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Abstract. For rather general moduli of smoothness ρ (like e.g. ρ(h) = hα lnβ(c/h) )
the Hölder spaces Hρ([0, 1]d), are characterized by the rate of coefficients in the skew
pyramidal basis. With this analytical tool, we study in terms of second differences
the existence of a version in Hρ for a given random field. In the same spirit, central
limit theorems are obtained both for i.i.d. and martingale differences sequences of
random elements in Hρ.

1. INTRODUCTION

In many situations, stochastic processes and random fields have a smoothness
intermediate between the continuity and differentiability. The scale of Hölder
spaces is then a natural functional framework to investigate the regularity of
such processes and fields. And weak convergence in this setting is a stronger
result than in the space of continuous functions. In this paper we consider
the scale of generalized Hölder spaces Hρ([0, 1]d), where ρ is a modulus of
smoothness (precise definition is given in Section 1 below) and discuss two
questions:

(I) For a given random field indexed by [0, 1]d, find sufficient conditions for
the existence of a version with sample paths in Hρ.

(II) Find sufficient conditions for a sequence of random elements in Hρ to
satisfy the central limit theorem in this space.

The earliest result for the problem (I) goes back to the Kolmogorov sufficient
condition for the existence of a sample continuous version of a given stochastic
process ξ on [0, 1], namely:

P {|ξ(t+ h)− ξ(t)| > λ} ≤ cλ−γh1+δ,

where c, δ > 0 and γ > 1 are constants. In fact the same condition is
sufficient for ξ to have a version with sample paths in the Hölder space with the
parameter α (i.e. inHρ with ρ(h) = |h|α in our notation) for any 0 < α < δ/γ.
Ciesielski (1961) gave sufficient conditions for a Gaussian process to have a
version with α-Hölderian paths, Ibragimov (1984) and Nobelis (1981) studied
the problem (I) for general ρ and d ≥ 1.
As for the central limit theorem, to our best knowledge, the only results avail-
able in the literature concern two invariance principles for partial sums and
for empirical processes. The weak Hölder convergence of Donsker Prokhorov’s
partial sums process (polygonal lines) was investigated by Lamperti (1962) in
the case where d = 1, ρ(h) = |h|α and later by Erickson (1981) for d ≥ 1 and
general ρ. Lamperti’s result was extended recently by Hamadouche (1998) to
the case of dependent underlying variables and different smoothings of par-
tial sums. The same author obtained also invariance principles for smooth
versions of empirical processes (d = 1, ρ(h) = |h|α). Let us point out also a
paper of Kerkyacharian and Roynette (1991) who emphasized the usefulness
of the Faber Schauder basis of triangular functions in the problem (I) as well
as for Donsker Prokhorov’s invariance principle.
All the above results rely classically on some control in probability of the first
differences of the processes

∆1
hξ(t) := ξ(t+ h)− ξ(t).

In a previous contribution Račkauskas and Suquet (1998), we proposed to use
instead the second differences:

∆2
hξ(t) := ξ(t+ h) + ξ(t− h)− 2ξ(t),

to study problems (I) and (II) in the setting d = 1, ρ(h) = |h|α.
∗Research supported by a cooperation agreement CNRS/LITHUANIA (4714)
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The usefulness of ∆2
hξ(t) in the problem of sample paths differentiability is

known (see Cramér-Leadbetter (1967)). From an analytical point of view,
there is no loss in working with ∆2

hf to study the Hölder regularity of a
non-random function f. This observation goes back to Zygmund (1945) who
noticed that a necessary and sufficient condition that a continuous and peri-
odic function f(x) should satisfy a Hölder condition of order α, 0 < α < 1, is
that

∆2
hf(x) = O(hα), as h→ +0,

uniformly in x. The role of ∆2
h is now well understood in the more general

context of Besov spaces (see Peetre (1976)).
From a probabilistic point of view, it is clear that any control in probability
on ∆1

hξ(t) provides similar type of control on ∆2
hξ(t), but the converse is

false in general. So the use of ∆2
hξ(t), brings more flexibility in our basic

assumptions. Moreover the second difference appear very naturally in the
discretization procedure corresponding to the decomposition of a function in
the Faber Schauder basis of triangular functions (those obtained by means of
the affine interpolation between dyadic points).
The present contribution extends our previous results (Račkauskas ans Suquet
(1998)) in the following three directions

• use of more general moduli of smoothness ρ;
• multidimensional parameter space [0, 1]d;
• central limit theorem for martingale differences.

To this end we follow the procedure already used in the dimension 1, replacing
the basis of triangular functions by some special basis for pyramidal functions.
It turns out that the coefficients in this basis are the second differences and
we have a very convenient Banach isomorphism between Hρ and appropriate
sequences space. This analytical background is detailed in Section 2. In
Section 3 we obtain sufficient conditions for the existence of a Hρ version of a
given random field. In Section 4 we give central limit theorems in Hρ in the
i.i.d. case and also for triangular arrays of martingale differences.

2. ANALYTICAL BACKGROUND

Throughout T = [0, 1]d and Rd is endowed with the norm

|t| := max
1≤i≤d

|ti| , t = (t1, . . . , td) ∈ Rd.

Denote by Hρ the set of real valued continuous functions x : T → R such that
wρ(x, 1) <∞, where

wρ(x, δ) := sup
t,s∈T,0<|t−s|<δ

|x(t)− x(s)|
ρ(|s− t|)
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and ρ is a modulus of smoothness satisfying conditions (1) to (5) below where
c1, c2 and c3 are positive constants:

ρ(0) = 0, ρ(δ) > 0, 0 < δ ≤ 1; (1)
ρ is non decreasing on [0, 1]; (2)
ρ(2δ) ≤ c1ρ(δ), 0 ≤ δ ≤ 1/2; (3)∫ δ

0

ρ(u)
u

du ≤ c2ρ(δ), 0 < δ ≤ 1; (4)

δ

∫ 1

δ

ρ(u)
u2

du ≤ c3ρ(δ), 0 < δ ≤ 1. (5)

For instance, elementary computations show that the functions

ρ(δ) := δα lnβ
( c
δ

)
, 0 < α < 1, β ∈ R,

satisfy conditions (1) to (5), for a suitable choice of the constant c, namely
c ≥ exp(β/α) if β > 0 and c > exp(−β/(1− α)) if β < 0.
The set Hρ is a Banach space when endowed with the norm

‖x‖ρ := |x(0)|+ wρ(x, 1).

Obviously an equivalent norm is obtained replacing |x(0)| in the above formula
by ‖x‖∞ := sup{|x(t)| ; t ∈ T}.
Define

Ho
ρ = {x ∈ Hρ; lim

δ→0
wρ(x, δ) = 0}.

Then Ho
ρ is a closed subspace of Hρ. Now let us remark that for any function

ρ satisfying (1)–(5), there is a positive constant c4 such that

ρ(δ) ≥ c4δ, 0 ≤ δ ≤ 1. (6)

Hence the spaces Ho
ρ always contain all the Lipschitz functions and in par-

ticular the (continuous) piecewise affine functions. The separability of the
spaces Ho

ρ follows by standard interpolation arguments.
Since we are interested in the analysis of these spaces in terms of second
differences of the functions x, our first task is to establish the equivalence
of the norm ‖x‖ρ with some sequential norm involving the dyadic second
differences of x. To this aim, we shall use some Schauder basis of pyramidal
functions. Our main reference for this part is Semadeni (1982). The so
called skew pyramidal basis was introduced by Bonic Frampton and Tromba
(1969) and independently by Ciesielski and Geba (see the historical notes in
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Semadeni (1982) p. 72). This choice, which is not the only possible, leads
to rather simple formulas for the Schauder coefficients in terms of second
differences.
To explain the construction of the skew pyramidal basis, consider first a cube

Q = s+ aT = {s+
∑

1≤i≤d

uiei; 0 ≤ ui ≤ a},

where the ei’s denote the vectors of the canonical basis of Rd. The standard
triangulation of Q is the family T (Q) of simplexes defined as follows. Write Πd

for the set of permutations of the indexes 1, . . . , d. For any π = (i1, . . . , id) ∈
Πd, let ∆π(Q) be the convex hull of the d+ 1 points

s, s+ aei1 , s+ a(ei1 + ei2), . . . , s+ a
d∑

k=1

eik
.

So, each simplex ∆π(Q) corresponds to one path from s to s′ = s+a(1, . . . , 1)
via vertices of Q and such that along each segment of the path, only one coor-
dinate increases while the others remain constants. Thus Q is divided into d!
simplexes with disjoint interiors. Next let Hi be the hyperplane perpendicular
to ei and passing through the middle of the edge [s, s+aei]. The hyperplanes
H1, . . . ,Hd divide the cube Q into 2d cubes, say, Γk(Q), k = 0, . . . , 2d − 1.
More precisely, if k = ε1 + ε221 + . . .+ εd2d−1 is the binary representation of
k,

Γk(Q) := s+
1
2

d∑
i=1

εiei +
a

2
T.

By lemma 3.4.2 in Semadeni (1982), each simplex ∆π(Γk(Q)) of the stan-
dard triangulation of Γk(Q) is contained in an unique simplex ∆π′(Q) of the
standard triangulation of Q.
Consider now the sequence (Pj)j≥0 of partitions of T defined by

P0 := {T}, Pj := {Γk(Q);Q ∈ Pj−1, 0 ≤ k < 2d}.

In other words, Pj is composed of the 2jd cubes obtained by dividing each
edge of the cube [0, 1]d into 2j segments of length 2−j . Finally we define the
triangulation Tj as the union of the standard triangulations of the cubes in
Pj .

Tj := {∆π(Q);Q ∈ Pj , π ∈ Πd}, j = 0, 1, . . .

Clearly the set Wj := vert(Tj) of vertices of the simplexes in Tj is the set of
vertices of the cubes in Pj , whence

Wj = vert(Tj) = {k2−j ; 0 ≤ k ≤ 2j}d.
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In what follows we put V0 := W0 and Vj := Wj \Wj−1 for j ≥ 1. So Vj is the
set of new vertices born with the triangulation Tj . More explicitly, Vj is the
set of dyadic points v = (k12−j , . . . , kd2−j) in Wj with at least one ki odd.
The Tj-pyramidal function Λj,v with peak vertex v ∈ Vj is defined on T by
the three conditions

i) Λj,v(v) = 1;

ii) Λj,v(w) = 0 if w ∈ vert(Tj) and w 6= v;

iii) Λj,v is affine on each simplex ∆ in Tj , i.e., if the wi are the vertices of ∆,

Λj,v

( d∑
i=0

riwi

)
=

d∑
i=0

riΛj,v(wi), ri ≥ 0,
d∑

i=0

ri = 1.

From iii) it follows clearly that the support of Λj,v is the union of all simplexes
in Tj containing the peak vertex v. By Proposition 3.4.5 in Semadeni (1982),
the functions Λj,v are obtained by dyadic translations and changes of scale:

Λj,v(t) = Λ(2j(t− v)), t ∈ T, v ∈ Vj

from the same function Λ with support included in [−1, 1]d :

Λ(t) := max
(
0, 1−max

ti<0
|ti| −max

ti>0
ti
)
, t = (t1, . . . , td) ∈ [−1, 1]d.

But this apparent simplicity is misleading. The edges effects due to the re-
striction to t ∈ T give different shapes for the supports of the Λj,v’s. For
instance when d = 2, the support of Λ is hexagonal, but among the five func-
tions Λ1,v, only one has hexagonal support (corresponding to the peak vertex
v = (1/2, 1/2)), the four others having pentagonal supports.
The skew pyramidal basis is the family L := {Λj,v; j ≥ 0, v ∈ Vj} lexico-
graphically ordered. As a special case of the Proposition 3.1.6. in Semadeni
(1982), L is a Schauder basis of the Banach space C(T ) of real valued con-
tinuous functions on T . Hence any x ∈ C(T ) admits the unique uniformly
convergent series expansion:

x(t) =
∞∑

j=0

∑
v∈Vj

λj,v(x)Λj,v(t), t ∈ T.

The Schauder coefficients λj,v(x) are given by:

λ0,v(x) = x(v), v ∈ V0;

λj,v(x) = x(v)− 1
2
(
x(v−) + x(v+)

)
, v ∈ Vj , j ≥ 1.
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For a detailed derivation of these formulas, the reader is referred to 3.1.5 and
3.4.9 in Semadeni (1982). We just need to explain the definition of v− and v+.
Each v ∈ Vj admits a unique representation v = (v1, . . . , vd) with vi = ki/2j ,
(1 ≤ i ≤ d). The points v− = (v−1 , . . . , v

−
d ) and v+ = (v+

1 , . . . , v
+
d ) are defined

by

v−i =
{
vi − 2−j if ki is odd;
vi if ki is even; v+

i =
{
vi + 2−j , if ki is odd;
vi if ki is even.

Since v is in Vj , at least one of the ki’s is odd, so v−, v and v+ are really
three distinct points of T . Moreover we can write

v− = v − 2−je(v), v+ = v + 2−je(v) with e(v) :=
∑

ki odd

ei,

so λj,v(x) is a second difference directed by the vector e(v).
Define the projectors Ej (j ≥ 0) by

Ejx :=
j∑

i=0

∑
v∈Vi

λi,v(x)Λi,v, x ∈ C(T ).

The function Ejx is affine on each simplex of Tj and such that Ejx(w) = x(w)
for each w ∈ Wj . In other words Ej is the operator of affine interpolation at
the vertices of Tj .

Now we are able to obtain the equivalence of norms we were looking for.

Proposition 1. The norm ‖x‖ρ is equivalent to the sequential norm

‖x‖seqρ := sup
j≥0

1
ρ(2−j)

max
v∈Vj

|λj,v(x)| .

Proof. The main arguments of the proof are already in Semadeni (1982).
But this equivalence being a key point in the present contribution, it seems
preferable to give a rather detailed proof adapted to our purpose.
Noting that for v ∈ Vj , we have |v − v−| = |v − v+| = 2−j , it is easily seen
that

‖x‖seqρ ≤ max
(
1,

1
ρ(1)

)
‖x‖ρ .

To prove the reverse inequality we need some technical lemmas.

Lemma 2. For each t ∈ T and each j ≥ 0, 0 ≤
∑
v∈Vj

Λj,v(t) ≤ 1.
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Proof of Lemma 2. By continuity it suffices to check the result for t interior
in some simplex ∆ of Tj . Then for each v ∈ Vj which is not a vertex of ∆,
Λj,v(t) = 0. Remarking also that some vertices of ∆ may not belong to Vj ,
let us denote by Vj,∆ the set of vertices of ∆ which are in Vj . So we have

0 ≤
∑
v∈Vj

Λj,v(t) ≤
∑

v∈Vj,∆

Λj,v(t).

Now ∆ being the convex hull of its (d + 1) vertices, we get the barycentric
representation t =

∑
w∈vert(∆) rww with rw ≥ 0 and

∑
rw = 1. Since each

Λj,v is affine on ∆ and vanishes at every vertex of Tj except at v, we obtain∑
v∈Vj,∆

Λj,v(t) =
∑

v∈Vj,∆

∑
w∈vert(∆)

rwΛj,v(w) =
∑

v∈Vj,∆

rv ≤ 1,

where vert(∆) denotes the set of vertices of ∆.

As a tool for chaining arguments, we collect here the following estimates.
There is a constant b depending only of the dimension d such that for each
j ≥ 0 and each simplex ∆ in Tj ,

diam(∆) ≤ 2−j and α(∆) ≥ b2−j , (7)

where the diameter is in the sense of the sup norm metric of Rd and

α(∆) := inf
|u|=1

sup{|t− s| ; s, t ∈ ∆, t− s = cu, c ∈ R}.

By change of scale it suffices to consider the case j = 0 and to remark that
each ∆ has a non empty interior.

Lemma 3. There is a constant c0 depending only on d such that for each
triangulation Tj , for each n = 1, 2, . . . and each pair s, t in T such that
|t− s| ≤ 2−j , there exist a finite sequence s = z0, z1, . . . , zk = t and sim-
plexes ∆l in Tj (l = 1, . . . , k) such that k ≤ c0 and for each l the successive
points zl−1, zl belong to the same simplex ∆l.

Lemma 3 is simply a rewriting in our setting of Lemma 3.5.4 in Semadeni
(1982).

Lemma 4. For each j ≥ 1, ‖x− Ej−1x‖∞ ≤ 2c1c2 ‖x‖seqρ ρ(2−j).

Proof of Lemma 4. Using successively Lemma 2 and assumptions (4) and
(3), we get

|x(t)− Ej−1x(t)| ≤
∞∑

i=j

max
v∈Vi

|λi,v(x)|
∑
v∈Vi

Λi,v(t)
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≤
∞∑

i=j

‖x‖seqρ ρ(2−i)

≤ 2 ‖x‖seqρ

∫ 2−j+1

0

ρ(u)
u

du

≤ 2c1c2 ‖x‖seqρ ρ(2−j).

To bound ‖x‖ρ by ‖x‖seqρ , we have to estimate |x(t)− x(s)| . From now on,
the letter c denotes a positive constant whose explicit value may differ at each
occurrence.
Consider first the special case where for some fixed j, s and t belong to the
same simplex ∆ in Tj . For each i ≤ j, there is an unique simplex ∆i in Ti

containing ∆. By (7), |t− s| ≤ 2−j and there exist points s(i), t(i) in ∆i such
that t(i)− s(i) is parallel to t− s and

∣∣t(i) − s(i)
∣∣ ≥ b2−i. For each v ∈ Vi, Λi,v

is affine on ∆i, so

|Λi,v(t)− Λi,v(s)| = |t− s|∣∣t(i) − s(i)
∣∣ ∣∣∣Λi,v(t(i))− Λi,v(s(i))

∣∣∣ ≤ 2i−j

b
.

These estimates together with Lemma 4 lead to

|x(t)− x(s)| ≤
j−1∑
i=0

∑
v∈Vi

|λi,v(x)| |Λi,v(t)− Λi,v(s)|+ 2 ‖x− Ej−1x‖∞

≤
j−1∑
i=0

‖x‖seqρ ρ(2−i)
∑

v∈Vi∩vert(∆i)

|Λi,v(t)− Λi,v(s)|

+4c1c2 ‖x‖seqρ ρ(2−j)

≤ c ‖x‖seqρ 2−j

j∑
i=0

2iρ(2−i).

Next consider the more general case where s and t are any two distinct points
of T such that |t− s| ≤ 1/2. Then there is an integer j ≥ 1 such that 2−j−1 <
|t− s| ≤ 2−j . By Lemma 3 (with the same notations) we obtain

|x(t)− x(s)| ≤
k∑

l=1

|x(zl)− x(zl−1)|

≤ c0c ‖x‖seqρ 2−j

j∑
i=0

2iρ(2−i)

≤ c ‖x‖seqρ |t− s|
∫ 1

2−j

ρ(u)
u2

du.
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Using (5) this gives

|x(t)− x(s)| ≤ c ‖x‖seqρ ρ(|t− s|), s, t ∈ T, |t− s| ≤ 1/2.

To complete the proof of Proposition 1, note that if 1/2 < |t− s| ≤ 1, writing
z := (s+ t)/2, we have

|x(t)− x(s)|
ρ(|t− s|)

≤ |x(t)− x(z)|
ρ(|t− z|)

+
|x(z)− x(s)|
ρ(|z − s|)

≤ 2c ‖x‖seqρ .

3. RANDOM FIELDS WITH VERSION IN Ho
ρ

We consider now a continuous random field ξ = {ξ(t), t ∈ T} and the problem
of existence of a version of ξ with almost all paths in Ho

ρ . The replacement of
the initial norm ‖x‖ρ by ‖x‖seqρ reduces the problem to the control of maxima
of the Schauder coefficients λj,v(ξ) which are dyadic second differences of ξ.
We define here the second difference ∆2

hξ(t) in a symmetrical form by

∆2
hξ(t) := ξ(t+ h) + ξ(t− h)− 2ξ(t), t ∈ T, h ∈ Ct,

where

Ct := {h = (h1, . . . , hd); 0 ≤ hi ≤ min(ti, 1− ti), 1 ≤ i ≤ d}.

Recall that a Young function φ is a convex increasing function on R+ such
that φ(0) = 0 and limt→∞ φ(t) = ∞. If Z is a random variable such that
Eφ(Z/c) <∞ for some c > 0 then its φ-Orlicz norm is

‖Z‖φ := inf{c > 0 : Eφ(Z/c) ≤ 1}.

Throughout σ will denote an increasing function on [0,∞) such that σ(0) = 0.
For convenience’s sake, we recall here the basic inequalities used throughout
the paper to handle the maxima of random variables. The first of them is
Lemma 11.3 p. 303 in Ledoux and Talagrand (1995).

Lemma 5. Let (Xi) be positive random variables on some probability space
(Ω,F , P ) such that for all 1 ≤ i ≤ n and all A ∈ F∫

A

Xi dP ≤ aiP (A)φ−1
( 1
P (A)

)
, (8)

where φ is some Young function and ai a constant. Then, for every set A ∈ F∫
A

max
1≤i≤n

Xi dP ≤ aP (A)φ−1
( n

P (A)

)
,

with a = max1≤i≤n ai.
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The two following lemmas provide practical conditions to verify (8), in terms
of Orlicz norms or weak moments. The proofs can be found for instance in
Račkauskas and Suquet (1998).

Lemma 6. Let (Xi) be positive random variables on some probability space
(Ω,F , P ) and φ some Young function. Then Xi satisfies (8) with ai = ‖Xi‖φ .
In particular,

E max
1≤i≤n

Xi ≤ φ−1(n) max
1≤i≤n

‖Xi‖φ .

Lemma 7. Let (Xi) be positive random variables on some probability space
(Ω,F , P ) satisfying for some constant 1 < p <∞ and each i = 1, . . . , n

bi = sup
t>0

tP 1/p(Xi > t) <∞.

Then Xi satisfies (8) with ai = qbi where q = p/(p− 1). In particular,

E max
1≤i≤n

Xi ≤ q max
1≤i≤n

bi n
1/p.

Theorem 8. Assume the random field ξ = {ξ(t), t ∈ T} is defined on the
probability space (Ω,F , P ) and satisfies: for each set A ∈ F and all t ∈
T, h ∈ Ct ∫

A

|∆2
hξ(t)| dP ≤ σ(|h|)P (A)φ−1

( 1
P (A)

)
. (9)

Then for each A ∈ F , and integers K > J ≥ 0,

∫
A

‖EKξ − EJξ‖seqρ dP ≤ 4dc1P (A)
∫ 2−J

2−K

σ(u)
uρ(u)

φ−1
( 1
P (A)ud

)
du. (10)

Proof. Clearly ‖EKξ − EJξ‖seqρ = maxJ<j≤K 1/ρ(2−j)maxv∈Vj |λj,v(ξ)|. Since
j ≥ 1 in this formula, the λj,v involved are really second differences:

λj,v(ξ) = −1
2
∆2

hξ(t), with h = v+ − v = v − v−.

By the condition (9), for each measurable set A,∫
A

|λj,v(ξ)| dP ≤ 1
2
σ(2−j)P (A)φ−1

( 1
P (A)

)
.

Now Lemma 5 yields∫
A

max
v∈Vj

|λj,v(ξ)| dP ≤ 1
2
P (A)σ(2−j)φ−1

(cardVj

P (A)

)
. (11)
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The cardinality cardVj of Vj is asymptotically (1−2−d)2jd, but we will content
ourselves with the crude estimate cardVj ≤ 2(j+1)d valid for each j ≥ 0. It
follows ∫

A

‖EKξ − EJξ‖seqρ dP ≤ 1
2
P (A)

∑
J≤j≤K

σ(2−j)
ρ(2−j)

φ−1
(2(j+1)d

P (A)

)
.

By comparing series and integral and using (3), we obtain

∫
A

‖EKξ − EJξ‖seqρ dP ≤ c1P (A)
∫ 2−J

2−K

σ(u)
uρ(u)

φ−1
( 4d

P (A)ud

)
du.

The proof of (10) is completed noting that φ−1 being concave and vanishing
at 0, φ−1(4dr) ≤ 4dφ−1(r) for each r ∈ R+.

Theorem 9. Assume that the continuous random field ξ = {ξ(t), t ∈ T}
satisfies condition (9) of the Theorem 8. Then ξ admits a version with almost
all paths in Ho

ρ .

Proof. From Theorem 8 it is easily seen that (EJξ) is in probability Cauchy
sequence in Ho

ρ and therefore limJ→∞EJξ exists in probability. If this limit
is denoted by ξ̃ then it is easy to see that

ξ̃(t) =
∞∑

j=0

∑
v∈Vj

λjv(ξ)Λjv(t)

and is the version of ξ with paths in Ho
ρ .

Combining Theorem 9 and Lemma 7 gives a weak moments version of Ibrag-
imov’s result on Hölder regularity of random processes. Theorem 9 together
with Lemma 6 lead to the same conclusion under control of Orlicz norms.

Theorem 10. Let p > 1. Assume that the continuous random field ξ =
(ξt, t ∈ T ) satisfies the condition: for each t ∈ T, h ∈ Ct,

P {|∆2
hξ(t)| > λ} ≤ c

λp
σp(|h|),

where ∫ 1

0

σ(u)
u1+(d/p)ρ(u)

du <∞. (12)

Then ξ admits a version with almost all paths in the space Ho
ρ .
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Theorem 11. Let φ be a Young function. Assume that the continuous ran-
dom field ξ = (ξt, t ∈ T ) satisfies the condition: for each t ∈ T and h ∈ Ct,

||∆2
hξ(t)||φ ≤ cσ(|h|),

where ∫ 1

0

σ(u)
uρ(u)

φ−1
( 1
ud

)
du <∞. (13)

Then the random field ξ admits a version with almost all paths in the space
Ho

ρ .

4. CLT IN Ho
ρ

We turn now to the central limit theorem for random elements in the separable
space Ho

ρ . We shall study the cases of i.i.d. sequences and of triangular arrays
of martingale differences. As a basic tool to handle this problem, we need the
tightness criteria we are begining with.

4.1. Tightness conditions

Theorem 12. The sequence (ζn) of random elements in the Hölder space
Ho

ρ is tight if and only if the following two conditions are satisfied:

i) For each t ∈ T, limA→∞ supn P {|ζn(t)| > A} = 0;
ii) for each ε > 0 limj→∞ supn P {‖ζn − Ejζn‖seqρ > ε} = 0.

Proof. For fixed j, the space EjH
o
ρ is of finite dimension and we have on this

space the equivalence of norms ‖y‖seqρ and maxt∈Wj
|y(t)| , y ∈ EjH

o
ρ , of

course with constants depending on j. Recall that for t ∈Wj , Ejx(t) = x(t).
Now, using the flat concentration criterion (see Lemma 2.2 p. 40 in Ledoux
Talagrand (1991)) it is easy to derive the tightness of (ζn) from i) and ii).
The necessity of i) for the tightness of (ζn) is obvious. For the necessity of
ii), we invoke the following lemma, the proof of which can be found in Suquet
(1996).

Lemma 13. Let K be a compact family (for the topology of weak convergence)
of probability measures on the separable metric space H. Let (Fj , j ≥ 1)
be a sequence of closed subsets of H decreasing to ∅. Define the functions
uj : K → [0, 1], µ 7→ uj(µ) = µ(Fj). Then the sequence (uj) uniformly
converges to zero on K.

Since the functionals x 7→ ‖x− Ejx‖seqρ are continuous and decreasing to zero
on Ho

ρ as j increase to infinity, the choice of the closed sets

Fj = {x ∈ Ho
ρ ; ‖x− Ejx‖seqρ ≥ ε}, j ↑ ∞,
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shows the necessity of ii) for the tightness of (ζn).

To obtain practical sufficient conditions for the tightness of (ζn), observe that
if ξ is a random element in Ho

ρ , we have monotone convergence in (10) when
K increases to infinity. Combining this limit version of (10) with Lemmas 2.2
or 2.3 gives then the following corollaries of Theorem 12.

Corollary 14. The sequence (ζn) of random elements in the Hölder space
Ho

ρ is tight if it satisfies i) of Theorem 12 together with

ii) For each t ∈ T and h ∈ Ct,

sup
n≥1

||∆2
hζn(t)||φ ≤ cσ(|h|),

where φ is a Young function and σ satisfies (13).

Corollary 15. The sequence (ζn) of random elements in the Hölder space
Ho

ρ is tight if it satisfies i) of Theorem 12 together with

ii) For each t ∈ T and h ∈ Ct,

sup
n≥1

P {|∆2
hζn(t)| > λ} ≤ c

λp
σp(|h|),

where σ satisfies (12).

4.2. The i.i.d. case

For a random element ξ ∈ Ho
ρ we denote by ξ1, . . . , ξn independent copies of

ξ and

ζn := n−1/2
n∑

k=1

ξk.

Recall, that a random element ξ satisfies the central limit theorem (denoted
ξ ∈ CLT (Ho

ρ)), if the sequence (ζn) converges in distribution in Ho
ρ .

Theorem 16. Assume that the random element ξ ∈ Ho
ρ satisfies the follow-

ing conditions:

i) E ξ(t) = 0 and E ξ2(t) <∞ for all t ∈ T ;

ii) there exists a positive random variable M and an increasing function
σ : [0,∞) → R, σ(0) = 0 such that EM2 <∞ and

|∆2
hξ(t)| ≤Mσ(|h|), for all h ∈ Ct, t ∈ T,
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where ∫ 1

0

σ(s)
sρ(s)

√
ln s−1 ds <∞.

Then ξ ∈ CLT (Ho
ρ) and E ‖ξ‖2ρ <∞.

Proof. Consider the Rademacher sequence (εl) which is independent on (ξk)
and may be constructed on another probability space, say, Ω′. By Theorem
10.14 in Ledoux-Talagrand (1991) it suffices to prove that for almost every ω
of the probability space Ω supporting the ξk, the sequence of random elements
ζ̃ω
n of Ho

ρ defined on Ω′ by

ζ̃ω
n (t) := n−1/2

n∑
l=1

εlξl(ω, t), t ∈ T

converges in distribution. For the convergence of its finite dimensional distri-
butions, fix t1, . . . , tm in T and note that for any scalars a1, . . . , am

Eε

(
m∑

i=1

aiζ̃
ω
N (ti)

)2

=
m∑

i,j=1

aiaj
1
n

n∑
l=1

ξl(ω, ti)ξl(ω, tj).

Using i) and the strong law of large numbers we see that the factor of aiaj in
the above formula a.s. converges to E (ξ(ti)ξ(tj)). Hence the convergence of
finite dimensional distributions of ζ̃ω

n holds for almost every ω by the finite-
dimensional CLT. To check the tightness, we invoke Corrolary 14 whose Con-
dition i) is a simple by product of the case m = 1 above. Next consider the
function φ2(t) = exp{t2} − 1, t ≥ 0. The following is a simple corollary of
the well known behavior of Rademacher sequence and Condition ii):

||∆2
hζ̃

ω
n (t)||2φ2

=
1
n

∥∥∥ n∑
l=1

εl∆2
hξl(ω, t)

∥∥∥2

φ2

≤ C

n

n∑
l=1

|∆2
hξl(ω, t)|2

≤ C

n

n∑
l=1

M2
l (ω)σ2(|h|),

where M1, . . . ,Mn are independent copies of the random variable M. By the
strong law of large numbers, for almost every ω ∈ Ω, supn≥1 n

−1
∑n

l=1M
2
l (ω)

is finite and so ζω
N satisfies Condition ii) of Corollary 14. This ends the proof.

Theorem 17. Let σ : [0,∞) → R be an increasing function with σ(0) = 0.
Let p ≥ 2. Assume that the random element ξ ∈ Ho

ρ satisfies the following
conditions:

i) E ξ(t) = 0 and E ξ2(t) <∞ for all t ∈ T ;
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ii) for each t ∈ T and h ∈ Ct

E |∆2
hξ(t)|p ≤ σp(|h|),

where ∫ 1

0

σ(u)
u1+(d/p)ρ(u)

du <∞.

Then ξ ∈ CLT (Ho
ρ).

Proof. From condition i) follows the convergence of finite dimensional dis-
tributions of (ζN ) and the condition i) of Theorem 12. To complete the proof
of the tightness, observe that by Rosenthal’s Lp-inequality

E |∆2
hζN (t)|p ≤ cE |∆2

hξ(t)|p ≤ cσp(|h|),

from which ii) of Corollary 15 is easily verified.

4.3. Martingale differences case

In this subsection we shall give a Hölder version of Brown’s central limit theo-
rem for martingale (see Brown (1971)). Let X = {Xn,k, k = 1, . . . , kn, n ≥ 1}
be an array of Ho

ρ -valued Bochner integrable random elements adapted to
σ-fields F = {Fn,k; k = 0, 1, . . . , kn;n ≥ 1} such that for each n, k ≥ 1
EXn,k

∣∣Fn,k−1 = 0 a.s. We shall assume that for each t ∈ T, EX2
n,k(t) <∞.

In this case we set

σ2
n(t, s) :=

kn∑
k=1

EXn,k(t)Xn,k(s)
∣∣Fn,k−1.

Theorem 18. Let (X ,F) be a Ho
ρ -valued martingale difference array such

that EX2
n,k(t) <∞ for each t ∈ T. Assume also that the following conditions

are satisfied:

i) there exists a function ψ : T × T → [0,∞) such that for each t, s ∈ T

σ2
n(t, s) P−−−−→

n→∞
ψ(t, s);

ii) for each t ∈ T and ε > 0

kn∑
k=1

EX2
n,k(t)1{|Xn,k(t)| > ε}

∣∣Fn,k−1
P−−−−→

n→∞
0.
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iii) there exists positive random variables Mn,1, . . . ,Mn,kn
and an increas-

ing function σ : [0,∞) → R, σ(0) = 0 such that supn

∑kn

k=1 EM2
n,k < ∞

and
|∆2

hXn,k(t)| ≤Mn,k σ(|h|), for all t ∈ T, h ∈ Ct,

where ∫ 1

0

σ(s)
sρ(s)

√
ln s−1 ds <∞. (14)

Then
∑kn

k=1Xn,k converges in distribution in the space Ho
ρ to zero mean Gaus-

sian random field Y such that EY (t)Y (s) = ψ(t, s) for t, s ∈ T.

Proof. Set

ζn(t) =
kn∑

k=1

Xn,k(t), t ∈ T.

Fix t1, . . . , tm ∈ T. According to Cramer–Wold device (ζn(t1), . . . , ζn(tm))
converges in distribution provided any linear combination

∑m
l=1 clζn(tl) does,

where c1, . . . , cm ∈ R. Since

m∑
l=1

clζn(tl) =
kn∑

k=1

m∑
l=1

clXn,k(tl)

and (
∑m

l=1 clXn,k(tl), k = 1, . . . , kn) constitute the martingale difference ar-
ray, the convergence in distribution of

∑m
l=1 clζn(tl) is an instant consequence

of the Brown’s central limit theorem.
To prove the tightness of the random field ζn we involve Corollary 14. Its first
condition easily follows from i) and ii) and Rosenthal’s inequality. To check
the second condition of Corollary 14 note, that

P {‖ζn − EJζn‖seqρ > ε} ≤ ε−1E ‖ζn − EJζn‖seqρ

≤ ε−1
∞∑

j=J+1

1
ρ(2−j)

E max
v∈Vj

|λj,v(ζn)|. (15)

Since λj,v(ζn) =
∑kn

k=1 λj,v(Xn,k), by Lemma 20 given in the appendix

E max
v∈Vj

|λj,v(ζn)| ≤ c
√

ln card(Vj)
( kn∑

k=1

E max
v∈Vj

|λj,v(Xn,k)|2
)1/2

. (16)

Taking into account Condition iii) we obtain

kn∑
k=1

E max
v∈Vj

|λj,v(Xn,k)|2 ≤ σ2(2−j)
kn∑

k=1

EM2
n,k,
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hence, since card(Vj) ≤ 2(j+1)d,

E max
v∈Vj

|λj,v(ζn)| ≤ c
√

ln 2jσ(2−j).

Substituting this estimate into (15) and accounting (14) we complete the
proof.

Let us remark, that the Condition iii) of the Theorem 18 can be replaced by
the stronger condition

iii’) supn

∑kn

k=1 E ||Xn,k||2σ <∞, where σ satisfies (14).

Theorem 19. Let (X ,F) be a Ho
ρ -valued martingale difference array such

that EX2
n,k(t) < ∞ for each t ∈ T. Assume also that the conditions i) and

ii) of Theorem 18 are satisfied and

iii) there exists an increasing function σ : [0,∞) → R, σ(0) = 0 such that

E
( kn∑

k=1

E
(
∆2

hXn,k(t)
)2∣∣Fn,k−1

)p/2

+
kn∑

k=1

E |∆2
hXn,k(t)|p ≤ σp(|h|),

where p ≥ 2 and ∫ 1

0

σ(u)
u1+(d/p)ρ(u)

du <∞.

Then
∑kn

k=1Xn,k converges in distribution in the space Ho
ρ to a zero mean

Gaussian random field Y such that EY (t)Y (s) = ψ(t, s) for t, s ∈ T.

Proof. The proof is similar to that of Theorem 18. Only change to be made
concerns the estimate (16). Instead of Lemma 20 one has to use Rosenthal’s
Lp inequality together with Lemma 6.

5. APPENDIX

Recall that we consider Rd endowed with the norm

|t| := max
1≤i≤d

|ti| , t = (t1, . . . , td) ∈ Rd.

Let (Xn, n ≥ 1) be a martingale difference sequence in Rd with respect to the
increasing σ-algebras (Fn, n ≥ 0). Set

S0 = 0, Sn =
n∑

k=1

Xk, n ≥ 1.
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Lemma 20. There exists an absolute constant c > 0 such that for each n ≥ 1

E |Sn| ≤ c
√

ln d
( n∑

k=1

E |Xk|2
)1/2

.

Proof. It is proved by Bentkus (1990) that for each ε > 0 there exists an
infinitely many times Frechet differentiable function fε : Rd → R+, such that
fε(0) = 0 and

• supx

∣∣|x| − fε(x)
∣∣ ≤ ε;

• for each k ∈ N there exists a constant Ck independent on both n and d
such that

sup
x
||f (k)

ε (x)|| ≤ Ckε
−k+1 lnk−1 d.

Hence
E |Sn| ≤ ε+ E fε(Sn) (17)

Since

E fε(Sn) =
n∑

k=1

E (fε(Sk)− fε(Sk−1))

and E f ′(Sk−1)(Xk) = EE f ′(Sk−1)(Xk)
∣∣Fk−1 = 0 we have by Taylor’s for-

mula

E fε(Sn) =
n∑

k=1

∫ 1

0

(1− θ)f ′′ε (Sk−1 + θXk)(Xk)2dθ. (18)

Now (17) and (18) yields

E |Sn| ≤ ε+ ε−1C2 ln d
n∑

k=1

E |Xk|2.

The proof is completed minimizing the right hand side with respect to ε > 0.
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