subvariety V;_,
included in the locus where D;_, := { foror o---or,_, = 0} is equimultiple and
is not a n.c. divisor. It follows that D;_; has multiplicity > 2 along V;_; and,
consequently, the new exceptional divisor introduced by r; gets multiplicity
> 2 in the total transform D;.

The immediate consequence is that the divisors created by further blowing-
ups do not count for the Lefschetz number,

Moreover, we show in the next two easy lemmas that the further blowing-
ups do not influence the data which are necessary for the formula of the Lef-
schetz number.

1.8 Let E = Ujey, E; be the decomposition of the exceptional divisor of =
into irreducible components and let {f = 0} denote the proper transform of

{f =0} by =.

Lermnma Denote by 1-35-") the proper transform of the component E;, j € J, by
the composition of blowing-ups (ry0---or;). For anyi € {1,...,k} and any
7 € Jp we have:

ordﬁg.-)(fo moryo---or;) =ordg,(f on).

Proof It is a step-by-step proof; we make explicit the first step. The first
blowing-up r, is along a smooth subvariety of the ambient space in which E;
is a smooth subvariety itself. The intersection of these two subvarieties has
codimension in E; at least 1. The local equation of { f or = 0} in some generic
point of E; is: y™ = 0, where y is some local coordinate and m := ordg,(for).
It is clear that the function f o or; will have the same multiplicity m along
the proper transform of {y = 0} by r,. 0

1.9 Definition For any j € J,, define the open subset of E;:

Ej(/):=E;\({f/=0ju |J E).

V€Jn, T#]
We usually write E? instead of E}(f), if no confusion may arise.

Lemma For any f € Ix, 0, any j € J. and any i € {1,...,k} we have the
analytic isomorphisms:

(rio---or) Y (ES(S)) ~ Ej(f).



1. Leftschetz number and resolution of singularities 3

Proof By definition, the locus of X’ where {f o 7 = 0} is not a n.c. divisor
does not intersect E}, Vj € J,. Hence, any modification in a subvariety ¥}
contained in this locus (in particular our blowing-up ) is an isomorphism

over E7.
The repetition of this argument in each step (i.e. for ri, r2,..., 7;) gives
the proof of our assertion. m]

1.10 To each component E;, one associates a filtration F(E;)* on O as follows:
lein;-o = ‘7--(EJ)1 ) f(EJ)z Dy
where F(E;)* := {f € I, 0 | ordg,(f ox) > k} and F(E;)°:= 0.
Hence, to any component E;, there corresponds a graded ring:

Gr(E;).0 = @) F(E; )/ F(E;*.

1.11 It is easy to see that the method of A’Campo gives a proof of the:
Proposition If f € Njes, F(E;)%, then A(f) = 0. O

1.12 By Lemmas 1.8 and 1.9, we have proved that, if we fix a resolution
7 : (X, B) = (X,Xqing), then the Lefschetz number of some f € Ix,, 0
is determined only by the Euler characteristics x(E?), for j € Jr such that
ordg,(f o *) = 1. Moreover:

Proposition The Lefschetz number A(f) depends only on the residue classes
of f in Gr(E;)10, for 7 € Js.

Proof Suppose that f ¢ F(E;)?, f = fi + fa, where f; € F(E;)?, for a fixed
Jj€Jn

Let a € E,; be a generic point of E; and let y = 0 be the reduced local
equation of E; in the point a. Then the function f o= in local coordinates
around the point a becomes y - f] + y? - f3, for some holomorphic functions
f1, fi. Hence, we get the equality of sets:

{f 0?= 0} n Ej = {fl C-F‘JTH= 0} M E_,'.
This proves: x(E3(f)) = x(E}(£1)), Vj € J such that ordg,(fom}=1. O

1.13 In the case (X,0) is an isolated singularity, any nonzero function f :
(X,0) — (C,0) is a smoothing and we can prove:
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Lemma Jf (X,0) is an isolated singularity then, for any f € m?, we have:
ordg (f o) 2> 2, Vj € J,. In particular:

m’ C Njed, F(E;)2.

Proof The morphism 7 induces a morphism of local algebras Ox o — Ox g;,
Vj € J.. Hence m% 4 is mapped to m§(,‘E'1 and this is all we have to prove. O

Remarks

(a) The statement [A’C-1, Théoréme 1] becomes a consequence of Lem-
ma 1.13 and Proposition 1.11 above.

(b) If (X,0) is isolated then, by Proposition 1.12, the Lefschetz number
depends only on the residue class of f in m/m?2. Apparently, this result
cannot be derived by the carrouscl method.

(c) Example 6.3 shows that the inclusion in Lemma 1.13 can be strict.
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The uniqueness of the minimal filtrations

1.14 The Lefschetz number does not depend on the chosen resolution of &',
since it is a topological invariant of the germ (X,0). On the other hand, we
have shown that the Lefschetz number is a well defined function:

A : Ixaingnol njEJx '7:(E..T)2 i z'

We show in the following that the intersection of ideals Nje,, F(E;)* does not
depend on the resolution 7, hence we may denote it by Fxo. Actually, we
prove a stronger result (Theorem 1.18), which implies that even some of the
ideals F(E;)?, j € Jx, namely the minimal ones, are uniquely determined by
the underlying space.

A similar, but weaker result was proved by Fine [Fi, Theorem 1]. As he did,
we use Hironaka's theorem on the elimination of poins of indeterminacy [Hi-1,
p. 140} as a basis for the proofs.

1.15 Let 7, : (XM, EM) = (X, Xing) and 75 : (X E®) — (X, X,ing) be
two resolutions of the space germ (X,0). Thus, the germs (X, E(") and
(X, E(?)) are bimeromorphically equivalent.

_ According to the above cited theorem of Hironaka, there are a smooth germ
(X, E) and two proper morphisms p; : (X,E) — (X, EM), p; : (X,E) —
(X, E®), which are isomorphisms over X \ E(), resp. X\ E? and
which fit into the commutative diagram:

(X, E)
n s ”
(XM, EM (X E®) (3)
r-l\t /w;
(vasins)
such that p, is a finite succession of blowing-ups.

1.16 Definition Let 7 : (X', E) — (X, Xaing) be a resolution. Define the set
L(w) of filirations associated to 7 by:

L{x) = {F(E;)* | j € Jx}
and order this set by the inclusion relation “C”, that is:

F(E;)* € F(E)* ifandonlyif F(E;)* C F(E)f, VkeN.
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1.17 Definition The subset p(x) of minimal filtrations associated to 7 is
defined as follows:

u(r) :=={F(E;)* € L(r) | F(E;)* is minimal with respect to the order “C"}.

Define also the subset M, of J. by: M, := {j € J. | F(E;)* € u(r)}.
With these notations at hand, we prove the following:

1.18 Theorem The set of filtrations p(7) is an invariant of the space (X,0).

Proof Let m, m be any two resolutions of (X, Xuing) as in 1.15; they fit into
the diagram (3). Take j € M,, and f € Ix,,, 0 such that ordg,(f o 72) = k,
k € Z,. Denote by EJ- the proper transform of E; by p,. Then, by Lemma 1.8,
we have ordg (fomz0p;) = k.

There exists i € J,, such that p; induces a morphism of germs Py
(X,E;) = (XO,EM), thus a morphism of local algebras: Oxm g = Ox i,

Consequently, m oy 15 mapped to m’, . , ¥l e N.

!
X().E

X.E,’
Suppose that ordga)(f om) > k. Then fom € m;"{'f) o for some [ > 1,
hence fom 0p, € m';("']"'-:_. Since fomr0p = fomo0pe, we get a contradiction.
et

We have proved that F(E{")* C f(Egz})’.

To get the converse inclusion, we interchange X{® with X{") in the dia-
gram (3) and reason once again as above. We get that there is a j; € J,, such
that:

FED) € FED) € FEP)"

By the minimality, all these inclusions are equalities and 7, € M,,. It al-
so follows that i € M, , by the same minimality principle. The conclusion,
p#(m1) = pu(mz), is now evident. D

1.19 We show that, actually, the sets M, and u(7) have the same number of
elements. The reason was explained to us by Steenbrink.

Proposition #M, = #u(r).

Proof If we slice (X,0) by a general hyperplane H, we reduce the dimen-
sion of the singular locus. A resolution 7 : (X,E) — (X, Xjng) induces a
modification:

m:HNX = HnX.



1. Leftschetz number and resolution of singularities 35

If two valuations ordg,,ordg, are equal on mx:.g, then ordg ;; and ordEqur
are equal on my zp. Thus, it is sufficient to prove the assertion in the case:
{X,0) is an isolated singularity.

By results of Samuel [Sam] and Artin [Ar-1], [Ar-2] we have that any isolat-
ed singularity is algebraic. Hence (X, 0) is isomorphic to a germ (i, x), where
U is an affine algebraic variety. We embed U in a projective variety V and
resolve all the singularities of V, except the one at the point z € U/. We get
a projective space ) with just one singular point z, where the germ (V,z) is
isomorphic to our initial (X, 0).

There is a resolution p : Z — } of the singularity of Y such that Z is pro-
jective; let £ := p~1(z) be the exceptional divisor. Two different components
&, &; of it give two different valuations ords,, ordg, on the function field c(y).

On the other hand, C()) is also the field of fractions of the local ring A
of V in the point z. It follows that the two valuations are different on A and
that’s all we need. o

1.20 Some immediate consequences of the Theorem 1.18 are:

(a) The set of graded O-modules:
Glx) = {GH(E;).0 | j € My)
is an invariant of (X,0).

(b) The set of minimal, order two ideals y?(x) := {F(E;)? | j € M,} is an
invariant of (X, 0). This implies that the ideal Fx o = N;eJ, F(E;)? does
not depend on the resolution .

1.21 Definition A resolution 7 : X’ — X is called jix-minimal if and only if
L(r) = px, where px := p(r).
We refer to Remark 6.6 for examples of gx-minimal resolutions.
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2 Isolated cyclic quotients; introduction to the results

2.1 Let p4 denote the finite cyclic group of the d-roots of unity, for d > 2; it
is a subgroup of C*. Consider a diagonal representation of #4 in GL(n,C),
for some integer n > 2, and denote by G' the image of g Hence a generator
of the group G can be represented as a vector:

(Po,P1s- <3 Pn-1), Wwith0<p; <d—1,¥i€ {0,...,n 1},

meaning that, if £ is a fixed primitive d-root of 1, then our generator acts as
the multiplication of each coordinate z; by €%, respectively.

We impose from now on the condition that p; and d are relatively prime,
for all indices i. Consequently, a generator of our action can be represented
as:

(1,P15- .1 Pa-1), with ged(pi,d) =1, Vi€ {1,...,n—1}. (4)

This implies that the quotient space germ (X,0) := (C",0)/G is an isolated
singularity. Any isolated cyclic quotient singularity can be obtained as the
quotient with respect to an action as above which has the property (4).

We focus on the Lefschetz number A(f) and the zeta-function ¢ 7(t) of the
local monodromy of a function:

f:(X,0) = (C,0).

2.2 We need some notations in order to state one of the main results we want
to prove.

Let \A be the set of integral vectors of the form (e,cn,...,0n-1), with
l1<a<d-1and o = ap; (modulo d), where 1 < o; < d — 1.

Denote by A’ the subset of A which is left after excluding the vectors
that are linear combinations with positive integral coefficients of some other
vectors in A. It turns out easily that .4’ is included in the subset of the
primitive elements of A. (An element ug is called a primitive of A if the
equality up = k - u, for some k € Z and u € A, implies k£ = 1.) It is important
to stress that some elements v € A’ might be not primitive in the lattice Z"
(see e.g. Example 2.7).

We define certain filtrations on the maximal ideal m := my o of the local
ring O := Ox o, which depend only on the group G. For any f € m, we denote
by f the corresponding G-invariant function on (Cr,0).
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2.3 Definition Let S denote the polynomial algebra Clz;...,z.). For any
v € (Z4)", denote by S(v) the same algebra, but this time graded: the variables
have the weights given by the respective components of the strictly positive
integral vector v. For any g € C{z1,...,2,}, denote by o0,(g) the order of g
with respect to the weights given by v.

2.4 One has the following identification:
O~ C{:r:l,...,a:,,}G.
Define a filtration G(v)* on O by:
G) :={f € O ol f) 2 kd}.
This gives the graded C-algebra:
Gr(v).® := C & P G(v)*/G(v) .

E>1

If v € A’ then one identifies this to another graded C-algebra:
GI‘('U).SG =C (45] @ S(v)kd.

k>1

For any k > 1, v € A’ and any residue class [f] € Gr(v):O, let for € S(v)ra
be the (canonical) polynomial representative of [f]. Let f,i denote the same
representative, but viewed as a function on (X, 0).

2.5 Definition Let v € A, f € m and let f, := f,; and f, := fi1, be the
representatives of [f] defined in 2.4 above.
Then, for any v € A, define the “partial Lefschetz numbers” by:

Au(f) = A(fo)-

_ By definition, A(0) = 0, hence we also get A,(0) = 0, Vv € A". Note that
fo is either 0 or a quasihomogeneous polynomial of degree d with respect to
the weights v.

One of the main results we want to prove is the following:
2.6 Theorem Let f € m. Then:

(a) The Lefschetz number A(f) depends only on the functions f, (defined
above), forve A'.
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(6) A(f) = Zoea Au(f).

As an illustration of this theorem, we present the following example; more
others are given in Section 6.

2.7 Example Consider the following data for the G-action: n = 2, d = 8 and
denote by (1,5) a generator, as in 2.1. We get:

A = {(1,5},[2,2),{3,7),(4,4),(5,1),{6,6],[7,3)},
A = {(1s5}1|:2a2}:|:5s1:|}-

Notice that (2,2) € A is not primitive in the lattice Z".
The G-invariant monomials of “lowest” degrees are:

wsv msy: zyas ys,
and they are on a polygonal line I consisting of three segments, as shown below
(see Definition 4.13). These monomials generate the algebra of G-invariant
polynomials C[z,y]¢ and the embedding dimension of C?/G is 4.

(0,8

Note that z?y? is not G-invariant, \
although the point (2,2) is on T. \

(0,0) (8.0

We have:
0,(f)>2-8, Vfem,VYvec A\ A

The subset A’ of A is also connected to the minimal resolution of the
quotient C?/G' (which has a (—2, -3, ~2) dual graph). We refer to Section 7,
where the case n = 2 is presented in more detail.

One way of computing the partial Lefschetz numbers A,(f) is by using the
minimal resolution of the 2-dimensional cyclic singularity. For details about
this resolution, we refer to the nice book of Lamotke [Lam).

Take the following polynomial function:

=2+ + oy’ + 45
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The Newton polygon associated to f (see [Ku]) is just our T'. We have:

f{l.s) = 2% + 2%, f(z,z) = 2%y + z1°, f(s.l) =zy° +¢°.

Then:
Aas(H) =0, Aea(f)=-1, Asnlf)=0,

hence A(f) = —1.
For the following two other functions:

f”f = xs + mya + ylﬁ, _f" = xs 4 ys’

we get:
Aas(fY =1, Apa(f)=0, Asy(f)=0,
hence A(f’) =1, and:

Aas(fM =1, AenlfN=0, Asn(f)=1,

hence A(f") = 2.

It turns out that the number 2 is the maximum of the possible Lefschetz
numbers, over all functions in m. Actually, for all the computations above,
one can use the forthcoming formula (26), since it gives the answer much more
quickly.

We prove Theorem 2.6 using also resulis from the preceding section. In
Section 3 we describe a “nice” resolution of X to work with and in Section 4
we complete the proof.
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3 A toric resolution of the cyclic quotient singularity

3.1 We construct a resolution of the reduced algebraic variety X = C*/G,
which provides us, of course, with a resolution of the analytic germ (X, 0).

We build up a smooth toric variety Y together with a morphism #: Y —
C" and a commutative diagram:

Yy 5 cn
Pl l»
X I, X

such that X’ is a smooth space and 7 : X’ — X is a resolution with normal
crossings. It was Ehlers [Eh] who constructed resolutions of cyclic quotient
singularities, using toric methods. Qur construction is related to his, but
contains more information, since we want moreover:

(i) a finite group G’ and a surjective morphism of groups p: G' — G,

(i) the group G” acting on Y such that in local charts this is an action of a
reflection group,

(i) X' =Y/G,
(iv) the morphism # be equivariant with respect to p.

We refer to [Oda] for some of the terminology we use in the following.

3.2 Definition Let 7 be a strongly conver rational polyhedral cone in R®, with
vertex at the origin 0, (we shall say only cone, for short) and let P be a finite
set of integral vectors contained in 7. We say that a decomposition of T into
polyhedral cones is generated by P if it satisfies the condition: @ 1-dimensional
cone inside T is a 1-face of some polyhedral cone in the decomposilion if and
only if it is generated by a vector v € P.

Let ¥ := A'U{(d,0,...,0),(0,4,0,... :0),...,(0,...,0,d)}. For n linearly
independent vectors v; € Z* we say that the cone Ryo{vy,...,v.) is a cell
We call moreover such a cell a k-cell if the determinant of the 1 x 7 matrix
(v1y...,v,) is equal to k.
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3.3 Proposition There is a finite family W of positive integral vectors such
that :

fa) VCW
{b) There is a decomposition of (Rxo)" into d*~'-cells generated by W.

(¢) Any vector v € W is congruent, modulo d, to some vector in A or 1o (.

Note For n = 2, one can show that there is a (unique) d-cell decomposition
generated by V and it is the most “economical” one (see Section 7 for the
precise definitions and statements).

For n = 3, many examples show that V is just sufficient for a d*-cell
decomposition.

Question Is this last fact true in general (at least for n = 3)?

Proof (of Proposition 3.3) The idea is the following:
Find a cone 7 C R™ and a matrix T with integral entries, such that:

i) detT = d"1,
ii) T transforms 7 into the positive orthant (Ryo)".

Then find a finite family of integral vectors inside the cone 7 so that to generate
2 1-cell decomposition. Taking the image by T, we get a d*~!-cell decomposi-
tion of (Ryo)™.

But this is not enough, since the conditions (a) and (c) are not automati-
cally satisfied; hence T and T must be more carefully chosen.

A good candidate for 7 is the cone of Ehlers:

78 = Ryolw, e3,..., €0},

where w = d - e; — 105 pi€igr-
Denote by I the (n — 1) x (r — 1) identity matrix. Consider the matrix

1 0 . . . 0]
D

d-1

L Pr-1
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We have: det T = "' and T(w,ez,...,¢e,) = (d-ey,...,d " €,), hence condi-
tions i) and ii} are satisfied.

Due to the special form of the matrix T, all the inverse images T~(v), for
v € V, are integral vectors inside the cone 7z.

We choose a decomposition of 7z generated by the set of vectors T=1(V)
and make a subdivision of it into nonsingular cones (i.e. 1-cells).

There is an algorithm for that (see [KKMS], but short proofs can be found
in (Eh, p. 130] or [Oka, p. 410]). At each step, one introduces a new integral
vector which subdivides one of the cones. After a finite number of such op-
erations, one gets a 1-cell decomposition of 7z together with a set, say Q, of
primitive vectors which generates it.

Moreover, @ contains T-'(V), since T~'(V) is a set of primitive vectors,
as shown by the next lemma.

The conclusion is that T(Q) is just a family W we were looking for and a
d*~!-cell decomposition of (Ry)" is the image of the 1-cell decomposition of
Tg as constructed above. Point (c) follows from the definition of T. a

3.4 Since A’ may contain nonprimitive vectors, we need to prove the following:

Lemma The set T~'(V) is a set of primitive Z,-independent elements in Z*.

Proof It is sufficient to prove the statement for the subset T~1(A") of T-1(V).
Since T is linear, the Z,-independence is clear from the definition of A’. Ac-
tually, the only thing to be proven is the primitivity. We have:

[ 1 o . . .07
—Plfd

1/d-1

. ‘Pn—l/d E
Take v := (a,ap) — 01d,...,ap,—1 — in-1d) a vector in A’ and suppose that

T~*(v) is not primitive. This means that there is an integral vector v’ such
that:

i) v=Fk- v forsome k> 1, k€ N, and

ii} T~'(v') is an integral vector.
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Since we have the equality:

a app 4©d aPp—1 tn1d a 7 tr-1

e app_ ué t_ (2 _nh t
k' k k2T k k ) (k’ KTk Vs
we can write the following equalities of integers:

T (v") = T

a:k-a', i1 =kt'1, ey in—l =k'i:l_1.
Hence the vector v is as follows:
e (k'a"r k'a’PI —k'i;d’ cey k'a'pn—l —k'i:q—ld)’

which means that

1 ] )
P cv=(d, a'p—i1d, ..., @'ppy — i _,d)
is a vector in .A. This contradicts the fact that v € A" 0

3.5 Remarks

(a) For any n vectors from W the determinant of their n x n matrix is a
multiple of d"~! or is equal to 0.

(b) The image of e; by T (where e; € 7g) is the vector (1,p1, ... ,Pa-1) € V.

3.6 We work only with families W subject to the following supplementary
condition:

(*) All the vectors from W, except those along the coordinate axes, are
strictly positive.

Lemma There ezist families W which satisfy condition (*} above.

Proof For any j € {1,...,n} there is exactly one vector v(j) € A which has
1 on the position j. This correspondence (which may be not injective) is due
to the condition (1): ged(pi,d) =1, Vi€ {1,...,n —1}.

Then, for any such j, we have a d"~*-cell:

o;j:=Ryol{d-e1,...,d "¢ 1,0(7),d - €414+ .., d - €n).

Since the inverse images by T of the generators of o; generate a 1-cell in 7g,
one can complete a 1-cell decomposition of g starting with the cells T7'(a;),
je{1,...,n}.

Hence, we have proved that there is a decomposition of (Ryo)" into d"~'-
cells, as required by Proposition 3.3, which contains the cells o;. It is ohvious
that the subsequent family W has the property (*). o
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3.7 Let C = Cyy be the family of the d"~'-cells in a decomposition provided by
the proof of the above Lemma 3.6 (where W has the property (*)) and denote
by ¥ = Ew the fan defined by the same decomposition. Hence we consider
each cone from ¥ as generated by vectors from our specific set W; we shall
steadily keep this convention from now on.

Let o := Ryo{vr,...,v4), 0’ 1= Ryo(v},...,v.) be two elements in C and
define a matrix G, , by:

Goro(vry. . o)t = (v],..., )% (5)

Lemma The matrices G, have integral entries and det Gor o = %1, for any
og,0 €C.

Proof It is enough to prove the statement for “neighbour” o,0’ € C. So sup-

pose ¢ = Royof{vy,va,...,0,), 0/ = Ryo(v],va,...,v.). Then G,., looks as
follows:

(a; A

0
1

| 0 |

Hence det(o!
o = et(vi,va,...,v,) -1

det(vy,vs,...,v,)

and o; = det(vy,..., 01,0}, Vig1,. .., 5) det(vy,...,v,), for i € {2,...,n},

have integral values, as a consequence of our Remark 3.5(a). The sign of ay ts
indeed minus, since the two simplices (v1,v2,...,v,) and (v),vz,... ,Un) have
opposite orientations. Note also that the matrix Goi 0 1s equal to its inverse.

(]}

3.8 We use the family C to construct a smooth variety in a similar way one
constructs a resolution space starting with a Newton polyhedron of a suffi-
ciently general function, see [Var], [Oka). For some of the following notations
we refer to [Eh].

For 0,0’ € C, denote by C"(c), C"(0’) two copies of C" and define a
morphism g, from an open subset of C*(0) to C*(o" ) by the rule:

G.
Gorg i 24 7 ohe
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where G, , := (G, )"

The domain of g:,:‘, is:
def(g,' ) := {(21,---,2n) € C*(@) | 2 # 0 for some k if (G22,0)ik <0
for some ¢ }.
We define a manifold Y := Y¢ with local charts C*(¢), for o € C, and the

transition functions g,+, as above. We show that Y¢ is the needed variety Y,
as denoted in 3.1.

3.9 Define a projection:
#:Ye— CY,
which in local charts looks as follows:
7, : C*(o) — C*,
z — 2,
that is: ;

o ul
Ty =2z -2yt e 2pn

Uﬂ 7
To =2y -2y - 208
where o = Ryo{v1,2,...,¥n)-

One can see that:

(a) Outside the union of the coordinate hyperplanes in C*, 7 is a topological
covering of degree d*~!. Moreover, this union is precisely the discrimi-
nant of 7.

The restriction of # to #-1(C" \ {0}) is an analytic ramified covering.
(b) The projection # is a proper algebraic morphism. The only fact which

is still to prove is that the fibre #2(0), the exceptional divisor of T, is a
compact divisor in Ye.

This follows from similar arguments as those in the theory of toric vari-
eties, see e.g. [Oda, p.16].
(c) The group G’ := pg X -+ X pa C (C*)* acts on Y such that there is a
LS. Sl

n
natural commutative diagram:
Yy - ¢

! |
Ye/G' I Ch/G.
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The quotient variety is smooth since the group pig x -+ X g1z acts as a
reflection group in each coordinate chart:

C™(o) fo on
4 ! (7)
C* o) pa x - x pa == C/G,

where the projection from the left is equivalent to the morphism:
Cﬂ J— Cﬂ.
(#1,...,20) > (28,...,29) (8)

Proof of (c). We take any cone 0 € C and show that the map #, is e-
quivariant with respect to a certain canonical surjective morphism of groups
Po i fd X+ X pg — G,

In the following we identify ug with Z; by fixing a primitive d-root of unity
£, i.e. £° is identified to @, for 0 < a < d — 1. We use also the identification
defined at 1.1 (1).

Let 0 = Ryo{vi,...,va). If (a1,...,a,) € Zg x -+ x Zq then, according
to the relation (6), we define p,(as,...,a,) = a,v, + --- + apv, and this last
vector is congruent (modulo d) to some vector in A or is zero, hence it is
an element of G. As p, is obviously a morphism, we have only to see that
it is onto. It will be sufficient, by Lemma 3.7, to prove this for a particular
cone, say o = Ryolg, d-e;3,..., d-¢,), where g = (1,p1,.--,Pn-1). Then
Poo(1,0,...,0) = g, hence p, is onto, since g is a generator of our G-action.

All other details (like the gluing of p,’s) are straightforward.

Since the morphism 7 is equivariant with respect to p, it induces indeed a
morphism 7 which completes the diagram above. o

Define X' :=Y¢/G’. Then we have:

3.10 Theorem The morphism w : X' — X is a resolulion wilh normal
Crossings.

Proof The space Y¢ is smooth and, by 3.9(b), the morphism = is proper. One
can check in coordinate charts, like in the proof of (2.8)(c), that = is one-to-
one over C"\{0}/G. The normal crossings property follows from the fact that
#71(0) is itself a divisor with normal crossings. Locally, #=1(0) is the union of
some coordinate hyperplanes and the projection (8) preserves this property. O
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3.11 Let E := (x)~*(0) be the exceptional divisor of the resolution = and let
E = U;c1, E; be its decomposition into irreducible compact components, where
I, is a finite set of indices.

Denote by W, the subset of W of strictly positive vectors. Then:

It iz a standard fact that there is a one-to-one correspondence among strictly
positive vectors v € W, and compact components E;, 1 € I.; hence:

[In] = [Wy| 2 | A

From now on we replace I, by W, and write E, instead E;.

Ifp': Ye — X’ = Y /G’ denotes the quotient projection then denote by B,
the irreducible component {p')!(E,) of the exceptional divisor E =#~1(0). It
follows from 3.9(c) that, indeed, any irreducible component of E is the inverse
image by p’ of some E,, for v € W,.

3.12 Note The toric varieties X’ and Y¢ are in fact two avatars of the same
space.

The proof of this fact goes as follows. We use the notations from [Oda]. If

~ Ty emb(A), i.e. the toric variety associated to a lattice N = Z{ei, . - r€n)

and a fan A, then, by our construction, X' >~ T Nemb(A), where 1N is the

overlattice of N generated by ey,..., de,. The projection Ty emb(A)
T Nemb(A) is induced by the inclusion N C IN.

On the other hand, the natural linear 1somorph|sm N =~ N (which sends
e; to Je;) extends to an isomorphism of fans ¢ : (N, A) = (} N A).
This gives rise to an isomorphism:

¢y : Tyemb(A) S Tyn emb(A). ()
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4 The Lefschetz number of functions on isolated cyclic
quotients

4.1 We keep the notations from Section 3. The decomposition C and the
family W are fixed, such that W satisfies the condition (*) in 3.6.

Let E = Uyew, Ey be the exceptional divisor of x and E = qu_w,f]::]u the
one of 7, as defined in 3.11. The construction of the “nice” resolution in Section
3 plays here an important role; actually, it provides all the data we need for
the Lefschetz number.

4.2 Lemma [fv € W\ V then at least one of the components of v is greater
than d.

Proof The vector v is the image by T of some integral vector (a,,. .., a,) with
a; > 0. This means:

U= (al,plal + dﬂg, cery Pn—101 + dan)-

Since v is positive and congruent (modulo d) to some vector in A (see Propo-
sition 3.3(c})), the conclusion follows. D

4.3 To each component E,, one associates a filtration F(E,)* as in 1.10. We
use also the valuation ordg, on Oy, g (see 1.6).

On the other hand, we have defined in 2.4 the filtration G(v)* associated
to a strictly positive vector v.

Lemma Ifv € W, then:

Proof We can prove our equality by considering the morphism # in local
charts (7), where, for f € m, we have almost by definition:

o.,(f) - ordi:”(fo ).

Passing to 7 means to divide by d each member of this last equality. m
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4.4 Proof of Theorem 2.6(a)
We use here Proposition 1.12. As we need those exceptional divisors for which
the multiplicity is 1, we may restrict our attention to the subfamily A’ C W.
Indeed, by Lemmas 4.2 and 4.3, if v € W\ V then ordg,(f o7) > 2. This
proves the part (a) of our theorem.

Moreover, Proposition 1.12 together with the observation just above prove
that the Lefschetz number formula ( Theorem 1.4(a) } becomes:

AN = X x(E). (10)

veA’, ou(f)=d

O

4.5 The “nice” resolution 7 enables us to get more information about the
Euler characteristics x(Ez), hence about A(f).

A general fact is that a toric variety is a disjoint union of torus orbits. In
other words, there is a stratification of the variety such that the strata are tori
of various dimensions, (see [KKMS], [Oda], [Var]). One of them has dimension
n and the others have smaller dimensions.

There is a bijective correspondence between [-dimensional tori and (n — {)-
dimensional cones of the fan which defines the toric variety. We describe this
correspondence for I = n — 1 and ! = n — 2, for details consult loc. cit.

Let v € W and o € C such that v € 0. Suppose 0 = Ryo{vy,...,0s}, With
v = v;. Then the torus T, ~ (C*)*! which corresponds to v is, in the local
chart C"(o):

T,:={z€C*o)|21=0,z#0fori=2,...,n}

The torus Ty, ) = (C*)"? which corresponds to the cone Ryo{vi,v2) C &
will be:

Ty = {2 €C™0) |1 =2 =0,z #0for i =3,...,n}.
One shows that the tori do not depend on the local chart.

4.6 Let S denote the family of all the toric strata in the stratification of Y¢
as above. The following result enables us to compute x(E;):

Lemma For any v € Wy we have:

x(By) = 3 x(TNEY). (11)
TES
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Proof This follows from a general fact about Whitney stratifications. One
computes the Euler characteristic of a compact, Whitney stratified space Z,
by using a compatible triangulation of it (see [GM] for the references about
the Whitney stratifications and triangulability).

Since the strata have even dimensions (we are in the complex case), the

Euler characteristic of Z is the sum of the Euler characteristics of all its strata.
O

4.7 The space X' is also a toric variety and its decomposition into tori follows
the one of Y¢, because of the diagram (7).

For instance, the torus T, goes, by the quotient-projection p’ : Ye¢ — X',
to the torus T, where:

Ty 2 (CY g X - X ptg & (C*)P0.
Of course, the analogue of Lemma 4.6 (for X', EZ...) is true; we get the

equality: )
x(E)) = >~ x(TNE;). (12)
Tes
To compare x(E7) with x(E;), one can use the formulac (11) and (12) together
with the following important:

Lemma Let T be a torus stratum in the stratification of Yo and T := P'(T)
be its projection. Let v € W,. Then:

X(TNE,) =d 9T .y (TnNE,).

Proof Let T = T,,, for some gg € ¥ and let k :=dim7. If v & o0 then the

Euler numbers are zero.
If v € 0g, let & € C be some cone such that oy C . In the local chart
C"(o), the projection p’ is equivalent to the morphism (see 3.9(c)):

C*=C" (z,...,2za) = (2f,...,2%)

and its restriction to the torus T C C*(o) is (up to some permutation of
coordinates):

T =(C) = (CY, (21,.-.,z) = (25,...,29).

The conclusion follows, since this last morphism is a topological d*-covering.
o
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A consequence of the formula (10) and Lemma 4.7 above is the following:

4.8 Corollary For any f € m, the Lefschetz number of the monodromy of f

is given by: o ;
A(f) =3 3 a0 - x(TNE)). (13)
TeS ve A’
O

We prove some criteria for the annihilation of the Euler characteristic,
useful not only to simplify the computation of the Lefschetz number, but also
for the proof of Theorem 2.6(b).

4.9 Each vector v € A’ is normal to a corresponding hyperplane H, in R™,
defined by the equation:

ve(Try..os2a) = d.

Let f, be the canonical representative (see 2.4) for the residue class of f € m
in Gr; G(v). This might be zero, of course. If it is not, then f. is a linear com-
bination of G-invariant monomials z™, where m is represented by an integral
lattice point in the hyperplane H,.

4.10 Let v € W,.. The decomposition of E, into tori induces a decomposition

of E? := B, \ Uwew;, wgv E,, into tori and these tori are exactly the ones of
the form (see [Var]):

(*) Tt} k> 1, where one of the vectors, say v, is equal to v
and the others are of the form de;, for some indices 1.

.....

torus in the decomposition of E2. We recall that, by definition, the cone
Ryo{v1,. . .,vx) must be contained in some ¢ € C.
Let m,, ..., m, be the coordinates on R™ and let I'; be the Newton polygon

of f.
4.11 Proposition Let T = T q; ,..2e,, _,) be an (n — k)-dimensional torus
of the form (*), k > 1. If the dimension of the set T;N H,N{m;; =0 |z €
{1,...,k —1}} is less than (n — k) then:

X(T\{f. =0} =0.
In particular, if dim(TN H,N{m; =0|i € {l,...,k—1}}) < n =k then
x(To\{fo=0})=0, for any f € m.
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Proof The equality we have to prove is equivalent, by Lemma 4.7, to:

X(T\{f,=0})=0

It is sufficient to prove this relation in some local chart C*(¢), where o € C

such that ¢ = Ryo(v,de;,,...,de;,_,, v, ...,v,). We use here the notations
from 4.5.

Ifdim(l"fﬂH,,ﬂ{mj,—UIie{l k—l}})<n—kthenf‘ n
HoNn{m; =0]|ie{l,....k=1}}is conta.med in some affine subspace of
H,N{m; =0|4€{1,...,k —1}}. This implies that the pull-back by #,
induces a C*-action on {f, = 0} N {z = --- = z = 0}. More concretely,
the polynomial f,,,, defined as in 5.12 has support on an affine subspace of
Co)N{z1 =+ = z; = 0} ~ C"*; the coefficients (we may assume that all

of them are 1nt.egral) of the equatlon of this affine subspace give the weights
with respect to which £, , is a quasnhomogeneous polynomial.

Moreover, the C*-action on {f,, =0} N{z =.-- = z = 0} induces a C*-
action on the complement (C*(¢)N {2, =--- = z = 0})\ {f,,: 0}. This one
restricts to a free C*-action on T'\ { f,,z 0}.

The proposition follows, since the Euler characteristic of a C*-bundle is
ZEro, 0

An easy consequence, sometimes useful in computations, is the following
(the statement involves the Newton polyhedron I’ defined in 4. 13):

Corollary Letv € A" If TN H, is not a mazimal face of T' and I'yn H,
does not intersect any coordmate hyperplane of R™ then A,(f) = 0.

Proof If T'; N H, is not a maximal face of T then (T, \ {f:: 0}) =0,
VYw € A, by Proposition 4.11. If I'; N H, does not intersect any coordinate
hyperpla.ne then, for any torus T of the form (*), dimT < n — 1, we have
70 fo= 0} = T, hence the Euler number is zero. The conclusion follows
from (12) and (10), where we replace f by f,. O

4.12 Proof of Theorem 2.6(b)
We start from the formula (10):

M = X x(E})

"E‘A‘r Dv(j]_d
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and prove that:

AJf) = X(EY), (14)

for any v € A’ such that f, # 0. 3

Denote by T{*) some torus in the decomposition of Ef described in 4.10.

For any such T we have obviously: x(T®™\{f = 0}) = x(T™\{ f. =0},
hence: . ; e

x(E;) = x(Eo\ { £, = 0}).

Next, we prove that, for any w € Wy, w # v such that o(f,} = d and any

torus T in the decomposition of EY,, we have:

XTI\ {f, =0}) =0, ifdimT® > 1. (15)

Let T := Tw deiyreodes, ) forsome ke N,0<k<n-—1.

If dim(Ty, N H,N{m; =0]j € {i1,...,ix}}) is less than dim T(*), then
the equality (15) is proved by Proposition 4.11. We prove that the situation
dim(I'; N HyN{m;=0]j € {t1,...,i}}) = dim T} cannot occur.

The vectors v and w are both normal to the face I'; N Hy, N {m; = 0 |
j € {i1,...,ix}} of T;. Then the orthogonal projections v', resp. w', of the
vectors v, resp. w, to the subspace {m; = 0| j € {iy,...,%}} C R" define
the same direction; hence either v’ = l;w’ for some integer {; > 2, or w' = I
for some integer I; > 2. Any of the two equalities contradicts the assumption
that 0,(f,) = 0u(f,) = d.

There is one case left: T is one point. This can happen only if w = v(i),
for some ¢ € {l,...,n} (see the definition of v(z) in 3.6 ), hence T =
Ty denrodivnden ThER T N1 (F, =0} # 0 if and only if af is one of the
monomials in the polynomial f,; this can occur only if v = v(¢). Since w # v,
we get again x(T('”) \ {fu =0})=0.

We apply Lemma 4.7 to translate all the achieved information to the space
X'’; we have proved by now the equality (14).

Finally, if f, = 0, then A,(f,) = 0, by definition. On the other hand, x(E3)
does not enter in the sum (10), since o,(f) > d. This completes the proof of
our theorem.

O

We describe an immediate consequence of Theorem 2.6.

4.13 Definition Let S := C[z;,...,%,] and consider the convex hull T'y of
all the points m € (Zxo)*, m # 0, such that 2™ € S is a G-invariant monomial
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(where =™ stays for z7* ---z=). Let T be the union of all compact faces of
I'y. We say that T is the Newton polyhedron associated to the action of the
group G.

Then T is also the Newton polyhedron of f,, where the residue class of
fo € m in m/m? is a linear combination, with nonzero coefficients, of the
elements of the canonical basis.

4.14 Deﬁniiiion Let f € m and let f be the corresponding G-invariant func-
tion, where f = 3, cnnamz™. We say that fr is the [-principal part of £,

where:
Jri= E anz™,.

melNN»
Let fr be the corresponding function on X. We also say that Jr is the I-
principal part of f.

4.15 Let '* be the Newton filtration (see [Ku, p.10]) with respect to T

Corollary The Lefschetz number A(f) depends only on fr. In particular, if
fEN? then A(f) = 0.

Proof This follows from Theorem 2.6 and the fact that:
N2 g_ IHIu!’:W-yg[v)z' (16)

The inclusion (16) can be strict, as shown in the next:

Example Take n = 3, d = 11 and generator (1,5,7). The monomial z3y%2
belongs to M,ew, G(v)? but not to A% See Example 6.3.

4.16 Remarks
(a) For any v € W, we have:
m? C G(v)* (17)

This follows from Lemma 1.13 and Lemma 4.3. It also follows from (16)
and the observation that: m? C A2 In particular, we see again that the
Lefschetz number depends only on the residue class of f in m/m?.

(b) Letv € A’. Forany g € msuch that g~ f, € m?, we have: Au(f) = Alg).
This follows from Theorem 2.6(a) and the remark (a) above.
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5 Nondegenerate functions

5.1 We keep the previous notations. Let f € m and its corresponding G-
invariant function f. Let Ay, resp. hj, denote the algebraic monodromy of f,
resp. f.

One would like to relate the invariants of & to the corresponding invariants
of h; by as nice as possible formulae. The projection p induces a topological
d-covering from the Milnor fibre F; of f to the Milnor fibre Fy of f. This leads
to the conclusion that the Euler numbers are related by the formula:

X(Fy) = 5 x(F7)

If we consider the Lefschetz number or the zeta-function of the monodromy
then the possible relations might be more complicated. Our aim is to define
a “good” class of functions for which we would be able to give explicit and
computable formulae for these two invariants. This class should include the
class of general functions, defined below (Definition 5.2).

It will turn out that an equality like (7 () = ¢ (%) is not true for any
group G, even if f, is a general function in m.

5.2 Let g be a function on (C",0) and denote by I’y its Newton polyhedron.
Kushnirenko and other authors considered functions which have nondegenerate
Newtonian principal parts [Ku]. We shall call such functions only nondegen-
erate, for short.

Our situation here is different, since a Newton polyhedron of a function
f € m is not defined. However, we have, on the one hand, the cyclic quotient
space with its associated Newton polyhedron T' (cf. Definition 4.13) and, on
the other hand, the G-invariant function f and its Newton polyhedron T 12

To define a sufficiently good class of functions on (X, 0), somehow similar
to the previous class of nondegenerate functions, we have to impose additional
conditions involving the action of the group G.

Definition We say that a linear function fo € m — in the sense that fo is
the restriction of a linear germ (CV,0) — (C,0) — is general if T; =T and
fo is nondegenerate.

Notice that the general functions yield a Zariski-open subset in the space
of linear functions on (X, 0).
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We recall that, for any f € m, we have the inclusion I'; € Ty and that,
by Corollary 4.15, only the T-principal part fi of f counts for the Lefschetz
number A(f). We may start from this observation and from the definition of
nondegeneracy used by Kushnirenko [Ku]:

5.3 Definition Let A C (Ryo)" be a compact subspace of R™. Let ¢ €
C{z1,...,z.} be a function on (C*,0) with Taylor series expansion g =

2 meNn &nz™ and define g5 = 3, canNn EmZ™.
One says that ¢ is nondegenerate on A il the polynomials:

dga 0ga
(315:;::)3"': {xnamn)

have no common zero in {z € C* | z; - -z, # 0}.

5.4 Fix once and for all a decomposition C and a family W as in Lemma 3.6.
Let f € m and define for each v € W, a hyperplane H.(f) by the equation:

v (21,...,20)" = 0y (f). (18)

Denote by H,(f) the half-space in R" defined by:

v (21,00, 20) 2 0,(F).

We have defined in 4.9 a hyperplanc I7,, for any v € .4’. Denote by (H,)+ the
half-space defined by:
v (T,...,7,) > d

We define two new polyhedra, associated to (T, T'j), respectively to T

5.5 Definition Let T 7w respectively T' 4/, be the union of the compact faces
of the infinite convex body:

(Fiwd+ = (Ro)*n [ Ho(N)4,
vEWL

respectively:

(Tar)s = (Rso)" N ) (Ho)s
uGA!

Note that T'; C (T'7,,)+ C (Tar)4 for any f € m (see also Example 6.3,
where I'4 is different from T').
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5.6 Definition Define the class of W-nondegenerate functions by:
Mpy:={fem|T;CTj, and f is nondegenerate on any face of I';}.

5.7 Remark Denote by Mg the class of nondegenerate G-invariant functions
(in the sense of Kushnirenko) and define My := { f|f e Mw}. Tt follows
that:

Ne D M.

The inclusion above cannot be an eqnality, as shown by the next example.
However, for any f € Ng, there exists W such that f € Mw.

Example Let n = 2, d = 5 and consider the generator of G which is repre-
sented by (1,2), as in 2.1. Then:

A= {(152)»(234)v(3’1)1(4:3)}: A = {(1,2)3(31 1)}

A d-cell decomposition C is generated by the set W := A'U{(5,0),(0,5)}. The
polyhedron T';,, may have one or two maximal faces (dependmg on f), with
only two p0331ble normal directions given by the vectors in A’. Consider the
polynomial:
F=a® 4252 + 4.
Then I';,y has two maximal faces and T';y, NT; = {(6,2)} € R2.
Hence f is nondegenerate with respect to 'z, but not W-nondegenerate.

5.8 Let f € m and let # and 7 be the morphisms defined in Section 3. The
idea which might emerge from Sections 3 and 4 is that we have rather good
control over the situation where {f o # = 0} is already a normal crossings
divisor (hence where we do not need to resolve any further). The following
assertion shows that, to obtain the data we need for the zeta-function of [, we

have to collect the corresponding data for the divisor {f o # = 0} C Y¢ and
modify them by a certain algorithm.

We recall that S is the family of all the strata in the stratification of Y¢
considered in 4.5.

5.9 Theorem Let f € m be a germ such that the divisor {(for =0} isa
normal crossings divisor in Y¢. Then the zeta-function of the monodromy of

f is: i . )
¢ty =TT TI (1 —geotDrd)y=a o Txmsa, (19)

TES 'HEW+
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Proof We first note that {f o # = 0} is a normal crossings divisor if and
only if {f o7 = 0} is a normal crossings divisor. One can easily prove this
using 3.9(c).

Consequently, we may use the formula of A’Campo (Theorem 1.3), which,
in our case, takes the following form:

G)= T a- t:-u[f)/d)—x{Ez),
vEW,

The exponent, of ¢ is indeed o,(f)/d, by the proof of the Lemma 4.3, since

1 T 1 -
ordg,(fox) = (—iordﬁu(fow) = EO"U}'
Next, by the equality (12), we get:
Cf(t) . H H (1 - tou(f)/d)—xtf'”E:)_

TeS veW,

Finally, the Euler characteristic x(7' N E2) is equal to d-9mT . x(T NE2)
by the Lemma 4.7. o

5.10 Remark For a fixed v € Wy, some factors in the zeta-function ¢;{t)
may disappear, for instance due to the annihilation criterion Proposition 4.11.

5.11 Proposition If f € My then {fox = 0} is a normal crossings divisor.
In particular, the formula (19) is true for f € M.

Before giving the proof, we need some preparation.

5.12 For any o € C, define a function f, on C*(c), which is a germ at #77(0),
by the following (compare with [Var, Lemma 10.2]):

(foe)(z1y.nny2a) = 281 e- 200 folz1y o 2a), (20)
where £, is not divisible by 2, Vi € {1,...,n}.
Note that the integers a = (o) are nonnegative multiples of d, that {f, = 0}
is not necessarily the proper transform of {f = 0} in the local chart C*(o)
and that f,(0) can be zero.
Define é : Zyq — {0,1} by 8(0) = 0 and §(k) = 1 for any integer & > 0.

Then we have the following criterion:
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5.13 Lemma The divisor {(z1 -+ z.- f)of = 0} is a normal crossings divisor
(as a germ in ®71(0)) if for any o € C the functions:

i zf(m)?‘l, . gseadfe
1

Zn

have no common zero in some neighbourhood of #;1(0) C C*(c).

Proof Having normal crossings is a local property; we have to check it in each
chart C*(c), namely at points ¢ € C*(¢) such that f,(a) = 0 and a € #;7(0).

A sufficient condition is that the ideal (f,, zi | ¢ € I(a)), defines a germ in
a of a smooth complete intersection, where I(a) := {7 | &; = 0}. But this is
equivalent to the condition in the statement. ]

5.14 Proof of Proposition 5.11
Let f € M. The condition I'; C T ,, insures that f,(0)#0,VoeC.

Suppose that a € #;1(0) would be a common zero of the functions in Lem-
ma 5.13. Assume (without loss of generality) that a = (0,...,0,ax41,..-, @)
with @; #0, Vi € {k+1,...,n}, for some k < n.

If o = Ryo{vy,-- - Uy} then let oo := Ryo{vy,.. .,vx) and denote by A
the corresponding face of I'j,, defined by the 1ntersect10n of hyperplanes
Nieqa,...k} Hul(f)-

We have, by the definition of fa (see Definition 5.3 and equation (20)):

fA 0, = zj! ---z:"-f,( oo on 0, Zhgty e ey Zn)e

Define a function f,o by f,o(zk_,.l,...,z,,) = fn([),, ,0,2k41,- -+, 2s). Then:
8(fa 0 7o) _ { 2 an oy + 23] (i £,
za’ ooo

Bz- = e 3fc —_
i R if o, =0,

hence the value in a of this function is zero, by our assumption.
Denote by a' the point (1,...,1,ak41,..-,8n). Then we get moreover:

On the other hand:
Afaoks), n _ dfa . 8""’ '
~om ) = Je{lz.;.. o, o) ()
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Vi€ {1,...,n} and the matrix [¢] is nonsingular.
Hence: N
Ofa,. .
o5 Z(r@) =0, Vie(t,....n),
F
which means that f is degenerate on A. This contradicts the initial supposi-
tion. (]

5.15 The Euler characteristics which appear in the formula (19) can sometimes
be computed in terms of volumes of polyhedra; some nondegeneracy conditions
must be assumed. The strategy is based, as one can expect, on a well-known
result of Bernstein, Hovansky and Kushnirenko, see [Var, Theorem 7.1]. But
note that, since # : Y¢ — C™ is not a resolution of some subvariety of C*, the
computations in [Var] cannot be applied ad literam.

To give the formulae, we need some more notations.

5.16 Let A be a (n —i —1)-dimensional face of some compact convex polyhe-
dron. We denote by Vol,_;(A) the (n — i)-volume of the finite cone with base
A and vertex the origin. The 0-volume is, by definition, equal to 0.

Any torus T € § is defined by a certain cone o € T and o defines uniquely
a face of I'y,y, which will be denoted by Ar. We have:

dimT 2 dimAy > dimArNT;.
5.17 The “interesting” tori T € S are those of the form (see also 4.10(*)):
(*) T =Tue;,.de;,_)» Kk 21, where v is strictly positive.
Note that dimT € {0,...,n — 1}.

Definition Let Sp be the family of the tori (*). If T € Sy then denote by vy
the strictly positive vector v from the definition (*) above.

5.18 Proposition Let T € So. Then, for any f € My we have:
d T (T OE;) = (1) T(dimT + 1) 0, ()" - Volsimrar (Ar N T).

Proof Let T be defined by ¢ € £ and let ¢’ € C such that ¢ C ¢’. The
polynomial fa, o # has a Newton boundary, denoted by Ffa.rov‘r' By [Var,

Theorem 7.1] or [Ku,Theorem IV] and by the remark [Var, p.255], we have:
X(T n E:T) — (_l)dimT(dimT + 1)! Ovr(f)"] : VOIdimT‘l'l(FfAToira.)'
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Assume that o' = Ryo(vy,...,v,) and 0 = Ryo{vi,..., v}, with T :=
T(,,h___,w‘) and Vg = UT.
Let L, denote the coordinate subspace

{meR*|m;=0,Vie{l,...,k—1}} CR™

Then the linear morphism [¢']* € GL(n,R) restricted to L, defines an auto-
morphism of L,, say v, which is, as a matrix, a (n — k+ 1) x (n — k+ 1) minor
of [o']*.

It follows that dety = d"~*, since det[o’] = d"~?. This implies the relation:

Volu_r11 (anr°*af) =g k. Vol,,—r 41 (AT N Ff),
which completes the proof. (!

5.19 Corollary If f € My then:

¢(t) = H (1 -~ tOuT(f)/d)(-'l)di'“T“(climT+1)!-ouT(f)“-Vo]d;,.,.-r“(A-pnl"i)l (21)
TeSy

Proof The corollary follows from Proposition 5.18 and formula (19). o

5.20 Remark If f € Myy then only the Newton boundary I'; counts in the
zeta-function formula.

If dim T > dim(A7NTy) then the factor corresponding to T in formula (21)
is equal to 1, since the volume Volgim741{A7 N FI) is zero.

Since My C Ng, one can write the Varchenko’s formula for the zeta-
function (there is a change of sign to be made) of some f € My and then
compare it to formula (21). We do this for any general function fo € m (see
Definition 5.2).

5.21 We note that there is a decomposition Cyy as in 3.6 with the additional
property that any maximal face of ' has a normal vector v belonging to Wi.
We assume this property in the following. The first implication is that I'; ., =
T, hence general functions are W-nondegenerate.

If fo is a general function then {fo = 0} is a general hyperplane slice of
(X,0) and the divisor {fy o # = 0} is a normal crossings divisor (cf. Proposi-
tion 5.11).
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Denote by max(T') the set of maximal faces of I'. Denote by va the vector
in W, which is normal to the face A € max(T'). The hyperplane Ha which
contains A has equation:

va - (Z1,...,2a)" = m(va), where m(va) := o, (fo). (22)

We may replace o, ( fo) in formula (21) by m(va) but, in order to replace all
0u7(fo) from the cited formula by something similar, we need more definitions.

5.22 Definition Let J C {1,...,n}, 0 < [J| < n and define L; := {m € R" |
m; = 0, V] € I}

For any v € W, and I as above, let v(I) € (Z,)" N L; be the orthogonal
projection of the vector v to the subspace Lj.

Let Wi(I) := {v{I) | v € W;} and let W,(I) denote the subset of

primitive vectors in Wy (J).

Definition For any v € W, and any 7 as above, denote by v/ the vector
w € W, such that w(I) is the primitive of v(I) in W, (I).

By definition, we have va? = va. Define m(val) := o,,:(f5) and notice
that m(va’) may be different from m(va) if |I] > 1; see Example 6.3.

With these notations and a moment’s thought, we may replace in (21) a
vector vr, for T € &g such that Ar = AN L;, A € max(T), by the vector
val, where T is defined as in 5.17(*) and then I := {ji,. .., ji_ 1} It turns out
that only these vectors contribute to the formula, since for the others, we have
Vol,_in(A N L;) = 0. Note that, if AN L; is a maximal face (equivalently:
Vol,_;5(AN L) # 0), then va(I) is normal to it and, of course, va! is normal
to it as well,

Thus, formula (21) becomes:

Cplt) = H H (1- tm(uA')/d)(-l)n-l"(n-un!m(uA')-l.vol,._,,,(Anr,,)_
Aemax(T) Ie{1,...,n}
(23)
For any A € max(T') and I C {1,...,n}, we consider the face AN L; of A
(which may be also void). The hyperplane HaNL; of L; which contains ANL;
has equation:

Y. aizi = m(ANL), where a;,;m(AN L;) €N and ged{e; | ¢ T} =1.
1€{1,..,.n\J
(24)
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The nonnegative integers m(A N Ly) enter in the zeta-function formula of
Varchenko [Var] (with a change of the signs of the exponents, to agree with
the formula of A’Campo), which takes the form:

Cfo(t) — H H (1 _ tm(AnL;))(-1)“'|'|(n—|l|)!m(AnL;)_'-Vol,,_m(AnL;)_
Aemax(T) Ie{l,...n}
(25)
The two formulae (23) and (25) have much similarity, in particular they suggest
the forthcoming Corollary 5.28. However, for some A € max(I'), the two
integers m(va’) and m(A N L;) may be different, even if I = #. We illustrate
this behaviour in Examples 6.1 and 6.5.

5.23 There is a criterion for the monodromy hy, of a general function fo to
be unipotent, which follows from the spectrum formula of M. Saito [Sa):

The monodromy hy, is unipotent if and only if the Newlton degree
of any G-invariant monomial o3* ---zir, 8; > 0, Vi€ {1,... ,n} is
integral.

5.24 In the case n = 2, there is no need for a criterion since, from the forth-
coming remark 7.7(30) and formula (21), it becomes clear that:

Proposition The monodromy hy, of a general function fo on a 2-dimensional
cyclic quotient ts unipotent. m]

5.25 Forn = 3, Example 6.3 shows that h, need not be unipotent. Steenbrink
showed in [St] that, if the generator of the G-action is (1,1,k), with ged(k,d) =
1, then the monodromy of the general function fo is unipotent.

We prove a criterion, different from the one above (but, of course, equivalent
to that), which follows from the formula of the zeta-function (23):

Theorem The monodromy hy, of a general function fo on a 3-dimensional
cyclic quotient is unipotent if and only if m(va) =d, VA € max(I').

Proof “«<” The integers m(va!)are divisors of m{va), but also multiples of
d. 1f m(va) = d, then m(vaT) = d, VI C {1,2,3}, |I] < 3. Hence our claim
follows indeed at once from (23).

“-” Suppose that there is a A € max(I') such that m(va) = kd, for some
k > 1. We have to prove that the factor of the form (1—1*)~*, for some positive
integer ¢, which corresponds to A and I = § in (23), cannot be completely
cancelled in the product.
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Hypothetically, it could be cancelled by a product of factors. At least one
of them must be of the form (1 —1*)/, for some j > 0 and corresponds to some J
with [7] = 1, i.e. m(va’) = kd. On the other hand, m(va!) = d, VA € max(T")
and VI € {1,2,3} with |[I| = 1 such that dimA N L; = 1, since we are now in
the 2-dimensional case; see the remark 7.7(30). This is the contradiction we
need. O

5.26 The Lefschetz number again
For this weaker invariant we may enview a larger class of functions, the A’
nondegenerate functions (recall Definition 5.5):

the function f is either nondegenerate on A

for any I C {1,...,n} and any face A Cl"AaﬂL;,}
ordimANT; <n—|I]-1

MA,:={f6m

5.27 Proposition If f € M4 then:

1
A(f) = -3 > (=1)*Hln — 113t - Vol,_jq(AnLyn T'z).  (26)
Ic{1,..r}
Aemax(T 4)
Proof

Note again that Vol,_n(ANL;NT;) =0ifdimAN LN I'j <n—|I|-1. The
formula (26)—which is a formal consequence of (23)—follows from (13) and
the A"-nondegeneracy condition, in the same way one proves Proposition 5.18,
The main difference is that this time we need the nondegeneracy condition
only to convert Euler numbers into volumes (and not for the normal crossings
property, which is not important for the Lefschetz number formula). Hence
the A’-nondegeneracy condition is just sufficient. a

We recall that h; denotes the algebraic monodromy of f, A(h'}-) is the
Lefschetz number of the k-th power of this monodromy and A(kj) is another

notation for A(f).
5.28 Corollary If fo € m is a general function, then:

A(hy) = d-A(fo).
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Proof A general function fo is obviously A’-nondegenerate; we also havel'; =
T, by Definition 5.2. The following equality is a consequence of formula (25):

AR =- % (=1 — I Volen(AN Ly NT).

Ic{1,..n}
AEmax(r'A:)

If we compare it to formula (26), the result becomes obvious. O
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6 Examples

We show a few significative computations of the Lefschetz number and zeta-
function. They also illustrate some statements proved in the sections before.
We consider three examples of isolated cyclic quotient singularities (di-
mensions 2 and 3). We end by examples (due to Wahl) of 3-dimensiona! cyclic
quotients for which a general function has Milnor number equal to zero.

6.1 Let the data for the G-action be those in Example 2.7, i.e.:
n =2, d =8, and (1,5) represents a generator.
Consider the general function f; € m, where:
fn - 2% 4 Py + zyd + y®.
The zeta-function of the monodromy h j, €an be computed in at least two ways:

(a) by resolving {fy = 0} (this amounts to a simple blowing-up of the origin
of C?) and applying the formula of A'Campo;

(b) by the formula of Varchenko (with the change of sign we have considered).

In both cases we get:

() =(1-t")%
Denote by A,, Az, Az the faces of the Newton polygon Iz, as in the figure
below. Using the definition relations (22) and (24), we get:

(0,8
m(vﬁl) = m(Al) =8, \ A3
m(vﬁz) =8, m(A2) = 4, \\
m(va,) = m(A3) = 8. %))
Ay
3.1) A
~ ]
{0,0) [£X0)

Since m(va,) # m(4Az), we might expect (; (¢} # (1, (t8). It is so, indeed:

) =(1-tPQ-1)=(1-1), by (23),
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hence (j,(t%) =1 —¢&.
The Lefschetz numbers are:

Mf)=-1, A()=1-(-2)=-8,

hence we get the equality: A(h%) = 8- A(fo), which was predicted by Corol-
lary 5.28.

6.2 The next example shows that, if f € m is not general, then the equality
A(h‘}-) = d - A(f) might be false.

For the same data as in 6.1, let’s consider the G-invariant function (with
its Newton polygon as in the picture below):

(0,8

(2.4)

ﬁ — 1:8 _ 3$4y4 + 2$2y6, \\
(~

is not isolated). (4.1)

11

—_
(8,0

(0,0)
The resolution of {§ = 0} yields an irreducible exceptional divisor E ~ P!

with multiplicity 8, which intersects the proper transform {5?0} in 5 points.
Since x(P!\ 5 points) = —3, we get:

Ah3) =8-(-3)=—24.
On the other hand: A(g) = Aqps)(g) = 1, as in Example 2.7.

6.3 Consider the case: n = 3, d = 11, and a generator is given by (1,7,5).
This example is refered to several times in this chapter and was suggested to
us by Steenbrink (see also [St]). It is interesting also because the monodromy
of the general function is not unipotent. We have:

A = {'D],...,‘Ulo},

where vy = (1,7,5), v2 = (2,3,10), v3 = (3,10,4), va = (1,6,9), vs = (5,2, 3,
ve = (6,9,8), vr =(T,5,2), vs = (8,1,7), vo = (9,8,1), vio = (10,4, 6).

The vector vy is the only one not primitive in A and vg = vy + v5 is the
only Z, -relation. Hence:

I
A" = {vy, v9, 03,04, s, U7, Us, Vg )}
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We subdivide the positive orthant as in the picture below. Our 2-dimensional
picture is obtained by intersecting the positive orthant with the hyperplane
{(ml,mg,ma) € R3 | my +mg + mg = 1}

The lines connecting
arrowheads help to
identify the 112-cells,

Figure 1

The picture does not contain the complete decomposition; there is still a
cone that has to be subdivided, namely the cone generated by the vectors vy,
vg, Vs, v3. The vector vy is contained in the interior of this cone. We have
figured also the vector ve € A\ A', which is included in the interior of the
named cone as well.

One can decompose the remaining cone into 112-cells in several ways, as
the following pictures show:
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(13 Ug
E v 151
V4 er
L2} Uy U2 5

(2) (i4)

U3
vy (31
v )
v

E 1123 ts

(iii) (iv)

The first conclusion is that there is a 112-cell decomposition (as in Figure
(iv)) generated by the set of vectors V (in the notations of 3.2), that is: Wy =

A

The Newton polyhedron T' associated to our G comes in the next picture.
To draw it, we need the G-invariant monomials of “lowest” degrees, and they
are;

14 3,11 .4 3 1 2 86
z’xy’a:y‘ly 3yz’yzizlrz$$z‘
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(0,11,0)
The monomial
23y22
) A,
is also a generator of the
algebra
of the G-invariant poly-
nomials and is indepen- (0,4,1 (1,3,0)
denif from the ones above. AN (41,0) A,
Notice that (3,2,1) ¢T. Ay, o fa2s (11,00)
{6.0,1)
(0,1,3) (1,0,2)
A”s
r
{0,0,11)

We note the following:

(a) Each maximal face of I' has as normal vector one from 4'; the maximal
faces are: A, , A,,, Ay, A,,, A,, (with the notations from 5.16).

(b) For any f € m, we have:

ob‘iﬁf}22'111 ng(f:lgz']l,
with equalities in the case of a general f, for instance.

(c) The vectors vz, v7 are normal to 1-faces of I': v, to the one connecting
the point (4,1,0) to the point (1,3,0) and v to the one connecting the
point (1,0,2) to the point (0,1, 3).

(d} The vector v3 is not normal to any 2- or 1-face of I'.

We have to fix a decomposition C; we choose the one described by Figure 1
and Figure (iv). The set of generators of C is W := A'U{11-¢;,11-e5,11 - €5}.
Let # : Ye — C3, m : X' — X be the morphisms constructed in Section
3, and let f},,,., resp. E,, be the prime exceptional divisors, where v; € A'. It
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follows from (c) and (d) above and from Proposition 4.11 that:
A"s(f) = Aw(f) = Ua er m.
Hence: A(f) = Av, (f) + Au () + Ay () + Aw(f) + A (f)-

6.4 Let us compute the Lefschetz number and the zeta-function for a general
fo € m; take:
fo =z '+t + y 4 ytz 4+ yz3 + 21 4 z2% 4 282 + 2Pyt
Consider the following 11%-cells in our decomposition:
oy := Ryo(vy, 1ley, 1les), o8 := Ryo(vs, 1les, lle,),

Og = Rzo(’vg, 1181, 1162), g9 1= Rzo(vg, 1163, ‘U]),
(2 Rzo(’us, 1161,’03).

Using the formulae (10) and (11) and Proposition 5.18, we get:

M) = x(Ep ) + X(ES, OB s10) + X(ES, 0 T 1) +
+X(E;, N T(u,.ue,,ug_-,)) =2-2-141=0,

Au(fo) = X(Egy N To) + X (Bl 0 Fnutien) + X(Esy N Tipieny) +
+x(Ey, N T(ua.lles.llcl)) =1-1-141=0,

Aw(fo) = X(EZ 0 T} + x(El 0 Try1en) + X(Ely N T 1) +
+x(E;, N Tipitentie) =1-1—-1+1=0,

An(fo) = x(Ei,nT,)+x(E;, N Torey) =0—1=~1,

Aw(fo) = x(B, 0T,) 4+ x(El NToyney) =2-1=1

The result is:
A(fo))=0+0+4+0-1+41=0.

To compute the zeta-function, we use formula (23). The vector vy comes
into the computations:

x(E:) = x(E;, nT,) = 1.

We get:
Cio(t) = (1 — AU (1 — ) XB) — (1 — )",
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It also follows that the Milnor number of f; is 1 and the monodromy A f, On
H*(Fy,,C) has eigenvalue —1.
During the last computation, we have used implicitly the equalities:

m(vi’) =m(A,NL) =11, foric {1,5,8,9},

m(ve) = m(4,,) =2-11,
m(vs'¥) = m(A,, N {my =0}) = 11.
These equalities show that the formulae (23) and (25) yield:

(o) = ¢ (1)

An interesting observation is that the monomial z3y2z plays no role in our
computation of the zeta-function.

There is another point of view from which exactly this monomial z3y2z is
the one responsible for the eigenvalue —1: the computation of the spectrum of
fo using the Newton polyhedron (see [Sa)).

6.5 Consider the case: n = 3, d = 8 and a generator is defined by (1,7, 5).
We have A = {vy,...,v7}, where:

v =(1,7,5), v2=(2,6,2), va = (3,5, 7), va = (4,4,4),
vs = (5,3,1), ve =(6,2,6), v; = (7,1,3),

hence A’ = A (despite the fact that several vectors are not primitive in Z3).
There is a 82-cell decomposition,
as shown in the picture,

generated by the set of vectors
W := AU {8e,, 8ey, 8ea}.

v (8,0,0)
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{0.8,0)
The generators of the algebra of
G-invariant polynomials are: A
28, zy, ¥*, ¥°z, %27, (©5,1) u
y2°, 28, 228, 232,
all of them having support on I'. 110 A,
(0,22) #0
(8,0,0)
TAWA (3.0,1)
By,
©:1,5) (1,0,3)
r
{0.0,8)

We observe that:

(a) the vectors vy, vy, vs, vy are normal to the four maximal faces, respec-
tively, as shown in the picture;

(b) the point (1,1,0) is contained in all the maximal faces of I and
o(zy) = 8, Vv € A

(c) using the notations in 4.9, we have:

H, NT={(1,1,0)}, Vi€ {3,4,6}.

It follows from (c) above and Corollary 4.11 that:

Ava(f) = Aw(f) = Avs(f) =0, Yfem.
A general function fy € m has Milnor number 0, hence A(fo) = 1, (5 (t) =
(1-#)
If we compute (j, (1) by the formula (25) we get:
(1) =(1 =%, hence (g(t%) = (5 (1),
in spite of the fact that: m(vy) = 8, m(A,,) = 4, m(A,, N {y = 0}) = 4.

6.6 Remark It follows that, in all our examples above, the resolutions we
consider are px-minimal (see Definition 1.21 and Lemma 4.3).
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6.7 Milnor number equal to zero and Wahl’s examples [Wahl, p. 240]

(a) Let n = 3, d,k € Z, such that 0 < k < d and ged(k,d) = 1. Let
(1,k,d—1) define a generator of the cyclic group action. Then a general
function fo on (X,0) has Milnor number equal to zero, hence A(fp) =
1. A linear function f with Milnor number zero can be obtained, for
instance, from the G-invariant A,_,-singularity f = zz 4+ g%

(b) Let n = 3, d = pgr + 1, where p,q,r € Zy and let (1,gr,d — r) de-
fine a generator of the cyclic group action. A general function fp has
again Milnor number zero. An explicit example of a (nongeneral) linear
function f with Milnor number zero is given by the triple-infinite family
f = zy? 4y + zx”.

These two classes of examples are, in fact, the only 3-dimensional isolated cyelic
quotient singularities for which the general linear slices have Milnor number
equal to zero.

We are able to prove the assertion by some (tedious, but rather easy)
computations involving Newton polyhedra, which we do not reproduce here.

Wahl did not make explicit this remark, but he told us that he was con-
vinced of its truth and that, probably, his computations done at the time he
found these examples would have lead to the above conclusion.
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7 Functions on 2-dimensional cyclic quotients

7.1 Keeping the previous notations, we restrict our attention to the case n
2. The general results are more explicit and we can prove some interesting
statements about the Lefschetz number and the zeta-function, most of them
being true only for n = 2.

We would like to recall first a few well-known facts about two approaches
to the resolution of surface cyclic quotients: the “classical” one (Hirzebruch,
Jung, Brieskorn) and the toric tesolution. Both of them lead to the minimal
resolution.

Let G C GL(2,C) be a cyclic diagonal group of order d and let (1,k)
represent a generator, as in 2.1 (4).

7.2 We refer for the following to [Lam]. The quotient space X := C?/G is
usually denoted by X4, The minimal resolution of Xgy is obtained as a result
of iterated modifications:

. ::'ﬂ’ Yra—1 e e Yk.ﬁ L xd.ks (27)

where X” is a smooth space and each intermediate space contains one cyclic
quotient singularity of the type indicated by the pair of indices. These indices
come from the repeated division with negative remainder, as shown in the next
sequence of Z,-equations:

d = bl-k—rl, T1<k,

k = byry—r3, rp<myy
rn o= berg—ry, ra<ry, (28)
Teq = bgp1°7,, wherer,=1

The positive integers b; characterize the type of the quotient and they can be
defined also by the fraction expansion:

d 1

—=bh .

E- ' by —1—
Each modification 7; introduces a new exceptional divisor E; o~ P', which is

the zero section of Opi(—b;). Finally, the irreducible exceptional divisors will
intersect each other in a stairs shape:
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E, and the dual graph of the
E, resolution will be:

T T —b —b, ~by —bsy1

Pl - . - ——
Eal
E3+1

The resolution of the surface cyclic quotient singularities plays an essential
role in the resolution of an arbitrary surface quotient.

A resolution as above can be obtained equally in the way we have described
in Section 3. We do this in the following. One can find a related approach
in [Oda].

7.3 To produce a d-cell decomposition of the positive quadrant is much easier.
Define W := A’ U {d - e;,d - ez} and order the vectors by their angle to e,
increasingly. Each subset W/ C W has an induced order.

Denote by conv(B) the convex hull of a set B ¢ R2.

Lemma Ifvi,v; € W are two consecutive vectors, then they generate a d-cell.

Proof We consider the cone 7g defined in 3.3; in our case: 7¢ Ryo{de; —
kez, e2). Denote by A(rg) the area delimited by the triangle with vertices
(0,0), (0,1), (d,—k). Denote by I';, the union of the compact faces of the
infinite polygonal surface:

(Tre)+ := conv(Umezznagreno.0){m + (Rx0)?}). (29)

Note that (1,0) € I'7;. It is a standard fact that the lattice points on T, are
generating a nonsingular decomposition of the cone 7g. (This is equivalent to
saying that the semi-group Z* N 7g is generated by Z2 NT,,). We transport
the 1-cell decomposition by the linear map T (defined in 3.3) to the positive
quadrant and get a d-cell decomposition generated by the set of vectors Wiy =
T(Z2NT,,). D

7.4 Corollary

(a) The polygonal line T(T',,) is convex.
(b} A = Wy N (Z+)2.
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(c) A' = {(n1,n2) € A|nz =1, for some i € {0,...,s}}, where ro:= k.
(d) |[A=s+1.

Proof (a) and (b) follow easily from the proof of Lemma 7.3 and the definition
of A’ in 2.2. Then (c) is just the number-theoretic version of the definition of
A’ and (d) is an obvious consequence of (c). O

The decomposition C generated by Wy, described above produces a reso-
lution 7 : X’ — Xy, as shown in Section 3.

7.5 Example d =7, k = 3. We have:
51=3, b2=2, b3=2,

ro=3, n=2 mr=1,

A= {(133)7 (2:6)»(3$ 2)1(4’5)$ (51 l)a (6s4)}5

hence:
A = {(1,3), (3,2), (5,1)}.
The Newton polygon T is in Figure (i) below, the primitive vectors of A
are in Figure (i7) and Figure (i) indicates the 7-cell decomposition and shows
the convex polygonal line T(T';;).

(0,7) 0,7)

@) T(Tse)
(1,3) (1,3}
(3'2) (3,2)

(7.0) (E5)) & (7,0

- (0,0) (0,0)
@ @) (i)
The vector (4,5) is “too long” and does not belong to A', since (4,5) =
(1,3) + (3,2).

7.6 Remarks

(0,0)

(a) There is an order relation on A’ defined in 7.3 and another order relation
on A’ induced by the natural (increasing) order of the indices ¢ in the
equality 7.4(c). One can easily show that the latter one is the reversed
of the former one.
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(b) One can show that the resolution 7 : X — X4, just described is also
minimal (see [Oda, section 1.6]), hence the two resolutions above do, in
fact, coincide.

(c) There is also the following way to get the minimal resolution. Consider
the toric variety which corresponds to the Newton diagram I (see [Oka]
for the definition}. This variety is not smooth, but has only A,-singulari-
ties; by blowing them up one obtains the minimal resolution of Xk See
Koelman's thesis [Ko] for details.

A consequence is that the number of 1-faces of I' is at most equal to s+1
and that, for each 1-face of T, there is one vector in A’ which is normal
to it.

(d) Conversely, consider the minimal resolution of X4, and its dual graph.
By contracting the chains of (—2)-points, except the end points, we get
a graph which corresponds to the toric variety from (c) above. It also
follows that the number of 1-faces of I" is in fact equal to the number of
vertices of this contracted graph.

Furthermore, the variety from (c) above is the total space of a rational
double point resolution, but not the minimal one in case at least one end
of the dual graph (mentioned before) is a (—2)-point.

7.7 Due to the 2-dimensionality, if fo € m is general, then:
ov(fﬂ) =d, Wed, (30)

hence: m(va) = d, YA € max(T). One can prove this remark, for instance by
induction along the sequence of blowing-ups (27).

7.8 We focus in the following on the determination of the range of the Lef-
schetz number, over all functions in m.

Lemma Let X4, be a cyclic quotient singularily as above. Then:
(¢) fork>1, max{A(f)|fem}=2 and A(z?+yd)=2;
() fork=1, max{A(f)|fe€m}=1 and A(z?)=1.

Proof We use the formula (10) in 4.4. Let k > 1 and take an arbitrary f € m.
Since E; ~ P!, Vie {1,...,5+1}, we have x(E?) = 1, for i € {1,5+ 1} and
x(EY) =0, for: e {2,...,s}.
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Moreover: x(E:) < x(E?), ¥i € {1,...,s +1} and if f = 2?4 y¢, then all
these become equalities.

To prove (b), we use the same arguments; the difference is that s = 0 and
there is only one irreducible exceptional divisor E;. a

7.9 We prove that the Lefschetz number A(fo), for a general fo € m, is the
minimum over all f € m. It turns out that A(fo) = 3 — e, where e denotes the
embedding dimension of X, . This is equivalent to (g, (t) = (1 —t)°~2 and also
to ug, = e — 2, by Proposition 5.24. These equalities can be proven in several
ways, for instance:

(a) using Kushnirenko’s formula for the Milnor number [Ku, Théoréme Ij,
as C.T.C. Wall did in [Wall, Theorem 5.1, to prove yy, = e — 2,

(b) using the computations for the spectrum from [Sa] and the forthcoming
observation 7.10(a),

(c) using Remark 7.18.

7.10 We enumerate several known facts which we make use of. They are es-
sentially due to the 2-dimensional situation. We recall that our group Gis
cyclic, isomorphic to Z4. Let C[z,y]¢ be the algebra of G-invariant polynomi-
als. ¥ LS := {(i,§) | z'y’ € Clz,y]%} denotes the subsemigroup of N? defined
by Cfz,y]® and MY the submodule of Z? generated by L?, then Z2/M G~ Zy4.

(a) The subset LG N T generates LS. (Note that this is not true for » 2 3,
as shown in Example 6.3).

(b) Order the set LENT by the encountering of its points along the polygonal
line T, starting from one of its ends. If L NT = {a1,...,amn}, then
72T, cig) = Zg, Vi€ {1,...,m —1}.

(c) Let o := Ryo{v,u} be a d-cell in our decompesition C. Suppose that
u is normal to a 1-face A, of T'. Let ay,...,o; be all the G-invariant
monomials which have support on A,. Then we have the equality:

{o(e) |i € {1,...,0}} ={d,...,1-d}.

7.11 The Newton polygon I' associated to G has a number of 1-faces equal
to:

#{bi#£21ic{2,...,5}}+2, ifk>1 (see Remark 7.6(c)),
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and has just one face, if £ = 1. Denote by A(7) the 1-face of T which has the
vector (*,r;_;) € A’ as normal (see 7.4(c)); the index ¢ must be equal to 1, to
$+1, or such that b; # 2, otherwise A({) is not maximal. Each A(i) € max(T)
supports a number of G-invariant monomials, say n(z).

Lemma Ifk > 1 then:
(a) n(i)=b;—1, fori#1,s+1.
(b) n(l) = bl, n(s + 1) = Ogq1.
Ifk=1thenn(l)=d+1.

Proof For k = 1, it is obvious. If & > 1, the “first” face A(1) contains
indeed b; points from LG, by the first equality in (28). We prove the statement
inductively, along the sequence (27), going backwards. While passing from
Xririe 10 Xy vy the two Newton polygons T=1, T correspond as follows:
the first 1-face of the initial polygon I'~! is off but the others correspond one-
to-one to the 1-faces of I'V (in their natural order) and the numbers of invariant
monomials supported by corresponding faces is the same. There is only one
exception, namely in the last step (i.e. i = s): the single 1-face of I'* supports
one invariant monomial more than its corresponding face of I'*~1. (=

7.12 Let C be the d-cell decomposition generated by W, . = A'U {de,,de,} and
let Y be the corresponding toric variety, as in Section 3, with its exceptional
divisor B 1= Uy 4 E,. We have: E, ~ P!, Vv € A'. There are two privileged
components: E‘,,, and E,,F, where v; = (1,k) and v, = (p,1), the positive
integer p verifying: pk = 1, (modulo d), | < p < d. That is because those
curves are the two “ends” in the chain of exceptional components, similar to
the one figured in 7.2. We get: x(ES) = x(ﬁ]ﬂp) =

In our case, because of the remark (30) and Corollary 4.11, the formu-
la 2.6(b) takes the form:

Alf)= 3 A(fa) (31)

Acmax(T)
To any f € m and A € max(T') one may associate a polynomial qs.a € C[t],
as follows.
Definition Let LN A = {(ao, bo), . .,(a,-m), b,'(A})}, where ap < a; < ... <
aia) If fa = ¥jeqo...i(a)) @iz y", for some coefficients a; € C, then define:

gra(t) := Z ajtj. (32)
FE€{0,...,i(A)}
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7.13 Proposition Let f € m and A € max(T'). Then:
—x(E;, N'T.,) = #{t € C | gralt) = 0}.

Proof Let o € C such that 0 = Ry < u,va > and

1 1
det[Zz :J’g]=d.
A

By the definition (20) of f, and the definition (32) of g;a we get:

fa(t’ 0) = ‘U.A(id)'

The result follows, since —x(E;, nT,,)=#{teC|f(0) =0} m]

7.14 Corollary Let n(f,T) 1= Tacmanr) #{t € C* | 41.a(t) = 0}. Then:
(a) A(f) = _n(f-rr); if (d!O) ¢ Pf and (0$d) ¢ F_f

() A(f) = —n(f,T) +1, if(d,0) € T and (0,d) ¢ T; or (d,0) € I'; and
(0,d) € I‘f.

(C) A(f) = —n(fvr‘) +2, zf(d,O),(O,d) € F_f

Proof It follows easily from the preceding Proposition 7.13 and the formu-
la (12} in 4.7. O

7.15 If A = A(i) € max(T'), then gsa(t) is a polynomial of degree at most
n(i) — 1. This follows from Lemma 7.11 and the definition of ¢,a.

Corollary If fo € m is general, then: A(fo) =3 —e.

Proof If f is general (see Definition 5.2), then the equation gg.a()(t) = 0
has n(i) — 1 distinct solutions, for 7 € {0,...,s+1}.
On the other hand, the embedding dimension of Xy is equal to the number
# LS NT, hence:
e=14+ Y. [n(i)-1], (33)

i€{0,....5+1}

and our formula follows from Corollary 7.14(c). O
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7.16 We have seen that the partial Lefschetz number A, for A € max(T)
is equal to A(fa) and is computed from the data provided by the polynomial

arA.
There is an isomorphism of C-vector spaces:

Gr(va(,-],)lo'zC“("), i€ {1,...,8 +1}
and one may consider A"’A(-’:I as a function:

A, :C"0) _, 7,

va(i)

We have, by Proposition 7.13 and Corollary 7.14:

ImA. =4 EO=6+2,00 ifig {I,s+1}.
M Bupy = ZN[-b+1,1] ifie{l,s+1)}).

A small variation of the argument cannot increase the value of Ay, this
comes from the same behaviour of the zeroes of the polynomial x,a(i) While
the coeflicients are varying. Some special attention should be payed to the end
faces A,,, A,,, see 7.12. The conclusion is that:

Proposition For anyi € {1,...,s 4 1}, the partial Lefschetz number Avacy
i3 an integral-valued, semicontinuous function on C™9, ]

It follows that A,,, defines a stratification S; on C™®, the coarsest strat-
ification such that A, is constant along a stratum,

7.17 The partial Lefschetz numbers are not independent, since each 0-face of
the Newton polygon I' (except the two ends) belongs to two 1-faces.
Moreover, the full Lefschetz number cannot be semicontinuous as a func-
tion:
A:m/m?*~C* = Z,

because of the trouble at the “ends”: A(z%) = 1, but A{z? +ty?) = 2, ¥t € C*,
which show that the specialization ¢ — 0 decreases the valne of A. But,
if we exclude the two generators of m/m? corresponding to z¢ and y¢, the
semicontinuity of the restriction:

A:CT? S Z

is saved. However, we can prove:
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Proposition
~Ifk>1, then InA=2ZN[3—e,2.
—Ifk=1, then ImA=ZnN[3—¢1l].

Proof It is clear, from Corollary 7.14 and Corrolary 7.15, that 3 — e is the
minimumn of A and from Lemma 7.8, that the maximum is 2 (if £ > 1) or 1 (if
k=1).

We order the G-invariant monomials supported by T' as follows: z"y” <
z2y? if and only if i; < i. The monomial y? is the first one in our ordering.

The strategy of obtaining all the intermediate values can be the following:
Start with fi := y%, which gives A = 1, then add the next monomial with a
suitable coefficient such that the new function fg is Wy x-nondegenerate, and
so on. Construct in this way a sequence of functions fiseeos four. At each
step a new arrow appears in the resolution-graph of the function { the Wy -
nondegeneracy insures that {f; o # = 0} is a n.c. divisor, for any index j).
Hence we get: A(f;) = —i +2, and that’s all we need to prove. o

Example For n =2,d =5, k = 2 we get:

E, E,
—_—
—t
—
| E | E,
ys y5+$y2 y5+$y2+1.3y

7.18 Remark Another way of studying the behaviour of A is by starting from
a general function fy and specialize as possible.

By a theorem of Artin {Ar-3, Theorem 4], if Z, is the fundamental cycle,
then any divisor D > Z, on X' such that D -E; =0, Vi € {l,...,s + 1}, is
the divisor of f o m, for some f € m.

Since, in our case, the fundamental cycle is equal to the sum Fieq1,...041) Ei,
we get the intersection numbers of {f o = 0} with each E;, hence the Lef-
schetz numbers of a general function and of all the possible specializations of
it.
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As explained to us by Van Straten, in this way one produces an alternative
proof of Proposition 7.17. Moreover, one can get some information about the
zeta-function of germs in the class M,

The theorem of Artin works for isolated rational surface singularities. In
this higher generality, if the resolution graph is given, then one would be able
to determine the range of the Lefschetz number.

7.19 Specializing the general function is equally possible by our method (in
the cyclic quotient case ). We can observe during the specializations why the
partial A’s are dependent. A short illustration (with the Example 7.17 above)
is the following:

N Y LA

Az

T 4 - B
f ZL

y5+ txyz _I_sz y5 + xSy

The two arrows A; and A3 come from a single noncompact component
with multiplicity 1 and they specialize to a component which corresponds to
the arrow B. Note that B has multiplicity 1.

7.20 The zeta-function
For Wy s-nondegenerate functions, the zeta-function can be computed by the
formula (21), but for some other functions, it depends not only on the data from
the resolution 7 : X’ ~ X ( since one has to resolve the divisor {for =0} C X’
at a finite number of points {a1,...,a,5} C X’ to get a n.c. situation), hence
not only on the Newton polyhedron I’ j-

However, one can separate the data from the resolution 7 such that the
zeta-function splits into two products:
Theorem

Gy= I (—getey-asmtamry 1 1T ¢ (1)),
T€S, veA! €{1..n(f)}

where g; = 0 is the equation of the (reducible, nonreduced) germ of the divisor
{fom =0} at the point a; € X'

Proof The formula (19) gives the first part of the above formula (see Re-
mark 5.10). The second part is, in our case, an easy consequence of the defi-
nition of the germs g;. D
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Samenvatting in het Nederlands

Elke kiem van een holomotfe functie f : (X,z) — (C,0) op een analytische
ruimte (X, z) definieert een (algebraische) monodromie

hy: Hi(FhC) - III‘(FIaC)v

waar F; de Milnorvezel van f is.

In dit proefschrift bestuderen we het Lefschetzgetal A(k,) van de mono-
dromie—en machten van de monodromie—van functies op singuliere kiemen.

Over een gladde ruimte kunnen we kort zijn: A’Campo [A’C-1] bewees dat
A(hy) =0 als f singulier is en A(hy) =1 als [ regulier is.

L& merkte al op in [Lé-3] dat de zaak veel ingewikkelder wordt als (X, ) niet
glad is. Dat geval is van groter belang nu de belangstelling voor (bijzondere)
singuliere ruimten en snedes daarvan, toeneemt.

In Hoofstuk I bewijzen we algemene resultaten over het Lefschetzgetal en
de zetafunctie. Hierbij maken we gebruik van een verbeterde versie van de
befaamde draaimolen- (caroussel-) constructie van Lé.

Zij | : (X,z) — (C,0) een voldoende algemene lineaire functie. Eerst be-
wijzen we dat als de Puiseuxverhoudingen van de takken van het Cerfdiagram
A(l, f) alle geheel zijn, het Lefschetzgetal A(hy) gelijk is aan het Lefschetzgetal
van de monodromie van de beperking fiqi=o). Dit resultaat blijkt een aantal
interessante gevolgen te hebben.

We bewijzen een formule voor het Lefschetzgetal en een formule voor de
zetafunctie in termen van het Lefschetzgetal resp. de zetafunctie van een eindig
aantal carrouselmonodromieén. Deze formules, die zeer algemeen zijn, kunnen
in bepaalde gevallen lastige berekeningen vereisen.

Onze constructie in Hoofdstuk I levert een fijne polaire decompositie van de
Milnorvezel op, die gelijkenis vertoont met A’Campo’s decompositie [AC-2],
zie Hoofdstuk 11, 1.2.

Hoofdstuk II is gebaseerd op methode van A’Campo [A’C-2], waarin de
resolutie van singulariteiten een rol speelt.

In Sectie 1 van Hoofdstuk II bewijzen we dat als f : (X, z) — (C,0) een
zgn. smoothing s, het Lefschetzgetal alleen afhangt van de residuklasse van f in
mx ./ Fx.z, waar my,. het maximale ideaal van de locale algebra is en Fx.z een
ideaal dat niet van de resolutie afhangt. Fx . is bovendien de doorsnede van
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een eindig aantal “minimale” idealen die ook niet van de resolutie afhangen.
In het bijzonder, als (X, 0) geisoleerd is, volgt uit het feit dat Fx . het ideaal
m¥ _ bevat, dat het Lefschetzgetal alleen afhangt van de klasse van f modulo
m ..

Vanaf Sectie 2 richten we de aandacht op het speciale geval dat (X, ) =~
(C"/G,0) een geisoleerde cyclische quotiéntsingulariteit is (waar (3 een eindige
cyclische groep is). In dit geval blijken de resultaten van Sectie 1 een bijzonder
mooie vorm te hebben: het Lefschetzgetal van een functie is de som van goed
gedefinicerde “delen” van de functie. Bij elk zo’n deel behoort een G-invariante
gewogen-homogene veelterm, waarvan de gewichten alleen van de groepsactie
afhangen.

Gebruikmakend van de eindige groepsactie construeren we een torische re-
solutie van de cyclische quotiéntsingulariteit samen met een speciaal diagram
(zie 3.1). Deze constructie komt in de plaats van een hypothetische opeenvol-
ging van G-invariante opblaasacties Y — C” langs G-stabiele niet-singuliere
declvarieteiten zo, dat het quotiént Y/G niet-singulier is—iets wat men in het
algemeen helaas niet kan doen (zie [Oda, p. 31]).

In Sectie 5 definiéren we een kiasse van niet-gedegenereerde functies waar-
voor we een wat praktischer formule voor de zetafunctie kunnen bewijzen, die
gebaseerd is op de voorgaande resultaten en Varchenko’s aanpak van de zeta-
functie [Var]. In het bijzonder verkrijgen we de formule voor de zetafunctie
van een algemene lineaire snede. Als we ons tot het Lefschetzgetal beperken,
krijgen we een veel grotere klasse van functies waarvoor de corresponderende
formule toepasbaar is.

In Sectie 6 verduidelijken we de resultaten met een aantal voorbeelden,
waarvan er één laat zien dat (((t) = (j(t) niet geldt, zelfs niet voor een
lineaire functie f (met f de bijbehorende G-invariante functie en d = |G)).

In de laatste sectie kunnen we nog explicieter zijn door ons te beperken tot
tweedimensionale quotiénten. Zo bewijzen we wat het bereik van het Lefschetz-
getal is, en een splijtingsformule voor de zetafunctie.



Rezumat in limba romana

Un germene de functie holomorfi f : (X,z) — (C,0) pe un germene de spatiu
analitic (X, z) defineste o monodromie (algebricd):

hy: H{(F;,C) — H'(F},C),

unde F) este fibra Milnor a lui f.

Numdrul Lefschetz A(hy) := Tino(—1)'tracefhy ; H'(Fy, C)] al monodro-
miei (mai general, numirul Lefschetz al unei puteri intregi a monodromici)
face obiectul investigatiei din aceasti teza.

Daca spatiul (X, z) este neted, atunci, datorita unui rezultat al lui A’Campo
[A’C-1), se cunoagte cd A(hs) = 0 daci f este singular, respectiv A(hy) =1
daci f este regulat. Situatia se complici in cazul cind (X, z) nu mai e neted.

in primul capitol al tezei producem o rafinare a ,,caruselului® lui Lé pentru
a demonstra rezultate despre numarul Lefschetz gi—mai general—functia zeta
ale monodromiei, oricare ar fi spatiul de bazi (X, ).

in Capitolul II folosim metoda lui A’Campo [A’C-2], bazatd pe rezolutia
singularititilor. Un loc central il ocupa cazul (X, z) ~ (C*/G,0), unde G este
un grup ciclic finit.

Construim o anumitl rezolutie toricd a spatiului-cit C" /G, care face posibil
studiul functiei zeta a lui f in legdturd cu actiunea grupului G pe spatiul C".
Demonstrdm apoi citeva rezultate importante bazate pe aceastd constructie.

In Sectiunea 5 definim o clasi de functii »,nedegenerate” pentru care putem
demonstra o formuld mai ,,practicd® de calcul al functiei zeta. Rezultatul se
bazeaza pe metoda lui Varchenko [Var} de abordare a functiei zeta, in termeni
de poliedre Newton.

Sectiunea 6 contine exemple semnificative care ilustreza o parte din rezul-
tatele Capitolului II.

In ultima sectiune ne ocupim de cazul particular in care spatiul-cit are
dimensiune 2; aici rezultatele obtinute anterior se pot explicita mai mult. Spre
exemplu, gasim codomeniul lui A(h;)—ca functie de f; el depinde de dimen
siunea de scufundare a spatiului C?/G.
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