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1 Introduction

Relative compactness in the space of probability measures is a key tool in the
study of weak convergence. A family F of probability measures on the general
metric space S is said to be tight if for each positive ε, there is a compact set
K such that P (K) > 1 − ε for all P in F . According to Prohorov’s theorem,
tightness is always a sufficient condition for relative compactness and is also
necessary if S is separable and complete.

The Skorohod space S = D(0, 1) is the usual framework of many limit the-
orems for stochastic processes. This is so because it supports processes that
contain jumps and weak convergence in D(0, 1) provides results about some
useful functionnals of paths like those involving the suprema. Nevertheless this
space presents some drawbacks. First, tightness in D(0, 1) is sometimes difficult
to check. Second, under the pointwise addition of functions, the space D(0, 1)
is not a topological group and hence not a topological vector space.

In many cases, it seems very convenient to treat a stochastic process as a
random element in a functional Banach space. The best known case is certainly
the C(0, 1) one (see Billingsley [4]). As for the Hilbert space case, sufficient
conditions for tigthness are given by Prohorov [18], Parthasarathy [17] and
Gihman Skorohod [8]. The recents developments in the theory of wavelets and
their applications in probability and statistics show the interest of using more
sophisticated functions spaces like the Hölder, Sobolev or Besov spaces.

In this paper we will present an unified approach to tightness problems in
a large class of Banach spaces including C(0, 1), the Lp, Hölder, Sobolev and
Besov spaces. Our starting point is the Hilbertian case:

Theorem 1 (Suquet [21]) Let H be a separable Hilbert space and (ei, i ∈ IN)
an orthonormal basis of H. Define for each h in H and each positive integer
N :

s2N (h) =
∑
i<N

〈h, ei〉2, r2N (h) =
∑
i≥N

〈h, ei〉2.

The family F of probability measures on H is tight if and only if:

(i) ∀N ≥ 1 lim
t→+∞

sup
P∈F

P ({h ∈ H : s2N (h) > t}) = 0,

(ii) ∀t > 0 lim
N→+∞

sup
P∈F

P ({h ∈ H : r2N (h) > t}) = 0.

Our aim is to generalize this theorem. Let us denote by Vj the finite dimensional
subspace of H generated by {e0, . . . , ej−1} and by Ej the orthogonal projection
on Vj . With these notations, the conditions (i) and (ii) can be recast as:

(i) EjF = {P ◦ E−1
j , P ∈ F} is tight for each j ≥ 1,

(ii) ∀ε > 0, lim
j→+∞

sup
P∈F

P ({h ∈ H : ‖h− Ejh‖ ≥ ε}) = 0.
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We would like to generalize this result in two directions: dropping the finite
dimensionality of the Vj (as in the case of multiresolution analysis) and dropping
the orthogonality of the Ej (and hence the hilbertian character of the space).
Of course, we have to keep some control on the norms of the projectors Ej . This
leads us naturally to deal with Schauder decomposable Banach spaces. The next
section will present the functional needed analysis package . The third section
exposes the proof of our main result: the extension of the theorem 1 for these
spaces.

In the following section, we use our main theorem and a multiresolution
analysis to obtain a sufficient condition for tightness in Lp(IR), 1 < p < +∞.
We study also the relative compactness in Lp(0, 1) of the random step func-
tions involved in Donsker’s theorem (without any assumption on the dependence
structure of the underlying random variables). We rederive and clarify a previ-
ous condition for tightness in L2(0, 1) due to Jacob, Oliveira and Suquet ([14],
[15]). Next we are interested in the convergence of the empirical process based on
strong mixing uniform variables (Xi)i≥1 on [0, 1]. In theD(0, 1) setting, the best
result up to now is due to Yoshihara [23] who proved the weak convergence of
the empirical process to a gaussian process under the condition αn = O(n−3−ε)
(the αn being the strong mixing coefficients of the sequence (Xi)i≥1). Recently,
Oliveira and Suquet proved the same convergence in L2(0, 1) under the weaker
assumption

∑
αn < +∞. Of course the convergence in L2(0, 1) is weaker than

in D(0, 1). Here we obtain the convergence in Lp(0, 1) (2 ≤ p < 6) under a
weaker condition (depending on p) than Yoshihara’s one.

In the fifth section we are concerned with the spaces H0
α of Hölderian func-

tions on [0, 1] (i.e. f(0) = 0, |f(t) − f(s)| ≤ C|t − s|α and |f(t) − f(s)| =
o(|t − s|α)). We obtain a tightness criterion and a sufficient condition very
similar to the C(0, 1) case. Some examples are discussed.

The last section presents an easy application to some sequences spaces and
their isomorphic Besov functional spaces. This application could be useful in
the study of weak convergence for stochastic processes known by their wavelets
coefficients.

2 The functional analysis background

We refer to Singer [20] for the Schauder decompositions and to Meyer [13] for
wavelets and multiresolution analysis. Let (X , ‖ ‖) be a Banach space. A
system {xn, n ∈ IN} of elements of X is called a Schauder basis if for every
element x ∈ X , there is a unique series:

x =
+∞∑
n=0

anxn, an = an(x) ∈ IR, (1)

which converges to x in the norm of X . We define the associated coordinate
projections vn by vn(x) = anxn. These projections are continuous and there is
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a constant C depending only on the basis {xn, n ∈ IN} such that:

∀N ∈ IN, ∀x ∈ X ,
∥∥ N∑

n=0

vn(x)
∥∥ ≤ C‖x‖. (2)

The basis is said unconditional if the series (1) is unconditionally convergent,
that is, for every permutation σ = {σ(n), n ∈ IN} of the indexes, the series∑+∞

n=0 aσ(n)xσ(n) converges to x in the norm of X . In the multiresolution analysis
setting defined below, we are dealing with bases of wavelets indexed by IN×ZZ,
ZZ×ZZ, ZZ×ZZd. Fortunately for many functional spaces, the decomposition on
these bases is an unconditionally convergent series so that neither the order of
summation nor the groupings of terms do matter. Here the groupings of terms
are usually made according to the level of resolution. At one given level, say
2−j , we have a countable family of functions (ψj,k, k ∈ ZZ) of the basis which
is dense in a closed subspace of the involved functional space. In the important
case of the Faber-Schauder basis of the space C(0, 1), which do not define a
multiresolution analysis, we have the groupings {∆j,k, 0 ≤ k < 2j} which span
closed finite dimensional subspaces of C(0, 1). Banach spaces having a Schauder
decomposition are the natural framework unifying all these situations.

Definition 1 An infinite sequence (Gj , j ∈ IN) of closed linear subspaces of a
Banach space X such that Gj 6= {0} (j ∈ IN) is called a Schauder decomposition
of X if for every x ∈ X there exists an unique sequence (yn, n ∈ IN) with
yj ∈ Gj (j ∈ IN) such that:

x =
+∞∑
j=0

yj

and if the coordinate projections defined by vn(x) = yn, are continuous on X .

In other words, (Gj , j ∈ IN) is a decomposition of X if and only if, X is the
direct topological sum of the subspaces Gj . It should be noticed here that some
Banach space do not possess a Schauder decomposition, for instance the space
`∞ (see Singer [20]) and that a Schauder decomposable Banach space need not
be separable.

Let us denote Vj =
⊕

i≤j Gi and Ej =
∑

i≤j vi the continuous projections
of X onto Vj . It follows from proposition 15.3 p. 488 in Singer [20] that:

C = sup
j∈IN

‖Ej‖ < +∞. (3)

By the orthogonality relations between the coordinate projections (i.e.: vi◦vj =
δijvi = δijvj) we have:

Ej′ ◦ Ej = Ej ◦ Ej′ = Ej∧j′ , j, j′ ∈ IN. (4)
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This implies:

‖x− Eix‖ ≤ (1 + C)‖x− Ejx‖, x ∈ X , i > j. (5)

In separable Banach spaces having a Schauder decomposition, we have a
very simple criterion for relative compactness. This criterion is a generalization
of the Hilbert space case (see for instance Akhiezer and Glazman [1]). We did
not find this result in its general form in the literature, so we give a detailed
proof.

Theorem 2 Let X be a separable Banach space having a Schauder decomposi-
tion. A subset K is relatively compact in X if and only if:

(i) For each j ∈ IN, EjK is relatively compact in Vj,

(ii) sup
x∈K

‖x− Ejx‖ → 0 as j → +∞.

Proof :
Sufficiency of (i) and (ii): Let (zn, n ∈ IN) be a sequence in K. We have to
check that (zn, n ∈ IN) contains a convergent subsequence (zn, n ∈ I) where I
is some infinite subset of IN. Using repeatedly (i), we can construct a sequence
(Jj) of infinite subsets of IN such that: IN ⊃ J0 ⊃ J1 ⊃ · · · and for each j, (Ejzn,
n ∈ Jj) converges in Vj . Moreover we can require that min(Jj) < min(Jj+1),
j ∈ IN. Let us define then I = {min(Jj), j ∈ IN}. By construction we have
{n ∈ I, n ≥ min(Jj)} ⊂ Jj for each j ∈ IN and hence the sequence (Ejzn,
n ∈ I) converges in Vj towards some yj . Now we show that (zn, n ∈ I) is a
Cauchy sequence in X . For fixed positive ε there is by (ii) an integer j such
that ‖x−Ejx‖ < ε for all x in K. By the construction of I, there is an integer
n0 such that for all n > n0 in I, ‖Ejzn − yj‖ < ε. So for every n and p larger
than n0 in I, ‖zn − zp‖ < 4ε.

Necessity of (i) and (ii): The necessity of (i) follows obviously from the con-
tinuity of the projections Ej . To prove (ii), we can assume without lose gen-
erality that K is closed and hence compact. Thus the continuous function
x 7→ ‖x− Ejx‖ takes its maximum over K for some zj ∈ K. Put:

yj = zj − Ejzj , ‖yj‖ = sup
x∈K

‖x− Ejx‖.

It suffices then to prove the convergence to zero of (yj , j ∈ IN). First we observe
that (yj , j ∈ IN) is relatively compact in X . Indeed, taking subsequences it
suffices to check that if (zj , j ∈ J) converges to z, (Ejzj , j ∈ J) is a convergent
sequence. Writing:

‖Ejzj − z‖ ≤ ‖Ej‖ · ‖zj − z‖ + ‖Ejz − z‖,

this follows from (3) and the definition 1. Moreover we have limEjzj = lim zj ,
so that the only possible limit for a subsequence of (yj j ∈ IN) is zero. Hence
yj converges to 0, which ends the proof.
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Let us now have a more detailed look at the examples of Schauder decom-
positions referred above. The first instance is provided by the Schauder bases
(xn, n ∈ IN), taking Gj = span[xj ]. For some bases it is more convenient to
have the Gj as span of a finite number of vectors of the basis. This is the case
of the Haar and Faber-Schauder bases we are now recalling the definition.

The Haar basis (en, n ∈ IN) is an unconditional basis for the spaces Lp(0, 1),
(1 < p < +∞). Put ψ(t) = 1I[0,1/2[(t) − 1I[1/2,1[(t). The Haar basis is defined
by e0(t) = 1 and en(t) = ej,k(t) = 2j/2ψ

(
2jt − k

)
where n = 2j + k with

0 ≤ k < 2j . Here the Schauder decomposition of Lp(0, 1) we are interested in
is given by G0 = span[e0], Gj = span[ej,k, 0 ≤ k < 2j ]. Let us recall that the
projection of f onto Vj =

⊕
0≤i≤j Gi is its approximation by a step function

equal to the mean value of f over each intervall
[
k2−j , (k+ 1)2−j

[
, 0 ≤ k < 2j .

The Faber-Schauder basis (∆n, n ∈ IN ∪ {−1}) is a Schauder basis for the
space C(0, 1) of continuous functions on [0, 1]. This space have no unconditional
basis. Put ∆(t) = 2t1I[0,1/2[(t)+2(1− t)1I[1/2,1[(t). Then ∆−1(t) = 1, ∆0(t) = t,
∆1(t) = ∆0,0(t) = ∆(t), ∆n(t) = ∆j,k(t) = ∆(2jt − k) where n = 2j + k with
0 ≤ k < 2j . Here we define the Gj as in the Haar basis case (and G−1 =
span[∆−1]). The projection of a continuous function f onto Vj is simply its
approximation by linear interpolation with knots

(
k2−j , f(k2−j)

)
. The Faber

Schauder basis is also a Schauder basis in the Hölderian spaces H0
α (see section

5 below).
Finally, we recall some useful facts about wavelets and multiresolution anal-

ysis (in a reduced version adapted to our purpose, the general definitions can
be found in Meyer [13] or Daubechies [7]). In what follows, for g ∈ L2(IR), we
write gj,k for the function gj,k(t) = 2j/2g

(
2jt − k

)
, j, k ∈ ZZ. By multiresolu-

tion analysis with scaling function ϕ, we mean a ladder of closed subspaces (Vj ,
j ∈ ZZ) of L2(IR) such that:

a)
⋂

j∈ZZ

Vj = {0},
⋃

j∈ZZ

Vj = L2(IR),

b) Vj ⊂ Vj+1,

c) Vj = span [ϕj,k, k ∈ ZZ],

d) (ϕ0,k, k ∈ ZZ) is an orthonormal basis of V0.

The multiresolution analysis is called r-regular (r ∈ IN) if ϕ is of Cr class and
for each integer m there is a constant am such that:∣∣ϕ(α)

∣∣(t) ≤ am

(
1 + |t|

)−m
, t ∈ IR, α ≤ r. (6)

Define Wj as the orthogonal complement of Vj in Vj+1, then we have for each
j ∈ ZZ the decomposition:

L2(IR) = Vj ⊕
⊕
i≥j

Wi. (7)
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One can construct a function ψ such that (ψ0,k, k ∈ ZZ) is an orthonormal basis
of W0 and (ψj,k, j, k ∈ ZZ) is an orthonormal wavelets basis of L2(IR). If the
multiresolution analysis is r-regular, ψ verify also the property (6). We write
Ej (resp. Dj) for the orthogonal projection from L2(IR) onto Vj (resp. Wj) and
its associated integral kernel:

Ejf =
∫

IR

Ej( . , s)f(s) ds, Ej(t, s) =
∑
k∈ZZ

ϕj,k(t)ϕ̄j,k(s), (8)

Djf =
∫

IR

Dj( . , s)f(s) ds, Dj(t, s) =
∑
k∈ZZ

ψj,k(t)ψ̄j,k(s). (9)

The kernels Ej and Dj verify:

Ej(s, t) = 2jE0(2js, 2jt), Dj(s, t) = 2jD0(2js, 2jt), s, t ∈ IR. (10)

Using (6), it is easily verified that E0 and D0 are majorized by convolution
kernels. More precisely, there exists two rapidly decreasing functions K and L
such that: ∣∣E0(s, t)

∣∣ ≤ K(s− t),
∣∣D0(s, t)

∣∣ ≤ L(s− t). (11)

As shown in Meyer [13], the usefulness of the wavelets bases associated to a
regular multiresolution analysis goes far beyond the L2(IR) space. They provide
unconditional bases for many functions spaces as Lp(IR) (1 < p < +∞), Sobolev,
Hölder and Besov spaces. In each case, the function space X is the topological
direct sum of V0 and the Wi (i ≥ 0) (these subspaces being redefined in an
adapted way). We have then a Schauder decomposition of X given by G0 = V0,
Gj = Wj−1 (j ≥ 1).

3 Main result

We give now the characterization of the tightness for separable Schauder de-
composable Banach spaces.

Theorem 3 Let X be a separable Banach space having a Schauder decomposi-
tion:

X =
+∞⊕
i=0

Gi, Vj =
j⊕

i=0

Gi, j = 0, 1, 2, . . .

and denote by Ej the continuous projection from X onto Vj. Let F be a family
of probability measures on X and EjF = {µ ◦ E−1

j , µ ∈ F}. Then F is tight if
and only if:

(i) EjF is tight, j = 0, 1, 2, . . .

(ii) For each positive ε, lim
j→+∞

sup
µ∈F

µ
(
x ∈ X : ‖x− Ejx‖ > ε

)
= 0.
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Proof :
Sufficiency of (i) and (ii): For fixed positive η, put ηl = 2−l, l = 1, 2, . . . and
choose a sequence (εl) decreasing to 0. By (ii), there is an integer jl such that:

∀µ ∈ F , µ
(
x ∈ X : ‖x− Ejl

x‖ > εl

)
< ηl. (12)

By (i), there is a compact subset Kl of X such that:

∀µ ∈ F , µ
(
x ∈ X : Ejl

x ∈ Kl

)
> 1− ηl. (13)

From (12) and (13) we deduce:

∀µ ∈ F , µ
(⋂

l≥1

{
x ∈ X : Ejl

x ∈ Kl and ‖x− Ejl
x‖ ≤ εl

})
> 1− 2η. (14)

It remains to check the compacity in X of the intersection in (14). This follows
easily from the continuity of the Ej , (4), (5) and the theorem 2.

Necessity of (i) and (ii): As tightness is preserved by continuous mappings, the
necessity of (i) follows from the continuity of the Ej . To prove the necessity of
(ii), we need the following lemma.

Lemma 1 Let F be a compact family (for the topology of weak convergence)
of probability measures on the separable metric space S. Let (Fl, l ∈ IN) be a
sequence of closed subsets of S decreasing to ∅. Define the functions ul (l ∈ IN)
by: ul : P 7−→ ul(P ) = P (Fl). Then the sequence (ul) uniformly converges to
zero on F .

Proof : For positive ε, let us define Dl,ε = {P ∈ F : ul(P ) ≥ ε}. We first
verify that Dl,ε is closed. The topology of weak convergence on probability
measures over S being metrizable, this can be done by means of sequences.
Let (Pn, n ∈ IN) be a sequence in Dl,ε, weakly convergent to some P . By the
portmanteau theorem we have:

ul(P ) = P (Fl) ≥ lim sup
n→+∞

Pn(Fl) = lim sup
n→+∞

ul(Pn) ≥ ε,

so P is in Dl,ε, which is then closed. The monotone continuity of probability
measures implies clearly

⋂
l∈INDl,ε = ∅. In view of the compactness of F , we

can find an l0 such that
⋂

l≤l0
Dl,ε = ∅. As the sequence (Dl,ε) decreases, we

have: ul(P ) < ε for all l ≥ l0, and all P ∈ F .

Now we apply this lemma with Fj taken as the closure of:

Aj = {x ∈ X , sup
i≥j

‖x− Eix‖ ≥ ε}.

Clearly (Aj , j ∈ IN) is decreasing and so is (Fj , j ∈ IN). Using (5), we have:

∀x ∈ Aj , ‖x− Ejx‖ ≥
ε

1 + C
.
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By continuity of Id− Ej , this remains true for all x in Fj . As for each x in X ,
limj→+∞Ejx = x, this imply

⋂
j∈IN Fj = ∅. Since µ(x ∈ X , ‖x− Ejx‖ ≥ ε) ≤

µ(Fj), the lemma 1 give us the expected conclusion.

When the subspaces of the Schauder decomposition are finite dimensional,
the theorem 3 has the following more tractable version:

Theorem 4 Assume the Banach space X has the Schauder decomposition X =⊕
j∈INGj where each Gj is of finite dimension. Then F is tight if and only if

the condition (ii) of theorem 3 and the following condition (i′) hold:

(i′) lim
A→+∞

sup
µ∈F

µ
(
x ∈ X : ‖x‖ > A

)
= 0.

Proof : Clearly (i′) holds if F is tight. On the other hand, ‖x‖ and supj ‖Ejx‖
being equivalent norms in X (Singer [20], prop. 15.3 b) p. 488), (i′) implies:

lim
A→+∞

sup
µ∈F

µ
(
x ∈ X : ‖Ejx‖ > A

)
= 0, j = 0, 1, 2, . . .

As the Vj are finite dimensional, the tightness of EjF follows.

The theorem 4 applies in particular to the decompositions coming from a
Schauder basis. As a result, combining theorems 3 and 4, we can treat the case
of multiresolution analysis. Indeed, by an elementary topological argument,
tightness in Vj reduces to tightness in V0 and in the Wi (0 ≤ i < j). And these
spaces have a wavelets Schauder basis.

By Markov’s inequality, the sufficient conditions for tightness in theorem 4
admit the following moment form.

Theorem 5 Assume the Banach space X has the Schauder decomposition X =⊕
j∈INGj where each Gj is of finite dimension. Then F is tight if:

(i) ∃α > 0, sup
µ∈F

IEµ ‖ξ‖α < +∞,

(ii) ∃β > 0, lim
j→+∞

sup
µ∈F

IEµ ‖ξ − Ejξ‖β = 0,

where ξ denotes a random element in X with distribution µ and IEµ the expec-
tation with respect to µ.

This last theorem is a generalization of the theorem 1.13 of Prohorov [18] for
the Hilbertian case. According to this theorem (see also Parthasarathy [17] th.
2.2 p. 154), when X is a separable Hilbert space, F is tight if:

lim
j→+∞

sup
µ∈F

∫
X
r2j (x)µ(dx) = 0, (15)

where r2j (x) =
∑

i≥j〈x, ei〉2 and (ei, i ∈ IN) is an orthonormal basis of X . That
is exactly the condition (ii) above with β = 2 for the Schauder decomposition
associated to the basis (ei, i ∈ IN).
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In [21] the Prohorov-Parthasarathy’s statement was shown to be incomplete
according to the following counter example: take F as the canonical image in
Vd = span[e0, e1, . . . , ed] of a non-tight family in IRd. Clearly (15) is satisfied
but F is not tight. The author proposed a rectified statement by adding to (15)
the condition (i) of theorem 5 with α = 2. So the theorem 5 is effectively a
generalization of the rectified Prohorov’s theorem.

Let us consider a sequence of stochastic processes as a sequence of random
elements in X . The conditions (i) or (i′) of the theorems above are related
to the size of the paths (in the norm of X ). As it will be illustrated in the
following sections, in many cases, the conditions (ii) involve the oscillations
of the processes (in a sense depending upon the norm of X ). Our next result
roughly says that, if the sample path’s size is well controlled, there is no real loss
in investigating the tightness of the sequence by mean of the moment condition
(ii) of theorem 5.

Theorem 6 Suppose condition (i) of theorem 5 holds. Then condition (ii) with
β < α is necessary for the tightness of F .

Without loss of generality, we can suppose F compact. Then condition (ii) will
result from the following stronger one:

lim
j→+∞

sup
µ∈F

IEµ

(
sup
i≥j

‖ξ − Eiξ‖β
)

= 0. (16)

The first step is to prove the continuity of the functionals:

Tj : µ 7−→ IEµ

(
sup
i≥j

‖ξ − Eiξ‖β
)
, j ∈ IN.

To this end, consider a sequence (µn) weakly converging to the probability
measure µ and the random elements ξn, ξ with respective distributions µn, µ.
We introduce the non negative random variables:

Xn = sup
i≥j

‖ξn − Eiξn‖β , X = sup
i≥j

‖ξ − Eiξ‖β .

Putting α/β = 1 + ε, we have by (3) a constant A such that:

IEµ

(
X1+ε

n

)
≤ A IEµ ‖ξn‖α, n ∈ IN.

So (i) implies the uniform integrability of the sequence (Xn, n ∈ IN). Now we
observe that the function fj : x 7→ supi≥j ‖x−Eix‖β is continuous on X . This
easily follows from (3) and (5). Thus, as ξn converges to ξ in distribution, the
same is true for Xn = fj(ξn) and X = fj(ξ). So IEXn converges to IEX, which
proves the continuity of Tj .

Now (Tj , j ∈ IN) is a decreasing sequence of continuous functions on the
compact F . According to Dini’s theorem, (Tj , j ∈ IN) converges uniformly on
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F . To identify the limit, observe that:

lim
j→+∞

Tj(µ) = lim
j→+∞

∫
X

sup
i≥j

‖x− Eix‖β dµ(x) = 0,

by (3), (i) and the dominated convergence theorem.

Before closing this section, we test our tightness criterion in the well known
case of the space C(0, 1). Classically, tightness in this space is characterized via
the Arzela-Ascoli theorem by ([4], th. 8.2):

(a) For each positive η, there is an a such that

µ
(
x ∈ C(0, 1) : |x(0)| > a

)
≤ η, ∀µ ∈ F

(b) For each positive ε, lim
δ→0

sup
µ∈F

µ
(
x ∈ C(0, 1) : w(δ, x) ≥ ε

)
= 0, where

w(δ, x) is the modulus of continuity.

This criterion can be rederived as a corollary of theorem 4:

Proposition 1 For the Schauder decomposition associated to the Faber-Schau-
der basis of C(0, 1), the conditions (i′) and (ii) of theorem 4 are equivalent to
the conditions (a) and (b).

Proof : Recalling that for the Faber-Schauder basis, Ejx is the linear inter-
polation of x with knots

(
k2−j , x(k2−j)

)
, the following inequalities are easily

checked:
‖x− Ejx‖∞ ≤ w(2−j , x), x ∈ C(0, 1), (17)

w(δ, x) ≤ 2‖x− Ejx‖∞ + 2‖x‖∞2jδ, 0 < δ < 2−j , x ∈ C(0, 1). (18)

Now, using (18), it follows that (i′) and (ii) imply (b). Moreover (i′) implies
obviously (a). On the other hand, by (17), (b) implies (ii). Finally, since
|x(t)| ≤ |x(0)|+ 1

δw(δ, x), (i′) follows from (a) and (b).

4 Some applications in Lp spaces

From now, we specialize in the case of stochastic processes considered as random
elements in functions spaces. By definition a sequence of such processes is tight
when the sequence of corresponding distributions is tight.

11



4.1 A sufficient condition in Lp(IR)

We shall use a r-regular multiresolution analysis of Lp(IR) to obtain a suffi-
cient condition for tightness of stochastic processes sequences in Lp(IR). Let us
first recall how the multiresolution analysis works in Lp(IR). From a r-regular
multiresolution analysis (Vj , Wj ; j ∈ ZZ) of L2(IR), we define the spaces Vj(p),
Wj(p) in the following way (Meyer [13] p. 31 and 45):

Case 1 < p < 2: V0(p) = V0 ∩ Lp(IR), Wj(p) = Wj ∩ Lp(IR),

Case 2 < p < +∞: V0(p) and Wj(p) are the completions of V0 and Wj in
the Lp norm.

In both cases, Vj(p) is defined by change of scale: f(t) ∈ V0(p) if and only if
f(2jt) ∈ Vj(p). Moreover we have Vj+1(p) = Vj(p)⊕Wj(p) and

Lp(IR) = V0(p)⊕
+∞⊕
j=0

Wj(p).

All these sums are direct and topological (i.e. the projections on the components
are continuous in the Lp norm), so we have a Schauder decomposition defined
by: G0 = V0(p), Gj = Wj−1(p).

Theorem 7 A sequence (ξn, n ∈ IN) of stochastic processes with paths in Lp(IR)
(1 < p < +∞) is tight in Lp(IR) if:

(i) sup
n∈IN

∫
IR

IE |ξn(t)|p dt < +∞,

(ii) lim
A→+∞

sup
n∈IN

∫
{|t|≥A}

IE |ξn(t)|p dt = 0,

(iii) There is a γ > 0 and a function g ∈ L1(IR) such that:

sup
n∈IN

IE |ξn(t+ u)− ξn(t)|p ≤ |u|γg(t), u, t ∈ IR.

Proof : The condition (ii) of theorem 3 will follow from the sufficient moment
condition:

lim
j→+∞

sup
n∈IN

IE ‖ξn − Ejξn‖p
p = 0 (19)

An easy adaptation of the proof of theorem 9.1.6. in Daubechies [7] shows
that if ϕ is C1 and |ϕ(t)|, |ϕ′(t)| ≤ a(1 + |t|)−1−ε, then {ϕj,k, k ∈ ZZ} is an
unconditional basis of Vj(p). So we can use the theorem 5 to investigate the
tightness of (Ejξn, n ∈ IN) in Vj(p). From now, let us choose the scaling function
ϕ real, compactly supported and C1.

12



Applying theorem 5 with α = β = p, we have to check:

sup
n∈IN

IE ‖Ejξn‖p
p < +∞ (20)

and
lim

l→+∞
sup
n∈IN

IE ‖Ejξn − Ej,lξn‖p
p = 0, (21)

where Ej,l is the projection from Vj(p) onto the finite dimensional subspace
span[ϕj,k, |k| ≤ l].

By an elementary density argument, the integral representation for Ej re-
mains true in Lp(IR):

Ejf(t) =
∫

IR

Ej(s, t)f(s) ds, f ∈ Lp(IR). (22)

Write Kj(u) for 2jK(2ju) where K is the majorizing convolution kernel involved
by (11). We have for each f ∈ Lp(IR):

‖Ejf‖p
p ≤

∫
IR

∣∣∣∫
IR

Kj(s− t)|f(s)| ds
∣∣∣p dt = ‖Kj ∗ |f | ‖p

p ≤ ‖Kj‖p
1 ‖f‖p

p

and hence (20) follows from the hypothesis (i).
Since each ϕj,k (k ∈ ZZ) has a compact support localized around k2−j , there

is a sequence (Al)l∈IN increasing to +∞ such that:

Ej(s, t)− Ej,l(s, t) = 0, |s| ≤ Al, t ∈ IR.

As a result, we have for each f ∈ Lp(IR) :

IE ‖Ejf − Ej,lf‖p
p =

∫
IR

∣∣∣∫
IR

(
Ej(s, t)− Ej,l(s, t)

)
f(s) ds

∣∣∣p dt
≤

∫
IR

∣∣∣∫
IR

Kj(s− t)|f(s)|1I{|s|>Al}(s) ds
∣∣∣p dt

≤ ‖Kj‖p
1

∫
{|s|>Al}

|f(s)|p ds.

So (21) follows from the hypothesis (ii).
It remains to verify the condition (19). For this part of the proof, the

compacity of the support of ϕ is not needed. It follows from the proof of
theorem 4 p. 33 in Meyer [13] that:∫

IR

Ej(s, t) dt = 1, s ∈ IR.

13



Consequently, for each f ∈ Lp(IR), we have:

‖f − Ejf‖p
p =

∫
IR

∣∣∣∫
IR

Ej(s, t)
(
f(s)− f(t)

)
dt

∣∣∣p ds
≤

∫
IR

bj(s)p

(∫
IR

|Ej(s, t)|
bj(s)

|f(s)− f(t)| dt
)p

ds,

where bj(s) =
∫
IR
|Ej(s, t)| dt. By Jensen’s inequality it follows:

‖f − Ejf‖p
p ≤

∫
IR2

bj(s)p−1|Ej(s, t)||f(s)− f(t)|p dsdt.

We now check that bj(s) is bounded uniformly in j and s. Recalling that for
each integer m there is a constant am such that: ϕ(t) ≤ am(1 + |t|)−m, we get:

bj(s) =
∫

IR

|E0(2js, t)| dt ≤ a2
m

∫
IR

dt

(1 + |t|)m

∑
k∈ZZ

1
(1 + |2js− k|)m

. (23)

Let us write θj(s) for the series in (23). Clearly θj(s) = θ0(2js) and hence
‖θj‖∞ = ‖θ0‖∞. Now, θ0 is periodic with period 1 and continuous (assuming
m ≥ 2) so ‖θ0‖∞ < +∞.

Going back to the stochastic processes ξn, we have then a constant B such
that:

IE ‖ξn − Ejξn‖p
p ≤ B

∫
IR2

|Ej(s, t)| IE |ξn(s)− ξn(t)|p dsdt.

By the properties of the majorizing kernel K, there is for each integer m a
constant cm such that:

|Ej(s, t)| ≤
cm2j

(1 + 2j |s− t|)m
, (s, t) ∈ IR2.

The hypothesis (iii) yields now a constant Bm such that:

IE ‖ξn − Ejξn‖p
p ≤ Bm

∫
IR

g(t) dt
∫

IR

2j |u|γ

(1 + 2j |u|)m
du.

Choosing m ≥ γ + 2, we have by the change of variable v = 2ju:

IE ‖ξn − Ejξn‖p
p ≤ Bm‖g‖12−jγ

∫
IR

|v|γ

(1 + |v|)m
dv,

so (19) is satisfied and the proof is complete.
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4.2 Donsker random step functions

Let (Xi)i≥1 be a sequence of centered random variables. Here the Xi need
not have any special properties as independence or mixing. Write S0 = 0,
Sn =

∑n
i=1Xi and consider the Donsker random step functions ξn and the

random broken lines ζn defined by:

ξn(t) =
n−1∑
i=0

Si

sn
1IIn,i

(t), where In,i =
[
i

n
,
i+ 1
n

[
, t ∈ [0, 1], (24)

ζn(t) =
S[nt]

sn
+

(
nt− [nt]

)X[nt]+1

sn
, t ∈ [0, 1]. (25)

Here the normalizing sequence (sn) is of the form:

sn = nδL(n), 0 < δ < 1,

where L is a slowly varying function verifying infx≥1 L(x) > 0. The study of
the tightness of (ξn)n≥1 in D(0, 1) and of (ζn)n≥1 in C(0, 1) has been carried
out to prove invariance principles. Here the tightness of (ξn)n≥1 in Lp(0, 1)
(1 < p < +∞) is considered in itself, as an indicator of the more or less chaotic
asymptotic behavior of (ξn)n≥1.

Theorem 8 The sequence (ξn)n≥1 of random functions defined by (24) is tight
in Lp(0, 1) (1 < p < +∞) if there is a constant A such that:

IE
∣∣∣∣Sk+m − Sk

sm

∣∣∣∣p ≤ A, m ∈ IN∗, k ∈ IN. (26)

Corollary 1 If the sequence (Xi)i≥1 is stationary and verify:

IE
∣∣∣∣Sm

sm

∣∣∣∣p ≤ A, m ∈ IN∗, (27)

then (ξn)n≥1 is tight in Lp(0, 1) (1 < p < +∞).

Remark: Consider the linear injection T from C(0, 1) into Lp(0, 1):

T : f 7−→
n−1∑
i=0

f
( i
n

)
1IIn,i

.

We have:

‖Tf‖p =
(

1
n

n−1∑
i=0

∣∣f( i
n

)∣∣p)1/p

≤ ‖f‖∞,

so T is continuous. Hence tightness of (ζn)n≥1 in C(0, 1) implies tightness
of (ξn)n≥1 in Lp(0, 1). This bounds the field of interest of our result in the
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stationary case. Indeed, it easily follows from theorem 12.2 p. 94 in [4], that if
(27) holds with p > 2 and sm =

√
m then:

P
(

max
1≤i≤m

|Si| ≥ λ
√
m

)
≤ C

λp
,

and so (ζn)n≥1 is tight in C(0, 1).
Proof : Using the Schauder decomposition associated to the Haar basis (see
section 2), we will verify the conditions (i) and (ii) of theorem 5 with α = β = p.
Observe first that:

IE ‖ξn‖p
p = IE

∫ 1

0

|ξn(t)|p dt =
1
n

n−1∑
i=0

IE
∣∣∣∣Si

sn

∣∣∣∣p ≤ A,

so (i) is satisfied.
Before treating the condition (ii), it seems convenient to recall here some

useful facts about the Ej associated to the Haar basis. The projection operator
Ej has an integral kernel: Ejf(s) =

∫ 1

0
Ej(s, t)f(t) dt, f ∈ Lp(0, 1). It is easily

verified that:

Ej(s, t) = 2j
2j−1∑
k=0

1ICj,k
(s, t), where Cj,k =

[
k

2j
,
k + 1

2j

[2

, (s, t) ∈ [0, 1]2.

In other words, (s, t) 7→ Ej(s, t) is the uniform density over its support, the
union Cj of the diagonal squares Cj,k (0 ≤ k < 2j). It follows that t 7→ Ej(s, t)
is the uniform density over the segment [k2−j , (k+1)2−j [ which contains s. As∫ 1

0
Ej(s, t) dt = 1, we have the following representation:

‖ξn − Ejξn‖p
p =

∫ 1

0

∣∣∣∫ 1

0

Ej(s, t)
n−1∑
i=0

Si

sn

(
1IIn,i(s)− 1IIn,i(t)

)
dt

∣∣∣p ds. (28)

We will find an upper bound for ‖ξn − Ejξn‖p
p in the two cases n > 2j and

n < 2j . If n = 2j , by the mean value interpretation of Ej , we have ξn = Ejξn.
The case n > 2j: Recasting (28) as:

‖ξn − Ejξn‖p
p =

n−1∑
i=0

∫ i+1
n

i
n

∣∣∣n−1∑
l=0

∫ l+1
n

l
n

Ej(s, t)
Si − Sl

sn

∣∣∣p ds,
we get by convexity:

‖ξn − Ejξn‖p
p ≤

n−1∑
i,l=0

∣∣∣Si − Sl

sn

∣∣∣p ∫ i+1
n

i
n

∫ l+1
n

l
n

Ej(s, t) dsdt (29)

≤ 2j

n2

n−1∑
i,l=0

∣∣∣Si − Sl

sn

∣∣∣pa(n, i, l), (30)
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where a(n, i, l) = 1 if the double integral in (29) is positive, a(n, i, l) = 0 else.
So the sum in (30) is composed of 2j square blocks:

n−1∑
i,l=0

∣∣∣Si − Sl

sn

∣∣∣pa(n, i, l) =
2j−1∑
k=0

∑
(i,l)∈Qj,k,n

∣∣∣Si − Sl

sn

∣∣∣p,
where the square index sets Qj,k,n =

{
(i, l) :

k

2j
− 1
n
<

i

n
,
l

n
<
k + 1

2j

}
, have

side lenght qj,k,n bounded by: n2−j ≤ qj,k,n ≤ n2−j +2. Renormalizing |Si−Sl|
by some mδL(m), with m = qj,k,n, we obtain:

‖ξn − Ejξn‖p
p ≤

2j

n2

(
2−j +

2
n

)pδ 2j−1∑
k=0

(L(m)
L(n)

)p ∑
(i,l)∈Qj,k,n

∣∣∣ Si − Sl

mδL(m)

∣∣∣p .
By the properties of slowly varying functions, we have L(x)/L(y) ≤ a(y/x)δ/2

(1 ≤ x ≤ y) for some constant a. Using the hypothesis (26), we have then some
constant A′ such that:

IE ‖ξn − Ejξn‖p
p ≤ A′2−jpδ/2, (n > 2j). (31)

The case n < 2j: In view of the diagonal localization of the support Cj , (28)
can be recast as:

‖ξn − Ejξn‖p
p =

2j−1∑
k=0

∫ k+1
2j

k

2j

∣∣∣∫ k+1
2j

k

2j

2j
n−1∑
i=0

Si

sn

(
1IIn,i

(s)− 1IIn,i
(t)

)
dt

∣∣∣p ds.
If Cj,k is included in some I2

n,i, the corresponding term in the summation over
k above vanishes. Hence we have only to consider the ”small” squares Cj,k,i

which cover the junction of two consecutives ”big” squares, I2
n,i−1 and I2

n,i.

i−1
n

i
n

i+1
n

i−1
n

i
n

i+1
n

Cj,k,i
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So we have:

‖ξn − Ejξn‖p
p =

n−1∑
i=1

∫ ki+1

2j

ki
2j

∣∣∣∫ ki+1

2j

ki
2j

2j
[(

1IIn,i−1(s)− 1IIn,i−1(t)
)Si−1

sn
+

(
1IIn,i(s)− 1IIn,i(t)

)Si

sn

]
ds

∣∣∣p dt (32)

≤ 2j
n−1∑
i=1

∫
Cj,k,i

∣∣∣(1IIn,i−1(s)− 1IIn,i−1(t)
)Si−1

sn
+

(
1IIn,i

(s)− 1IIn,i
(t)

)Si

sn

∣∣∣p dsdt, (33)

by the Jensen inequality. As the function under the integral in (33) vanishes
on the traces of I2

n,i−1 and I2
n,i over Cj,k,i, the integral in (33) is bounded by

s−p
n |Si − Si−1|p times the area of Cj,k,i. Hence:

‖ξn − Ejξn‖p
p ≤

1
2j

n−1∑
i=1

∣∣∣Si − Si−1

sn

∣∣∣p, n < 2j .

Taking the expectations, we get for some constant A′′:

IE ‖ξn − Ejξn‖p
p ≤

A′′

2jnpδ−1
,

which provides the following uniform bounds in the case n < 2j :

IE ‖ξn − Ejξn‖p
p ≤

{
A′′2−j if p ≥ 1/δ
A′′2−jpδ if 1 < p < 1/δ. (34)

Finally, condition (ii) of theorem 5 follows from (31) and (34).

4.3 Donsker random step functions in L2(0, 1)

The following theorem about the particular case p = 2 was first published by
Oliveira [14]. The proof used the Prohorov’s theorem 1.13 [18], the reproduc-
ing space HK with kernel K(s, t) = 1−max(s, t) and some trigonometric basis
of HK . Oliveira and Suquet [15] presented a new version of the proof taking
account of the rectification in Prohorov’s theorem and working with any hilber-
tian basis of HK . Now we are giving a third proof of the same result, in a more
natural way without use of the reproducing kernel Hilbert spaces.

Theorem 9 The sequence (ξn)n≥1 defined by (24) is tight in L2(0, 1) if there
is a constant B such that:

1
s2n

n∑
i,l=1

∣∣IEXiXl

∣∣ ≤ B, n ≥ 1. (35)
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Proof : We work again with the Haar basis. We use the representation of ξn
involving directly the random variables Xi:

ξn(t) =
n∑

i=1

Xi

sn
1IJn,i

(t), where Jn,i =
[
i

n
, 1

]
, t ∈ [0, 1].

Put hn,i(s, t) = 1IJn,i
(s)− 1IJn,i

(t). By the properties of Ej(s, t) recalled in the
proof of theorem 8, we have:

‖ξn − Ejξn‖2
2 =

∫ 1

0

∣∣∣ n∑
i=1

Xi

sn

∫ 1

0

Ej(u, t)hn,i(u, t) dt
∣∣∣2 du

=
n∑

i,l=1

XiXl

s2n

∫ 1

0

du

∫ 1

0

∫ 1

0

Ej(u, s)Ej(u, t)hn,i(u, s)hn,l(u, t)dsdt

=
1
s2n

n∑
i,l=1

XiXlb(n, i, l),

where:

b(n, i, l) =
2j−1∑
k=0

22j

∫
[ k

2j , k+1
2j [3

hn,i(u, s)hn,l(u, t) dsdtdu. (36)

Observe that if i+1
n ≤ k

2j or i
n ≥ k+1

2j , hn,i(u, s) vanishes on [ k
2j ,

k+1
2j [2 and else

|hn,i| is bounded by 1. We see so there is at most one non null term in the
right hand side of (36) under the constraints k

2j ≤ i
n ≤ k+1

2j and k
2j ≤ l

n ≤ k+1
2j .

Hence we always have 0 ≤ b(n, i, l) ≤ 2−j . Taking expectations, we get:

IE ‖ξn − Ejξn‖2
2 =

1
s2n

n∑
i,l=1

IEXiXl b(n, i, l) ≤ B2−j .

So condition (ii) of theorem (5) is satisfied.
To check the condition (i), an elementary calculation yields:

IE ‖ξn‖2
2 =

1
s2n

n∑
i,l=1

IE(XiXl)
(
1− max(i, l)

n

)
≤ B, n ≥ 1.

If the sequence (Xi)i≥1 is independent or stationary or positively dependent,
then (35) reduces to s−2

n IES2
n ≤ B. But in the general case the absolute value

cannot be dropped in (35) without extra assumption on the (Xi)i≥1. We give
now an example (with sn = n1/2) of sequence (Xi)i≥1 verifying n−1 IES2

n ≤ B
but with (ξn)n≥1 not tight in L2(0, 1) .

Let X1 be a random variable following the uniform distribution on [−1,+1].
Define for n > 1, Xn = (−1)n+1

(√
n +

√
n+ 1

)
X1. Thus we have Sn =
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(−1)n+1
√
nX1 and n−1 IES2

n ≤ 1. Intuitively, the oscillations of (ξn) are too vi-
olent. To precise this idea, we will show the necessary condition (ii) in theorem
3 is violated by the subsequence (ξnj

)j≥1 where nj = 2j −1. Going back to (32)
with p = 2 and expanding the square instead of applying the Jensen inequality,
we obtain:

‖ξnj − Ejξnj‖2
2 =

nj−1∑
i=1

(Si − Si−1√
nj

)2

22j

[( i

nj
− ki

2j

)(ki + 1
2j

− i

nj

)2

+

(ki + 1
2j

− i

nj

)( i

nj
− ki

2j

)2
]

=
2j

nj
X2

1

nj−1∑
i=1

(√
i+

√
i− 1

)2
( i

nj
− ki

2j

)(ki + 1
2j

− i

nj

)
.(37)

Restricting the summation in (37) to the i verifying 2j/4 ≤ ki ≤ 3 2j/4, we get a
lower bound. Observing now that

∣∣i(2j −1)−1−k2−j
∣∣ is minimal for i−k = −1

or 0, we have:

min
1
4 2j≤k≤ 3

4 2j

∣∣∣ i

2j − 1
− k

2j

∣∣∣ = min
1
4 2j≤k≤ 3

4 2j

min(k, 2j − k)
(2j − 1)2j

≥ 1
4(2j − 1)

.

Hence for 1
42j ≤ ki ≤ 3

42j :( i

nj
− ki

2j

)(ki + 1
2j

− i

nj

)
≥ C

22j

and
‖ξnj

− Ejξnj
‖2
2 ≥

C

22j
X2

1

∑
i: 14 2j≤ki≤ 3

4 2j

i.

Recall the integers ki verify:

ki

2j
≤ i

2j − 1
<
ki + 1

2j
, i = 1, . . . , n− 1.

So we have for j ≥ 2: ∑
i: 14 2j≤ki≤ 3

4 2j

i ≥
∑

i: 14 2j<i< 3
4 2j

i ≥ C ′22j .

Finally,
‖ξnj

− Ejξnj
‖2
2 ≥ C ′′X2

1 , j ≥ 2.

Clearly, this contradicts condition (ii) of theorem 3.
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4.4 Empirical process under strong mixing in Lp(0, 1)

Let (Xn)n≥1 be a strictly stationary sequence of uniform variables on [0, 1]. The
strong mixing coefficients of this sequence are defined by:

αn = sup
{
|P(A ∩B)− P(A) P(B)| , A ∈ Fk+1

0 , B ∈ F+∞
n+k, k ∈ IN

}
, (38)

where F l
j stands for the σ-field generated by the variables (Xi, j < i < l). We

define the empirical processes related to (Xn)n≥1 by:

ξn(t) =
1√
n

n∑
i=1

(
1I[Xi,1](t)− t

)
, t ∈ [0, 1], n ≥ 1. (39)

In the D(0, 1) setting, under the assumption:

αn = O
(
n−3−ε

)
, ε > 0. (40)

Yoshihara [23] proved the weak convergence of the empirical process ξn to the
centered gaussian process with covariance:

Γ(s, t) = s ∧ t− st+ 2
+∞∑
k=2

(
P (X1 ≤ s, Xk ≤ t)− st

)
. (41)

Recently, Oliveira and Suquet [16] proved the tightness of (ξn)n≥1 in L2(0, 1)
and its convergence to a gaussian process with covariance Γ given by (41) under
the assumption: ∑

n≥1

αn < +∞ (42)

Thus there is some interest in investigating the tightness of (ξn)n≥1 between the
two conditions (40) and (42) and the two spaces L2(0, 1) and D(0, 1).

Theorem 10 Suppose the mixing coefficients of (Xi)i≥1 verify:

|αi| ≤
C

i3−ε
, i ≥ 1, (43)

for some ε (0 ≤ ε < 2) and some constant C. Then the sequence (ξn)n≥1 of
empirical processes defined by (39) is tight in Lp(0, 1) for each p < 6− 2ε.

Regarding ξn as a random function defined on IR with support [0, 1], we can
use the theorem 7. Of course, in this particular case, the hypothesis (ii) of this
later theorem is trivially verified. Our main tool will be the following theorem.

Theorem 11 (Yokoyama[24]) Let (Yi)i≥1 be a strictly stationary strong mix-
ing sequence with IEY1 = 0 and IE |Y1|p+δ < +∞ for some p > 2 and δ > 0. If
its strong mixing coefficients αi(Y ), i ≥ 1, verify:

+∞∑
i=1

(i+ 1)p/2−1αi(Y )δ/(p+δ) < +∞, (44)
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then there is a constant K such that:

IE
∣∣∣ n∑
i=1

Yi

∣∣∣p ≤ Knp/2, n ≥ 1. (45)

A close examen of the proof shows we can choose: K = Amax(1, IE |Y1|p+δ),
where the constant A depends only on the mixing coefficients (αi(Y ), i ≥ 1).

To verify condition (i) of theorem 7, observe that:

IE
∣∣ξn(t)

∣∣p = n−p/2 IE
∣∣∣ n∑
i=1

(
1I[Xi,1](t)− t

)∣∣∣p.
Since the strong mixing coefficients of Yi = 1I[Xi,1](t)− t are dominated by the
αi, the hypothesis (43) and the Yokohama’s theorem give us, for a choice of p
to be precised later, a constant C ′ such that IE |ξn(t)|p ≤ C ′ uniformly in n, t.

Now, ξn being compactly supported by [0, 1], to verify the condition (iii) of
theorem 7, it suffices to prove that for some constant B:

IE
∣∣ξn(t+ u)− ξn(t)

∣∣p ≤ B|u|γ , t, t+ u ∈ [0, 1], n ≥ 1.

We have for t and t+ u in [0, 1]:

IE
∣∣ξn(t+ u)− ξn(t)

∣∣p = n−p/2 IE
∣∣∣ n∑
i=1

Zi

∣∣∣p,
where

Zi = 1I[Xi,1](t+ u)− 1I[Xi,1](t)− u.

An elementary calculation yields:

IE |Zi|p = (1− |u|)|u|
(
|u|p−1 + (1− |u|)p−1

)
and then IE |Zi|p ≤ 2|u|. Therefore, applying the Yokohama’s theorem to the
variables:

Y ′i = Zi|u|−1/(p+δ),

we obtain for a choice of p to be precised below:

IE
∣∣ξn(t+ u)− ξn(t)

∣∣p ≤ C ′′|u|p/(p+δ), t ∈ [0, 1].

It remains to examine the constraints on p. Clearly there is no upper bound in
the choice of δ. Under (43), the general term of the series in (44) is an O(iη)
with:

η =
p

2
− 1− δ(3− ε)

δ + p
. (46)

As δ goes to +∞, η goes to p/2 − 4 + ε, so the convergence condition η < −1
will be satisfied with p < 6− 2ε for δ large enough.
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Theorem 12 Under the hypotheses of theorem 10, the empirical process ξn
converges weakly to ζ in Lp(0, 1) for each p < 6− 2ε.

Proof : It remains only to check the convergence of characteristic functionals.
For fixed p (2 < p < 6− 2ε), define q by 1/p+ 1/q = 1. We want to prove that
for each f in Lq(0, 1) and each t in IR:

ϕf,n(t) = IE exp
(
it

∫ 1

0

f(s)ξn(s) ds
)
−→ IE exp

(
it

∫ 1

0

f(s)ζ(s) ds
)
, n→ +∞

(47)
By the theorem of Oliveira Suquet [16] for the L2(0, 1) case, (47) holds for
functions belonging to L2(0, 1) under the condition (42) which is weaker than
(43). The general case follows from the density of L2(0, 1) in Lq(0, 1) if we are
able to keep control on the quantities:

(a) sup
n∈IN

∣∣ϕf,n(t)− ϕg,n(t)
∣∣, t ∈ IR,

(b)
∣∣∣IE(

exp it
∫ 1

0

(
f(s)− g(s)

)
ζ(s) ds

)∣∣∣, t ∈ IR,

where f ∈ Lq(0, 1) is approximated in the Lq norm by g ∈ L2(0, 1).
Using the inequality |eiu − eiv| ≤ |u− v|, we have:

∣∣ϕf,n(t)− ϕg,n(t)
∣∣ ≤ |t| IE

∫ 1

0

|f(s)− g(s)||ξn(s)| ds

≤ |t| ‖f − g‖q

∫ 1

0

IE |ξn(s)|p ds.

As shown in the proof of theorem 10, IE |ξn(s)|p is bounded uniformly in n, s.
To bound (b), write:∣∣∣IE(

exp it
∫ 1

0

(
f(s)− g(s)

)
ζ(s) ds

)∣∣∣ ≤ |t|
∫ 1

0

|f(s)− g(s)| IE |ζ(s)| ds

≤ |t| ‖f − g‖1 sup
s∈[0,1]

IE |ζ(s)|

≤ |t| ‖f − g‖q sup
s∈[0,1]

(
IE ζ(s)2

)1/2
.

Now under (42), the continuity of Γ on [0, 1]2 follows from the uniform con-
vergence of the series in (41) and then Γ(s, s) = IE ζ(s)2 is bounded on [0, 1].
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5 Application to the Hölderian spaces H0
α

We turn now to the Hölderian spaces H0
α. For the isomorphic properties (in

Banach’s sense) of these spaces, we refer to Ciesielski [5]. As shown by Baldi and
Roynette [2], Kerkyacharian and Roynette [11], the spaces H0

α are more tractable
than C(0, 1) to handle stochastic processes, like the brownian motion, whose
paths have a regularity going beyond the simple continuity. For 0 < α < 1, Hα

is the space of functions vanishing at zero and verifying:

‖f‖Hα
= sup

s,t∈[0,1]

|f(t)− f(s)|
|t− s|α

< +∞. (48)

H0
α is the subspace of elements f in Hα satisfying the additional condition:

lim
δ→0

sup
|s−t|≤δ
s,t∈[0,1]

|f(t)− f(s)|
|t− s|α

= 0. (49)

Hα and H0
α equipped with the norm ‖ ‖Hα

are both Banach spaces but only H0
α

is separable.
It follows from theorem 2 in [5] that the Faber-Schauder basis is a Schauder

basis for H0
α and hence H0

α has the same Schauder decomposition as C(0, 1) (of
course with a different topology). Moreover f ∈ Hα if and only if there exists a
constant C such that the Faber-Schauder coefficients aj,k of f verify:

|a0| ≤ C, 2jα|aj,k| ≤ C, j ∈ IN, 0 ≤ k < 2j (50)

and f ∈ H0
α if and only if it verify (50) and:

lim
j→+∞

max
0≤k<2j

2jα|aj,k| = 0. (51)

Here the aj,k are defined by:

a0 = f(1), aj,k = f
(2k + 1

2j+1

)
− 1

2

[
f
( k

2j

)
+ f

(k + 1
2j

)]
. (52)

For f ∈ Hα, define ‖f‖ as the infimum of constants C verifying (50). Then ‖f‖
is a norm on Hα equivalent to the initial norm ‖f‖Hα

.
The theorem 3 provides the following tightness criterion in H0

α:

Theorem 13 The sequence (ξn)n≥1 of random elements in H0
α is tight if and

only if:

(a) lim
A→+∞

sup
n≥1

P
(
‖ξn‖∞ ≥ A

)
= 0,

(b) ∀ε > 0, lim
δ→0

sup
n≥1

P

(
sup

|t−s|≤δ

|ξn(t)− ξn(s)|
|t− s|α

≥ ε

)
= 0.
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Proof : Sufficiency of (a) and (b): Write an
j,k for the Faber-Schauder coefficients

of ξn. Clearly we have:

‖Ejξn‖ = max
i≤j

max
0≤k<2i

|an
i,k|2iα

‖ξn − Ejξn‖, = sup
i>j

max
0≤k<2i

|an
i,k|2iα.

Hence, by (52), for fixed j, ‖Ejξn‖ ≤ 2 2jα‖ξn‖∞ so the condition (i) of theorem
3 follows from (a). Next writing:

an
i,k =

1
2

[
ξn

(2k + 1
2i+1

)
− ξn

( 2k
2i+1

)]
+

1
2

[
ξn

(2k + 1
2i+1

)
− ξn

(2k + 2
2i+1

)]
,

we have:

|an
i,k|2iα ≤ 2−α sup

|t−s|≤2−i−1

|ξn(t)− ξn(s)|
|t− s|α

and

‖ξn − Ejξn‖ ≤ 2−α sup
|t−s|≤2−j

|ξn(t)− ξn(s)|
|t− s|α

,

which shows that (b) implies the condition (ii) of theorem 3.
Necessity of (a) and (b): The necessity of (a) follows obviously from the

continuity of the canonical injection from Hα into C(0, 1) (for each f ∈ Hα,
‖f‖∞ ≤ ‖f‖Hα

). To verify the necessity of (b), let us define the functional:

Tδ : Hα −→ IR+, Tδ(f) = sup
|t−s|≤δ

|f(t)− f(s)|
|t− s|α

.

It is easily checked that for fixed δ, Tδ(f) is a norm on Hα, equivalent to ‖f‖Hα
.

As a result, Tδ is continuous and we can apply the lemma 1 with the sequence
of closed subsets Fl of H0

α (itself closed in Hα) defined by:

Fl = {f ∈ H0
α, Tδl

(f) ≥ ε},

where δl decreases to zero. This yields the necessity of (b).

As in the C(0, 1) case (Billingsley [4] th. 8.3), the supremum over δ in (b)
can be somewhat localized.

Theorem 14 The sequence (ξn)n≥1 of random elements in H0
α is tight if:

(a) lim
A→+∞

sup
n≥1

P
(
‖ξn‖∞ ≥ A

)
= 0,

(c) For each positive ε and η, there exists a δ, with 0 < δ < 1, and an integer
n0 such that:

1
δ
P

(
sup

u≤s,t≤u+δ

|ξn(t)− ξn(s)|
|t− s|α

≥ ε

)
≤ η, n ≥ n0,

for all u in [0, 1[.
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Of course when u > 1 − δ, the supremum is restricted to u ≤ s, t ≤ 1. The
proof is obtained by an easy adaptation of the arguments given in the C(0, 1)
case and will be omitted.

Another sufficient condition for tightness in H0
α is the following proved by

Kerkyacharian and Roynette using the Faber Schauder coefficients. The moment
form of this condition was obtained first by Lamperti [12] by an another method.

Theorem 15 (Kerkyacharian Roynette [11]) Let (ξn)n≥1 be a sequence of
processes, vanishing at 0 and verifying:

∀λ > 0, P
(
|ξn(t)− ξn(s)| > λ

)
≤ c

λγ
|t− s|1+τ , for some τ > 0, γ > 0.

Then (ξn)n≥1 is tight in H0
α for α < τ/γ.

From a practical point of view, this condition is more tractable than theorem
13. The usefulness of theorem 13 seems be in its necessary part. Let us consider,
for instance, the following result of Lamperti about the convergence of Gaussian
processes.

Proposition 2 (Lamperti [12]) Let (ξn)n≥1 be a sequence of centered Gaus-
sian processes with covariance functions ρn(s, t) = IE

(
ξn(s)ξn(t)

)
. Suppose

ρn(s, t) converges to ρ(s, t) and there exists constants α ∈ (0, 1] and B < +∞
such that:∣∣ρn(s, s)− 2ρn(s, t) + ρn(t, t)

∣∣ ≤ B|t− s|2α, s, t ∈ [0, 1], n ≥ 1. (53)

Then there is a separable centered Gaussian process ξ with covariance ρ(s, t)
and paths belonging a.s. to H0

γ for every γ < α such that (ξn)n≥1 converges
weakly to ξ in H0

γ .

Applying theorem 13, we can see there is not a great loss in using condition (53)
to prove the weak convergence of ξn in H0

γ .

Proposition 3 With the notations of proposition 2, suppose (ξn)n≥1 converges
weakly to ξ in H0

γ , then:∣∣ρn(s, s)− 2ρn(s, t) + ρn(t, t)
∣∣ = o

(
|t− s|2γ

)
, uniformly in s, t.

Proof : For notational convenience, define F (x) =
2√
2π

∫ +∞

x

exp
(
−u2/2

)
du

and:

Z(n, s, δ) =
ξn(s)− ξn(s+ δ)

δγ
, σ2(n, s, δ) = IEZ2(n, s, δ).

From condition (b) of theorem 13 it follows:

lim
δ→0

sup
n,s

P
(
|Z(n, s, δ)| > ε

)
= lim

δ→0
sup
n,s

F
( ε

σ(n, s, δ)

)
= 0.
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As F decreases, this implies:

lim
δ→0

sup
n,s

σ2(n, s, δ) = 0,

from which the conclusion follows.

We close this section with an example illustrating the use of the isomorphism
between H0

α and the space c0 of sequences converging to zero equipped with the
norm of supremum. Define the normalized Ciesielski basis of H0

α by:

∆(α)
i (t) = ‖∆i‖−1

Hα
∆i(t), t ∈ [0, 1], i ∈ IN.

Then f ∈ H0
α if and only if:

∀t ∈ [0, 1], f(t) =
+∞∑
i=0

ai∆
(α)
i (t), with (ai)i∈IN ∈ c0.

The operator T : f 7→ (ai)i∈IN is an isomorphism of Banach spaces between H0
α

and c0 [5].

Proposition 4 Consider the sequence (ξn)n≥1 of random elements in H0
α de-

fined by:

ξn(t) =
+∞∑
i=0

Xn,i ∆(α)
i (t), t ∈ [0, 1],

where for each n ≥ 1,
(
Xn,i

)
i∈IN

is a sequence of independent random variables
which converges to zero almost surely. Then (ξn)n≥1 is tight in H0

α if and only
if:

(a) lim
A→+∞

sup
n≥1

+∞∑
i=0

P
(
|Xn,i| > A

)
= 0,

(b) ∀ε, lim
j→+∞

sup
n≥1

+∞∑
i=j

P
(
|Xn,i| > ε

)
= 0.

Proof : The isomorphism T shift the problem to the tightness of
(
T (ξn)

)
n≥1

in c0. Using the Schauder decomposition associated to the canonical basis of c0

and the independence of the Xn,i (i ∈ IN), we can write the conditions (i′) and
(ii) of theorem 4 under the form:

(i′) lim
A→+∞

+∞∏
i=0

(
1− P (|Xn,i| > A)

)
= 1, uniformly in n,

(ii) ∀ε, lim
j→+∞

+∞∏
i=j

(
1− P (|Xn,i| > ε)

)
= 1, uniformly in n.
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The result follows then by elementary arguments about the comparison of infi-
nite products and series.

6 Sequences spaces and Besov spaces

In all the preceeding examples, but for the last, no explicit computation of
‖x− IEj x‖ (x ∈ X ) was needed. We only made use of the connection between
‖x−IEj x‖ and the oscillations of x (in a sense depending on the functional space
X ). We close the paper with some cases where the computation of ‖x− IEj x‖
is easy: the sequences spaces `p(IN) and the Besov spaces.

The canonical basis of `p(IN) (1 ≤ p < +∞) being a Schauder one, the
theorems 3 and 5 have the following obvious translation in the case of discrete
time process ξn with paths in `p(IN):

ξn : (ω, i) 7→ ξn(ω, i), (ω, i) ∈ Ω× IN,
+∞∑
i=0

|ξn(ω, i)|p < +∞.

Theorem 16 The sequence of random elements (ξn)n≥1 is tight in `p(IN) (1 ≤
p < +∞) if and only if:

(i) For each i ∈ IN,
(
ξn(i)

)
n≥1

is tight in IR,

(ii) For each positive ε, lim
j→+∞

sup
n≥1

P
(∑

i>j

|ξn(i)|p > ε
)

= 0.

Corollary 2 The sequence (ξn)n≥1 is tight in `p(IN) (1 ≤ p < +∞) if:

(i) sup
n≥1

∑
i∈IN

IE |ξn(i)|p < +∞,

(ii) lim
j→+∞

sup
n≥1

∑
i>j

IE |ξn(i)|p = 0.

Remarks: Of course we have excluded the case p = +∞ since `∞(IN) is not
separable.

The case of `p(ZZ) (1 ≤ p < +∞) is similar to `p(IN). The canonical basis (ej ,
j ∈ ZZ) of `p(ZZ) is an unconditional Schauder basis. If we choose the Schauder
decomposition with Vj = span[ei, −j ≤ i ≤ j] the theorem 16 and its corollary
remain valid replacing IN by ZZ in (i) and i > j by |i| > j in (ii).

The Besov spaces Bs,q
p provide a ladder of spaces generalizing the Sobolev

and Hölder spaces. Their usefulness in functional estimation has been illustrated
by the recents papers of Kerkyacharian and Picard [9], [10].

Several equivalent definitions of the Besov spaces are available. We fol-
low here Meyer [13] p. 49. Some other definitions can be found in Bergh and
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Löfstrom [3], Triebel [22]. In particular, theorem 6.2.5. in Bergh and Löfstrom
presents an alternative definition in terms of derivatives and Lp-moduli of con-
tinuity.

Consider now a multiresolution analysis of L2(IR) with regularity r. Accord-
ing to Meyer, for 1 ≤ p ≤ +∞, 1 ≤ q ≤ +∞, 0 < s < r, the Besov space
Bs,q

p = Bs,q
p (IR) can be viewed as a function space equipped with one of the two

equivalent norms:

Js,q
p = ‖E0f‖Lp(IR) +

(∑
j≥0

(
2js‖Djf‖Lp(IR)

)q
)1/q

Ks,q
p = ‖α0, .‖`p(ZZ) +

(∑
j≥0

(
2j(s+1/2−1/p)‖βj, .‖`p(ZZ)

)q
)1/q

where the sequences α0, . =
(
α0,k

)
k∈ZZ

and βj, . =
(
βj,k

)
k∈ZZ

are sequences of
wavelets coefficients given by:

E0f =
∑
k∈ZZ

α0,kϕ0,k, Djf =
∑
k∈ZZ

βj,kψj,k, j ∈ IN.

This definition is intrinsic: for each multiresolution analysis with regularity
r′ > s, we find the same space Bs,q

p of functions equipped with norms J ′s,q
p and

K ′s,q
p equivalent to Js,q

p and Ks,q
p .

The use of the norm Ks,q
p reduces the Besov space Bs,q

p to a sequence space.
This allows us to give a tightness criterion involving the wavelets coefficients.

Theorem 17 The sequence of random elements (ξn)n≥1 in the Besov space
Bs,q

p (s > 0, 1 ≤ p < +∞, 1 ≤ q < +∞) is tight if and only if for some
multiresolution analysis with regularity r > s:

(i)
(
α0, .(ξn)

)
n≥1

is tight in `p(ZZ),

(ii) For each j ≥ 0,
(
βj, .(ξn)

)
n≥1

is tight in `p(ZZ),

(iii) ∀ε > 0, lim
j→+∞

sup
n≥1

P

(∑
i>j

(
2j(s+1/2−1/p)‖βj, .(ξn)‖`p(ZZ)

)q

> ε

)
= 0,

where for each n, the sequences α0, .(ξn) and βj, .(ξn) are given by:

α0, k(ξn) =
∫

IR

ξn(t)ϕ0,k(t) dt, βj,k(ξn) =
∫

IR

ξn(t)ψj,k(t) dt.

Proof : Obvious.
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