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Abstract

In the paper we consider a changed segment model for sample dis-
tributions. We generalize Diimbgen’s [6] change point estimator and
obtain optimal rates of convergence of estimators of the begining and
the length of the changed segment.
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1 Introduction

A general changed segment (called also epidemic) model can be described
as follows. For n = 3,4, ..., let P, and @,, be two probability distributions
on a measurable space E and let X,, 1, X,,2,..., X, ,, be a triangular array
of independent random elements in E. There exist s; and ¢; such that for
1 <4 < s}, or nt;, < i < n, the X;,’s have distribution P,, while for
ns; < ¢ < nty, they have distribution @,. We refer to e.g., Avery and

n

Handerson [1], Commenges et al. [3], Rackauskas and Suquet [12], [13],
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Yao [18] for a comprehensive review. Our aim to this model is to estimate
the pair (s}, h’), where h' = t — s¥ measures the length of the changed
segment.

This is the most simple type of the multiple change models which have
attracted big attention and is well studied in the literature, e.g. Yao [17]
(estimates a number of jumps in the mean), Schechtman and Wolfe [14]
(propose sequential algorithm for estimating the number and the location
of change points), Lavielle and Moulines [9] (estimates unknown number of
shifts in time series) Lavielle [8] (derives asymptotic results for location and
the number of changed segments), Lee [11] (gives asymptotic results for the
location of segments, following Diimbgen [6])) to name a few. We also refer
to Brodsky and Darkhovsky [2] and Csoérgé and Horvath [4] for state-of-the
art of change point problems.

Concerning asymptotic results in multiple change models it is usually as-
sumed that the length of each changed segment tends to infinity at the same
rate as the total number of observations, see, e.g., above mentioned paper
by Lavielle [8] and references therein. In this paper we consider the changed
segment tending to infinity possibly at much slower rate. For example, our
results apply for segment growth at the rates of type lognloglogn. We
also discuss very general examples of possible estimators.

2 Estimator and its consistency

The parameter we are estimating is 6, = (si,h}) where h} = t} — s¥
measures the length of the changed segment in the model described above.
This unknown parameter 6,, belongs to the set

O, :={(s,h) €T?: s+h<1}
where

T, :={1/n,2/n,...,(n—1)/n}.

For notational convenience we extend the sample X, 1,..., X, , periodically
by putting X, ; = X, j_n for n < j < 2n. Now for 0 < k < m < 2n
introduce the empirical measure

1 m
kom .
Pt = ——— Z 8x,.,-
Jj=k+1
Clearly, PT(L)’" is the empirical measure based on the sample X, 1,..., X, 5.



For s, h € T;, denote
Iy, ={ns+1,...,ns+nh}, andset I, = Ig .

We denote by |A| the number of elements of any finite set A. Introducing
IS, ={1,...,n}\ I, we note that

[ Ls,n| = nh,  |IS,] = n(1 = h).
With the weight function
w(u) = u?(1 —w)2, welo,1],
introduce the signed measure
Dy = w(h) (Ppensth) — pplsthintns) g b e Ty, (1)

First we check that this measure can be represented as

h_ 1
D3 =
nw

Z (6Xn,i - Pgm)? S, h e Tn (2)

i€l p

This results from the following elementary computation.

D =) ¥ ow 1_,1)2%,1-)

h&n ' iels,
< Z Xos T T Z5xm+ 25)(,“)
1€Ish 7IEIsh
w(h) /1 1 nhw
= Gt =) ,Z X0t (= B) 25
ZEIS’h
1 1

Next we check that the mean of D3

AN = ED5" = r,(s,1)(Qn — Pn), (3)



where 7, (s, h) admits the both representations

1
ru(s, h) :W<|Is’h NL|— nhh;;), (4)
|
(s ) = (1 D I = n(1 = )1 = h)). (5)
Indeed
EDSh = S Qut S Pu—hahiQn —hn(l - h;;)Pn)

7/615 hﬂ[* ZEIS hﬂ[

o (
=t (1o O LIQu + 1o D TP, — i Qu = (1~ 1))
ol

Lo n OV L)(Qn — Po) + [ Ton| Pa — b Qn — hnn(1 — h;:)Pn)

_ 1h) (e nhh:) (Qn — Py).

nw(

It is worth noticing here that

1= a8y, hy) = VR (1= hi). (6)

n> n

Now we choose a seminorm N,, on the space M of all finite signed mea-
sures on E and note that Ny,(A5™) = [, (s, )| Na(Qn — Pp). As || has a
unique maximum on ©,, reached at (s, h) = (s, h}), see Lemma 5 in Section
4, this leads to the estimator

(s, h*) = argmaX{Nn(DfZ’h) : (s,h) € T,%}, (7)

n7 n

which is a generalization of Diimbgen’s estimator [6] in the setting of changed
segment model. To incorporate the case where the length of changed seg-
ment h is close to either zero or to one, we shall assume that with a sequence
(1) of positive numbers which can tend to zero as n increases,

hy(1 = hy)

Tn n— 00

€ (0,1). (8)
With this setup we define the estimator
(3%, h¥) := arg max {Nn(DfL’h) D (s,h) €TE, h(1—h)>7, }.  (9)

Next we need some assumptions on the seminorms NN,, which as in Diimb-
gen [6] are allowed to be random. Let the underlying probability space be
(Q,S,Pr). By Pr* we denote then the outer probability. First we define an
admissible class of measurable functions.



Definition 1. A seminorm || - || on M will be called admissible, if

there are two constants ¢, co > 0 such that for all m € N and for arbi-

trary independent identically distributed random elements X1, ..., X,
in E:
Pr*( ‘m_l/Q Z (5X2. - EéXl)H > )\) < exp(—CQ)\2)
i=1
for all A > 0.

Now we introduce the following assumptions on IV, and on a distance be-
tween distributions P, and @,,.
Assumption (A): there is an admissible seminorm || - || on M such that

Nn(v) <||v|| for each v € M. (10)

Assumption (B): there is a sequence of positive numbers (7;,) possibly in-
creasing such that

Pr(Nn(Qn _ P> i) 1 (11)
Tn/ M0

In the case where N,, is non random, (11) reduces to N,(Q, — P,) > 7,

for n large enough (one can put v, = N, (Q, — P,)). If moreover P, = P

and @, = @ do not depend on n, this in turn, reduces to N,(Q — P) > ¢

with a constant ¢y > 0.

Theorem 2. Assume that the seminorms N, and the distributions P, and
Qn satisfy the assumptions (A) and (B). Under (8) suppose that

2 log'/?2(1/7,
1’51/27',}/2 n—oo
Then N
15 — sh| + [hn — b = Ope(v2n ™). (13)

If ~,, = const. does not depend on n, then the convergence rate provided
by Theorem 2 is Op,(n~!) which is optimal since the number of observations
equals to n.

In the case where the seminorm N,, is nonrandom (12) reads

log'/2(1/7)
n120 PNy (P — Q) "7

0. (14)

5



In terms of the length ¢ = nt} — ns; of changed segment, this condition
becomes, let us say when £ < n/2,

logn
eZNﬁ(Pn — Q) n—oo

0. (15)

3 Proof of Theorem 2

To simplify notation set, recalling (1) and (3)

* * =~ ok * * -~ ok
Di = Dimhn7 Di = D;slmhnj AF = Afln,hn7 AF = A;slmhn (16)

The idea of the proof of theorem 2 is the following. We analyze the
difference N, (D3") — Ny,(D}) and show that for each pair (s, h) which is
at a certain distance b, far-off the point (s}, h’) this quantity is negative

with probability approaching one as b, — oco. Since the estimator (57, A" )

is the point of maxima of N,(Dy"), the difference N, (D7) — Nn(D?) is

always nonnegative. These arguments give the rate by, for the convergence
(8%, h*) — (si,h}) in probability.
Set
h h h * * *
ay"t =Dyt — A dl = D) — AL (17)

The main tool for the proof is the following.
Claim 3. For n large enough
Na(D3") = Nu(Dy) < |l = dyll = (5, = rn(s, b)) 75 (1 = ope(1)), (18)
where the “opy(1)” does not depend on (s, h).
Proof of Claim 3. To deduce this estimate first we check that
[Nu(D5) = 7 Na(Qn — )| < 5|l = Ope(n™/?). (19)

Indeed, recalling (3), we have N,(A}) = |7} |Np(Qn — Pn). As N, is a
seminorm, we get by assumption (A)

| No(D5) = Nu(AL)| < Na(Dy; =A%) = Nu(dy,) < |ldy ]l



Then we can express d, = D;, — A7 as follows.

dy = < h*z Xm—l_h*)Z%(m)—w(h*)(Q — Fy)

el 1€l¢
= w(h:;) <nh* Z 5Xn,i - Qn - W Z (SX,” + P, )
" el 1elg
w(hy,) w(hy,)
= L ox, . —Edox ) — ——T— o0x, . —Eodx, ).
nhy, i;( s X:) n(l— h) ;( o o)
By admissibility of the seminorm || - || we have for any A > 0,
/2 < (02)‘2) < (_ AQ)
nh* I < C1 eXp 1_ h; S C1 exXp(—cC2 y
whence
~1/2
nh* ‘Z = Ope(n )
Similarly
= Op;(n 71/2).

Hence ||d} || = Opr(nfl/Q) and (19) is established.
From (3) we have
T'n(s, h) A*

* n*
n

s,h __
AV =

Nu(D3") = No(D}) = Ny(dy" — diy + iy + Ay") = Na(Dj) =

n

(
Ny (dsh — d + diy + (rn(s,h) /T5)A%) — N (D) =

N (3 — i+ (1 s, ) /13 + (a5, /3 D3) — Na(D}) <
Ny i) — (1= Oy (v () - ). (20)

n

By the inequality in (19), condition (A) and noting that 1 —r, (s, h)/r} > 0,
cf. Lemma 5, we see that the right hand side in (20) is bounded by the
quantity

N — i) — (1= O v (- Q) — 2l

n



which on the set {Nn(Pn —Qn) >, '} does not exceed

* n
n

Nu(dy" —dy) = (r = ra(s, 1)y (1= 2y alldy )

s * Tn Sah *  — *
Nt —dz) = (1= 20y e o) =

Finally, applying condition (A) to the signed measure df{h — dy, recalling

that ||d%|| = Op:(n~'/?) and noting that by (8), (12), r%~'y,n~"1/2 tends to
0, we complete the proof of Claim 3. O

The rest of proof of Theorem 2 is divided in two steps. In the first one we
check, that under the conditions stated in the theorem, for each € € (0, 1),

1y, — B
Pr{——F > 0. 21
! (h;;(l YR R— (21)
In the next step we prove, that for any ¢ € (0,1)
Pr([85, — sul + [, = Bl > bn ™', Qu(e)) — 0, (22)

as n — oo and b — 0o, where

Proof of (21). Introduce the sets
T7 :={(s,h) €Oy : h(1—h) >7,}
and for € € (0,1),b > 1,

T. = {(s,h) € T" : |h— h}| > eh},(1 —h})},
T(b) = {(s,h) € T" : max{|s — sk|,|h — hj|} > by2n~'}.

Lemma 7 in Section 4 provides

max [|d>"|| = Op:(n""?k,)  where k, = |log7,|'/2. (23)
(s,h)ETT

Reporting this estimate in (18), we obtain

Na(D3") = Na(D3y) < Ope(n™ k) = (ry = (s, 1))y (1= 0pe(1)), (24)



uniformly in (s, h) € 7).
Let us check now that there is some constant ¢, such that

V(s,h) € Te, 1) —1n(s,h) > 65’7'1/2. (25)

n

Consider first the case where b} < 1/2. Lemma 5 provides the lower bound

P ra(s, ) > w(hy) Pl

) 2max(h, ht)’ (26)

As 1—h} > 1/2, the definition of T, gives |h — h}| > h}e/2. Note also that
on 1., h # h},.

1. If h > h, the lower bound (26) writes w(h})(1 — h}/h) and as
hi/h < (1+4¢/2)71, we obtain

9

T:;*Tn(sah) > 1+ 26

w(hy), (b, <1/2, h>hy). (27)
2. If h < h};, the lower bound (26) writes 3w(h};)(h; — h)/h}, whence

ry —1n(s,h) > —w(hy), (hy, <1/2, h <h}). (28)

>~ ™

In the case where h) > 1/2, we keep from Lemma 5 the lower bound

|h = byl (L —h) = (= hy)l

I n 7h > h* = "
Ty —T (8 )_w( ”>2max(1—h,1—h;§) w( ")Qmax(l—h,l—h}‘})

and from the definition of T, we get |(1 —h)— (1 —h}|) > (1 —h})e/2. This
leads clearly to the lower bounds (27) when h < h} and (28) when h > h’.
In view of (8), these lower bounds give (25).

Now,(24), (25) and (12) yield
No(D3h) — N (D) < —cert/?4,1 (1 — ope(1)),  uniformly in (s, h) € T..

n

In other words for each € > 0 there is a constant ¢ > 0 such that

Pr(Nn(Dfl’h) — No (D) < —cort/?471 for all (s, h) € T.) —— 1. (29)
n—oo

As (%,ﬁ;) := arg max Ny, (D™, the differenceANn(l/j:;) — N,(D}) is always

nonnegative. Hence (29) implies that Pr((s}, k) € T:) tends to 0. Since

n»''n

by (9), k(1 — hY) > 7, this leads to (21). O



Proof of (22). We investigate in details the difference ash — d} for (s,h) in
the set
To(b,e) :=(T"\T:)NT(b) =TSN T(b). (30)

Putting for notational simplicity
nj=94x,, —Edx,,, j=1,...,n,
we can write

dSh —dr = 1I,(s,h) + Ix(s,h) + I3(s,h), (s,h) €T,

where
Ii(s, h) < Z ny — Z )
jEIsh jel*
1
I =
2(s, 1) (nw(h nw( h* ) an’
h
IS(S,h) = (nw( nw h* )277]
By admissibility of the seminorm || - || we have
w(hy,) 1 -1/2
=~ ) 5 - o
20, )11 = || mm)mum [(n712)
and

hrw(h —1/2_—
wx&muzh—qwéfpmmlﬂa”%

It is worth observing here that if (s, h) € TS, then

h
_ < ok . < R
1’_(1 me i 1‘_hn5,
whence
(I—¢e)h;, <h<(1+¢)h; (31)
(1—e)(1—=hy) <1—=h<(1+e)(1—hy) (32)
(1 = &)w(hy,) <w(h) < (1+e)w(hy). (33)
Note also the elementary inequality
vVt €[0,1], min(t, 1 —1t) <2t(1 —t) = 2w(t)> (34)

10



Lemma 5 provides the lower bounds

[l — I
2min(h¥,1—h)

[l = |
2min(h,1 — h})
If h < R, then by (32), (34) and as 0 < w(h})? < w(h}) < 1, we get

h— | o Ihny b |

2(14+¢e)min(hi, 1 —hy) — 41 +e)w(hy)? = 41+ e)w(hy)
We clearly obtain the same lower bound in the case h > h};, so let us retain
that with cc = 1/(4 + 4e),

it h < hy,
7“;; _Tn(&h) Z

if h > h.

T;_Tn(5> h) >

|h = b

V(s,h) € O, \ Tg, ry —rn(s,h) > ce W)

(35)
Next we note here that

w(h) —w(hy) = VAL —h) = /I5(1 = ) =

h(1—h) — h%(1 — h%)
VA =)+ /BT —hy)’

whence
[ = hal[l = (b Bl [h— o]
hy(l—nhy) = why)

w(h) = w(hy)| < (36)

Using (36) and the rough estimate w(h) < 1 < w(h)~! in the inequality
[hw(h) = hpw(hp)| < [h = hylw(h) + hy lw(h) — w(hy)],

we obtain also

|7 = |
w(hy)
Recalling that for (s,h) € T¢ =T7\ Tz, w(h) > /% we deduce from (36)
and (37) that

|hw(h) = hyw(hy)| <2 (37)

w(hy,) —1/2‘h—h*’ hyw(hy) —1/2‘h—h*‘
1— ') h— n P\ g _
- = w(n) 1= w(my)

Hence combining the inequalities (38) with (35) we see that for i = 2,3,

115, W[ = 702 (= ra(is, B))n ™2 0pe (1) = 7, (1 = (s, ) Jore (1)

(38)

and from (18) we deduce
Nu(Dy") = Nu(Dy) < (s, Bl = cx(ryy = (s, h) 7 (1 — ope(1)). (39)

Next we use the following

11



Claim 4. For each constant ¢ > 0 and each € € (0,1)

; 111(s, B)]| 1
lim sup Px ( AR o) 0 (o
171;I1—>501;1)p ' (S,h?el%})((b,a) (ri —rn(s,h)) — I ) e (40)

It follows from (40) that for any € € (0, 1), the quantity

lim inf Pr(N,,(D3") — N,(D}) < —525(7«;; — (s, B, (s, h) € To(b, e))

n—oo

—

tends to 1 as b tends to infinity. Since Nn(Df{t’hz) — N, (D}) is always non
negative and recalling the definition of Ty (b, €), see (30), this gives (22) and
the proof of the theorem is now reduced to that of the Claim 4. 0

Proof of Claim 4. Decompose the set Ty(b, ) defined in (30) as

5
To(b,e) = | To; (b, ),
j=1

where
To1(b,e) = {(s,h) € To(b,e) : Iy, N I, = 0},
To2(b,€) = {(s,h) € To(b,e) : I, O I},
To3(b,e) = {(s,h) € Ty(b,e) : I, C L.},
Toa(b,e) = {(s,h) € Ty(b,e) : s < s; <s+h<s,+h}
Tos(b,e) = {(s,h) € To(b,e) : s, <s < s, +h, <s-+h}.
Now (40) follows if we show for any ¢ > 0, ¢ € (0,1) and each j =1,...,5
: |1 (s, W] -1
1 P — > 0. 41
mopPr( max, oy 2 o) 0 @D

If (s,h) € Toi(b,€), then r,(s,h) = —hh} Jw(h) < 0, so by (8) we have
rr —rn(s,h) > w(h}) > “12/2 7',{/2 for n large enough and applying Lemma 7,
more precisely the upper bound for the sum indexed by I, ;, obtained in its

proof, we get

Ii(s,h In7,|1/2
sup ll 1(s,h)]| :Opr(| 7| )

(s,0)€To1 (be) Th — Tn(S5 1) nt,
Hence, by condition (12)

— 0.
n—o0

n

LT

P _ L B
r< (s,h)rél%)l((b,‘?) (r¥ —rp(s,h)) —

12



So (41) is valid for j = 1.

If (s, h) € Tpa(b, £) then combining (35) with (33) we get with ¢, := %
ns+nh
s = s, ) s, ) < | S Y a
j=ns+1 j=nst+nh*+1

In this case s} —s < h—h}. Therefore, h—h’ > by2n~! and writing ¢’ = cc.,
we obtain
Ii(s,h
Pr( A || 11(s,h)]| >C/%71) <
(s,h)ETo2(bse) (1 — 1 (s, h))
ns+nh

‘nh—nh*( Z Ch Z )H>Cl _1>§

j=nst+nh}+1

Pr( max
(s,h)ETp2(b,e)
1
— ij” > C/%Il),
m <

7j=1

where (&;,j > 1) are independent copies of any 7;, i & I,.

Now we apply the same arguments as Diimbgen, see the end of the proof
of Proposition 1 in [6]. Namely, since (m || doie1 &l m > 1) is a reverse
submartingale, by Chow’s inequality

Z@H > ) < B (o)

Pr( max
m>by2

I'( max
m>by2

where mg = min{m € N:m > by2} and ¢, = > o1&y m > 1. Since || - ||
is admissible, we have

B Guoll = [~ Pr(lGul = )t
< / c1 exp{—CQtzmal} dt = 03mé/2.
0

Hence

I"( max

m>by2

/ 71 C3Tn C3Tn . c3
Z@H > dyt) < S < i = g 42
0 n

This completes the proof of (41) with j = 2. For j = 3 the proof of (41) is
similar therefore we omit it.

13



Let (s,h) € Toa(b,€). In this case s — s > h — hl, so s — s > by2n~!
and we have

* *
nsy+nh

11:(s, )| )KZm > )|

j=ns+nh+1

The number of summands in I;(s,h) equals to n[2(s} — s) + h’ — h] and
is not less than by2. For this configuration of changed segment we need to
more carefully control the difference 7 — 7, (s, h) in order to prove that

2(sy, —s)+hy—h
w(h)(ry, = (s, h))

Vn >3, V(s, h) € Toa(b, ¢), < K., (43)

for some constant K.
If h > h} then we write

s+h—s; —hh;, s,ﬁ+h;—s—h+r*_h2(1—h)
w(h) - w(h) o wh)

ry —rn(s,h) =1 —

Now if moreover h < 1/2, whence 1 —h> >1—h > 1/2, we get

o ha(—h)  VRh (=0 (1 —hy) — hi(1—h)

Tn — w(h) B w(h)
VRV gy VbR
2 U=V = =
1 h—h;

n

>
~2(14+¢e)Y24+2 w(h)’

using (31). If A > 1/2, with still A > A}, we have similarly

L h(=h) o, — \/1 —V1-h
T, — wh) > h,V1 w(h)

(1-nh)  h—h;
\/1—h+\/1—h* w(h)
L1 1 h—hy
“2(14e)1+(1—e) 12 w(h)’

using (31), h > 1/2 and (32). So let us retain from the case h > h} that
there is a constant K . € (0, 1) such that

sp+hy —s—h h —h;

Ty — Tn(s,h) > wh) + K, R

14



If h < hy,, writing
. S+h—sy—hhy si—s . h(l1-h})

n —_—

T ) w) T T w(n)

ry —Trn(s,h) =7

we obtain in the same way with a constant K. € (0, 1),

sy —s hy —h
;- h) > =& Ky —" .
TS 2 Sy R )
Now we are in a position to check (43). First if h > h}, then using (44)
and recalling that here h — h;, < s —sand 0 < K7, <1, we get

(45)

2(sy, —s)+hi—h
w(h)(r}, —rn(s,h))

If h < h}, using (45), we get
2(82—3)+h;‘l—h< 2(sf —s)+h: —h 1

< <24 —.
w(h)(ry, —rn(s,h)) = (85 — ) + Ko (h; — h) K.

2(sf —s)+h —h - 2

< :
T (s (Kue = 1)(h=hy) © Kie

Going back to the uniform control of ||I1(s, h)|| for (s, h) € Toa(b,€), we
deduce from (43) that with C. = ¢/ K.,

Ii(s,h
Pr BIESICHDI S et <
(s,h)€Toa(be) (17 — (s, h))
1 nsy, nsy +nhy,
Pr< max < n; + 77/->H ZC%:I> <
(s,n)€Toa(be) 1M (2(s% — s) + hY — h) j%;l ! j:nghﬂ J :
1 m/ m//
P w2+ 2g)| =),
' m:mg}%z}/(/Zb’Y% m ;5] + ;5] = e

We shall complete the treatment of Tp4(b,e) together with Tps(b, €) since if
(s,h) € Tos(b, ) we have similarly

11 (s, M|

P > eyl <
r( (s,h)réli%};(b,s) (ri —rn(s,h))nw(h) — “Tn ) -

m/

a6+ 20| ze)
=1 j=1

J

Pr( max

m=m/+m' >bvy2

The indexation set of the maximum inside the above probability is precisely

A:={(m/,m") e {1,....n}*: m=m'+m" Zb%%}-

15



In view of the inclusion A C A; U Ay U Ag, where

Ay = {(m/, ”) € A:m <byp/2, m" > by, /2})
Ay = {(m YEA: m >b2/2, m" < by2/2}
Ag:={(m',;m") e A: m/ > by2/2, m" > byl /2}.

we have to estimate the probabilities

pommi s [E (g 4 o) o). =12

We have p; < p} + pf where

1 m/
= Pr( max —H E !
P m/<by2 /2 b’y% = éj

C
>5-)
27n

Z@H = 2y, )

For the second probability, limsup,,_, . p] tends to zero when b tends to
infinity by (42). As for the first probability, we have by Doob’s inequality

.

Py = Pr( max
m!’'>by2 /2

4 9 16 bra/2
(< E <a5B| Y ¢ 46
R < gl 2 & (46)
By admissibility of the seminorm || - || we have for any integer m > 1

2 o
o< / 2X¢1 exp(—coA?) dA =: ¢ < o0,
0

whence

CO b 771

EHZ

which combined with (46) gives p] < (8coc™2)b 1.
Clearly we can apply the same arguments to estimate ps and p3. Hence
the proof of the claim 4 is complete and this ends the proof of Theorem 2. [J
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4 Auxiliary results

We shall need the following two properties of the function 7.
Lemma 5. The function r, defined by (4) satisfies

(i) |rn| has a unique mazimum on ©,, reached at the point (s,h) =
(sp:hp) and |ro(sy, hy)| = 1 o= /B (1 = R).
(it) For every (s,h) € O,

(s h) by~ |

1 .
5~ 2min (max(h, h); max(1 — h,1 — h%))

(47)

Proof of (i). We separate the cases s = s} and s # s),. In the first case we
note that
1

(min(nh,nhy) — nhhy) = M(min(h, hy) — hh}),

L1
rn(sn,h) = nw(h)

whence more explicitly

hA=h3) _ (1 _ p*Y. /R *
h(l—h)_(l hi)y/ 12 ifh <Ay,

ha(=h) _ ps [1oh - ;
= = if h > R

Observing that h — h'/2(1 — h)~'/2 increases on [0,1) and h — (1 —
h)Y/2h=1/2 decreases on (0, 1], it is now clear that the non negative partial
map h — r,(sk, h) reaches its maximum at the point A} and r,(s}, h}) =
r = /hi(1 —hy).

Next, considering different configurations of (s, h) € ©,, with s # s}, we
will check that

rn(8p, h) =

(s, W) <rp A (s, h) 7 (s, ) (48)

1. If Iy, NI, = 0 then h < 1 — A}, and by increasingness on [0,1) of
h— h/w(h) = h*/?(1 — h)~Y/? and from (4) we obtain

h —
LACND] o) < WA= pry =

2. If Iy, C I, and s # s};, then necessarily h < h;;. In this configuration,

1 h(1 —h) h

nw(h)\nh—nhhm: o) =(1—=h))\ —.

s, )| = —

17



From increasingness of h +— h'/2(1 —h)~1/2 on [0, 1) and the fact that
in this configuration, h < h}, we obtain

h*

n *
=7r.
% n

1—hy

rn(s, W) < (1= hy)

. If I, C I, and s # sy, then necessarily hy < h. In this configuration,

1 1—h 1—-h
hy —nhh}| = hl——— = hi\| ——.
From decreasingness on (0,1] of h — (1 —h)Y/2h=1/2 and the fact that
in this configuration, h} < h, we obtain

[rn (s, h)| =

1—ht
s, )| < iy [ =

n

s <sy < s+ h < sy + hy, then
1
w(h)
4.1. If s+h—sk —hh% >0, then |r, (s, h)| = w(h) " (s +h—s: —hh}).
Note that I s4n—sx G Isp, whence s +h —s;, < h. If moreover

s+ h < sf+hk, then s+ h — s} < min(h,h}) and

|rn (s, h)| = |s +h— sy — hhy|.

1
EACHDIRS M(min(h, hn) = hly) = ra(sy, h) <15,

o (48) holds. If s +h = s + h’, then as s < s}, necessarily
h > R}, so rp(sk, h) < rp(s),h)) and

n''n

1
|rn (s, h)| < M(min(h, h}) —hhl) =ru(s;,h) <7,

o (48) still holds.
4.2, If s+h—sk —hh} <0, then |r, (s, h)| = w(h) (s} —s—h+hh}).
Recall that s > 1/n>0and s, +h; <1—-1/n< 1.

a) If h+ h’ > 1, using the fact that s} —s <1 — h’, we get
1 1—h

n(s, h —(1—=h—h(1="h)) =+1/——(1—h)).

s ] < i (1B = (1 = 1)) = F 0 = 1)

As h > 1 — h¥, the decreasingness of h — (1 — h)Y/2p=1/2
on (0, 1] implies that this bound is maximal for h = 1 — h},
which gives |r, (s, h)| < .

18



b) If h + h} < 1, noting that s} — s < h, we obtain

hh; h | 1—h
(s, h no_ o hh <k =
rals < Sy VT <\ T=a—hmy =

since h < 1 —h% and h — h'/2(1 — h)~1/2 increases on [0, 1).

5. If sy < s <s} + hy <s+h, then
1
w(h)

5.1. If 8% +h’ —s—hh} > 0, then |r, (s, h)| = w(h) (s} +h}—s—hh}).
Noting that s;, 4+ h}, —s < h}, and s;, + h;, — s < h we have

|rn(s,h)| = |s; 4+ hy — s — hh}|.

1
s, )] < g (min(h ) = i) = (s, ) < 77,

o (48) holds.
5.2. If 8% +h! —s—hh} < 0, then |r,(s, h)| = w(h) " (s—s: —h’+hhk).
a) If h 4+ h’ > 1, noting that s — s < 1 — h, we have

1—h—hi+hhi  (1—h)(1—h)
w(h) B w(h) .

(s, h)| <

The maximal value of this bound is r; obtained for h = 1—h}
by decreasingness of h — (1—h)"/2h=1/2 on (0, 1]. Hence (48)
holds.

b) If h + h} < 1, we simply note that s — s} — h’ < 0, whence

hh? h [ 1-—hx
< no__ p* * n ¥
’Tn(S,hN — ’(U(h) hn 1—h <hn 1—(1—]1:1) Tn’

by increasingness of h — h'/2(1 —h)~1/2 on [0,1).

The verification of (i) is now complete. O

Proof of (i). From |Is; N 1| < nmin(h, k), we deduce

in(h, h;) — hi,
r = (s, h) > /R (1 T — U ) = iy,

h(l— h)
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If h < h,
L ralsh) h(1 = h) _l_ﬁ«/l—h;;
o VhE(A = hi)\/h(1 — h) VhEVT—h
o1 Vh h¥ —h _hy—h

T Vi (kv T

Symmetrically, if h > b we have

Hence we can summarize the two cases by writing

ra(s,h) o |h— by

1 .
V(s, h) € 0, ~ 2max(h, h})

- (49)

Now using the alternative expression (5) of r,, and estimating [I3, , NIg| <
nmin(1 — h,1 — h}) we similarly prove

rn(s, h) |h — R}
V(s,h) €O,, 1- > n . 50
(s,h) € r¥ 7 2max(1 —h,1— h¥) (50)
Clearly (47) follows from (49) and (50). O

Lemma 6. Let X,,, n > 1 be independent random elements in a measurable
space E. Put Sy :=0, S, := (0x, —Edx,) + -+ (0x,, — Edx,), n > 1.
Assume that the seminorm || - || is admissible. Define

R, :=n~Y? max 7|‘Sj_8i”

0<i<j<n p((j —4)/n)’ nzl (51)

where

p(h) = /h(1 — h)log(e/h(1 —h)), 0<h<1.
Then the sequence (Ry)n>1 is stochastically bounded.

Proof. 1t is easy to reduce the problem to proving stochastic boundedness
of the sequence (Ry,)n>1, where

B —1/2 _
Ry =n 1??g’<ng(£/n)ogrfc12§_e||5’f+f Skll,
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with o(h) := \/hlog(e/h). We shall use dyadic splitting of the ¢’s and k’s
indexation ranges. Defining the integer J,, by

2/ < p < 2/t

we get
n'?R, = max max 1 max  |[Sk+e — Skl
1<j<Jp+1 n2—i<t<n2-i+1 o(£/n) 1<k<n—¢
1
< max max ||Sg1¢ — Skl

max ) _ - .
1<j<n+1 n2-i <t<n2-i+1 0(277) 0<k<n-n2-J
1

IN

max “max —— max_ max || Sk4e — Skll-
1< <In+1 n2-i<t<n2-3+1 0(277) 1<i<2i (i—1)n2—i <k<in2—3

For n277 < £ <n2-U=D and (i — 1)n27 < k < in2~7 we have

| Sk+e — Skl 1Sk+¢ — Spin2-all + 1Sn2—3) — Skl

max . ||Su - S[m2—ﬂ']H

<
<
in27I <u<(i+2)n2-7

max St o_in — 8
(i—1)n2—i <k<in2—J H [in2—7] k”;

where [¢] denotes the integer part of the real number ¢. Therefore

R, <R, + Ry,

- 1
R =n"'? max — max - max |[Su = Sinz2-9ll
1<j<Jn+1 0(277) 1<i<2 in2—i<u<(i+2)n2~7

1
X -
1<j<Jn+1 0(279) 1

R! = n~1/2 .
(i—1)n2—7 <k<in2—7

max max [[Sfin2-i7 — Skll-
<i<2J

Consider the probability P;(A) = Pr*{R}, > A}, A > 0. We have

Jn+1
< * G .. 1/2 i9—j }
n= ; o 1Sic in2*j<uni?l?i2)n2*j 190 = Sjina-s) | > An""e(2)
Jn+1
< W{ Sy — St o Am2ﬁ}
- Z Z mrkﬁ%‘}immﬂ | in2-9)ll > An'Fe(277)
J=1 1<i<2i
Jn+1
-3 S moy
J=1 1<i<2i
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Applying Ottaviani’s inequality (Ledoux and Talagrand (1991), Lemma 6.2)
and admissibility of F we obtain

“(R. > \) JHZHQJ c1 exp(—ca\2297302(2779))
1 — ¢y exp(—ca\2217392(277))

provided that the denominator above be positive for each j > 1. This con-
dition is clearly satisfied for \ large enough (independently of n). Stochastic
boundedness of (R),),>1 is obtained now via the dominated convergence
theorem for the series. The proof of stochastic boundedness of (R]),>1 is
clearly similar. O

Lemma 7. Let the class F be admissible in the sense of Definition 1. For
d3" defined by (17) and for any sequence (1) C (0,1),

sup  ||d>"|| = Opy(knn™1/?).
h(1—h)>Ty,

where r, = |log,|'/2.

Proof. Set §; = dx, , —Edx
For h <1/2

n,j

lf] € I, and §§ = 6Xn,j —E(SXW lf] S If

n

' h )
> (& + B - w(h) ;(ajfj + B35€5),

jEIs,h

1
nw(h

where aj =1—-p;=1forje l,andaj =1—-0; =0for j € I{. Ash <1/2,
h/w(h) <1, hence by admissibility of F we have

= Op.(n™1/?).

ho || ,
w(h)H Z(ajfj + Bi&;)
j=1

By Lemma 6

sup . H > (& + 85€))

h(1—h)>r, Mw(h) j€lsn
H Z a]£J+ﬁj

JE€Is n

logl/2 e/T,) sup
(/) h(1=h)>7, np(h

log!/?(e/7,)Opy (n1/?).

|-

22



If h > 1/2 we start with

1 —h
s,h __
dy" = 4nw(h) Z (&5 + ﬁj h) Z ;i + 5]
]EISC, 7=1
and use the same arguments. O
5 Examples

In this section we discuss some examples of seminorms admissible in a sence
of Definition 1. First two examples are taken from Diimbgen [6]. In what
follows, for a measure v on R, v(x) = v(—o0, z].

Example 1. E = R%; D is a Vapnik-Cervonenkis class of measurable subsets
of R?,
Np(v) = [[v[|p = sup |v(A)].
AeD

The seminorm ||v||p is admissible. Particularly,

Nn(v) = [|[V|loc = sup v(z)].
z€R

Example 2. Consider £ =R. For p > 1, let

= ([ @ aren@)”

Evidently, N,,(v) < ||V||oo. To verify condition (11) with a given sequence
(7n) it is sufficient to show that

lim inf 7, / Q ()| Ry (dz) >

where R,, = h} P, + (1 — h})Q,. If for example P, = P, Q, = @ and h} —
a € (0,1), then this condition is valid, since [; [(P—Q)(z)|(P+Q)(dz) > 0,
if P#Q.

Example 3 (p-variation norm). Assume that the observations X, ; range
n (a,b), —0o < a < b < 0.

In practice, the sup norm for empirical process is often not strong enough,
see e.g., Dudley and Norvaisa [5] for examples. Instead p-variation norm is
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considered. For a real-valued function f on an interval J and 0 < p < o0,
its p-variation on J is

f.J —sup{ZLf ftii)P:toeJtg<ty < - <ty €Jm>1h

Let f be such that v,(f) < co. For 1 < p < oo the p-variation seminorm

is defined by |[f]|¢) = v;/p(f) and the p-variation norm is then [|f]|, =
111y + 1l

If p > 2 then the p-variation norm is admissible in the sense of Defini-
tion 1. This easily follows from Huang and Dudley [7].

Consider now Ny (v) = ||v||j,). Then the condition (11) reduces to

lim inf 4, |[@n — Pallf) > 0.
n—oo

This condition is evidently satisfied if P, = P, @, = Q and P # Q.

May be the p-variation norm is too big to compute the quantities ]|Dflh| |ip]
exactly. So, some weaker seminorms can be useful. For example one can
consider variation of functions build on dyadic partition of the interval J.
For simplicity, let J = [0, 1]. Define

S = sup{ 3 1)~ @)

=" veV;

Here V; is the set of dyadic numbers of the level j and v™ = v + 277 for
dyad dyad
v € Vj. Define ||fIIL1" := || flloc + (0™ ()17

Example 4 (Reprodueing kernel seminorms). Let E be a metric space and
let M(E) denote the space of signed measure on the Borel o-field of E. As
n [16], we consider the class of reproducing kernels K : E x E — R having
the following representation

K(z,y) = /Ur(x w)r(y,uw)p(du), z,y € E, (52)

where p is a positive measure on some measurable space (U,U) and the
function r : E x U — C satisfies

sup Ir(z. )|y < oo (53)

We consider for v € M(FE)

1/2
llV||k = /K:L‘y V(dx,dy)) .
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Proposition 8. With any reproducing kernel K defined by (52) and satis-
fying (53), the seminorm || - ||k is admissible in the sense of Definition 1.

The proof easily follows from well known exponential inequalities for
sums of bounded Hilbert space random variables (see, e.g., [10])
Here are some examples of most interesting kernels.

1. Take for p the counting measure on U = N and define r by r(z,i) =
fi(x), x € E, where the sequence of functions f; : E — R separates
the measures, i.e. the only v € M(E) such that vf; := [ fidv =0 for
all i € N is the null measure. Assume also ),y || fill% < oo. Then
consider

K(z,y) = Zfi(fﬁ)fi(y), r,y € Ex E.

1€N

2. Take E =U = [0,1], p = A+ 61, where X is the Lebesgue measure and
41 is the Dirac mass at the point 1. With r(z,u) = 1j; 1j(u) we obtain
K(z,y) = 2 —max{z,y}, =,y € [0,1].

3. Let E =U =R% r(x,u) = exp{i(z,u)}, z,u € R? and p a bounded
positive measure on R?. This gives the kernel

Kla) = [ explile = y.uloldu), o,y R

This example gives estimators based on empirical characteristic func-
tions. The condition (11) becomes

iimint 2 [ xr (0)  xo, (wPpldu) >0,
n—oo R

where yp denotes the characteristic function of the probability mea-
sure P.
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