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By Alfredas Račkauskas1,3,4 and Charles Suquet2,3

Revised version September 10, 2003

Abstract

Let (Xi)i≥1 be an i.i.d. sequence of random elements in the Banach
space B, Sn := X1+· · ·+Xn and ξn be the random polygonal line with
vertices (k/n, Sk), k = 0, 1, . . . , n. Put ρ(h) = hαL(1/h), 0 ≤ h ≤ 1
with 0 < α ≤ 1/2 and L slowly varying at infinity. Let Ho

ρ(B) be the
Hölder space of functions x : [0, 1] 7→ B, such that ||x(t + h)− x(t)|| =
o(ρ(h)), uniformly in t. We characterize the weak convergence in Ho

ρ(B)
of n−1/2ξn to a Brownian motion. In the special case where B = R and
ρ(h) = hα, our necessary and sufficient conditions for such convergence
are EX1 = 0 and P(|X1| > t) = o(t−p(α)) where p(α) = 1/(1/2 − α).
This completes Lamperti (1962) invariance principle.
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1 Introduction

Let (B, ‖ ‖) be a separable Banach space and X1, . . . , Xn, . . . be i.i.d. random elements
in B. Set S0 = 0,

Sk = X1 + · · ·+Xk, for k = 1, 2, . . .

and consider the partial sums processes

ξn(t) = S[nt] + (nt− [nt])X[nt]+1, t ∈ [0, 1]

and
ξsrn := n−1/2ξn.

In the familiar case where B is the real line R, classical Donsker-Prohorov invariance
principle states, that if EX1 = 0 and EX2

1 = 1, then

ξsrn
D−→W, (1)

in C[0, 1], where (W (t), t ∈ R) is a standard Wiener process and
D−→ denotes convergence

in distribution. The finiteness of the second moment of X1 is clearly necessary here, since
(1) yields that ξsrn (1) satisfies the central limit theorem.

Replacing C[0, 1] in (1) by a stronger topological framework provides more continuous
functionals of paths. With this initial motivation, Lamperti [7] considered the convergence
(1) with respect to some Hölderian topology. Let us recall his result.

For 0 < α < 1, let Ho
α be the vector space of continuous functions x : [0, 1] → R such

that lim
δ→0

ωα(x, δ) = 0, where

ωα(x, δ) = sup
s,t∈[0,1],
0<t−s<δ

|x(t)− x(s)|
|t− s|α .

Ho
α is a separable Banach space when endowed with the norm

‖x‖α := |x(0)|+ ωα(x, 1).

Lamperti [7] proved that if 0 < α < 1/2 and E |X1|p <∞, where p > p(α) := 1/(1/2−α),
then (1) takes place in Ho

α. This result was derived again by Kerkyacharian and Roynette
[5] by another method based on Ciesielski [2] analysis of Hölder spaces by triangular
functions. Further generalizations were given by Erickson [3] (partial sums processes
indexed by [0, 1]d), Hamadouche [4] (weakly dependent sequence (Xn)), Račkauskas and
Suquet [10] (Banach space valued Xi’s and Hölder spaces built on the moduli ρ(h) =
hα lnβ(1/h)).

Considering a symmetric random variable X1 such that P{X1 ≥ u} = cu−p(α), u ≥ 1,
Lamperti [7] noticed that the sequence (ξsrn ) is not tight in Ho

α. This gives some hint that
the cost of the extension of the invariance principle to the Hölderian setting is beyond the
square integrability of X1.

The simplest case of our general result provides a full answer to this question for the
space Ho

α.

Theorem 1. Let 0 < α < 1/2 and p(α) = 1/(1/2− α). Then

ξsrn
D−−−−→

n→∞
W in the space Ho

α

if and only if EX1 = 0 and

lim
t→∞

tp(α)P{|X1| ≥ t} = 0. (2)
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We would like to point here that Theorem 1 contrasts strongly with the Hölderian
invariance principle for the adaptive self-normalized partial sums processes ζse

n . These are
defined as random polygonal lines of interpolation between the vertices (V 2

k /V
2
n , Sk/Vn),

k = 0, 1, . . . , n, where V 2
0 = 0 and V 2

k = X2
1 + . . .X2

k . It is shown in [11] that (ζse
n )

converges in distribution to W in any Ho
α (0 < α < 1/2) provided that E |X1|2+ε is finite

for some arbitrary small ε > 0. This condition can even be relaxed into “X1 is in the
domain of attraction of the normal distribution” in the case of symmetric Xi’s (this last
condition is also necessary).

To describe our general result, some notations are needed here. We write C(B) for the
Banach space of continuous functions x : [0, 1] → B endowed with the supremum norm
‖x‖∞ := sup{‖x(t)‖; t ∈ [0, 1]}. Let ρ be a real valued non decreasing function on [0, 1],
null and right continuous at 0, positive on (0, 1]. Put

ωρ(x, δ) := sup
s,t∈[0,1],
0<t−s<δ

‖x(t)− x(s)‖
ρ(t− s)

.

We associate to ρ the Hölder space

Ho
ρ(B) := {x ∈ C(B); lim

δ→0
ωρ(x, δ) = 0},

equiped with the norm
‖x‖ρ := ‖x(0)‖+ ωρ(x, 1).

We say that X1 satisfies the central limit theorem in B, which we denote by X1 ∈
CLT(B), if n−1/2Sn converges in distribution in B. This implies that EX1 = 0 and X1

is pregaussian. It is well known (e.g. [8]), that the central limit theorem for X1 cannot be
characterized in general in terms of integrability of X1 and involves the geometry of the
Banach space B. Of course some integrability of X1 and the partial sums is necessary for
the CLT. More precisely, e.g. [8, Corollary 10.2], if X1 ∈ CLT(B), then

lim
t→∞

t2 sup
n≥1

P
{
‖Sn‖ > t

√
n
}

= 0.

The space CLT(B) may be endowed with the norm

clt(X1) := sup
n≥1

E ‖n−1/2Sn‖. (3)

Let us recall that a B valued Brownian motion W with parameter µ (µ being the distribu-
tion of a Gaussian random element Y on B) is a Gaussian process indexed by [0, 1], with
independent increments such that W (t)−W (s) has the same distribution as |t− s|1/2Y .

The extension of the classical Donsker-Prohorov invariance principle to the case of B-
valued partial sums is due to Kuelbs [6] who established that ξsrn converges in distribution
in C(B) to some Brownian motion W if and only if X1 ∈ CLT(B). This convergence of ξsrn
will be referred to as the functional central limit theorem in C(B) and denoted by X1 ∈
FCLT(B). Of course in Kuelbs FCLT, the parameter µ of W is the Gaussian distribution
on B with same expectation and covariance structure as X1. The stronger property of
convergence in distribution of ξsrn in Ho

ρ(B) will be denoted by X1 ∈ FCLT(B, ρ).
An obvious preliminary requirement for the FCLT in Ho

ρ(B) is that the B-valued
Brownian motion has a version in Ho

ρ(B). From this point of view, the critical ρ is

ρc(h) =
√
h ln(1/h) due to Lévy’s Theorem on the modulus of uniform continuity of the

Brownian motion (see e.g. [12] and Proposition 4 below). So our interest will be restricted
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to functions ρ generating a weaker Hölder topology than ρc. More precisely, we consider
the functions ρ of the form ρ(h) = hαL(1/h) where 0 < α ≤ 1/2 and L is slowly varying
at infinity. Moreover when α = 1/2, we assume that L(t) increases faster at infinity than
lnβ t for some β > 1/2.

Throughout the paper we use the notation

θ(t) = t1/2ρ
(1

t

)
, t ≥ 1. (4)

Our characterization of the FCLT in the Hölder space Ho
ρ(B) reads now simply: X1 ∈

FCLT(B, ρ) if and only if X1 ∈ CLT(B) and for every A > 0,

lim
t→∞

tP
{
‖X1‖ ≥ Aθ(t)

}
= 0.

Moreover when α < 1/2, it is enough to take A = 1 in the above condition. Clearly in the
special case B = R and ρ(h) = hα, this characterization is exactly Theorem 1. It is also
worth noticing that like in Kuelbs FCLT, all the influence of the geometry of the Banach
space B is absorbed by the condition X1 ∈ CLT(B).

The paper is organized as follows. Section 2 presents some background on the sequen-
tial norm equivalent to the initial Hölder norm of Ho

ρ(B), the tightness in Ho
ρ(B) and the

admissible Hölder topologies for the FCLT. Section 3 gives a general necessary condition
which holds even for more general ρ. Section 4 contains the proof of the sufficient part in
the characterization of Hölderian FCLT. Some technical auxilliary results are deferred in
Section 5 to avoid overweighting of the exposition.

2 Preliminaries

2.1 Analytical background

With the aim to use a sequential norm equivalent to ‖x‖ρ, we require, following Ciesielski
(see e.g. [13, p.67]), that the modulus of smoothness ρ satisfies the conditions:

ρ(0) = 0, ρ(h) > 0, 0 < h ≤ 1; (5)

ρ is non decreasing on [0, 1]; (6)

ρ(2h) ≤ c1ρ(h), 0 ≤ h ≤ 1/2; (7)∫ h

0

ρ(u)

u
du ≤ c2ρ(h), 0 < h ≤ 1; (8)

h

∫ 1

h

ρ(u)

u2
du ≤ c3ρ(h), 0 < h ≤ 1; (9)

where c1, c2 and c3 are positive constants. Let us observe in passing, that (5), (6) and
(8) together imply the right continuity of ρ at 0. The class of functions ρ satisfying these
requirements is rich enough according to the following.

Proposition 2. For any 0 < α < 1, consider the function

ρ(h) = hαL(1/h)

where L is normalized slowly varying at infinity, continuous and positive on [1,∞). Then
ρ fulfills conditions (5) to (9) up to a change of scale.
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FCLT in Hölder spaces

Proof. Let us recall that L(t) is a positive continuous normalized slowly varying at infinity
if it has a representation

L(t) = c exp

{∫ t

b

ε(u)
du

u

}
with 0 < c < ∞ constant and ε(u) → 0 when u → ∞. By a theorem of Bojanic and
Karamata [1, Th. 1.5.5], the class of normalized slowly varying functions is exactly the
Zygmund class i.e. the class of functions f(t) such that for every δ > 0, tδf(t) is ultimately
increasing and t−δf(t) is ultimately decreasing. It follows that for some 0 < a ≤ 1, ρ is
non decreasing on [0, a]. Then (6) is satisfied by ρ̃(h) := ρ(ah).

Due to the continuity and positivity of ρ̃ on (0, 1], each inequality (7) to (9) will be
fulfilled if its left hand side divided by ρ̃(h) has a positive limit when h goes to 0. For (7),
this limit is clearly 2α.

For (8), we have by [1, Prop. 1.5.10],∫ h

0

ρ̃(u)

u
du = aα

∫ ∞

1/h

v−1−αL(v/a) dv ∼ 1

α
ρ̃(h).

Similarly for (9), we obtain by [1, Prop. 1.5.8],

h

∫ 1

h

ρ̃(u)

u2
du = aαh

∫ 1/h

1

v−αL(v/a) dv ∼ ρ̃(h)

1− α
.

Write Dj for the set of dyadic numbers of level j in [0, 1], i.e. D0 = {0, 1} and for
j ≥ 1,

Dj = { (2k + 1)2−j ; 0 ≤ k < 2j−1 }.

For any continuous function x : [0, 1] → B, define

λ0,t(x) := x(t), t ∈ D0

and for j ≥ 1,

λj,t(x) := x(t)− 1

2

(
x(t+ 2−j) + x(t− 2−j)

)
, t ∈ Dj .

The λj,t(x) are the B-valued coefficients of the expansion of x in a series of triangular
functions. The j-th partial sum Ejx of this series is exactly the polygonal line interpolating
x between the dyadic points k2−j(0 ≤ k ≤ 2j). Under (5) to (9), the norm ‖x‖ρ is
equivalent (see e.g. [12]) to the sequence norm

‖x‖seqρ := sup
j≥0

1

ρ(2−j)
max
t∈Dj

‖λj,t(x)‖.

It is easy to check that

‖x− Ejx‖seqρ = sup
i>j

1

ρ(2−i)
max
t∈Di

‖λi,t(x)‖. (10)
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2.2 Tightness

The dyadic affine interpolation which is behind the sequential norm is also useful to
investigate the tightness in Ho

ρ(B). Indeed it is not difficult to check that Ho
ρ(B) can be

expressed as a topological direct sum of closed subspaces (a Schauder decomposition) by

Ho
ρ(B) =

∞⊕
i=0

Wi.

Here W0 is the space of B-valued functions defined and affine on [0, 1] and for i ≥ 1, Wi

is the space of B-valued polygonal lines with vertices at the dyadics of level at most i and
vanishing at each dyadic of level less than i. It may be helpful to note here that each Wi

has infinite dimension with B.
This Schauder decomposition of Ho

ρ(B) allows us to apply Theorem 3 in [14] and
obtain the following tightness criterion.

Theorem 3. The sequence (Yn) of random elements in Ho
ρ(B) is tight if and only if the

following two conditions are satisfied:

i) For each dyadic t ∈ [0, 1], the sequence (Yn(t))n≥1 is tight on B.

ii) For each ε > 0,
lim
j→∞

lim sup
n→∞

P{‖Yn − EjYn‖seqρ > ε} = 0. (11)

2.3 Admissible Hölder norms

Let us discuss now the choice of the functions ρ for wich it is reasonable to investigate
a Hölderian FCLT. If X1 ∈ FCLT(B, ρ) and ` is a linear continuous functional on B
then clearly `(X1) ∈ FCLT(R, ρ). So we may as well assume B = R in looking for a
necessary condition on ρ. As polygonal lines, the paths of ξsrn belong to Ho

ρ for any ρ such
that h/ρ(h) → 0, when h → 0. The weaker smoothness of the limit process W and the
necessity of its membership in Ho

ρ put a more restrictive condition on ρ.

Proposition 4. Assume that for some X1, the corresponding process ξsrn converges weakly
to W in Ho

ρ. Then

lim
t→∞

θ(t)

ln1/2 t
= ∞. (12)

Proof. Let ω(W, δ) denote the modulus of uniform continuity of W . Since W has nec-
essarily a version in Ho

ρ, we see that ω(W, δ)/ρ(δ) goes a.s. to zero when δ → 0. This
convergence may be recast as

lim
δ→0

ω(W, δ)√
δ ln(1/δ)

√
δ ln(1/δ)

ρ(δ)
= 0 a.s.

By Lévy’s result [9, Th. 52,2] on the modulus of uniform continuity of W , we have with
positive probability lim infδ→0 ω(W, δ)/

√
δ ln(1/δ) > 0, so the above convergence implies

lim
δ→0

√
δ ln(1/δ)

ρ(δ)
= 0,

which is the same as (12).
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3 A general requirement for the Hölderian FCLT

We prove now that a necessary condition for X1 to satisfy the Hölderian FCLT in Ho
ρ(B)

is that for every A > 0,
lim
t→∞

tP
{∥∥X1

∥∥ > Aθ(t)
}

= 0.

In fact, the same tail condition must hold uniformly for the normalized partial sums, so
the above convergence is a simple by-product of the following general result. We point
out that Conditions (6) to (9) are not involved here. In this section the restriction on ρ
comes from Proposition 4.

Theorem 5. If the sequence (ξsrn )n≥1 is tight in Ho
ρ(B), then for every positive constant

A,
lim
t→∞

t sup
m≥1

P
{∥∥Sm∥∥ > m1/2Aθ(t)

}
= 0. (13)

Proof. As a preliminary step, we claim and check that

lim
N→∞

sup
n≥1

P
{
ωρ

(
ξsrn , 1/N

)
≥ A

}
= 0. (14)

From the tightness assumption, for every positive ε there is a compact subset K in Ho
ρ(B)

such that

P
{
ωρ

(
ξsrn , 1/N

)
≥ A

}
≤ P

{
ωρ

(
ξsrn , 1/N

)
≥ A and ξsrn ∈ K

}
+ ε.

Define the functionals ΦN on Ho
ρ(B) by ΦN (f) := ωρ

(
f ; 1/N

)
. By the definition of

Ho
ρ(B), the sequence (ΦN )N≥1 decreases to zero pointwise on Ho

ρ(B). Moreover each ΦN
is continuous in the strong topology of Ho

ρ(B). By Dini’s theorem this gives the uniform
convergence of (ΦN )N≥1 to zero on the compact K. Then we have supf∈K ΦN (f) < A for
every N bigger than some N0 = N0(A,K). It follows that for N > N0 and n ≥ 1,

P
{
ωρ

(
ξsrn , 1/N

)
≥ A and ξsrn ∈ K

}
= 0,

which leads to
P

{
ωρ

(
ξsrn , 1/N

)
≥ A

}
< ε, N > N0, n ≥ 1,

completing the verification of (14). In particular we get

lim
N→∞

sup
m≥1

P
{
ωρ

(
ξsrmN , 1/N

)
≥ A

}
= 0. (15)

Now we observe that

max
1≤k≤N

1

ρ(1/N)

∥∥ξsrmN (k/N)− ξsrmN ((k − 1)/N)
∥∥ ≤ ωρ

(
ξsrmN , 1/N

)
.

Writing for simplicity
Yk,m =

∥∥m−1/2(Smk − Sm(k−1))
∥∥,

we have from (15) that

lim
N→∞

sup
m≥1

P
{

max
1≤k≤N

Yk,m > Aθ(N)
}

= 0, (16)

recalling that θ(N) = N1/2ρ(1/N). By independence and identical distribution of the
Xi’s,

P
{

max
1≤k≤N

Yk,m > Aθ(N)
}

= 1−
(
1−P

{
Y1,m > Aθ(N)

})N
. (17)
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Consider the function gN (u) := 1− (1− u)N , 0 ≤ u ≤ 1. As gN is increasing on [0, 1], we
have

gN (u) ≥ gN (1/N) = 1− (1− 1/N)N > 1− e−1, 1/N ≤ u ≤ 1. (18)

By concavity of gN , we also have

gN (u) ≥ NgN (1/N)u ≥ N(1− e−1)u, 0 ≤ u ≤ 1/N. (19)

Write um,N := P
{
Y1,m > Aθ(N)

}
and uN := supm≥1 um,N . By increasingness and

continuity of gN , supm≥1 gN (um,N ) = gN (uN ). This together with (16) and (17) shows
that limN→∞ gN (uN ) = 0. By (18), it follows that 0 ≤ uN ≤ 1/N , for N large enough. In
view of (19), we have then limN→∞NuN = 0. This last convergence can be recast more
explicitly as

lim
N→∞

N sup
m≥1

P
{∥∥Sm∥∥ > m1/2Aθ(N)

}
= 0,

which is clearly equivalent to (13).

4 Characterizing the Hölderian FCLT

Before proving our main result let us set assumptions for ρ(h).

Definition 6. We denote by R the class of non decreasing functions ρ satisfying

i) for some 0 < α ≤ 1/2, and some positive function L which is normalized slowly
varying at infinity,

ρ(h) = hαL(1/h), 0 < h ≤ 1; (20)

ii) θ(t) = t1/2ρ(1/t) is C1 on [1,∞);

iii) there is a β > 1/2 and some a > 1, such that θ(t) ln−β(t) is non decreasing on
[a,∞).

Remark 7. Clearly L(t) ln−β(t) is normalized slowly varying for any β > 0, so when
α < 1/2, t1/2−αL(t) ln−β(t) is ultimately non decreasing and iii) is automatically satisfied.

The assumption ii) of C1 regularity for θ is not a real restriction, since the function
ρ(1/t) being α-regularly varying at infinity is asymptoticaly equivalent to a C∞ α-regularly
varying function ρ̃(1/t) (see [1]). Then the corresponding Hölderian norms are equivalent.

Put b := inft≥1 θ(t). Since by iii), θ(t) is ultimately increasing and limt→∞ θ(t) = ∞,
we can define its generalized inverse ϕ on [b,∞) by

ϕ(u) := sup{t ≥ 1; θ(t) ≤ u}. (21)

With this definition, we have θ(ϕ(u)) = u for u ≥ b and ϕ(θ(t)) = t for t ≥ a.

Theorem 8. Let ρ ∈ R. Then X1 ∈ FCLT(B, ρ) if and only if X1 ∈ CLT(B) and for
every A > 0,

lim
t→∞

tP
{
‖X1‖ ≥ Aθ(t)

}
= 0. (22)

Corollary 9. Let ρ ∈ R with α < 1/2 in (20). Then X1 ∈ FCLT(B, ρ) if and only if
X1 ∈ CLT(B) and

lim
t→∞

tP
{
‖X1‖ ≥ θ(t)

}
= 0. (23)
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Corollary 10. Let ρ(h) = h1/2 lnβ(c/h) with β > 1/2. Then X1 ∈ FCLT(B, ρ) if and
only if X1 ∈ CLT(B) and

E exp
(
d‖X1‖1/β

)
<∞, for each d > 0. (24)

Corollary 11. Let ρ ∈ R and B = R. Then X1 ∈ FCLT(R, ρ) if and only if EX1 = 0
and either (22) or (23) holds according to the case α = 1/2 or α < 1/2.

Remark 12. The requirement “for every A > 0” in (22) cannot be avoided in general.
For instance let us choose B = R, X1 symmetric such that P{|X1| ≥ u} = exp(−u/c),
(c > 0) and ρ(h) = h1/2 ln(1/h), so θ(t) = ln t. Clearly (22) is satisfied only for A > c, so
X1 /∈ FCLT(R, ρ).

Proof of Theorem 8. The necessity of “X1 ∈ CLT(B)” is obvious while that of (22) is
contained in Theorem 5. For the converse part, Kuelbs FCLT gives us for any m ≥ 1 and
0 ≤ s1 < · · · < sm ≤ 1(

ξsrn (s1), . . . , ξ
sr
n (sm)

) D−→
(
W (s1), . . . ,W (sm)

)
in the space Bm. In particular, Condition i) of Theorem 3 is automatically fulfilled. So
the remaining work is to check Condition (11).

Write for simplicity tk = tkj = k2−j , k = 0, 1, . . . , 2j , j = 1, 2, . . . In view of (10), it
is sufficient to prove that

lim
J→∞

lim sup
n→∞

P
{

sup
J≤j

1

ρ(2−j)
n−1/2 max

1≤k<2j
‖ξn(tk+1)− ξn(tk)‖ ≥ ε

}
= 0. (25)

To this end, we bound the probability in the left hand side of (25) by P1 + P2 where

P1 := P
{

sup
J≤j≤logn

1

ρ(2−j)
n−1/2 max

1≤k≤2j
‖ξn(tk+1)− ξn(tk)‖ ≥ ε

}
and

P2 := P
{

sup
j>logn

1

ρ(2−j)
n−1/2 max

1≤k≤2j
‖ξn(tk+1)− ξn(tk)‖ ≥ ε

}
.

Here and throughout the paper, log denotes the logarithm with basis 2, while ln denotes
the natural logarithm (log(2x) = x = ln(ex)).

Estimation of P2. If j > logn, then tk+1 − tk = 2−j < 1/n and therefore with tk ∈
[i/n, (i+ 1)/n), either tk+1 is in (i/n, (i+ 1)/n] or belongs to

(
(i+ 1)/n, (i+ 2)/n

]
, where

1 ≤ i ≤ n− 2 depends on k and j.

In the first case we have

‖ξn(tk+1)− ξn(tk)‖ = ‖Xi+1‖2−jn ≤ 2−jn max
1≤i≤n

‖Xi‖.

If tk and tk+1 are in consecutive intervals, then

‖ξn(tk+1)− ξn(tk)‖ ≤ ‖ξn(tk)− ξn((i+ 1)/n)‖+ ‖ξn((i+ 1)/n)− ξn(tk+1)‖
≤ 2−j+1n max

1≤i≤n
‖Xi‖.

9
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With both cases taken into account we obtain

P2 ≤ P
{

sup
j>logn

1

ρ(2−j)
n−1/2n2−j+1 max

1≤i≤n
‖Xi‖ ≥ ε

}
≤ P

{
sup

j>logn

1

θ(2j)
max

1≤i≤n
‖Xi‖ ≥

ε

2

}
≤ P

{
max

1≤i≤n
‖Xi‖ ≥

ε

2
min
j>logn

θ(2j)
}

≤ nP
{
‖X1‖ ≥

ε

2
θ(n)

}
,

for n ≥ a (see Definition 6.iii)). Hence, due to (22), for each ε > 0, limn→∞ P2 = 0.

Estimation of P1. Let uk = [ntk]. Then uk ≤ ntk ≤ 1+uk and 1+uk ≤ uk+1 ≤ ntk+1 ≤
1 + uk+1. Therefore

‖ξn(tk+1)− ξn(tk)‖ ≤ ‖ξn(tk+1)− Suk+1‖+ ‖Suk+1 − Suk‖+ ‖Suk − ξn(tk)‖.

Since ‖Suk − ξn(tk)‖ ≤ ‖X1+uk‖ and ‖ξn(tk+1) − Suk+1‖ ≤ ‖X1+uk+1‖ we obtain P1 ≤
P1,1 + P1,2, where

P1,1 := P
{

sup
J≤j≤logn

1

ρ(2−j)
n−1/2 max

1≤k≤2j
‖Suk+1 − Suk‖ ≥

ε

2

}
P1,2 := P

{
max

J≤j≤logn

1

ρ(2−j)
n−1/2 max

1≤i≤n
‖Xi‖ ≥

ε

4

}
.

In P1,2, the maximum over j is realized for j = logn, so

P1,2 = P
{ 1

θ(n)
max

1≤i≤n
‖Xi‖ ≥

ε

4

}
≤ nP

{
‖X1‖ ≥

ε

4
θ(n)

}
,

which goes to zero by (22).

To estimate P1,1, we use truncation arguments. For a positive δ, that will be precised
later, define

X̃i := Xi1
(
‖Xi‖ ≤ δθ(n)

)
, X ′

i := X̃i −E X̃i,

where 1(E) denotes the indicator function of the event E. Let S̃uk and P̃1,1 be the

expressions obtained by replacing Xi with X̃i in Suk and P1,1. Similarly we define S′uk

and P ′1,1 by replacing Xi with X ′
i and ε with ε/2. Due to (22), the control of P1,1 reduces

to that of P̃1,1 because

P1,1 ≤ P̃1,1 + P
{

max
1≤i≤n

‖Xi‖ > δθ(n)
}
≤ P̃1,1 + nP

{
‖X1‖ > δθ(n)

}
.

Now to deal with centered random variables, we shall prove that P̃1,1 ≤ P ′1,1. It suffices
to prove that for n and J large enough, the following holds

sup
J≤j≤logn

1

ρ(2−j)
n−1/2 max

1≤k≤2j

uk+1∑
i=1+uk

‖E X̃i‖ <
ε

4
. (26)

As j ≤ logn,

1 ≤ uk+1 − uk ≤ n2−j + 1 ≤ 2n2−j , 0 ≤ k < 2j , (27)

10
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so it suffices to have

2n1/2‖E X̃1‖ max
J≤j≤logn

2−j

ρ(2−j)
<
ε

4
. (28)

Writing 2−j/ρ(2−j) = 2−j/2/θ(2j) and recalling that θ is non decreasing on [a,∞), we see
that for J ≥ log a, (28) reduces to

2n1/2

2J/2θ(2J)
‖E X̃1‖ <

ε

4
. (29)

Now, as EX1 = 0, we get

‖E X̃1‖ ≤
∫ ∞

δθ(n)

P
{
‖X1‖ > t)

}
dt =

∫ ∞

n

P
{
‖X1‖ > δθ(u)

}
δθ′(u) du.

By (22), there is an u0(δ) ≥ 1 such that for u ≥ u0(δ), uP
{
‖X1‖ > δθ(u)

}
≤ 1, whence

‖E X̃1‖ ≤ −δ θ(n)

n
+ δ

∫ ∞

n

θ(u)

u2
du, n ≥ u0(δ).

As θ(u)u−1/2 = ρ(1/u) is non increasing, this last integral is dominated by n−1/2θ(n)
∫∞
n
u−3/2 du =

2n−1θ(n). Now plugging the estimate

‖E X̃1‖ ≤ δn−1θ(n) (30)

into the left hand side of (29) gives

2n1/2

2J/2θ(2J)
‖E X̃1‖ ≤

2δ

2J
2J/2

θ(2J)

θ(n)

n1/2
≤ 2δ

2J
.

This concludes (26) provided δ/2J < ε/8.

Estimation of P ′1,1. Recalling (27), we have

P ′1,1 ≤
logn∑
j=J

P
{
n−1/2 max

1≤k≤2j
‖S′uk+1 − S′uk

‖ ≥ ε

4
ρ(2−j)

}

≤
logn∑
j=J

P
{

max
1≤k≤2j

‖S′uk+1 − S′uk
‖

(uk+1 − uk)1/2
≥ ε

4
√

2
θ(2j)

}

≤
logn∑
j=J

2j∑
k=1

P
{‖S′uk+1 − S′uk

‖
(uk+1 − uk)1/2

≥ ε

4
√

2
θ(2j)

}
(31)

At this stage we use tail estimates related to ψγ-Orlicz norms (see (38) and (39) in Sec-
tion 5). By Talagrand’s inequality (Theorem 15 below), (27), Lemmas 16 and 17, we get
for 1 < γ ≤ 2,∥∥∥∥ S′uk+1 − S′uk

(uk+1 − uk)1/2

∥∥∥∥
ψγ

≤ Kγ

(
2clt(X1) + (uk+1 − uk)

1/2−1/γ‖X ′
1‖ψγ

)
≤ K′

(
1 +

(
n2−j

)1/2−1/γ δθ(n)

ln1/γ ϕ
(
δθ(n)

))
,

with a constant K′ depending only on γ and of the distribution of X1.

11
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Now we choose γ such that
1

2
<

1

γ
< β, (32)

so θ(t) ln−1/γ t→∞, as t→∞. With t = ϕ
(
δθ(n)

)
, this gives

lim
n→∞

δθ(n)

ln1/γ ϕ
(
δθ(n)

) = ∞. (33)

Put for notational convenience

wn,j :=
(
n2−j

)1/2−1/γ δθ(n)

ln1/γ ϕ
(
δθ(n)

) , 0 ≤ j ≤ logn.

By (33), for n ≥ n0,
δθ(n)

ln1/γ ϕ
(
δθ(n)

) > 1,

which gives in particular wn,logn > 1. As γ < 2, wn,j is increasing in j, so with J ′n :=
min{j ≤ logn; wn,j ≥ 1} we have for n ≥ n0,∥∥∥∥ S′uk+1 − S′uk

(uk+1 − uk)1/2

∥∥∥∥
ψγ

≤
{

2K′ if 0 ≤ j < J ′n
2K′wn,j if J ′n ≤ j ≤ logn.

(34)

Put Jn := max(J, J ′n). With the usual convention of nullity of a sum indexed by the
empty set, we can split the upper bound (31) in two sums Q1 and Q2 indexed respectively
by J ≤ j < Jn and Jn ≤ j ≤ logn.

Estimation of Q1. Due to (34) and (39), we have with some constant c = c(K′, ε),

Q1 :=
∑

J≤j<Jn

2j∑
k=1

P
{‖S′uk+1 − S′uk

‖
(uk+1 − uk)1/2

≥ ε

4
√

2
θ(2j)

}
≤

∑
J≤j<Jn

2j+1 exp
(
−cθ(2j)γ

)
.

Since θ(2j)γ/j goes to infinity, we have cθ(2j)γ/j ≥ 1 + ln 2 for J large enough, and then

Q1 ≤
2e−J

1− e−1
.

Estimation of Q2. Using again (34) and (39), we get

Q2 :=
∑

Jn≤j≤logn

2j∑
k=1

P
{‖S′uk+1 − S′uk

‖
(uk+1 − uk)1/2

≥ ε

4
√

2
θ(2j)

}
≤

∑
Jn≤j≤logn

2j+1 exp
(
−cθ(2j)γw−γn,j

)
.

Puting zj := 2j+1 exp
(
−cθ(2j)γw−γn,j

)
, we now observe that for j large enough zj+1/zj ≥ 2.

Indeed

zj+1

zj
= 2 exp

{
cn1−γ/2 lnϕ

(
δθ(n)

)(
δθ(n)

)γ 2j(γ/2−1)[θ(2j)γ − 2γ/2−1θ(2j+1)γ
]}
.

12
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As ρ(h) = hαL(1/h), θ(t) = t1/2−αL(t) with L slowly varying at infinity, we have

lim
j→∞

θ(2j+1)γ

θ(2j)γ
= 2γ/2−αγ .

Hence there is a j0 independent of n such that for j ≥ j0, zj+1/zj ≥ 2, provided that
2γ/2−12γ/2−αγ < 1, i.e.

γ <
1

1− α
. (35)

Note that for α = 1/2, the inequality (35) does not impose any additional restriction
on the choice of γ. For 0 < α < 1/2, we have 1 < 1/(1 − α) < 2 which is compatible
with the condition 1 < γ ≤ 2 used in the above Talagrand’s inequality. Moreover, the
compatibility between (32) and (35) requires β > 1− α, which is not a problem since for
α < 1/2, Condition iii) in the definition of R is satisfied with any β > 0.

Now
∑
j0≤j≤m zj ≤ 2zm, so for J ≥ j0,

Q2 ≤ 2zlogn = 4n exp

(
−c

lnϕ
(
δθ(n)

)
δγ

)
.

To finish the proof it suffices to check that

lim
δ↓0

lim inf
n→∞

lnϕ
(
δθ(n)

)
δγ lnn

= ∞. (36)

The condition iii) in the definition of the class R provides the representation θ(t) =
f(t) lnβ t, t > 1, with f ultimately non decreasing. This gives in turn ϕ(u) = exp

(
u1/βg(u)

)
with g ultimately non increasing. Indeed, puting u = θ(t) and taking the logarithms in
this last formula yields g

(
θ(t)

)
= f(t)−1/β where θ is continuous and ultimately non

decreasing.

Now for δ < 1 and n large enough,

lnϕ
(
δθ(n)

)
δγ lnn

=
δ1/βθ(n)1/βg

(
δθ(n)

)
δγ lnϕ

(
θ(n)

) ≥
δ1/βθ(n)1/βg

(
θ(n)

)
δγθ(n)1/βg

(
θ(n)

) = δ1/β−γ .

As γ > 1/β, (36) follows.

Proof of Corollary 9. The only thing to check is that we can drop the constant A in (22).
As α < 1/2, we can write α = 1/2 − 1/p (p > 2), so θ(t) = t1/pL(1/t), with L slowly
varying at 0. It follows that Aθ(t) is asymptoticaly equivalent to θ(Apt). So for some
function ε, vanishing at infinity and with v = Apt,

tP
{
‖X1‖ ≥ Aθ(t)

}
= A−pvP

{
‖X1‖ ≥ θ(v)(1 + ε(v))

}
≤ 2A−p

v

2
P

{
‖X1‖ ≥ θ(v/2)

}
,

for v large enough, using the fact that

lim
v→∞

θ(v)

θ(v/2)
= 21/p > 1.

Now (22) follows clearly from (23).

13
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Proof of Corollary 10. When ρ(h) = h1/2 lnβ(c/h), then putting u := Aθ(t) = A lnβ(ct)
and γ := 1/β, (22) is clearly equivalent to

P
(
‖X1‖ ≥ u

)
= o

(
exp

(
−(u/A)γ

))
. (37)

for each A > 0. As (37) gives the finiteness of E exp
(
d‖X1‖1/β

)
for any d < 1/A,

(24) follows. Conversely from (24), Markov inequality leads directly to (37) and then to
(22).

Proof of Corollary 11. As “X1 ∈ CLT(R)” is equivalent to EX1 = 0 and EX2
1 < ∞, we

just have to check that the finiteness of EX2
1 follows from (22). Using (22), we get for

any a > 0,

EX2
1 =

∫ ∞

0

2xP
{
|X1| > x

}
dx

≤ a2 +

∫ ∞

a

2xP
{
|X1| > x

}
dx

= a2 +

∫ ∞

ϕ(a)

2θ(t)P
{
|X1| > θ(t)

}
θ′(t) dt

≤ a2 + C

∫ ∞

ϕ(a)

2θ(t)θ′(t)

t
dt.

Noting that θ(t)2/t = ρ(1/t)2 vanishes at infinity, integration by parts gives

EX2
1 ≤ a2 +

a2

ϕ(a)
+ C

∫ ∞

ϕ(a)

θ(t)2

t2
dt.

So everything reduces to the convergence of the integral

I =

∫ ∞

1

θ(t)2

t2
dt =

∫ ∞

1

ρ(1/t)2

t
dt.

The convergence follows easily from our general Assumption (8) and Proposition 2. The
monotonicity of ρ and the substitution u = 1/t gives

∫∞
1
ρ(1/t)2/t dt ≤ c2ρ(1)2 <∞.

The following corollary of Theorems 5 and 8, which might be of independent interest
concludes this section.

Corollary 13. Let X1, . . . , Xn, . . . be i.i.d. random elements in the separable Banach
space B such that X1 ∈ CLT(B). Let θ(t) = t1/2−αL(t) with 0 < α ≤ 1/2 and L
normalized slowly varying at infinity. Assume moreover that when α = 1/2, L(t) ln−β t is
ultimately non decreasing for some β > 1/2. Then the condition

lim
t→∞

t sup
m≥1

P
{
‖Sm‖ > m1/2Aθ(t)

}
= 0, for every A > 0

is equivalent to

lim
t→∞

tP
{
‖X1‖ > Aθ(t)

}
= 0, for every A > 0.

When α < 1/2, it is enough to take A = 1 in the second condition.
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FCLT in Hölder spaces

5 Auxiliary technical results

Set for γ > 0, and X a random variable

‖X‖ψγ := inf{c > 0; E exp(‖X/c‖γ) ≤ 2}. (38)

For γ ≥ 1, ‖X‖ψγ is a norm and is equivalent to a norm for 0 < γ < 1. From this
definition, Beppo Levi theorem (monotone convergence) and Markov inequality, we have
immediately

P{‖X‖ ≥ x} ≤ 2 exp

(
− xγ

‖X‖γψγ

)
, x > 0. (39)

Lemma 14. If for some constants K and λ, a random variable Y satisfies

P{‖Y ‖ ≥ t} ≤ K exp
{
−

( t
λ

)γ}
, t > 0,

then

‖Y ‖ψγ ≤
(
1 +

K

2

)1/γ

λ.

Proof. For c > λ we have

E exp(‖Y/c‖γ) =

∫ ∞

0

γ

c

( t
c

)γ−1

exp
{( t

c

)γ}
P{‖Y ‖ > t}dt

≤ K

cγ

∫ ∞

0

γtγ−1 exp
{
tγ(c−γ − λ−γ

}
dt

=
K

cγ
1

λ−γ − c−γ

∫ ∞

0

γuγ−1 exp(−uγ) du =
K

(c/λ)γ − 1
.

Now the choice c = λ
(
1 + K/2

)1/γ
, gives E exp(‖Y/c‖γ) ≤ 2. The result follows since

‖Y ‖ψγ = inf{c > 0; E exp(‖Y/c‖γ) ≤ 2}.

Theorem 15 (Talagrand [15, Th. 4]). Let (Yi)i≥1 be a sequence of independent mean
zero Banach-space valued random variables. Then for 1 < γ ≤ 2, we have∥∥∥∑

i≤N

Yi

∥∥∥
ψγ

≤ Kγ

{
E

∥∥∥∑
i≤N

Yi

∥∥∥ +

( ∑
i≤N

‖Yi‖γ
′

ψγ

)1/γ′}
,

where 1/γ + 1/γ′ = 1 and Kγ depends on γ only.

Lemma 16. Let θ(t) be positive and C1 on [1,∞) and limt→∞ θ(t) = ∞. Assume that

i) M := supu>1 uP
{
‖X1‖ > θ(u)

}
<∞;

ii) there is some a > 1 such that on [a,∞), θ(t) is non decreasing and θ(t)−γ ln t is
non increasing.

Then the truncated random variable X̃1 = (X1; ‖X1‖ ≤ δθ(n)), satisfies, for n large enough

‖X̃1‖ψγ ≤ K
δθ(n)

ln1/γ{ϕ
(
δθ(n)

)
}
, (40)

where ϕ is the generalized inverse of θ defined by (21). The same upper bound remains

valid for X̃1 −E X̃1, with a different K.
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Condition ii) is fulfilled particularly by θ(t) = t1/2ρ(1/t) when ρ(h) = hαL(h) with
0 < α < 1/2 and when ρ(h) = h1/2 lnβ(c/h) with β > 1/γ.

Proof. Let us consider for any s > 0, the exponential moments

In,s := E exp(‖sX̃1‖γ) =

∫ δθ(n)

0

γsγxγ−1 exp
(
(sx)γ

)
P{‖X1‖ > x}dx.

Put m := max{θ(t); 1 ≤ t ≤ a}. From i) and change of variable, we obtain for δθ(n) ≥
θ(a),

In,s ≤ exp
(
sγmγ) +

∫ δθ(n)

θ(a)

γsγxγ−1 exp
(
(sx)γ

)
P{‖X1‖ > x}dx

≤ exp
(
sγmγ) +M

∫ ϕ(δθ(n))

a

exp
(
sγθ(v)γ

)
v

γsγθ(v)γ−1θ′(v) dv

Integrating by parts and observing that

exp
(
sγθ(v)γ

)
v2

= exp
{
θ(v)γ

(
sγ − 2 ln v

θ(v)γ

)}
is non decreasing on [a,∞) for any s > 0 thanks to ii), we obtain

In,s ≤ exp
(
sγmγ) + 2M

exp
(
sγδγθ(n)γ

)
ϕ

(
δθ(n)

) ,

for each s > 0 and each n such that δθ(n) ≥ θ(a). Now the choice

s = s(n) =
(
δθ(n)

)−1
ln1/γ ϕ

(
δθ(n)

)
gives In,s(n) ≤ exp

(
mγs(n)γ

)
+2M . By ii) and the change of variable u = θ(t), u−γ lnϕ(u)

is non increasing on [θ(a),∞), whence s(n)γ ≤ θ(a)−γ ln a and

E exp(|s(n)X̃1|γ) ≤ exp
{( m

θ(a)

)γ
ln a

}
+ 2M.

This together with Markov inequality and Lemma 14, provides a constant K depending
only on θ, M and γ such that for δθ(n) ≥ θ(a),

‖X̃1‖ψγ ≤ Ks(n)−1 = K
δθ(n)

ln1/γ{ϕ
(
δθ(n)

)
}
.

With the notation as in the proof of Theorem 8, the following result holds.

Lemma 17. Assume that θ is C1, ultimately non decreasing and that X1 satisfies (22).
Then when j ≤ logn,

E ‖S′uk+1 − S′uk
‖

(uk+1 − uk)1/2
≤ 2clt(X1), n ≥ n0,

with n0 depending on δ and the distribution of X1.
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Proof. Recall (3) and note that X ′
i = Xi − (Xi − X̃i) + E (Xi − X̃i). As j ≤ logn, we

have uk+1 − uk ≤ 2n2−j . Consequently

E ‖S′uk+1 − S′uk
‖

(uk+1 − uk)1/2
≤ clt(X1) + 2(uk+1 − uk)

1/2E ‖X1 − X̃1‖

≤ clt(X1) + 2
√

2δρ(1/n)2−j/2,

where the estimate for E ‖X1 − X̃1‖ is the same as for ‖E X̃1‖, (see the proof of (30)).
The result follows.
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text.
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théorèmes de Kolmogorov, Donsker et Ito-Nisio. C. R. Acad. Sci. Paris Sér. Math.
I 312, 877–882.

[6] Kuelbs, J. (1973). The invariance principle for Banach space valued random vari-
ables. J. Multivariate Anal. 3, 161–172.

[7] Lamperti, J. (1962). On convergence of stochastic processes. Trans. Amer. Math.
Soc. 104, 430–435.

[8] Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces. Springer-
Verlag, Berlin, Heidelberg.
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