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Abstract

Let {Xj ; j ∈ Nd, j ≥ 1} be an i.i.d. random field of square integrable centered
random elements in the separable Hilbert space H and ξn, n ∈ Nd, be the summation
processes based on the collection of sets [0, t1]×· · ·× [0, td], 0 ≤ ti ≤ 1, i = 1, . . . , d.
When d ≥ 2, we characterize the weak convergence of (n1 . . . nd)−1/2ξn in the Hölder
space Ho

α(H) by the finiteness of the weak p moment of ‖X1‖ for p = (1/2− α)−1.
This contrasts with the Hölderian FCLT for d = 1 and H = R (Račkauskas, Suquet,
2003) where the necessary and sufficient condition is P (|X1| > t) = o(t−p).
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1 Introduction

Convergence of stochastic processes to some Brownian motion or related pro-
cess is an important topic in probability theory and mathematical statistics.
The first functional central limit theorem by Donsker and Prohorov states
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the C[0, 1]-weak convergence of n−1/2ξn to the standard Brownian motion W .
Here ξn denotes the random polygonal line process indexed by [0, 1] with ver-
tices (k/n, Sk), k = 0, 1, . . . , n and S0 := 0, Sk := X1 + · · · + Xk, k ≥ 1,
are the partial sums of a sequence (Xi)i≥1 of i.i.d. random variables such that
EX1 = 0 and EX2

1 = 1. This theorem implies via continuous maping the
convergence in distribution of f(n−1/2ξn) to f(W ) for any continuous func-
tional f : C[0, 1] → R. Clearly this provides many statistical applications. On
the other hand, considering that the paths of ξn are piecewise linear and that
W has roughly speaking, an α-Hölder regularity for any exponent α < 1/2,
it is tempting to look for a stronger topological framework for the weak con-
vergence of n−1/2ξn to W . In addition to the satisfaction of mathematical
curiosity, the practical interest of such an investigation is to obtain a richer
set of continuous functionals of the paths. For instance, Hölder norms of ξn
are closely related to some test statistics to detect short “epidemic” changes
in the distribution of the Xi’s, see [21,22].

In 1962, Lamperti [12] obtained the first functional central limit theorem in
the separable Banach spaces Ho

α, 0 < α < 1/2, of functions x : [0, 1] → R such
that

‖x‖α := |x(0)|+ ωα(x, 1) <∞,

with
ωα(x, δ) := sup

0<|t−s|≤δ

|x(t)− x(s)|
|t− s|α

−−→
δ→0

0.

Assuming that E |X1|q <∞ for some q > 2, he proved the weak convergence
of n−1/2ξn to W in the Hölder space Ho

α for any α < 1/2 − 1/q. Račkauskas
and Suquet in [20] (see also [19]) obtained a necessary and sufficient condition
for the Lamperti’s functional central limit theorem. Namely for 0 < α < 1/2,
n−1/2ξn converges weakly in Ho

α to W if and only if

lim
t→∞

tp(α)P (|X1| > t) = 0, (1)

where
p(α) :=

1
1
2
− α

. (2)

Further extensions of Donsker-Prohorov’s functional central limit theorem
concern summation processes. Let |A| denote the Lebesgue measure of the
Borel subset A of Rd. For a collection A of Borel subsets of [0, 1]d, summation
process {ξn(A); A ∈ A} based on a random field {Xj , j ∈ Nd}, of indepen-
dent identically distributed real random variables with zero mean is defined
by

ξn(A) =
∑

1≤j≤n

|Rn,j|−1|Rn,j ∩ A|Xj , (3)
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where j = (j1, . . . , jd), n = (n1, . . . , nd), Rn,j is the “rectangle”

Rn,j :=

[
j1 − 1

n1

,
j1
n1

)
× · · · ×

[
jd − 1

nd

,
jd
nd

)
(4)

and the indexation condition “1 ≤ j ≤ n” is understood componentwise :
1 ≤ j1 ≤ n1, . . . , 1 ≤ jd ≤ nd. Of special interest are the partial sum processes
based on the collection of sets A = Qd where

Qd :=
{

[0, t1]× · · · × [0, td]; t = (t1, . . . , td) ∈ [0, 1]d
}
, (5)

Note that when d = 1 the partial sum process ξn based on Qd is the random
polygonal line of Donsker-Prohorov’s theorem.

By equipping the collection A with some pseudo-metric δ, one define the space
C(A) of real continuous functions on A, endowed with the norm

‖f‖A := sup
A∈A

|f(A)|.

The usual semimetrics are δ(A,B) =
√
|A∆B|, or δ(A,B) =

√
m(A∆B), for

A,B ∈ A, where m is a probability measure on the σ-algebra of Borel subsets
of [0, 1]d. When A is totally bounded with respect to δ, C(A) is a separable
Banach space.

A standard Wiener process indexed by A is a mean zero Gaussian process W
with sample paths in C(A) and

EW (A)W (B) = |A ∩B|, A,B ∈ A.

Existence of such process is proved by placing restrictions on collection A
which are usually expressed by some condition on its metric entropy. For
existence of W in Hölder spaces Hρ(A) built on some weight function ρ, see
Dudley [6] and Erickson [8]. For ρ(h) = hα, Erickson [8] proves that α cannot
exceed 1/2 and it decreases as the entropy of A increases. The functional
central limit theorem (FCLT) in C(A) or in Hρ(A) means the convergence
of the summation process {ξn(A);A ∈ A}, suitably normalized, to a Wiener
process indexed by A.

The first FCLT for {ξn(A);A ∈ Qd} in C(Qd) were established by Kuelbs [10]
under some moment restrictions and by Wichura [27] under finite variance
condition. In 1983, Pyke [15] derived a FCLT for summation process in C(A),
provided that the collection A satisfies the bracketing entropy condition.
However, his result required moment conditions which depend on the size
of the collection A. Bass [2] and simultaneously Alexander and Pyke [1] ex-
tended Pyke’s result to i.i.d. random fields with finite variance. Further de-
velopments were concerned with relaxing entropy conditions on the collection
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A, Ziegler [28], and with relaxing i.i.d. condition on the random field {Xn,
n ∈ Nd}, Dedecker [4], El Machkouri and Ouchti [7] to name a few.

The FCLT for summation process in Hρ(A) is not so extensively studied. Most
general results are provided by Erickson [8] who shows that if E |Xj|q < ∞
for some q > 2 then the FCLT holds in Hρ(A) for some ρ which depends
on q and properties of A. For d = 1 and the class A of intervals [0, t], 0 ≤
t ≤ 1, Erickson’s results coincide with Lamperti’s ones [12], whereas his case
d > 1 requires moments of order q > dp(α) with the same p(α) as in (2). In
Račkauskas and Zemlys [23], the result by Erickson was improved in the case
d = 2.

In this paper, we investigate summation processes build from Hilbert space
valued random elements. We establish necessary and sufficient conditions for
the FCLT to hold in certain Hölder spaces. To illustrate our main result let us
state here its particular case which can be considered as Lamperti’s functional
central limit theorem for summation process {ξn(A) : A ∈ Qd} defined above.

Proposition 1 Let 0 < α < 1/2 and d > 1. Let {Xj , j ∈ Nd} be a set of
i.i.d. random variables with mean zero and variance EX2

j = 1. Let W be a
standard Brownian sheet on [0, 1]d. Then normed summation process

{(n1 · · ·nd)
−1/2ξn(A); A ∈ Qd}

converge in distribution to W in the space Ho
α if and only if

sup
t>0

tp(α)P (|X1| > t) <∞. (6)

As we see, condition (6) does not depend on the dimension d provided d > 1
and is weaker than necessary and sufficient condition (1) in the extension
by Račkauskas and Suquet of Lamperti’s functional central limit theorem.
Moreover, we show that summation process considered along the diagonal,
namely the sequence n−d/2ξn = n−d/2ξn,...,n, n ∈ N, converges in H0

α if and
only if

lim
t→∞

t2d/(d−2α)P (|X1| > t) = 0. (7)

As dimension d increases, this condition weakens. For example, (7) is satisfied
for any d > 1 provided EX4

1 <∞. This again shows up a difference between
the cases d = 1 and d > 1 for functional central limit theorems in Hölder
spaces.

The rest of the paper is organized in the following way. Section 2 introduces the
notations and precise definitions which are needed and states the results. In
Section 3 are collected necessary background material on the weak convergence
of distributions in Hölder spaces. The proof of the main result is given in
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Section 4.

2 Notation and results

In this paper vectors t = (t1, . . . , td) of Rd, d ≥ 2, are typeset in italic bold.
In particular,

1 := (1, . . . , 1).

For 1 ≤ k < l ≤ d, tk:l denotes the “subvector”

tk:l := (tk, tk+1, . . . , tl).

The set Rd is equipped with the partial order

s ≤ t if and only if sk ≤ tk, for all k = 1, . . . , d.

As a vector space Rd, is endowed with the norm

|t| = max(|t1|, . . . , |td|), t = (t1, . . . , td) ∈ Rd.

Together with the usual addition of vectors and multiplication by a scalar,
we use also the componentwise multiplication and division of vectors s =
(s1, . . . , sd), t = (t1, . . . , td) in Rd defined whenever it makes sense by

st := (s1t1, . . . , sdtd), s/t := (s1/t1, . . . , sd/td).

Partial order as well as all these operations are also intended componentwise
when one of the two involved vectors is replaced by a scalar. So for c ∈ R
and t ∈ Rd, c ≤ t means c ≤ tk for k = 1, . . . , d, t + c := (t1 + c, . . . , td + c),
c/t := (c/t1, . . . , c/td).

For n = (n1, . . . , nd) ∈ Nd, we write

π(n) := n1 . . . nd,

and for t = (t1, . . . , td) ∈ Rd,

m(t) := min(t1, . . . , td).

For any real number x, denote by [x] and {x} its integer part and fractional
part defined respectively by

[x] ≤ x < [x] + 1, [x] ∈ Z and {x} := x− [x].
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When applied to vectors t of Rd, these operations are defined componentwise:

[t] := ([t1], . . . , [td]), {t} := ({t1}, . . . , {td}).

The context should dispel any notational confusion between the fractional
part of x (or t) and the set having x (or t) as unique element.

We denote by H a separable Hilbert space with norm ‖·‖ and inner product
〈 . , . 〉. For 0 < α < 1, we define the Hölder space Ho

α(H) as the vector space
of functions x : [0, 1]d → H such that

‖x‖α := ‖x(0)‖+ ωα(x, 1) <∞,

with
ωα(x, δ) := sup

0<|t−s|≤δ

‖x(t)− x(s)‖
|t− s|α

−−→
δ→0

0.

Endowed with the norm ‖.‖α, Ho
α(H) is a separable Banach space, see [17]

or [18].

As we are mainly dealing in this paper with weak convergence in some function
spaces, it is convenient to introduce the following notations. Let B be some
separable Banach space and (Yn)n≥1 and (Zn)n≥1 be respectively a sequence
and a random field of random elements in B. We write

Yn
B−−−−→

n→∞
Y, Zn

B−−−−−−→
m(n)→∞

Z,

for their weak convergence in the space B to the random elements Y or Z, i.e.
E f(Yn) → E f(Y ) for any continuous and bounded f : B → R and similarly
with Zn, the weak convergence of Zn to Z being understood in the net sense.

A H-valued Brownian sheet with covariance operator Γ is a H-valued zero
mean Gausian process indexed by [0, 1]d and satisfying

E 〈W (t), x〉〈W (s), y〉 = (t1 ∧ s1) . . . (td ∧ sd)〈Γx, y〉

for t, s ∈ [0, 1]d and x, y ∈ H. As the following estimate

E ‖W (t + h) +W (t− h)− 2W (t)‖2 ≤ c|h| tr Γ,

is valid for all t−h, t, t+h ∈ [0, 1]d, it follows from Račkauskas and Suquet [17]
that W (t) has a version in Ho

α(H) for any 0 < α < 1/2.

It is well known that in the Hilbert space H, every random element X such
that E ‖X‖2 < ∞ is pregaussian, i.e. there is a Gaussian random element G
in H with the same covariance operator as X, see [14, Prop. 9.24]. Let the
Xi’s be i.i.d. copies of X. If moreover EX = 0, then n−1/2∑n

i=1Xi converges
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weakly to G in H, in other words X satisfies the CLT in H [14, Th. 10.5].

We establish necessary and sufficient conditions for FCLT in Hölder space
Ho

α(H), where 0 < α < 1/2 and d ≥ 2.

When based on the collection Qd, the summation process ξn defined by (3)
can be canonically identified with a random field with parameter set [0, 1]d.
Indeed writing

[0, t] := [0, t1]× · · · × [0, td] (8)
we define

ξn(t) := ξn([0, t]) =
∑

1≤j≤n

|Rn,j|−1|Rn,j ∩ [0, t]|Xj , t ∈ [0, 1]d. (9)

In subsection 3.3 below we discuss in detail the construction of the random
field ξn and propose some useful representations. Now we can state our main
result which appears as a contrasted extension of the necessary and sufficient
condition obtained by Račkauskas and Suquet [19, Th. 1] in the context of
Lamperti’s Hölderian FCLT.

Theorem 2 For 0 < α < 1/2, set p = p(α) := 1/(1/2 − α). For d ≥ 2, let
{Xj; j ∈ Nd, j ≥ 1} be an i.i.d. random field of square integrable centered
random elements in the separable Hilbert space H and ξn be the summation
process defined by (9). Let W be a H-valued Brownian sheet with the same
covariance operator as X1. Then the convergence

π(n)−1/2ξn
Ho

α(H)−−−−−−→
m(n)→∞

W (10)

holds if and only if

vp
1(v2 · · · vd)

2P
(
‖X1‖ > v1v2 · · · vd

)
−−−−−−→
m(v)→∞

0. (11)

Moreover (11) is equivalent to the finiteness of the weak p-moment of X1, i.e.

sup
t>0

tpP (‖X1‖ > t) <∞. (12)

At first sight, condition (11) looks asymetric, but it is easy to see that any
permutation on the indexes 1, . . . , d leads to an equivalent condition.

As condition (12) is weaker than E ‖X1‖p < ∞, then theorem 2 improves
when H = R, Erickson’s [8] result for Qd:

(n1 · · ·nd)
−1/2ξn

Ho
α(R)−−−−−−→

m(n)→∞
W.
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if 0 < α < 1/2 and E |X1|q <∞, where q > dp(α).

Considering the convergence of random fields (ξn,n ∈ Nd) along fixed path
n = (n, . . . , n) ∈ Nd, n ∈ N we obtain the following result.

Theorem 3 The convergence

n−d/2ξ(n,...,n)
Ho

α(H)−−−−→
n→∞

W (13)

holds if and only if

lim
t→∞

t
2d

d−2αP (‖X1‖ > t) = 0, (14)

Since 2d/(d − 2α) < 2d/(d − 1) we see that E ‖X1‖2d/(d−1) < ∞ yields (14).
In particular E ‖X1‖4 < ∞ gives the convergence (13) for any d ≥ 2 and
any 0 < α < 1/2. This contrasts with the corresponding result for Hölder
convergence of the usual Donsker-Prokhorov polygonal line processes where
necessarily E |X1|q <∞ for any q < p(α) as follows from (1).

Of course, Theorem 3 is only a striking special case and similar results can
be obtained adapting the proof of Theorem 2 for summation processes with
index going to infinity along some various paths or surfaces.

As passing from n to n+ 1 brings O(nd−1) new summands in the summation
process of Theorem 3, one may be tempted to look for similar weakening
of the assumption in the Hölderian FCLT for d = 1, when restricting for
subsequences. In fact even so, the situation is quite different: it is easy to see
that for any increasing sequence of integers nk such that supk≥1 nk+1/nk <

∞, the convergence to zero of np(α)
k P (|X1| > nk) when k tends to infinity

implies (1). As np(α)
k P (|X1| > nk) = o(1) is a necessary condition for (ξnk

)k≥1

to satisfy the FCLT in Ho
α(R) when d = 1, there is no hope to obtain this

FCLT for (ξnk
)k≥1 under some condition weaker than (1).

3 Background and tools

3.1 Hölder spaces and Schauder decomposition

We present briefly here some structure property of Ho
α(H) which is needed to

obtain a tightness criterion. For more details, the reader is referred to [17]
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and [18]. Set

Wj = {k2−j; 0 ≤ k ≤ 2j}d, j = 0, 1, 2, . . .

and
V0 := W0, Vj := Wj \Wj−1, j ≥ 1,

so Vj is the set of dyadic points v = (k12
−j, . . . , kd2

−j) in Wj with at least one
ki odd. Define the pyramidal functions Λj,v by

Λj,v(t) = Λ(2j(t− v)), t ∈ [0, 1]d,

where

Λ(t) := max
(
0, 1−max

ti<0
|ti| −max

ti>0
ti
)
, t = (t1, . . . , td) ∈ [−1, 1]d.

The H-valued coefficients λj,v(x) are given by:

λ0,v(x) =x(v), v ∈ V0;

λj,v(x) =x(v)− 1

2

(
x(v−) + x(v+)

)
, v ∈ Vj, j ≥ 1,

where v− and v+ are defined as follows. Each v ∈ Vj admits a unique
representation v = (v1, . . . , vd) with vi = ki/2

j, (1 ≤ i ≤ d). The points
v− = (v−1 , . . . , v

−
d ) and v+ = (v+

1 , . . . , v
+
d ) are defined by

v−i =

vi − 2−j, if ki is odd;

vi, if ki is even
v+

i =

vi + 2−j, if ki is odd;

vi, if ki is even,

Define the linear operators Ej (j ≥ 0)

Ejx :=
j∑

i=0

∑
v∈Vi

λi,v(x)Λi,v, x ∈ Ho
α(H).

Introduce the sequential norm

‖x‖seq
α := sup

j≥0
2αj max

v∈Vj

‖λj,v(x)‖, x ∈ Ho
α(H).

From Račkauskas and Suquet [18] this norm is equivalent to norm ‖x‖α on
Ho

α(H). Note also that

‖x− EJx‖seq
α = sup

j>J
max
v∈Vj

‖λj,v(x)‖.

is non increasing in J .
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For proving tightness criteria in Ho
α(H) we need this result from [18].

Theorem 4 The space Ho
α(H) has the Schauder decomposition

Ho
α(H) =

∞⊕
i=0

Wi,

where Wi is the closed subspace of Ho
α(H) spanned by the sums

∑
v∈Vi

hvλi,v,
where the hv are arbitrary elements of H. This means that the direct sum
above is topological, i.e., that the canonical projectors πi : Ho

α(H) → Wi are
continuous in the strong topology of Ho

α(H).

3.2 Tightness criteria

Compacts in separable Banach spaces with Schauder decomposition are char-
acterised by this result from Suquet [24]:

Theorem 5 Let X be a separable Banach space having a Schauder decompo-
sition

⊕∞
i=0 Wi. A subset K is relatively compact in X if and only if:

i) For each j ∈ N, EjK is relatively compact in Vj :=
⊕j

i=0 Wi, where Ej is
the continuous canonical projector X → Vj.

ii) supx∈K ‖x− Ejx‖ → 0 as j →∞.

Since the set Nd with the binary relation j ≤ n is directed, our summation
process {ξn, n ∈ Nd} is a net. So to prove convergence we will need the
tightness criteria for nets. Due to Prokhorov’s theorem for nets, see e.g. [26,
th.1.3.9, p.21], we need only asymptotical tightness. For the net of H-valued
random elements {ζn, n ∈ Nd} the asymptotical tightness means that for
each ε > 0 there exists a compact set Kε ∈ Ho

α(H) such that

lim inf
m(n)→∞

P (ζn ∈ Kε) > 1− ε. (15)

Now we can prove tightness criterion in Ho
α(H).

Theorem 6 Let {ζn,n ∈ Nd} and ζ be random elements with values in the
space Ho

α(H). Assume that the following conditions are satisfied.

i) For each dyadic t ∈ [0, 1]d, the net of H-valued random elements {ζn(t),
n ∈ Nd} is asymptoticaly tight on H.

ii) For each ε > 0

lim
J→∞

lim sup
m(n)→∞

P
(

sup
j≥J

2αj max
v∈Vj

|λj,v(ζn)| > ε
)

= 0.
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Then the net {ζn, n ∈ Nd} is asymptoticaly tight in the space Ho
α(H).

Proof. For fixed positive η, put ηl = 2−l, l = 1, 2, . . . and choose a sequence
(εl) decreasing to zero. By (ii) there is and integer Jl and index n0 ∈ Nd such
that for the set

Al := {x : sup
j≥Jl

2αj max
v∈Vj

||λj,v(x)|| < εl},

P (ζn ∈ Al) > 1 − ηl, for all n ≥ n0. It is easily seen that Vj = ⊕j
i=0Wi

is isomorphic to the Cartesian product of a finite number of copies of H.
Thus from (i) there exists a compact Kl ∈ Ho

α(H) such that for all n ≥ n0,
P (ζn ∈ Bl) > 1− ηl, where

Bl := {x ∈ Ho
α(H) : EJl

x ∈ Kl}.

Take K the closure of ∩∞l=1(Al ∩Bl). Then P (K) > 1− 2η, and K is compact
due to theorem 5. 2

3.3 Summation processes

We discuss now the construction of the summation process random field ξn.
Let us start with the case d = 1 where ξn is the Donsker-Prohorov polygonal
line wich interpolates linearly between the vertices (k/n, Sk). Expressing t as
a barycenter of [nt]/n and ([nt] + 1)/n we have

t = (1− {nt}) [nt]
n

+ {nt} [nt] + 1

n
. (16)

As ξn([nt]) = S[nt], the linear interpolation between the vertices ([nt]/n, S[nt])
and (([nt] + 1)/n, S[nt]+1) leads to

ξn(t) = (1− {nt})S[nt] + {nt}S[nt]+1. (17)

This expression can be rewritten under the forms

ξn(t) = S[nt] + {nt}(S[nt]+1 − S[nt]) (18)
= S[nt] + {nt}X[nt]+1 (19)

=
∑

1≤i≤n

n
∣∣∣[(i− 1)/n, i/n] ∩ [0, t]

∣∣∣Xi. (20)

Formula (17) comes directly from barycentric representation of t and linear
interpolation. Formula (18) is useful to control the increments of ξn, (19) is
the classical expression of ξn and (20) gives the interpretation of ξn in terms of
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Q1 indexed summation process. Our aim is to generalize these representations
when d > 1. Our first step will be to generalize (16) expressing t ∈ [0, 1]d as a
barycenter of the vertices of some “rectangle” Rn,i containing t. This leads to
the extension of (17) and we shall check that it also coincides with the initial
definition (9), so extending (20). Finally we shall extend (18). There is no
extension of (19), at least with a single Xi outside S[nt], as it is already clear
from the case d = 2.

For every n ≥ 1 in Nd, put

Sn :=
∑

1≤i≤n

Xi. (21)

Proposition 7 Let us write any t ∈ [0, 1]d as the barycenter of the 2d vertices

V (u) :=
[nt]

n
+

u

n
, u ∈ {0, 1}d, (22)

of the rectangle Rn,[nt]+1 with some weights w(u) ≥ 0 depending on t, i.e.,

t =
∑

u∈{0,1}d

w(u)V (u), where
∑

u∈{0,1}d

w(u) = 1. (23)

Using this representation, define the random field ξ∗n by

ξ∗n(t) =
∑

u∈{0,1}d

w(u)S[nt]+u, t ∈ [0, 1]d.

Then ξ∗n coincides with the summation process defined by (9).

Proof. For fixed n ≥ 1 ∈ Nd, any t 6= 1 ∈ [0, 1]d belongs to a unique rectangle
Rn,j , defined by (4), namely Rn,[nt]+1. Then the 2d vertices of this rectangle
are clearly the points V (u) given by (22), recalling that in this formula the
division of vector is componentwise. To simplify notations, put

s = {nt}, whence t =
[nt]

n
+

s

n
. (24)

For any non empty subset L of {1, . . . , d}, we denote by {0, 1}L the set of
binary vectors indexed by L. In particular {0, 1}d is an abriged notation for
{0, 1}{1,...,d}. Now define the non negative weights

wL(u) :=
∏
l∈L

sul
l (1− sl)

1−ul , u ∈ {0, 1}L

and when L = {1, . . . , d}, simplify this notation in w(u). For fixed L, the sum

12



of all these weigths is one since∑
u∈{0,1}L

wL(u) =
∏
l∈L

(
sl + (1− sl)

)
= 1. (25)

The special case L = {1, . . . , d} gives the second equality in (23). From (25)
we immediatly deduce that for any K non empty and strictly included in
{1, . . . , d}, with L := {1, . . . , d} \K,∑

u∈{0,1}d,
∀k∈K, uk=1

w(u) =
∏
k∈K

sk

∑
u∈{0,1}L

sul
l (1− sl)

1−ul =
∏
k∈K

sk. (26)

Formula (26) remains obviously valid in the case where K = {1, . . . , d}.

Now let us observe that

∑
u∈{0,1}d

w(u)V (u) =
∑

u∈{0,1}d

w(u)
(

[nt]

n
+

u

n

)
=

[nt]

n
+

∑
u∈{0,1}d

w(u)
u

n
.

Comparing with the expression of t given by (24), we see that the first equality
in (23) will be established if we check that

s′ :=
∑

u∈{0,1}d

w(u)u = s. (27)

This is easily seen componentwise using (26) because for any fixed l ∈ {1, . . . , d},

s′l =
∑

u∈{0,1}d,
ul=1

w(u) =
∏

k∈{l}
sk = sl.

Next we check that ξn(t) = ξ∗n(t) for every t ∈ [0, 1]d. Recalling (8), introduce
the notation

Dt,u := Nd ∩
([

0, [nt] + u
]
\
[
0, [nt]

])
.

Then we have

ξ∗n(t) =
∑

u∈{0,1}d

w(u)
(
S[nt] + (S[nt]+u − S[nt])

)
= S[nt] +

∑
u∈{0,1}d

w(u)
∑

i∈Dt,u

Xi.

Now in view of (9), the proof of ξn(t) = ξ∗n(t) reduces clearly to that of∑
u∈{0,1}d

w(u)
∑

i∈Dt,u

Xi =
∑
i∈I

|Rn,i|−1|Rn,i ∩ [0, t]|Xi, (28)

13



where

I := {i ≤ n; ∀k ∈ {1, . . . , d}, ik ≤ [nktk] + 1 and
∃l ∈ {1, . . . , d}, il = [nltl] + 1}. (29)

Clearly I is the union of all Dt,u, u ∈ {0, 1}d, so we can rewrite the left hand
side of (28) under the form

∑
i∈I aiXi. For i ∈ I, put

K(i) :=
{
k ∈ {1, . . . , d}; ik = [nktk] + 1

}
. (30)

Then observe that for i ∈ I, the u’s such that i ∈ Dt,u are exactly those
which satisfy uk = 1 for every k ∈ K(i). Using (26), this gives

∀i ∈ I, ai =
∑

u∈{0,1}d,
∀k∈K(i), uk=1

w(u) =
∏

k∈K(i)

sk. (31)

On the other hand we have for every i ∈ I,

|Rn,i ∩ [0, t]| =
∏

k∈K(i)

(
tk −

[nktk]

nk

) ∏
k/∈K(i)

1

nk

=
1

π(n)

∏
k∈K(i)

sk =
ai

π(n)
. (32)

As |Rn,i|−1 = π(n), (28) follows and the proof is complete. 2

Extending formula (18) to the case d > 1 requires the introduction of some
more notations. For any finite subset A of Nd, we put

S(A) :=
∑
i∈A

Xi.

Note that when A = ([0, n1]× · · · × [0, nd]) ∩ Nd with n = (n1, . . . , nd) ∈ Nd,
S(A) is the sum Sn defined by (21). For any Cartesian product C = C1 ×
· · · × Cd of finite subsets Ci of N, i = 1, . . . , d, let us define

∆
(j)
k C := C1 × · · · × Cj−1 × {k} × Cj+1 × · · · × Cd (33)

and (
∆

(j)
k S

)
(C) := S

(
∆j

kC
)
. (34)

Clearly the operators ∆
(j)
k ’s commute for different j’s. It is worth noticing that

∆
(j)
k Sn = S(n1,...,nj−1,k,nj+1...,nd) − S(n1,...,nj−1,k−1,nj+1...,nd) (35)

and that for 1 ≤ i ≤ n,

Xi = ∆
(1)
i1 . . .∆

(d)
id
Sn. (36)

Note that when applied to Sn, ∆
(j)
k is really a difference operator acting on
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the j-th argument of a function with d arguments. Also since k defines the
differencing, ∆

(j)
k Sn does not depend on nj.

Recalling the notations (29), (30) and formula (32), we have

ξn(t) = S[nt] +
∑
i∈I

|Rn,i|−1|Rn,i ∩ [0, t]|Xi = S[nt] +
∑
i∈I

( ∏
k∈K(i)

sk

)
Xi.

This can be recast as

ξn(t) = S[nt] +
d∑

l=1

Tl(t) (37)

with

Tl(t) :=
∑
i∈I

]K(i)=l

( ∏
k∈K(i)

sk

)
Xi. (38)

Now we observe that

Tl(t) =
∑

K⊂{1,...,d}
]K=l

∑
i∈I

K(i)=K

( ∏
k∈K

sk

)
Xi =

∑
K⊂{1,...,d}

]K=l

( ∏
k∈K

sk

) ∑
i∈I

K(i)=K

Xi.

From (33) and (34), it should be clear that

∑
i∈I

K(i)=K

Xi =

( ∏
k∈K

∆
(k)
[nktk]+1

)
S[nt],

where the symbol Π is intended as the composition product of differences
operators. Recalling that sk = {nktk}, this leads to

Tl(t) =
∑

K⊂{1,...,d}
]K=l

( ∏
k∈K

{nktk}
)( ∏

k∈K

∆
(k)
[nktk]+1

)
S[nt]. (39)

Finally we obtain the representation

ξn(t) = S[nt] +
d∑

l=1

∑
1≤i1<i2<···<il≤d

(
l∏

k=1

{niktik}
)(

l∏
k=1

∆
(ik)
[nik

tik ]+1

)
S[nt]. (40)

3.4 Finite dimensional distributions

As (11) implies (14) and d/(d/2 − α) > 2, for 0 < α < 1/2 we have that
E ‖X1‖2 <∞. In what follows we assume E ‖X1‖2 = 1.
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Define At = [0, t1]× · · · × [0, td] and the jump summation process by

ζn(t) =
∑
j≤n

χ{j/n ∈ At}Xj .

For any Borel set A ⊂ [0, 1]d define for ε > 0

Aε :=
{
y ∈ Rd, ∃x ∈ A; |x− y| < ε

}
, A−ε := Rd \ (Rd \ A)ε.

Lemma 8 Put εn := m(n)−1 and βn(t) := |Aεn
t \ A−εn

t | for each t ∈ [0, 1]d.
Then

E ‖π(n)−1/2(ξn(t)− ζn(t))‖2 ≤ Kβn(t) −−−−−−→
m(n)→∞

0.

Proof. For each t we can write π(n)−1/2(ξn(t)− ζn(t)) =
∑

j≤n αjXj , where

αj := π(n)1/2(|Rn,j ∩ At| − π(n)−1χ{j/n ∈ At}).

Then

E ‖π(n)−1/2(ξn − ζn)‖2 =
∑
i≤n

∑
j≤n

αiαjE 〈Xi, Xj〉 = E ‖X1‖2
∑
j≤n

α2
j ,

since the Xj ’s are i.i.d. with zero mean. Now from Erickson [8, th. 7.3.] we
have ∑

j≤n

α2
j ≤ βn(t).

And this upper bound tends to zero since the Lebesgue measure of Aεn
t \A−εn

t

is clearly O(εn) = O(m(n)−1). 2

Combined with the estimate P (‖X1‖ > r) ≤ r−2E ‖X1‖2, lemma 8 gives

‖π(n)−1/2(ξn(t)− ζn(t))‖ Pr−−−−−−→
m(n)→∞

0.

By Slutsky’s lemma, this implies the asymptotical equality of finite dimen-
sional distributions of both processes π(n)−1/2ξn and π(n)−1/2ζn.

Lemma 9 Let ζ̃n := π(n)−1/2ζn. The convergence

ζ̃n(t)
H−−−−−−→

m(n)→∞
W (t) (41)

holds for each t ∈ [0, 1]d.

16



Proof. Let

J(n) := {j ∈ Nd : j/n ∈ At}

and let l(n) denote the number of elements in J(n). Then

ζ̃n(t) = π(n)−1/2
∑

j∈J(n)

Xj .

Since l(n) → ∞, as m(n) → ∞, the central limit theorem in Hilbert space
gives

l(n)−1/2
∑

j∈J(n)

Xj
H−−−−−−→

m(n)→∞
G, (42)

where G is a zero mean Gaussian random element in H with the same covari-
ance operator as X1. If Un is random variable uniformly distributed on the
points j/n, 1 ≤ j ≤ n, then

l(n)

π(n)
=

1

π(n)

∑
j≤n

χ{j/n ∈ At} = P (Un ∈ At) −−−−−−→
m(n)→∞

|At| = t1 . . . td.

This together with (42) gives the convergence (41) for every t ∈ [0, 1]d since
W (t) has the same distribution as |At|1/2G. 2

Lemma 10 The convergence(
ζ̃n(t1), . . . , ζ̃n(tq)

) Hq

−−−−−−→
m(n)→∞

(
W (t1), . . . ,W (tq)

)
holds for each q ≥ 1 and each t1, . . . , tq ∈ [0, 1]d.

Proof. Because Hq is equipped with product topology, the tightness of the net
(ζ̃n(t1), . . . , ζ̃n(tq)) in Hq follows from the tightness in H of the q nets (ζ̃n(ti)).

Denote by 〈 · , · 〉q the scalar product in Hq which is defined by

〈h, g〉q :=
q∑

i=1

〈hi, gi〉, h = (h1, . . . , hq), g = (g1, . . . , gq) ∈ Hq.

Accounting the above mentionned tightness, it remains only to check for each
h ∈ Hq, the weak convergence

Vn :=
〈(
ζ̃n(t1), . . . , ζ̃n(tq)

)
, h
〉

q

R−−−−−−→
m(n)→∞

〈(
W (t1), . . . ,W (tq)

)
, h
〉

q
. (43)

This will be done through Lindeberg theorem. The first step is to establish

17



the convergence of the variance bn := EV 2
n using the decomposition

Vn =
q∑

k=1

〈ζ̃n(tk), hk〉 = π(n)−1/2
∑
i≤n

q∑
k=1

χ{i/n ∈ Atk
}〈Xi, hk〉.

Denoting by Γ the covariance operator of X1, we get

bn =
1

π(n)

∑
i≤n

∑
j≤n

q∑
k=1

q∑
l=1

χ{i/n ∈ Atk
}χ{j/n ∈ Atl

}E
(
〈Xi, hk〉〈Xj , hl〉

)

=
q∑

k=1

q∑
l=1

〈Γhk, hl〉
1

π(n)

∑
i≤n

χ{i/n ∈ Atk
∩ Atl

}

=
q∑

k=1

q∑
l=1

〈Γhk, hl〉P (Un ∈ Atk
∩ Atl

),

where the discrete random variable Un is uniformly distributed on the grid
i/n, 1 ≤ i ≤ n. Under this form it is clear that when m(n) goes to infinity,
bn converges to b given by

b :=
q∑

k=1

q∑
l=1

〈Γhk, hl〉|Atk
∩ Atl

| = E

( q∑
k=1

〈W (tk), hk〉
)2

.

When b = 0, the convergence (43) is obvious. When b > 0, let us introduce
the real random variables

Yn,i :=
q∑

k=1

π(n)−1/2χ{i/n ∈ Atk
}〈Xi, hk〉,

which have both zero mean and finite variance and note that Vn =
∑

i≤n Yn,i.
To obtain (43) we have to check, by Lindeberg theorem, that for each ε > 0,

L(n) :=
1

bn

∑
i≤n

E
(
Y 2

n,iχ{|Yn,i| > εb1/2
n }

)
−−−−−−→
m(n)→∞

0. (44)

Now we have

Y 2
n,i =

1

π(n)

q∑
k=1

q∑
l=1

χ{i/n ∈ Atk
}χ{i/n ∈ Atl

}〈Xi, hk〉〈Xi, hl〉

≤ 1

π(n)

q∑
k=1

q∑
l=1

‖Xi‖2‖hk‖‖hl‖

=
1

π(n)

( q∑
k=1

‖hk‖
)2

‖Xi‖2 =
ch

π(n)
‖Xi‖2.

Recalling that the number of terms in
∑

i≤n is exactly π(n) and choosing

18



m(n) large enough to have bn > b/2, we obtain :

L(n) ≤ 2

b
E
(
‖X1‖2χ

{
‖X1‖2 >

bε2

2ch
π(n)

})
,

which gives (44) by square integrability of X1. 2

To conclude this section, let us retain that from lemmas 8 and 10, the fi-
nite dimensional distributions of π(n)−1/2ξn converge to finite dimensional
distributions of the Wiener sheet W .

3.5 Rosenthal inequality in Hilbert space

Since the Hilbert space H has cotype 2, it satisfies the following vector valued
version of Rosenthal’s inequality for every q ≥ 2, see [13, Th. 2.6]. For any
finite set (Yi)i∈I of independent random elements in H with zero mean and
such that E ‖Yi‖q <∞ for every i ∈ I,

E

∥∥∥∥∥∑
i∈I

Yi

∥∥∥∥∥
q

≤ C ′
q

(
E

∥∥∥∥∥∑
i∈I

G(Yi)

∥∥∥∥∥
q

+
∑
i∈I

E ‖Yi‖q

)
, (45)

where the constant C ′
q depends only on q and the G(Yi) are centered Gaussian

independant random elements in H such that for every i ∈ I, G(Yi) has the
same covariance structure as Yi. In the i.i.d. case with N = ]I, we note that∑

i∈I G(Yi) is Gaussian with the same distribution as N1/2G(Y1) and using the
equivalence of moments for Gaussian random elements, see [14, Cor. 3.2], we
obtain

E

∥∥∥∥∥∑
i∈I

Yi

∥∥∥∥∥
q

≤ C ′′
q

(
N q/2

(
E ‖G(Y1)‖2

)q/2
+NE ‖Y1‖q

)
,

where C ′′
q depends on q and does not depend on the distribution of Y1. Since

H has also the type 2, there is a constant a depending only on H such that
E ‖G(Y1)‖2 ≤ aE ‖Y1‖2, see [14, Prop. 9.24]. Finally there is a constant Cq

depending on H, q, but not on the distribution of the Yi’s, such that

E

∥∥∥∥∥∑
i∈I

Yi

∥∥∥∥∥
q

≤ Cq

(
N q/2

(
E ‖Y1‖2

)q/2
+NE ‖Y1‖q

)
, (N = ]I). (46)

3.6 An extension of Doob inequality

For i.i.d. Hilbert space valued random field {Xj , j ∈ Nd} introduce d one
parameter filtrations, F i = (F i

k, k = 0, 1, . . . ), i = 1, . . . , d, where F i
k =

σ(Xj , j ∈ Nd, ji ≤ k).
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Assume that E ‖X1‖ <∞, then the Xj’s are Bochner integrable and according
to [25] we can introduce conditional expectations with respect to F i, i =
1, . . . , d. Let EXj = 0. Denote Mn = ‖Sn‖. Since the norm is a continuous
convex functional we have for i = 1, . . . , d, n ∈ Nd and k = 0, 1, . . .

E (‖Sn‖|F i
k) ≥ ‖E (Sn|F i

k)‖ =

∥∥∥∥∥ ∑
j≤n

E (Xj|F i
k)

∥∥∥∥∥ = ‖S(n1,...,ni−1,k,ni+1,...,nd)‖.

Hence for each i = 1, . . . , d, ni → Mn is a one parameter submartingale with
respect to the filtration F i. Thus Mn is a orthosubmartingale according to [9].
Since Mn is nonnegative, we can apply Cairoli’s strong (p, p) inequality [9, th.
2.3.1] for nonnegative orthosubmartingales. Thus for all p > 1 and n ∈ Nd

E max
0≤j≤n

‖Sj‖p ≤
(

p

p− 1

)dp

E ‖Sn‖p. (47)

4 Proofs of Theorems 2 and 3

This section is mainly devoted to the proof of Theorem 2 which is detailed in
subsections 4.1 to 4.3. In subsection 4.4, Theorem 3 is established by a simple
adaptation of the previous proof.

4.1 Equivalence of conditions (11) and (12)

First we note that (11) is equivalent to the convergence

F (m) −−−→
m→∞

0, (48)

where
F (m) := sup

m(v)≥m
vp

1(v2 · · · vd)
2P
(
‖X1‖ > v1v2 · · · vd

)
.

Now introducing the function g(t) := P (‖X1‖ > t) and the sets

Ht,m := {v ∈ Rd; v ≥ m, v1v2 · · · vd = t},

we have

F (m) = sup
t≥md

sup
v∈Ht,m

vp−2
1 t2g(t) = sup

t≥md

t2g(t) sup
v∈Ht,m

vp−2
1 .
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When t ≥ md, Ht,m is non empty and on this set, v1 = t(v2 · · · vd)
−1 is maximal

for v2 = · · · = vd = m, so

t2g(t) sup
v∈Ht,m

vp−2
1 = tpg(t)m−(d−1)(p−2).

Finally
F (m) = m−(d−1)(p−2) sup

t≥md

tpg(t).

Recalling that d > 1 and p > 2, this reduces the convergence (48) to the
finiteness of supt≥md

0
tpg(t) for some m0 > 0. As tpg(t) is bounded on any

interval [0, a] for a <∞, this finiteness is equivalent to (12).

4.2 Necessity of condition (11)

It is easily checked that condition (11) is equivalent to

n1 · · ·ndP
(
‖X1‖ > n

1/p
1 n

1/2
2 · · ·n1/2

d

)
−−−−−−→
m(n)→∞

0. (49)

Recall that p = (1/2− α)−1. Since {Xk, k ≤ n} are independent and identi-
cally distributed, we have for each t > 0

P
(
n
−1/p
1 n

−1/2
2 . . . n

−1/2
d max

1≤k≤n
‖Xk‖ > t

)
=

= 1−
(
1− P

(
‖X1‖ > tn

1/p
1 n

1/2
2 . . . n

1/2
d

))n1n2...nd

. (50)

Hence (49) is equivalent to

n
−1/p
1 n

−1/2
2 . . . n

−1/2
d max

1≤k≤n
‖Xk‖

Pr−−−−−−→
m(n)→∞

0. (51)

For every 1 ≤ k = (k1, . . . , kd) ≤ n = (n1, . . . , nd) we have

Xk = ∆
(1)
k1
. . .∆

(d)
kd
Sk

Let δ > 0 be an arbitrary positive number. Applying this representation with
any n such that |1/n| = m(n)−1 < δ, we deduce for each t > 0

P (n
−1/p
1 n

−1/2
2 . . . n

−1/2
d max

1≤k≤n
‖Xk‖ > t) = P ((n1 . . . nd)

−1/2 max
1≤k≤n

‖Xk‖
n−α

1

> t)

≤ P
(
2d−1(n1 . . . nd)

−1/2 max
|k−l

n
|=| 1

n
|

‖Sk − Sl‖
|(k − l)/n|α

> t
)

≤ P
(
wα((n1 . . . nd)

−1/2ξn, δ) > 21−dt
)
. (52)
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Since the function wα( · , δ) is continuous on Ho
α(H), by continuous mapping

theorem it follows that

lim
n→∞

P (wα((n1 . . . nd)
1/2ξn, δ) > a) = P (wα(Wd, δ) > a) (53)

for each continuity point a of distribution function of the random variable
wα(Wd, δ). Since paths of Wd lie in Ho

α(H),

P (wα(Wd, δ) > t) → 0 as δ → 0. (54)

Combining (52) – (54) we easily deduce (51).

4.3 Sufficiency of condition (11)

In view of the convergence of finite dimensional distributions established in
subsection 3.4, we only have to check the tightness of the net (π(n)−1/2ξn)n≥1

using theorem 6. By lemma 9 and the separability of H, the net (π(n)−1/2ξn(t))n≥1

is asymptoticaly tight for each t ∈ [0, 1]d. Thus condition (i) of theorem 6 is
satisfied.

To check condition (ii), consider with s = (s2, . . . , sd),

∆n(t, t′; s) := ‖ξn(t′, s2, . . . , sd)− ξn(t, s2, . . . , sd)‖.

Lemma 11 For any t′, t ∈ [0, 1], t′ > t, we have

sup
s∈[0,1]

∆n(t, t′; s) ≤ 3dχ
{
t′ − t ≥ 1

n1

}
ψn(t′, t) + 3d min

(
1, n1(t

′ − t)
)
Zn,

where

ψn(t′, t) := max
12:d≤k2:d≤n2:d

∥∥∥∥ [n1t′]∑
i=[n1t]+1

∆
(1)
i S(i,k2:d)

∥∥∥∥, (55)

Zn := max
1≤k≤n

‖∆(1)
k1
Sk‖. (56)

Proof. Put u := (t, s), u′ := (t′, s), so u1 = t, u′1 = t′ and u2:d = u′
2:d = s.

Recalling (37), we have

ξn(u′)− ξn(u) = S[nu′] − S[nu] +
d∑

l=1

(
Tl(u

′)− Tl(u)
)
. (57)

To estimate this ξn’s increment we discuss according to the different possible
configurations.
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Case 1. 0 < t′ − t < 1/n1.

Case 1.a. [n1t
′] = [n1t], whence [nu′] = [nu]. Consider first the increment

T1(u
′)− T1(u) and note that by (39) with l = 1,

T1(u) =
∑

1≤k≤d

{nkuk}∆(k)
[nkuk]+1S[nu].

Because u2:d = u′
2:d and [nu′] = [nu], all the terms indexed by k ≥ 2 disap-

pear in the difference T1(u
′)−T1(u). Note also that {n1t

′}−{n1t} = n1(t
′−t).

This leads to the factorization

T1(u
′)− T1(u) = n1(t

′ − t)∆
(1)
[n1t]+1S[nu].

For l ≥ 2, Tl(u) is expressed by (39) as

Tl(u) =
∑

1≤i1<···<il≤d

{ni1ui1} . . . {niluil}∆
(i1)
[ni1

ui1
]+1 . . .∆

(il)
[nil

uil
]+1S[nu].

As above, all the terms for which i1 ≥ 2 disappear in the difference Tl(u
′) −

Tl(u) and we obtain

Tl(u
′)− Tl(u) = n1(t

′ − t)
∑

1<i2<···<il≤d

{ni2si2} . . . {nilsil}

∆
(1)
[n1t]+1∆

(i2)
[ni2

si2
]+1 . . .∆

(il)
[nil

sil
]+1S[nu].

Since {ni2si2} . . . {nilsil} < 1 and

∥∥∥∆(1)
[n1t]+1∆

(i2)
[ni2

si2
]+1 . . .∆

(il)
[nil

sil
]+1S[nu]

∥∥∥ =

∥∥∥∥∥∥∆(1)
[n1t]+1

∑
i∈I

εiSi

∥∥∥∥∥∥
≤
∑
i∈I

∥∥∥∆(1)
[n1t]+1Si

∥∥∥ ,
where εi = ±1 and I is some appropriate subset of [0,n] ∩ Nd with 2l−1

elements. Hence with Zn defined by (56), we obtain for l ≥ 2

‖Tl(u
′)− Tl(u)‖ ≤ n1(t

′ − t)

(
d− 1

l − 1

)
2l−1Zn.

Clearly this estimate holds true also for l = 1, so going back to (57) and
recalling that in the case under consideration [nu′] = [nu], we obtain

‖ξn(u′)− ξn(u)‖ ≤
d∑

l=1

n1(t
′ − t)

(
d− 1

l − 1

)
2l−1Zn = 3d−1n1(t

′ − t)Zn. (58)
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Case 1.b. n1t < [n1t
′] ≤ n1t

′. Using chaining to exploit the result of case 1.a,
we obtain

‖ξn(u′)− ξn(u)‖ ≤
∥∥∥∥∥ξn(u′)− ξn

(
[n1t

′]

n1

, s
)∥∥∥∥∥+

∥∥∥∥∥ξn
(

[n1t
′]

n1

, s
)
− ξn(u)

∥∥∥∥∥
≤ 3d−1(n1t

′ − [n1t
′])Zn + 3d−1([n1t

′]− n1t)Zn

= 3d−1n1(t
′ − t)Zn. (59)

Case 2. t′− t ≥ 1/n1. Then [n1t] ≤ n1t < [n1t] + 1 ≤ [n1t
′] ≤ n1t

′ and putting

t1 :=
[n1t]

n1

, t′1 :=
[n1t

′]

n1

, v := (t1, s), v′ := (t′1, s),

we get the upper bound

‖ξn(u′)− ξn(u)‖ ≤ ‖ξn(u′)− ξn(v′)‖+‖ξn(v′)− ξn(v)‖+‖ξn(v)− ξn(u)‖ ,

where the first and third terms fall within the case 1 since t′ − t′1 < 1/n1 and
t− t1 < 1/n1. As n1v1 = n1t1 = [n1t], we have

[nv] = ([n1t1], [n2:ds]) = [nu] and {n1v1} = {[n1t]} = 0,

so the representation (40) for ξn(v) may be recast as

ξn(v) = S[nu] +
d−1∑
l=1

∑
2≤i1<i2<···<il≤d

(
l∏

k=1

{nikvik}
)(

l∏
k=1

∆
(ik)
[nik

vik
]+1

)
S[nu].

Clearly the same representation holds for ξn(v′), by just replacing u by u′.
Now since ∆’s are interchangable and

S[nu′] − S[nu] =
[nt′]∑

i=[nt]+1

∆
(1)
i S(i,[n2:ds]),

we get

‖ξn(v′)− ξn(v)‖ ≤ ψn(t′, t)
d−1∑
l=0

(
d− 1

l

)
2l = 3d−1ψn(t′, t),

with ψn(t′, t) defined by (55). Using case 1 to bound ‖ξn(u′)− ξn(v′)‖ and
‖ξn(v)− ξn(u)‖, we obtain

‖ξn(t′, s)− ξn(t, s)‖ ≤ 3d−1{n1t
′}Zn + 3d−1ψn(t′, t) + 3d−1{n1t}Zn

≤ 3d−1ψn(t′, t) + 2 · 3d−1Zn. (60)

Combining (58), (59) and (60) we complete the proof of lemma 11. 2
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Now we continue the proof of the sufficiency of condition (11) by introducing
truncated variables and finding estimates for their moments. Let δ ∈ (0, 1) be
an arbitrary number. Define

X̃j := Xjχ{‖Xj‖ ≤ δn
1/p
1 (n2 . . . nd)

1/2}, (61)

X ′
j := X̃j − E X̃j , 1 ≤ j ≤ n. (62)

Denote for m ≥ 0

c(m) := sup
u≥m

sup
v2:d≥m

uv2 . . . vdP (‖X1‖ > u1/p(v2 . . . vd)
1/2)

cp := sup
t≥0

td/(d/2−α)P (‖X1‖ > t).

Evidently condition (11) yields c(m) → 0 as m→∞ and cp <∞. Set

cp,m := max{cp; c(m)}.

Lemma 12 With m = m(n) and any q > p

‖E X̃1‖ ≤ 2δ1−pcp,mn
1/p−1
1 (n2 . . . nd)

−1/2; (63)

E ‖X̃1‖q ≤ 2cp,m

q − p
δq−pn

q/p−1
1 (n2 . . . nd)

q/2−1; (64)

E ‖X ′
1‖2 ≤ E ‖X1‖2; (65)

E ‖X ′
1‖q ≤ 2q+1cp,m

q − p
δq−pn

q/p−1
1 (n2 . . . nd)

q/2−1. (66)

Proof. To check (63), we observe first that since EX1 = 0,

‖E X̃1‖ = ‖EX1 − EX1χ{‖X1‖ > δn
1/p
1 (n2 . . . nd)

1/2}
∥∥∥

≤
∫ ∞

δn
1/p
1 (n2...nd)1/2

P (‖X1‖ > t) dt

+ δn
1/p
1 (n2 . . . nd)

1/2P
(
‖X1‖ > δn

1/p
1 (n2 . . . nd

)1/2
).

Next we have∫ ∞

δn
1/p
1 (n2...nd)1/2

P (‖X1‖ > t) dt

= δn
1/p−1
1 (n3 . . . nd)

−1/2
∫ ∞

n
1/2
2

v2n1n3 . . . ndP (‖X1‖ > δvn
1/p
1 (n3 . . . nd)

1/2)
dv

v2

≤ δn
1/p−1
1 (n3 . . . nd)

−1/2b(m, δ)
∫ ∞

n
1/2
2

v−2 dv

≤ δb(m, δ)n
1/p−1
1 (n2 . . . nd)

−1/2,
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where

b(m, δ) := sup
u≥m

sup
v2:d≥m

uv2 . . . vdP (‖X1‖ > δu1/p(v2 . . . vd)
1/2).

We complete the proof of (63) noting that

b(m; δ) = δ−p sup
u≥δpm

sup
v2:d≥m

uv2 . . . vdP (‖X1‖ > u1/p(v2 . . . vd)
1/2)

= δ−p max
{

sup
m≥u≥δpm

sup
v2:d≥m

uv2 . . . vdP (‖X1‖ > u1/p(v2 . . . vd)
1/2);

sup
u≥m

sup
v2:d≥m

uv2 . . . vdP (‖X1‖ > u1/p(v2 . . . vd)
1/2)

}
≤ δ−pcp,m, (67)

since

sup
u≤m

sup
v2:d≥m

uv2 . . . vdP (‖X1‖ > u1/p(v2 . . . vd)
1/2)

≤ sup
u≤m

sup
v2:d≥m

uv2 . . . vdcp(u
1/p(v2 . . . vd)

1/2)−d/(d/2−α)

= cp sup
u≤m

u2α(d−1)/(d−2α) sup
v2:d≥m

(v2 . . . vd)
−2α/(d−2α) = cp.

Next we have

E ‖X̃1‖q ≤
∫ δn

1/p
1 (n2...nd)1/2

0
tq−1P (‖X1‖ > t) dt

=
∫ δ(n2...nd)1/2

0
tq−1P (‖X1‖ > t) dt

+
∫ δn

1/p
1 (n2...nd)1/2

δ(n2...nd)1/2
tq−1P (‖X1‖ > t) dt.

By Chebyshev inequality P (‖X1‖ > t) ≤ t−2, hence the first integral does

not exceed (q− 2)−1δq−2(n2 . . . nd)
q/2−1. As

∫ n
1/p
1

1 ≤ n
q/p−1
1 , the second integral

does not exceed

δq(n2 . . . nd)
q/2−1

∫ n
1/p
1

1
n2 . . . ndu

pP (‖X1‖ > δu(n2 . . . nd)
1/2)uq−p−1 du

≤ δq(n2 . . . nd)
q/2−1 sup

v2:d≥m
sup

1≤u≤n1

uv2 . . . vdP (‖X1‖ > δu1/p(v2 . . . vd)
1/2)n

q/p−1
1

≤ 1

q − p
max{b′(m, δ); b(m; δ)}δqn

q/p−1
1 (n2 . . . nd)

q/2−1,
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where

b′(m, δ) := sup
v2:d≥m

sup
1≤u≤m

uv2 . . . vdP (‖X1‖ > δu1/p(v2 . . . vd)
1/2)

≤ δ−2d/(d/2−α)cp ≤ δ−pcp,

recalling that 0 < δ < 1 and p = (1/2−α)−1. Accounting (67) inequality (64)
now follows.

To check (65), let us denote by (ek, k ∈ N) some orthonormal basis of the
separable Hilbert space H. Then we have

‖X ′
1‖2 =

∞∑
k=0

∣∣∣〈X̃1 − E X̃1, ek〉
∣∣∣2 =

∞∑
k=0

∣∣∣〈X̃1, ek〉 − E 〈X̃1, ek〉
∣∣∣2 ,

whence

E ‖X ′
1‖2 =

∞∑
k=0

Var(〈X̃1, ek〉) ≤
∞∑

k=0

E
∣∣∣〈X̃1, ek〉

∣∣∣2
= E

∞∑
k=0

∣∣∣〈X̃1, ek〉
∣∣∣2 = E ‖X̃1‖2 ≤ E ‖X1‖2,

which gives (65).

Finally we note that (66) is obviously obtained from (64) since the convex-
ity inequality ‖X ′

1‖q ≤ 2q−1‖X̃1‖q + 2q−1‖E X̃1‖q together with E ‖X̃1‖ ≤
(E ‖X̃1‖q)1/q gives E ‖X ′

1‖q ≤ 2qE ‖X̃1‖q. 2

Lemma 13 If condition (11) is satisfied, then

n
−1/p
1 (n2 . . . nd)

−1/2Zn
Pr−−−−−→

m(n)→∞
0. (68)

Proof. First note that really

Zn = max
1≤k≤n

∥∥∥∥∥∥
k2∑

i2=1

· · ·
kd∑

id=1

X(k1,i2,...,id)

∥∥∥∥∥∥ .
Fix ε > 0 and associate to any δ ∈ (0, 1) the truncated random variables X̃k

and X ′
k defined by (61), (62). Substituting Xk by X̃k, respectively X ′

k, in the
definition of Zn we obtain Z̃n, respectively Z ′

n. Introducing the complementary
events

En :=
{
∀k ≤ n, ‖Xk‖ ≤ δn

1/p
1 (n2 . . . nd)

1/2
}
, Ec

n := Ω \ En,
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we have

P (Zn > εn
1/p
1 (n2 . . . nd)

1/2) ≤ P ({Zn > εn
1/p
1 (n2 . . . nd)

1/2} ∩ En) + P (Ec
n).

Clearly Zn = Z̃n on the event En. By identical distribution of the Xk’s,

P (Ec
n) ≤ n1 . . . ndP (‖X1‖ > δn

1/p
1 (n2 . . . nd)

1/2)

and this upper bound goes to zero when m(n) goes to infinity by condition
(11). This leads to

lim sup
m(n)→∞

P (Zn > εn
1/p
1 (n2 . . . nd)

1/2) ≤ lim sup
m(n)→∞

P (Z̃n > εn
1/p
1 (n2 . . . nd)

1/2).

(69)
Because n−1/p

1 (n2 . . . nd)
1/2‖E X̃1‖ → 0 as m(n) →∞ by lemma 12, the right-

hand side of (69) does not exceed

lim sup
m(n)→∞

P (n
−1/p
1 (n2 . . . nd)

−1/2Z ′
n > ε).

Using the extension of Doob inequality (47), we obtain with q > p

P (n
−1/p
1 (n2 . . . nd)

−1/2Z ′
n > ε)

≤ n1 P

 max
12:d≤k2:d≤n2:d

∥∥∥∥∥
k2:d∑

i2:d=12:d

X ′
(1,i2,...,id)

∥∥∥∥∥ > εn
1/p
1 (n2 . . . nd)

1/2


≤ ε−qn

1−q/p
1 (n2 . . . nd)

−q/2E

∥∥∥∥∥
n2:d∑

i2:d=12:d

X ′
(1,i2,...,id)

∥∥∥∥∥
q

.

Applying Rosenthal inequality (46) together with the estimates (65), (66), we
obtain

P (n
−1/p
1 (n2 . . . nd)

−1/2Z ′
n > ε)

≤ ε−qn
1−q/p
1 (n2 . . . nd)

−q/2Cq

(
(n2 . . . nd)

q/2(E ‖X ′
1‖2)q/2 + n2 . . . ndE ‖X ′

1‖q
)

≤ Cqε
−q

(
n

1−q/p
1 (E ‖X1‖2)q/2 +

2q+1cp,m

q − p
δq−p

)
.

Combined with (69) this gives

lim sup
m(n)→∞

P (n
−1/p
1 (n2 . . . nd)

−1/2Zn > ε) ≤ cδq−p,

where the constant c depends on ε, p and q. Since q > p and δ may be choosen
arbitrarily small in (0, 1), the convergence (68) follows. 2

Next we continue proving (iii) of Theorem 6. Due to the definition of λj,v(ξn)
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it is easy to check that (iii) holds provided one proves for every ε > 0

lim
J→∞

lim sup
n→∞

Π(J,n; ε) = 0, (70)

where

Π(J,n; ε) := P

(
sup
j≥J

2αj(n1 . . . nd)
−1/2 max

0≤k<2j

0≤`≤2j

∆n(tk+1, tk; s`) > ε

)
= 0, (71)

with tk = k2−j, ` = (l2, . . . , ld), 2j = (2j, . . . , 2j) (vector of dimension d − 1)
and s` = `2−j.

By lemma 11 the probability Π(J,n; ε) does not exceed

P
(

sup
j≥J

2αj(n1 . . . nd)
−1/2 max

0≤k<2j

[
3dχ{tk+1 − tk ≥ 1/n1}ψn(tk+1, tk)

+ 3d min{1, n1(tk+1 − tk)}Zn

]
> ε

)
.

In what follows, we denote by “log” the logarithm with basis 2 (log 2 = 1). For
notational simplification, let us agree to denote by ε′ the successive splittings
of ε, i.e. ε′ = cε where the constant c ∈ (0, 1) may decrease from one formula to
following one. For j > log n1, we have 2j > n1, whence (tk+1−tk) = 2−j < 1/n1

and noting that 1− α = 1/2 + 1/p,

2αjn
−1/2
1 n1(tk+1 − tk) ≤ n

1/2
1 2−j(1−α) = n

1/2
1 2−j(1/2+1/p) ≤ n

−1/p
1 .

This gives

sup
j>log n1

2αj(n1 . . . nd)
−1/2 max

0≤k<2j
n1(tk+1 − tk)Zn ≤ n

−1/p
1 (n2 . . . nd)

−1/2Zn.

On the other hand, for J ≤ j ≤ log n1, we have 2αjn
−1/2
1 ≤ n

α−1/2
1 = n

−1/p
1 ,

whence

max
J≤j≤log n1

2αj(n1 . . . nd)
−1/2Zn ≤ n

−1/p
1 (n2 . . . nd)

−1/2Zn.

Now, applying lemma 13 twice, we reduce (70) to

lim
J→∞

lim sup
m(n)→∞

P (J,n; ε′) = 0, (72)

where

P (J,n; ε′) = P
(

max
J≤j≤log n1

2αj(n1 . . . nd)
−1/2 max

0≤k<2j
ψn(tk+1, tk) > ε′

)
.
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Notations ψ̃n(tk+1, tk) and ψ′n(tk+1, tk) mean that Xj are substituted by X̃j

and X ′
j respectively in the definition of ψn(tk+1, tk). Accordingly we introduce

the notations P̃ (J,n; ε′) and P ′(J,n; ε′). Splitting Ω in En and Ec
n like in the

proof of lemma 13, we obtain

P (J,n; ε′) ≤ P̃ (J,n; ε) + n1 . . . ndP (‖X1‖ ≥ δn
1/p
1 (n2 . . . nd)

1/2).

Then (72) is reduced by condition (11) to

lim
J→∞

lim sup
m(n)→∞

P̃ (J,n; ε′) = 0. (73)

The number of variables X̃k to be centered in the sum ψ̃n(tk+1, tk) is at most
n1(tk+1 − tk)n2 . . . nd ≤ n12

−Jn2 . . . nd and (63) yields

max
J≤j≤log n1

2αj(n1 . . . nd)
−1/2‖E X̃1‖ ≤ n

α−1/2
1 (2δ1−pcp,m)n

1/p−1
1 (n2 . . . nd)

−1

= 2δ1−pcp,m(n1 . . . nd)
−1.

Therefore

lim sup
m(n)→∞

max
J≤j≤log n1

2αj(n1 . . . nd)
−1/2n12

−Jn2 . . . nd‖E X̃1‖ ≤ δ1−pcp2
−J+1.

This upper bound going to zero when J goes to infinity, (73) is reduced to

lim
J→∞

lim sup
m(n)→∞

P ′(J,n; ε′) = 0. (74)

We have with q > p

P ′(J,n; ε′) ≤
log n1∑
j=J

P
(
2αj(n1 . . . nd)

−1/2 max
0≤k<2j

ψ′n(tk+1, tk) > ε′
)

≤
log n1∑
j=J

2qαj(n1 . . . nd)
−q/2ε′−q2jEψ′n(tk+1, tk)

q. (75)

Denote uk = [n1tk] and observe that uk+1 − uk ≤ n12
−j. By (47),

Eψ′n(tk+1, tk)
q ≤ E

∥∥∥∥∥∥
uk+1∑

i1=1+uk

n2:d∑
i2:d=12:d

X ′
i

∥∥∥∥∥∥
q

.

Estimating this last q-moment by Rosenthal inequality (46) with a number of

30



summands N ≤ (n12
−j)n2 . . . nd, we obtain

Eψ′n(tk+1, tk)
q ≤ Cq

(
(n12

−j)q/2(n2 . . . nd)
q/2E ‖X ′

1‖2 + n12
−jn2 . . . ndE ‖X ′

1‖q
)

≤ CqE ‖X1‖22−jq/2(n1 . . . nd)
q/2

+
2q+1Cqcp,m

q − p
δq−p2−jn

q/p
1 (n2 . . . nd)

q/2.

Reporting this estimate into (75) we obtain

P ′(J,n; ε′) ≤ Σ1(J,n; ε′) + Σ2(J,n; ε′)

with Σ1 and Σ2 explicited and bounded as follows. First

Σ1(J,n; ε′) :=
Cq

ε′q
E ‖X1‖2

∑
J≤j≤log n1

2(1+q(α−1/2))j

≤ Cq

ε′q
E ‖X1‖2

∞∑
j=J

2−(q/p−1)j

=
Cq

ε′q
E ‖X1‖2 2−(q/p−1)J

1− 2−(q/p−1)
.

Hence
lim

J→∞
lim sup
m(n)→∞

Σ1(J,n; ε′) = 0.

Next

Σ2(J,n; ε′) :=
2q+1Cqcp,m

(q − p)ε′q
δq−pn−qα

1

∑
J≤j≤log n1

2jqα

≤ 2q+1Cqcp,m

(q − p)ε′q
δq−pn−qα

1

nqα
1

2qα − 1

Noting that m = m(n) and lim supm→∞ cp,m = cp, we obtain

lim sup
m(n)→∞

Σ2(J,n; ε′) ≤ 2q+1Cqcp
(q − p)(2qα − 1)ε′q

δq−p.

Recalling (71) and summing up all the successive reductions leads to

lim sup
J→∞

lim sup
m(n)→∞

Π(J,n; ε) ≤ 2q+1Cqcp
(q − p)(2qα − 1)ε′q

δq−p.

Since Π(J,n; ε) does not depend on δ which may be choosen arbirarily small,
the left-hand side is null and this gives (70). Consequently the condition (ii)
follow and the proof of Theorem 2 is completed.
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4.4 Proof of Theorem 3

The necessary and sufficient condition which is technically relevant in the
proof of Theorem 2 is (49):

n1 · · ·ndP
(
‖X1‖ > n

1/p
1 n

1/2
2 · · ·n1/2

d

)
−−−−−−→
m(n)→∞

0.

Now looking back at the proof of Theorem 2, having in mind the extra as-
sumption that n1 = n2 = · · · = nd = n, it should be clear that the weak Ho

α(H)
convergence of n−d/2ξ(n,...,n) to W is equivalent to the condition obtained by
reporting this equality of the ni’s in (49), namely to

ndP
(
‖X1‖ > n1/p+(d−1)/2

)
−−−−→
n→∞

0. (76)

It is easily checked that in (76) the integer n can be replaced by a positive
real number s and then puting t = s1/p+(d−1)/2, we obtain the equivalence of
(76) with

lim
t→∞

t
2pd

2+p(d−1)P
(
‖X1‖ > t

)
= 0. (77)

Finally recalling that p = p(α) = 2/(1− 2α), we get

2pd

2 + p(d− 1)
=

2d

d− 2α
,

which reported in (77) gives (14) and completes the proof.
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