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REPRODUCING KERNEL HILBERT SPACES AND RANDOMMEASURESChARLES SUQUETLaboratoire P. Painlevé, UMR CNRS 8524,Bât M2, Cité S
ienti�que, Université Lille IF59655 Villeneuve d'As
q Cedex, Fran
eWe show how to use Guilbart's embedding of signed measures into a R.K.H.S. to studysome limit theorems for random measures and sto
hasti
 pro
esses.Key words:Mathemati
s Subje
t Classi�
ation:1. R.K.H.S. and metri
s on signed measuresIn the late seventies, C. Guilbart [4, 5℄ introdu
ed an embedding into a reprodu
-ing kernel Hilbert spa
e (R.K.H.S.) H of the spa
e M of signed measures on sometopologi
al spa
e X. He 
hara
terized the inner produ
ts on M indu
ing the weaktopology on the subspa
e M+ of bounded positive measures and established in thissetting a Glivenko-Cantelli theorem with appli
ations to estimation and hypothesistesting. In this 
ontribution we present a 
onstru
tive approa
h of Guilbart's em-bedding following [20℄. This embedding provides a Hilbertian framework for signedrandom measures. We shall dis
uss some appli
ations of this 
onstru
tion to limittheorems for random measures and partial sums pro
esses.Let X be a metri
 spa
e and let M denote the spa
e of signed measures on theBorel σ-�eld of X. A signed measure µ is the di�eren
e of two positive boundedmeasures. We denote by (µ+, µ−) its Hahn-Jordan de
omposition and by |µ| =

µ+ + µ− its total variation measure. We 
onsider the 
lass of reprodu
ing kernelshaving the following representation
K(x, y) =

∫

U

r(x, u)r(y, u)ρ(du), x, y ∈ X, (1)where ρ is a positive measure on some measurable spa
e (U, U) and the fun
tion
r : X × U → C satis�es

sup
x∈X

‖r(x, . )‖L2(ρ) < ∞. (2)We denote by H the reprodu
ing kernel Hilbert spa
e asso
iated with K. It is easily
he
ked (Prop.2 in [20℄) that under (2), r(., u) is µ-integrable over X for ρ-almost
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u ∈ U. We assume moreover thatif µ ∈ M and ∫

X

r(x, u)µ(dx) = 0 for ρ-almost u, then µ = 0. (3)The essential fa
ts about the embeddings of M into H and L2(ρ) are gathered inthe following theorem whi
h is proved in [20℄.Theorem 1.1. Under (1), (2) and (3), the following properties hold.a) Let E be the 
losed subspa
e of L2(ρ) spanned by {r(x, .), x ∈ X}. A fun
tion
h : X → C belongs to H if and only if there is a unique g ∈ L2(ρ) su
h that

h(x) =

∫

U

g(u)r(x, u)ρ(du), x ∈ X. (4)The representation (4) de�nes an isometry of Hilbert spa
es Ψ : H → E, h 7→ g.b) K indu
es an inner produ
t on M by the formula
〈µ, ν〉K :=

∫

X2

K(x, y)µ ⊗ ν(dx, dy), µ, ν ∈ M. (5)
) (M, 〈., .〉K) is isometri
 to a dense subspa
e of H by
I : M → H, µ 7−→ Iµ :=

∫

X

K(x, .)µ(dx). (6)Moreover we have
〈h, Iµ〉 =

∫

X

h dµ, 〈Iµ, h〉 =

∫

X

hdµ, h ∈ H, µ ∈ M. (7)d) The isometri
 embedding ζ = Ψ ◦ I : µ 7→ ζµ of M into L2(ρ) satis�es
ζµ(u) =

∫

X

r(x, u)µ(dx), u ∈ U. (8)Let us examine some examples where Theorem 1.1 applies.Example 1.1. Take for ρ the 
ounting measure on U = N and de�ne r by r(x, i) :=

fi(x), x ∈ X, i ∈ N, where the sequen
e of fun
tions fi : X → R separates themeasures, i.e. the only µ ∈ M su
h that ∫
X

fi dµ = 0 for all i ∈ N is the nullmeasure. To have a bounded kernel we also assume that ∑i∈N
‖fi‖2

∞ < ∞. Then
K(x, y) =

∑

i∈N

fi(x)fi(y), x, y ∈ X
2.

µ is represented in ℓ2(N) by ζµ =
(∫

X
fi dµ

)

i∈N
and in H by Iµ =

∑

i∈N

(∫

X
fi dµ

)

fi.It easily follows from (4) that every fi belongs to H.Example 1.2. Take X = U = Rd, with r(x, u) := exp(i〈x, u〉), x, u ∈ Rd and
hoose ρ as a bounded positive measure on Rd. This gives the 
ontinuous stationarykernels
K(x, y) =

∫

Rd

exp(i〈x − y, u〉)ρ(du), x, y ∈ R
d.
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3Here ζµ(u) =

∫

Rd exp(i〈x, u〉)µ(dx) =: µ̂(u), is the 
hara
teristi
 fun
tion of µ and
Iµ(x) =

∫

Rd exp(−i〈x, u〉)µ̂(u)ρ(du). These kernels are used in [20℄ to study the
onvergen
e rate in the CLT.Example 1.3. Take X = U = [0, 1], ρ = λ + δ1, where λ is the Lebesgue measureand δ1 the Dira
 mass at the point 1. With r(x, u) := 1[x,1](u), we obtain K(x, y) =

2 − max(x, y) and ζµ(u) = µ([0, u]).Remark 1.1. The usual topologies on M are generated by fun
tionals f 7→
∫

X
f dµ,

f ∈ F , where F is some family of 
ontinuous fun
tions de�ned on X. When X islo
ally 
ompa
t, F = C(X), the spa
e of all bounded 
ontinuous fun
tions on Xgives the weak topology while restri
ting to F = C0(X) the spa
e of 
ontinuousfun
tion 
onverging to zero at in�nity gives the vague topology. By 
onvergen
e tozero at in�nity we mean that for every positive ε there is a 
ompa
t subset A of Xsu
h that |f(x)| < ε for every x ∈ X \ A. In the spe
ial 
ase where X is 
ompa
t,
C(X) = C0(X). Endowed with the supremum norm, C0(X) is a Bana
h spa
e withtopologi
al dual M (Riesz's theorem). Now if we 
hoose in Example 1.1 the fi's in
C0(X), a simple Hahn-Bana
h argument gives the density of H in C0(X). In thissetting, let (µn)n≥1 be a sequen
e in M su
h that supn≥1 |µn|(X) < ∞. Then weakand strong 
onvergen
e in H of Iµn

to Iµ are equivalent to the weak 
onvergen
e in
M of µn to µ.2. Some limit theorems for random measures2.1. Random measuresA random measure µ• is a random element in a set M of measures equipped withsome σ-�eld G, i.e. a measurable mapping

µ• : (Ω, F, P ) −→ (M, G), ω 7→ µω.Here (Ω, F, P ) is a probability spa
e and the law or distribution of µ• (under P )is the image measure P ◦ (µ•)−1 on G. Among the well known examples of randommeasures let us mention the empiri
al pro
ess µ•

n = n−1
∑n

i=1 δXi
, where the Xi'sare random elements in the spa
e X and the point pro
esses∑N

i=1 δYi
, where N andthe Yi's are random. In the 
lassi
al theory, e.g. Kallenberg [7℄, X is lo
ally 
ompa
twith a 
ountable basis of neighborhoods, M is the set of positive Radon measureson the Borel σ-�eld of X and M is endowed with the Borel σ-�eld G of the vaguetopology. This framework of positive measures is su�
ient to the 
lassi
al studyof point pro
esses and positive random measures. But the above setting does not
over the 
ase of signed measures. Still random signed measures appear naturally by
entering of positive ones [6℄. Guilbart's embedding of M in an R.K.H.S. H providesthe ba
kground for a Hilbertian theory of signed random measures. This way we
an exploit the ni
e probabilisti
 properties of Hilbert spa
es and obtain useful limittheorems like CLT or FCLT.
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4 From now on, we assume for simpli
ity that X is metri
 lo
ally 
ompa
t andthat K is as in Example 1.1 with the fi's in C0(X). Identifying H with a 
ompletionof M, we 
all random measure a random element µ• in H su
h that P (µ• ∈ M) = 1.The observations of su
h a random measure are the random variables 〈h, µ•〉K =
∫

X
h dµ•, h ∈ H, a

ounting (7). Some natural measurability questions raised byour de�nition of random measures are positively answered in [19℄: M is a Borelsubset of H, |µ•| is also a random measure, the ∫

X
f dµ•'s, f ∈ C0(X), and |µ•|(X)are random variables.2.2. Strong law of large numbersIf E‖µ•‖K is �nite, the random measure µ• is Bo
hner integrable and Eµ• is de�nedas a deterministi
 element of H. Then µ• is also Pettis integrable, when

E〈h, µ•〉K = 〈h,Eµ•〉K , h ∈ H. (9)The following theorem is an immediate appli
ation of the strong law of large num-bers in separable Bana
h spa
es, see e.g. [9℄.Theorem 2.1. Let µ•

1, . . . , µ
•

n, . . . be independent identi
ally distributed 
opies of
µ•. If E‖µ•‖K is �nite, then

ν•

n :=
1

n

n
∑

i=1

µ•

i
H−−−→
a.s.

Eµ•. (10)Conversely, if ν•

n 
onverges almost surely in H to some limit ℓ, this limit is deter-ministi
, E‖µ•‖K is �nite and ℓ = Eµ•.Although ν•

n is obviously a random measure, it is not 
lear that the same holdstrue for its a.s. limit Eµ•. When Eµ• belongs to M, we 
all it the mean measure of
µ•. In this 
ase, (9) 
an be re
ast as

E〈h, µ•〉K =

∫

X

h d(Eµ•), h ∈ H. (11)Here is a simple su�
ient 
ondition for the existen
e of the mean measure.Proposition 2.1. The membership of Eµ• in M follows from the �niteness of
E|µ•|(X) if X is lo
ally 
ompa
t, K is 
ontinuous on X

2 and K(x, .) ∈ C0(X) forevery x ∈ X.The proof (
f. Prop. XI.1.2 in [17℄) relies on the 
hara
terization of measures in Hby
g ∈ I(M) i� sup

f∈H,‖f‖∞≤1

|〈f, g〉| < ∞, (12)using the fa
t that when �nite, the supremum in (12) equals |µ|(X), where µ :=

I−1(g), together with the elementary estimate
‖µ‖K ≤

(

sup
X2

K
)1/2|µ|(X), µ ∈ M. (13)
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5Corollary 2.1. If E|µ•|(X) < ∞, let µ be the mean measure of µ•. Then the a.s.
onvergen
e of ν•

n to µ holds both in H and in the weak topology on M.The a.s. 
onvergen
e in H obviously follows from Theorem 2.1 by applying (13) to
µ•. By Remark 1.1, (10) implies the a.s. weak 
onvergen
e in M of ν•

n to µ providedthat supn≥1 |ν•

n|(X) < ∞. This uniform boundedness follows from the estimate
|ν•

n|(X) ≤ n−1
∑n

i=1 |µ•

i |(X) and of the a.s. 
onvergen
e of this upper bound to
E|µ•|(X) by the strong law of large numbers applied to the i.i.d. random variables
|µ•

i |(X).2.3. Central limit theorem for i.i.d. summandsIn any separable Hilbert spa
e H , the 
entral limit theorem for a sum of i.i.d.random elements is equivalent to the square integrability of the summands. Thisni
e property does not extend to general Bana
h spa
es, be
ause the CLT is deeply
onne
ted to the geometry of the spa
e [9℄. A square integrable random element Xin H is always pregaussian, i.e. there is a Gaussian random element in H with thesame 
ovarian
e stru
ture as X .Theorem 2.2. Let µ•

1, . . . , µ
•

n, . . . be i.i.d. 
opies of µ•. If E‖µ•‖2
K < ∞, then

S∗
n :=

1√
n

n
∑

i=1

(µ•

i − Eµ•)
H−−−−−→in law γ•, (14)where γ• is a Gaussian random element in H with Eγ• = 0 and 
ovarian
e givenby

Cov(γ•)(f, g) = E

(
∫

X

f dµ•

∫

X

g dµ•

)

−
(

E

∫

X

f dµ•

)(

E

∫

X

g dµ•

)

, (15)for every f, g ∈ H.Conversely, if S∗
n 
onverges in law in H, its limit is Gaussian and E‖µ•‖2

K < ∞.Corollary 2.2. If X is lo
ally 
ompa
t and E|µ•|(X)2 < ∞, then both µ• and µ•⊗µ•have mean measures, say µ and ν and (14) holds. In this 
ase, (15) 
an be re
ast as
Cov(γ•)(f, g) =

∫

X2

f ⊗ g dν −
(∫

X

f dµ

)(∫

X

g dµ

)

.Example 2.1. (CLT for empiri
al measure) Let X be a random element
(Ω, F, P ) → (X, BX) with unknown distribution µ = P◦X−1. Denote byX1, . . . , Xn,i.i.d. 
opies of X and put µ•

i := δXi
, i = 1, . . . , n. Then n−1

∑n
i=1 δXi

is the em-piri
al measure asso
iated with the sample X1, . . . , Xn. The CLT in H for theempiri
al measure was obtained by Berlinet [2℄ by a dire
t approa
h. It 
an alsobe seen as a spe
ial 
ase of Corollary 2.2. Indeed here µ• = δX , so |µ•|(X) = 1,
Eµ• = µ = P ◦ X−1 and E(µ• ⊗ µ•) =: ν is the image measure of P ◦ X−1 by themapping x 7→ (x, x). Hen
e

√
n

(

1

n

n
∑

i=1

δXi
− µ

)

H−−−−→in law γ•,
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6where the 
ovarian
e of the Gaussian 
entered random element γ• is given by

Cov(γ•)(f, g) =

∫

X

fg dµ −
(∫

X

f dµ

)(∫

X

g dµ

)

.2.4. CLT for Donsker random measure and FCLT in L2[0, 1]It is also possible to obtain 
entral limit theorems for sums of non i.i.d. randommeasures, like the Donsker random measure
ν•

n :=
1

sn

n
∑

i=1

Xiδ i
n
, n ≥ 1, (16)where the Xi's are mean zero random variables, possibly dependent, with s2

n := ES2
nand Sn =

∑n
i=1 Xi. An appli
ation of su
h CLT is a fun
tional 
entral limit theorem(FCLT) in L2[0, 1] for the partial sums pro
esses

Wn(t) := s−1
n S[nt], t ∈ [0, 1]. (17)This appli
ation was suggested by P. Ja
ob to P.E. Oliveira and the author. Theweak 
onvergen
e of Wn is 
lassi
ally studied in the Skorohod spa
e D(0, 1) whi
h is
ontinuously embedded in L2[0, 1]. As many test statisti
s are fun
tionals 
ontinuousin L2[0, 1] sense of Wn or of the empiri
al pro
ess, see [12℄ and [10℄, the weakertopologi
al framework of L2[0, 1] has its own interest. This way we 
an hope torelax the assumptions on the dependen
e stru
ture of the underlying variables Xi's.Here we just sket
h the method and refer to [11, 12℄ for more pre
ise results.Let us 
hoose X = [0, 1] with the kernel of Example 1.3. Then

ζν•

n
(t) = ν•

n([0, t]) = s−1
n S[nt] = Wn(t), t ∈ [0, 1]. (18)Hen
e by the isometry between the Hilbert spa
es H and L2[0, 1],

ν•

n
H−−−−→in law γ• ⇐⇒ Wn

L2[0,1]−−−−→in law W, (19)where under mild assumptions, the limiting pro
ess W is identi�ed as a Brownianmotion by a simple 
ovarian
e 
omputation. Now the relevant CLT for ν•

n may beestablished by 
he
king the following 
onditions.a) The inner produ
ts 〈h, ν•

n〉K 
onverge in law to 〈h, γ•〉K for any �xed h ∈ H.b) The sequen
e (ν•

n)n≥1 is tight in H, i.e. for any positive ε, there is a 
ompa
tsubset Cε of H su
h that infn≥1 P (ν•

n ∈ Cε) ≥ 1 − ε.The �rst 
ondition redu
es to a CLT in R for triangular arrays be
ause
〈h, ν•

n〉K =
1

sn

n
∑

i=1

Xi〈h, δ i
n
〉K =

1

sn

n
∑

i=1

h
( i

n

)

Xi. (20)
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lassi
al Prohorov's result (Th.1.13 in [14℄), su�
ient 
ondi-tions for the tightness of (ν•

n)n≥1 are
sup
n≥1

E‖ν•

n‖2
K < ∞, (21)

lim
n→∞

sup
n≥1

E
∑

i≥N

|〈fi, ν
•

n〉K |2 = 0, (22)for some Hilbertian basis (fi)i∈N of H. Con
erning (21) whi
h does not 
ome fromTh.1.13 in [14℄, see the remark after Theorem 5 in [21℄.Now the heart of the matter is in the following elementary estimate.
E
∑

i≥N

|〈fi, ν
•

n〉K |2 =
∑

i≥N

E

(∫

fi dν•

n

)2

=
∑

i≥N

1

s2
n

n
∑

j,k=1

E(XjXk)fi

( j

n

)

fi

(k

n

)

≤





1

s2
n

n
∑

j,k=1

|E(XjXk)|



 sup
x∈[0,1]

∑

i≥N

fi(x)2. (23)The �rst fa
tor in (23) may be bounded uniformly in n, subje
t to good 
ovarian
eestimates for the Xj 's. The se
ond fa
tor goes to zero due to Dini's theorem (the
fi's being 
ontinous like any element of H). Moreover (21) obviously follows from(23) with N = 0 in the same setting.To sum up, the FCLT in L2[0, 1] for the partial sums pro
ess Wn based on somedependent sequen
e (Xj)j≥1 is obtained under the estimate ∑n

j,k=1 |E(XjXk)| =

O(s2
n) and a one-dimensional CLT for the triangular arrays (20).2.5. Fun
tional 
entral limit theoremsWe dis
uss now the extension to random measures of the 
lassi
al FCLT for randomvariables. First note that polygonal lines in M make sense, due to M's ve
tor spa
estru
ture. Let µ• be a signed random measure and the µ•

i 's be i.i.d. 
opies of µ•.We denote by ξ•

n the M-valued sto
hasti
 pro
ess indexed by [0, 1], whose paths arepolygonal lines with verti
es (k/n, n−1/2Sk), k = 0, 1, . . . , n, Sk := µ•

1 + · · · + µ•

k.Combining Theorem 2.2 with Kuelbs FCLT [8℄, we immediately obtain the FCLTfor ξ•

n in the spa
e C([0, 1], H) of 
ontinuous fun
tions [0, 1] → H.Theorem 2.3. The following statements are equivalent.a) E‖µ•‖2
K < ∞ and Eµ• = 0,b) ξ•

n 
onverges in law in C([0, 1], H) to some H-valued Brownian motion W , i.e.a Gaussian pro
ess with independent in
rements su
h that W (t)−W (s) has thesame distribution as |t− s|1/2γ•, where γ• is a Gaussian random element in Hwith null expe
tation and same 
ovarian
e stru
ture as µ•.
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n are Lips
hitz H-valued fun
tions, it is natural to look for astronger topologi
al framework than C([0, 1], H) for the FCLT. A 
lear limitationin this quest 
omes from the modulus of uniform 
ontinuity of the limiting pro
ess,
ω(W, u) := sup0≤t−s≤u ‖W (t) − W (s)‖

H
. Indeed by a simple proje
tion argumentand Lévy's well known result, ω(W, u) 
annot be better than u1/2 ln(1/u). This for-bids any weak 
onvergen
e of ξ•

n in some Hölder topology based on a weight fun
tionstronger than u1/2 ln(1/u). Introdu
e the separable Hölder spa
es Ho
ρ([0, 1], H) offun
tions f : [0, 1] → H, su
h that

‖f‖ρ := ‖f(0)‖
H

+ ωρ(f, 1) < ∞ and lim
u→0

ωρ(f, u) = 0,where
ωρ(f, u) := sup

0<t−s≤u

‖f(t) − f(s)‖
H

ρ(t − s)
.We assume moreover that the weight fun
tions ρ are of the form ρ(u) = uαL(1/u),

0 < α ≤ 1/2, where L is 
ontinuous normalized slowly varying at in�nity. The
Ho

ρ([0, 1], H) weak 
onvergen
e of ξ•

n to W requires stronger integrability of µ• thanCondition a) in Theorem 2.3. Combining Theorem 2.2 with the Hölderian FCLTin [15℄, leads to the FCLT for ξ•

n in the spa
e Ho
ρ([0, 1], H).Theorem 2.4. Assume that there is a β > 1/2 su
h that

t1/2ρ(1/t) ln−β(t) is non de
reasing on some [a,∞). (24)Then the following statements are equivalent.a) Eµ• = 0 andfor every A > 0, lim
t→∞

t P
(

‖µ•‖K ≥ At1/2ρ(1/t)
)

= 0. (25)b) ξ•

n 
onverges in law in Ho
ρ([0, 1], H) to the H-valued Brownian motion W ofTh. 2.3.When α < 1/2, Condition (24) is automati
ally satis�ed and it is enough to take

A = 1 in (25). To 
larify Condition (25), let us 
onsider two important spe
ial 
ases.When ρ(t) = tα for some 0 < α < 1/2, (25) redu
es to P
(

‖µ•‖K ≥ t) = o(t−p(α)),with p(α) := (1/2 − α)−1 and this is slightly weaker than E‖µ•‖p(α)
K < ∞. When

ρ(t) = t1/2 lnβ(c/t) for some β > 1/2, then (25) is equivalent to the �niteness of
E exp(d‖µ•‖1/β

K ) for ea
h d > 0.Following [16℄, we present brie�y a statisti
al appli
ation of Theorem 2.4 tothe dete
tion of epidemi
 
hange in the expe
tation of a random measure. In whatfollows, µ•

k, k = 1, . . . , n are always i.i.d. 
opies of the mean zero random measure
µ•. Based on the observation of the random measures ν•

1 , . . . , ν
•

n, we want to testthe null hypothesis
(H0): ν•

k = µ•

k, k = 1, . . . , n,against the so 
alled epidemi
 alternative
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(HA) ν•

k =

{

µc + µ•

k if k ∈ In := {k∗ + 1, . . . , m∗}
µ•

k if k ∈ Ic
n := {1, . . . , n} \ Inwhere µc 6= 0 is some deterministi
 signed measure whi
h may depend on n. Toa
hieve this goal, we use some weighted dyadi
 in
rements statisti
s whi
h behavelike 
ontinuous fun
tionals of ξ•

n in Hölder topology. Consider partial sums
Sn(a, b) =

∑

na<k≤nb

ν•

k, 0 ≤ a < b ≤ 1.Let us denote by Dj the set of dyadi
 numbers in [0, 1] of level j, i.e. D0 = {0, 1},and Dj =
{

(2l−1)2−j; 1 ≤ l ≤ 2j−1
}, j ≥ 1. Write for r ∈ Dj , j ≥ 0, r− := r−2−jand r+ := r + 2−j. Then de�ne the dyadi
 in
rements statisti
s DI(n, ρ) by

DI(n, ρ) :=
1

2
max

1≤j≤log n

1

ρ(2−j)
max
r∈Dj

∥

∥Sn(r−, r) − Sn(r, r+)
∥

∥

K
. (26)Here � log� stand for the logarithm with basis 2 (log(2j) = j) while � ln� denotes thenatural logarithm (ln(et) = t).Theorem 2.5. Assume that the weight fun
tion ρ satis�es (24) and that the meanzero random measure µ• satis�es (25). Then under (H0), n−1/2DI(n, ρ) 
onvergesin law to a non negative random variable Z with distribution fun
tion

P (Z ≤ z) =
∞
∏

j=1

(

P (‖γ•‖K ≤ 2(j+1)/2ρ(2−j)z
)2j−1

, z ≥ 0, (27)where γ• is a mean zero Gaussian random element in H with the same 
ovarian
eas µ•. The 
onvergen
e of the produ
t (27) is uniform on any interval [ε,∞), ε > 0.Theorem 2.5 is easily obtained from Theorem 2.2 and from [16℄ Th. 2 and Prop. 3.For general estimates on the 
onvergen
e rate in (27), see Prop. 4 in [16℄. The
onsisten
y of the sequen
e of test statisti
s n−1/2DI(n, ρ) follows from the nextresult whi
h is an easy adaptation of Th. 5 in [16℄.Theorem 2.6. Let ρ satisfying (24). Under (HA), write l∗ := m∗ − k∗ for thelength of epidemi
s and assume that
lim

n→∞
n1/2 un‖µc‖K

ρ(un)
= ∞, where un := min

{ l∗

n
; 1 − l∗

n

}

. (28)Then
n−1/2DI(n, ρ)

pr−−−−→
n→∞

∞.To dis
uss Condition (28), assume for simpli
ity that µc does not depend on n.When ρ(t) = tα, (28) allows us to dete
t short epidemi
s su
h that l∗ = o(n) and
l∗n−δ → ∞, where δ = (1−2α)(2−2α)−1. When ρ(t) = t1/2 lnβ(c/t) with β > 1/2,(28) is satis�ed provided that un = n−1 lnγ n, with γ > 2β. This leads to dete
tionof short epidemi
s su
h that l∗ = o(n) and l∗ ln−γ n → ∞. In both 
ases one 
andete
t symmetri
ally long epidemi
s su
h that n − l∗ = o(n) .
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