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1. R.K.H.S. and metrics on signed measures

In the late seventies, C. Guilbart [4, 5] introduced an embedding into a reproduc-
ing kernel Hilbert space (R.K.H.S.) H of the space M of signed measures on some
topological space X. He characterized the inner products on M inducing the weak
topology on the subspace M™ of bounded positive measures and established in this
setting a Glivenko-Cantelli theorem with applications to estimation and hypothesis
testing. In this contribution we present a constructive approach of Guilbart’s em-
bedding following [20]. This embedding provides a Hilbertian framework for signed
random measures. We shall discuss some applications of this construction to limit
theorems for random measures and partial sums processes.

Let X be a metric space and let M denote the space of signed measures on the
Borel o-field of X. A signed measure p is the difference of two positive bounded
measures. We denote by (u*, ™) its Hahn-Jordan decomposition and by |u| =
w4+ p~ its total variation measure. We consider the class of reproducing kernels
having the following representation

K@@—Amwmww@mawea 1)

where p is a positive measure on some measurable space (U, U) and the function
r: X x U — C satisfies

sup [ (z, ) 12(p) < o (2)
zeX

We denote by J{ the reproducing kernel Hilbert space associated with K. It is easily
checked (Prop.2 in |20]) that under (2), r(.,u) is p-integrable over X for p-almost
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u € U. We assume moreover that

if 4 € M and / r(z,u)p(dz) = 0 for p-almost u, then p = 0. (3)
x

The essential facts about the embeddings of M into H and L?(p) are gathered in
the following theorem which is proved in [20].

Theorem 1.1. Under (1), (2) and (3), the following properties hold.

a) Let E be the closed subspace of L?(p) spanned by {r(x,.), x € X}. A function
h: X — C belongs to 3 if and only if there is a unique g € L*(p) such that

h(z) = /Ug(u)r(x,u)p(du), zeX. (4)

The representation (4) defines an isometry of Hilbert spaces ¥ : H — E, h — g.
b) K induces an inner product on M by the formula

)= [ Ko vidady), v e )
c) M, (., .)g) is isometric to a dense subspace of H by
I M-, pr—17,:= /xK(:E, Jp(dz). (6)
Moreover we have
<h,3#>_/xhdu, (J#,h>_/xﬁdu, heH,pueM (7)
d) The isometric embedding ¢ = ¥ oJ: i ¢, of M into L?(p) satisfies
Gulw) = [ rlewuds), we, ®)

Let us examine some examples where Theorem 1.1 applies.

Example 1.1. Take for p the counting measure on U = N and define r by r(x, ) :=
fi(x), x € X, i € N, where the sequence of functions f; : X — R separates the
measures, i.e. the only x4 € M such that [, fidu = 0 for all i € N is the null
measure. To have a bounded kernel we also assume that Y, || fil|% < co. Then

K(z,y) =Y fi@)fily), wyex>
ieN
puis represented in (2(N) by ¢, = ([ fidp),  andin H by I, = 37 (fx fidp) fi.
It easily follows from (4) that every f; belongs to (.

Example 1.2. Take X = U = R?, with r(z,u) = exp(i(z,u)), z,u € R? and
choose p as a bounded positive measure on R%. This gives the continuous stationary
kernels

Klo.) = [ explile = pu)pldu). oy <R
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Here ¢, (u) = [pa exp(i(z, u))pu(dz) =: fi(u), is the characteristic function of x4 and
Ju(@) = [paexp(—i(z,u))fi(u)p(du). These kernels are used in [20] to study the
convergence rate in the CLT.

Example 1.3. Take X = U = [0,1], p = A + 01, where )\ is the Lebesgue measure
and 0, the Dirac mass at the point 1. With r(z, u) := 1, 1j(u), we obtain K(z,y) =
2 - max(x,y) and Cﬂ(u) = /L([Ovu])

Remark 1.1. The usual topologies on M are generated by functionals f — |. < fdp,
f € F, where F is some family of continuous functions defined on X. When X is
locally compact, F' = C(X), the space of all bounded continuous functions on X
gives the weak topology while restricting to F' = Cp(X¥) the space of continuous
function converging to zero at infinity gives the vague topology. By convergence to
zero at infinity we mean that for every positive ¢ there is a compact subset A of X
such that |f(z)| < ¢ for every x € X\ A. In the special case where X is compact,
C(X) = Cp(X). Endowed with the supremum norm, Cy(X) is a Banach space with
topological dual M (Riesz’s theorem). Now if we choose in Example 1.1 the f;’s in
Co(X), a simple Hahn-Banach argument gives the density of H in Cp(X). In this
setting, let (1, )n>1 be a sequence in M such that sup,,~; [1s[(X) < co. Then weak
and strong convergence in H of J,, to J,, are equivalent to the weak convergence in
M of py, to .

2. Some limit theorems for random measures
2.1. Random measures

A random measure p® is a random element in a set 9t of measures equipped with
some o-field G, i.e. a measurable mapping

pt (L5, P) — (M, G), wpt

Here (Q,3, P) is a probability space and the law or distribution of p* (under P)
is the image measure Po (u*)~! on §. Among the well known examples of random
measures let us mention the empirical process us = n=* >, 0x,, where the X;’s
are random elements in the space X and the point processes Zi\;l dy,, where N and
the Y;’s are random. In the classical theory, e.g. Kallenberg [7], X is locally compact
with a countable basis of neighborhoods, 9t is the set of positive Radon measures
on the Borel o-field of X and 91 is endowed with the Borel o-field § of the vague
topology. This framework of positive measures is sufficient to the classical study
of point processes and positive random measures. But the above setting does not
cover the case of signed measures. Still random signed measures appear naturally by
centering of positive ones [6]. Guilbart’s embedding of M in an R.K.H.S. 3 provides
the background for a Hilbertian theory of signed random measures. This way we
can exploit the nice probabilistic properties of Hilbert spaces and obtain useful limit
theorems like CLT or FCLT.
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From now on, we assume for simplicity that X is metric locally compact and
that K is as in Example 1.1 with the f;’s in Co(X). Identifying H with a completion
of M, we call random measure a random element p* in H such that P(u® € M) = 1.
The observations of such a random measure are the random variables (h, p*) ;- =
Jx hdp®, h € H, accounting (7). Some natural measurability questions raised by
our definition of random measures are positively answered in [19]: M is a Borel
subset of J, |u*| is also a random measure, the [, fdu®’s, f € Co(X), and [p*|(X)
are random variables.

2.2. Strong law of large numbers

If E||*|| x is finite, the random measure p* is Bochner integrable and Ey® is defined
as a deterministic element of . Then p* is also Pettis integrable, when

E<h7M.>K = <h7 E/J'.>Ku h e 3. (9)

The following theorem is an immediate application of the strong law of large num-
bers in separable Banach spaces, see e.g. [9].

Theorem 2.1. Let p3,...,us, ... be independent identically distributed copies of
. IfE||p® || x is finite, then

L] 1 - L] g.{‘. L]
v ::ﬁzui :»E,u . (10)
i=1
Conversely, if v;, converges almost surely in H to some limit ¢, this limit is deter-
ministic, E||p*]| - is finite and ¢ = Epe.

Although v; is obviously a random measure, it is not clear that the same holds
true for its a.s. limit Ex*. When Ep® belongs to M, we call it the mean measure of
u®. In this case, (9) can be recast as

E(h,u* )k = / hd(Ep®), he®XH. (11)
x
Here is a simple sufficient condition for the existence of the mean measure.

Proposition 2.1. The membership of Eu® in M follows from the finiteness of
E|p*|(X) if X is locally compact, K is continuous on X? and K(z,.) € Co(X) for
every x € X.

The proof (cf. Prop. XI.1.2 in [17]) relies on the characterization of measures in H
by

g €IM) iff sup  [(f,9)| < oo, (12)
FEH | flle<t

using the fact that when finite, the supremum in (12) equals |p|(X), where u :=
J=1(g), together with the elementary estimate

1/2
Il < (sup )10l (®), e D (13)
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Corollary 2.1. If E|u*|(X) < oo, let p be the mean measure of pu*. Then the a.s.
convergence of vy, to v holds both in I and in the weak topology on M.

The a.s. convergence in H obviously follows from Theorem 2.1 by applying (13) to
u®. By Remark 1.1, (10) implies the a.s. weak convergence in M of v}, to u provided
that sup,,>; |v5](X) < oo. This uniform boundedness follows from the estimate
lua|(X) < n= '3 |ps|(X) and of the a.s. convergence of this upper bound to
E|x*|(X) by the strong law of large numbers applied to the i.i.d. random variables

|1 1(X).

2.3. Central limit theorem for i.i.d. summands

In any separable Hilbert space H, the central limit theorem for a sum of i.i.d.
random elements is equivalent to the square integrability of the summands. This
nice property does not extend to general Banach spaces, because the CLT is deeply
connected to the geometry of the space [9]. A square integrable random element X
in H is always pregaussian, i.e. there is a Gaussian random element in H with the
same covariance structure as X.

Theorem 2.2. Let u},...,us,... be ii.d. copies of u*. If E||u*||% < oo, then
1 < H
Spi=—= > (u —Ept) —s 14
“ \/ﬁH(uz p) ———" (14)

where v* is a Gaussian random element in H with Ev* = 0 and covariance given
by

Cov(y*)(f.g9) =E (/xfdw/xgdu') - (E/xfdu'> (E/xgdu'), (15)

for every f,g € H.
Conversely, if S;; converges in law in H, its limit is Gaussian and E|p*||% < oco.

Corollary 2.2. If X is locally compact and E|u*|(X)? < oo, then both u* and p*@u*
have mean measures, say u and v and (14) holds. In this case, (15) can be recast as

Covr)(f) = [ Fodv </xfdu> </xgdu>-

Example 2.1. (CLT for empirical measure) Let X be a random element
(9,3, P) — (X, Bx) with unknown distribution s = PoX ~!. Denote by X1, ..., Xy,
iid. copies of X and put puf := dx,, 4 =1,...,n. Then n='>""" | dx, is the em-
pirical measure associated with the sample Xi,...,X,. The CLT in H for the
empirical measure was obtained by Berlinet [2] by a direct approach. It can also
be seen as a special case of Corollary 2.2. Indeed here p* = dx, so |u*|(X) = 1,
Eu* = pu=PoX ! and E(u* ® p*) =: v is the image measure of P o X ! by the
mapping x — (z,z). Hence

1 & s .
ﬁ(%ZlaXI_'UJ> in law T
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where the covariance of the Gaussian centered random element ~* is given by

COV(W’)(f,g)—/xfgdu— (/xfdu> </xgdu)-

2.4. CLT for Donsker random measure and FCLT in L?[0,1]

It is also possible to obtain central limit theorems for sums of non i.i.d. random
measures, like the Donsker random measure

177.
= — N X;6., n>1, 16
S BIEE (1)

where the X;’s are mean zero random variables, possibly dependent, with s2 := ES?
and S, = > ; X;. An application of such CLT is a functional central limit theorem
(FCLT) in L?[0,1] for the partial sums processes

Wh(t) :== s,le[nt], t e [0,1]. (17)

This application was suggested by P. Jacob to P.E. Oliveira and the author. The
weak convergence of W, is classically studied in the Skorohod space D(0, 1) which is
continuously embedded in L?[0, 1]. As many test statistics are functionals continuous
in L?[0,1] sense of W, or of the empirical process, see [12] and [10], the weaker
topological framework of L?[0,1] has its own interest. This way we can hope to
relax the assumptions on the dependence structure of the underlying variables X;’s.
Here we just sketch the method and refer to [11, 12] for more precise results.
Let us choose X = [0,1] with the kernel of Example 1.3. Then

CVT'L (t) = V;z([ovt]) = Sgls[nt] = Wn(t)v te [07 1] (18)

Hence by the isometry between the Hilbert spaces H and L2[0,1],
L0, gy (19)

where under mild assumptions, the limiting process W is identified as a Brownian
motion by a simple covariance computation. Now the relevant CLT for v; may be
established by checking the following conditions.

a) The inner products (h,v;); converge in law to (h,v*) for any fixed h € H.
b) The sequence (v7),>1 is tight in X, i.e. for any positive €, there is a compact
subset C. of H such that inf,,>1 P(v;, € C.) > 1 —¢.

The first condition reduces to a CLT in R for triangular arrays because

(hovise = — D Xlhbi)ie = — S (1) X (20)
" i=1 " i=1



October 19, 2006 18:17 WSPC - Proceedings Trim Size: 9.75in x 6.5in  suquet-revision

By an adaptation of a classical Prohorov’s result (Th.1.13 in [14]), sufficient condi-
tions for the tightness of (v),)n>1 are

sup E|v;||% < oo, (21)
Jim supE D [(fisv7) il = (22)
nzl SN

for some Hilbertian basis (f;):en of H. Concerning (21) which does not come from
Th.1.13 in [14], see the remark after Theorem 5 in [21].
Now the heart of the matter is in the following elementary estimate.

B (i vp)xl? = (/fzdy )

i>N 1>N

Il
N
to|’—‘
™
=
=
5
/—\
S
v
ot
/N
S|
~—

Z BOGXI]) s Zfz : (23)

J,k 1 z€[0,1] ;5N

The first factor in (23) may be bounded uniformly in n, subject to good covariance
estimates for the X;’s. The second factor goes to zero due to Dini’s theorem (the
fi’s being continous like any element of H). Moreover (21) obviously follows from
(23) with N = 0 in the same setting.

To sum up, the FCLT in L?[0, 1] for the partial sums process W,, based on some
dependent sequence (X;);>1 is obtained under the estimate -7, | [E(X;Xy)| =
O(s2) and a one-dimensional CLT for the triangular arrays (20).

2.5. Functional central limit theorems

We discuss now the extension to random measures of the classical FCLT for random
variables. First note that polygonal lines in M make sense, due to M’s vector space
structure. Let p* be a signed random measure and the p?’s be i.i.d. copies of p°.
We denote by &, the M-valued stochastic process indexed by [0, 1], whose paths are
polygonal lines with vertices (k/n,n~'/2Sy), k=0,1,...,n, Sk :=pu} + - + [

Combining Theorem 2.2 with Kuelbs FCLT [8], we immediately obtain the FCLT
for & in the space C([0, 1], H) of continuous functions [0, 1] — K.

Theorem 2.3. The following statements are equivalent.

o) Bl < 0o and Bu* =0,

b) & converges in law in C([0, 1], H) to some H-valued Brownian motion W, i.e.
a Gaussian process with independent increments such that W (t) — W (s) has the
same distribution as |t — s|'/2y*, where v* is a Gaussian random element in H
with null expectation and same covariance structure as p®.
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As the paths of &, are Lipschitz H-valued functions, it is natural to look for a
stronger topological framework than C([0, 1], H) for the FCLT. A clear limitation
in this quest comes from the modulus of uniform continuity of the limiting process,
w(W,u) 1= supge;_s<y [|W(t) — W(s)||4.- Indeed by a simple projection argument
and Lévy’s well known result, w(W, u) cannot be better than «'/2In(1/u). This for-
bids any weak convergence of £; in some Holder topology based on a weight function
stronger than «'/?1n(1/u). Introduce the separable Holder spaces H ([0, 1], H) of
functions f : [0,1] — X, such that

1Al == 17 (O)llac +wp(f;1) < oo and  lim w,(f,u) =0,

where

Wp(f,u) — sup ||f(t) _f(S)Hi}C
0<t—s<u p(t - S)
We assume moreover that the weight functions p are of the form p(u) = u*L(1/u),
0 < a < 1/2, where L is continuous normalized slowly varying at infinity. The
H9([0,1],3() weak convergence of £, to W requires stronger integrability of u* than
Condition a) in Theorem 2.3. Combining Theorem 2.2 with the Holderian FCLT
in [15], leads to the FCLT for £ in the space Hj ([0, 1], 3().

Theorem 2.4. Assume that there is a 0 > 1/2 such that
t2p(1/t)In"P(t) is non decreasing on some [a,c0). (24)
Then the following statements are equivalent.
a) Ep® =0 and
for every A> 0, lim ¢t P(||u"|x > AtY2p(1/t)) = 0. (25)

b) &, converges in law in H([0,1],3() to the H-valued Brownian motion W of
Th. 2.5.

When o < 1/2, Condition (24) is automatically satisfied and it is enough to take
A =1in (25). To clarify Condition (25), let us consider two important special cases.
When p(t) = t* for some 0 < o < 1/2, (25) reduces to P (||| x > t) = o(t7P(¥),
with p(a) := (1/2 — «)~! and this is slightly weaker than E||u'||€((a) < 0o. When
p(t) = t1/21n”(¢/t) for some B > 1/2, then (25) is equivalent to the finiteness of
Eexp(d||u'||}(/ﬁ) for each d > 0.

Following [16], we present briefly a statistical application of Theorem 2.4 to
the detection of epidemic change in the expectation of a random measure. In what
follows, g, k =1,...,n are always i.i.d. copies of the mean zero random measure
u*. Based on the observation of the random measures v§,..., v, we want to test
the null hypothesis

(Ho): vy =pp, k=1,...,n,

against the so called epidemic alternative
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. pe+ps ifkel,:={k"+1,...,m"
(Ha) V= * . ¢ J
s, itkel ={1,...,n}\1,

where p. # 0 is some deterministic signed measure which may depend on n. To
achieve this goal, we use some weighted dyadic increments statistics which behave
like continuous functionals of &;, in Holder topology. Consider partial sums

Sy (a,b) = Z vy, 0<a<b<l1.
na<k<nb
Let us denote by D; the set of dyadic numbers in [0,1] of level j, i.e. Dy = {0, 1},
and D; = {(2[—1)2’j; 1<i< 2j71},j > 1. Write forr € D, j > 0,r~ :=r—277
and 7™ :=r + 277, Then define the dyadic increments statistics DI(n, p) by

1 1
._ - +
DI(n,p) := g e ) rme%)j |Sn(r=,r) = Splr,r )HK (26)
Here “log” stand for the logarithm with basis 2 (log(27) = j) while “In” denotes the

natural logarithm (In(e') = ¢).

Theorem 2.5. Assume that the weight function p satisfies (24) and that the mean
zero random measure p* satisfies (25). Then under (Hy), n='/?DI(n, p) converges
in law to a non negative random variable Z with distribution function

© ) N2
P(z<z)=]] (P(HTIIK < 2(”1)/%(2‘])2) , 220, (27)
j=1

where v* is a mean zero Gaussian random element in H with the same covariance
as p*. The convergence of the product (27) is uniform on any interval [¢,0), € > 0.

Theorem 2.5 is easily obtained from Theorem 2.2 and from [16] Th. 2 and Prop. 3.
For general estimates on the convergence rate in (27), see Prop. 4 in [16]. The
consistency of the sequence of test statistics n~'/2DI(n, p) follows from the next
result which is an easy adaptation of Th. 5 in [16].

Theorem 2.6. Let p satisfying (24). Under (Ha), write I* := m* — k* for the
length of epidemics and assume that
nl e .l "
lim nlﬂ% =o00, where wu,:= mln{—;l - —}. (28)
™ ) R
Then

n~Y2DI(n, p) 22— .

To discuss Condition (28), assume for simplicity that p. does not depend on n.
When p(t) = t, (28) allows us to detect short epidemics such that [* = o(n) and
I*n=% — oo, where § = (1—2a)(2—2a)~1. When p(t) = t1/21n”(c/t) with § > 1/2,
(28) is satisfied provided that u,, = n~!In” n, with v > 23. This leads to detection
of short epidemics such that I* = o(n) and I*In" 7 n — co. In both cases one can
detect symmetrically long epidemics such that n —I* = o(n) .
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