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Abstract
Let Ho

ρ be the Hölder space of functions x : [0, 1] → R such that
|x(t + h)− x(t)| = o(ρ(h)) uniformly in t ∈ [0, 1], where ρ(h) = hαL(1/h)
with 0 < α < 1 and L is normalized slowly varying. Denote by ξpg

n

the polygonal smoothing of the uniform empirical process. We prove
that ξpg

n converges weakly in Ho
ρ to the Brownian bridge B if and only

if h1/4 = o(ρ(h)). We also prove that the polygonal smoothing χpg
n of

the uniform quantile process converges weakly in Ho
ρ to B if and only if

h1/2 ln(1/h) = o(ρ(h)).

Keywords : Brownian bridge, empirical process, Hölder space, quantile process
random polygonal line, spacings.
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1 Introduction
Let U1, . . . , Un, . . . be independent and [0, 1] uniformly distributed random vari-
ables. Let Fn(t) be the empirical distribution function based on U1, . . . , Un and
Gn(t) be the empirical quantile function. It is well known that the empirical
and quantile processes

ξn(t) :=
√

n
(
Fn(t)− t

)
, χn(t) :=

√
n
(
Gn(t)− t

)
, t ∈ [0, 1],
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both converge in law to the Brownian bridge B. The usual topological setting
for this convergence is the Skorohod’s space D(0, 1). Changing the topological
framework changes the set of continuous functionals of the paths and hence mod-
ifies the scope of the convergence in law of ξn and χn. For instance, Dudley [8]
proves that the convergence of ξn to B holds with respect to the p-variation
norm for p ∈ (0, 2). In another direction, Morel and Suquet [14] give a neces-
sary and sufficient condition for the convergence in law in L2(0, 1) of ξn to a
Gaussian process when the Ui’s are associated. Under the same positive depen-
dence assumption, they also investigate the convergence in law of ξn in some
Besov spaces.

Smoothing ξn and χn allows us to look for stronger topologies. Denote by
F pg

n the polygonal cumulative empirical distribution function (which interpo-
lates linearly Fn between its consecutive jumps). Denote by Gpg

n the polygonal
uniform sample quantile function (precise definitions are given in subsection 2.1).
Then define the processes

ξpg
n (t) :=

√
n
(
F pg

n (t)− t
)
, χpg

n (t) :=
√

n
(
Gpg

n (t)− t
)
, t ∈ [0, 1].

It is well known that ξpg
n and χpg

n converge in law to B in the space C[0, 1] of
continuous functions endowed with the supremum norm. Because the Hölder
spaces are topologically embedded in C[0, 1], they support more continuous
functionals than C[0, 1]. From this point of view, the alternative framework of
Hölder spaces gives functional limit theorems of a wider scope than C[0, 1]. This
choice may be relevant when the paths of ξpg

n and χpg
n and of the limit process B

share some α-Hölder regularity. Due to the well known regularity of Brownian
paths, this requirement is clearly satisfied with any α < 1/2 and it seems rather
natural to ask for some Hölderian convergence in law of ξpg

n and χpg
n .

Considering the Hölder spaces Ho
α of functions x : [0, 1] → R such that

|x(t+h)−x(t)| = o(hα) uniformly in t ∈ [0, 1], Hamadouche [9] established that
the sequence (ξpg

n )n≥1 converges weakly to B in Ho
α for every α < 1/4 but is not

tight in Ho
α as soon as α ≥ 1/4. In some sense this result means that polygonal

smoothing is too violent. With convolution smoothing of ξn, it is possible to
reach the weak Hölder convergence for any α < 1/2, see [10].

This paper investigates the convergence in law of ξpg
n and of χpg

n with re-
spect to the more general class of Hölder spaces Ho

ρ of functions x satifying
|x(t + h)− x(t)| = o(ρ(h)) uniformly in t ∈ [0, 1], where ρ(h) = hαL(1/h) with
0 < α < 1 and L is slowly varying at infinity and ultimately monotonic. In
particular, this covers the case of spaces Ho

ρ built on weight functions ρ(h) =
hα`β1

1 (c1/h) . . . `βk

k (ck/h), where the `j ’s are j-iterated logarithms. The critical
weight function for the Hölder regularity of B being ρ0(h) = h1/2 ln1/2(c/h),
no stronger topological framework than Ho

ρ0
can be expected for the conver-

gence in law to B of a sequence of polygonal processes. Recent limit theorems
in the spaces Ho

ρ may be found in Račkauskas and Suquet [16, 18, 19]. Some
statistical applications of weak Hölder convergence are proposed by the same
authors [17, 20, 21].

We prove in the present contribution that ξpg
n converges in law to B in Ho

ρ
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if and only if h1/4 = o(ρ(h)). Hence the weight function ρ(h) = h1/4 is really
the right critical one in this problem. The polygonal quantile process behaves
better with respect to Hölder topologies. Indeed we prove that χpg

n converges
in law to B in Ho

ρ if and only if h1/2 ln(1/h) = o(ρ(h)).
The paper is organized as follows. The relevant background on Hölder spaces

and weak convergence therein is presented in Section 2. Section 3 contains the
limit theorem for ξpg

n and its proof. Section 4 does the same for χpg
n .

2 Preliminaries

2.1 Polygonal processes

Let U1, . . . , Un be a sample of i.i.d. random variables uniformly distributed on
[0, 1]. We denote by Un:i the order statistics of the sample

0 = Un:0 ≤ Un:1 ≤ · · · ≤ Un:n ≤ Un:n+1 = 1,

which are distinct with probability one. For notational convenience, put

un:i = EUn:i =
i

n + 1
, i = 0, 1, . . . , n + 1.

We recall the distributional equality (see e.g. [24])

(Un:1, . . . , Un:n) d=
( S1

Sn+1
, . . . ,

Sn

Sn+1

)
, (1)

where Sk = X1 + · · ·+Xk and the Xk’s are i.i.d 1-exponential random variables.
The empirical distribution function Fn of the sample is

Fn(t) :=
1
n

n∑
i=1

1{Ui≤t}.

It is also the piecewise constant function which jumps at the Ui’s and satisfies

Fn(Un:i) =
i

n
, 0 ≤ i ≤ n.

Note that Fn(Un:n+1) = 1. We define the polygonal empirical function F pg
n as

the polygonal random line with vertices
(
Un:i, Fn(Un:i)

)
, i = 0, 1, . . . , n+1. The

uniform empirical process ξn and the polygonal uniform empirical process ξpg
n

are defined respectively by

ξn(t) :=
√

n
(
Fn(t)− t

)
, ξpg

n (t) :=
√

n
(
F pg

n (t)− t
)
, t ∈ [0, 1].

The polygonal smoothing being non linear, F pg
n does not inherit of the unbi-

asedness of Fn. Nevertheless the obvious estimate

‖ξn − ξpg
n ‖∞ ≤ 1√

n
, (2)
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implies that ξpg
n , like ξn, converges in the sense of the finite dimensional distri-

butions to the Brownian bridge B.
We define the (discontinuous) uniform quantile process χn by

χn(t) =
√

n
( n+1∑

i=1

Un:i1(un:i−1,un:i](t)− t
)
, t ∈ [0, 1]. (3)

Definition (3) differs slightly of the most usual one for the uniform quantile
process, see e.g. [5]. This later, denoted here χ̃n is given by

χ̃n(t) :=
√

n
(
F−1

n (t)− t
)
, t ∈ [0, 1],

where F−1
n (t) := inf{u; Fn(u) ≥ t}. The advantage of (3) is that at each jump

of χn, the process has null expectation.
We associate to χn the polygonal uniform quantile process χpg

n which is affine
on each [un:i−1, un:i], i = 1, . . . , n + 1 and satisfies

χpg
n (un:i) =

√
n(Un:i − un:i), i = 0, 1, . . . , n + 1. (4)

We shall also consider the polygonal smoothing χ̃pg
n of χ̃n defined as the polyg-

onal line which is affine on each [(i− 1)/n, i/n], i = 1, . . . , n and satisfies

χ̃pg
n (i/n) =

√
n(Un:i − i/n), i = 0, 1, . . . , n. (5)

2.2 Hölder spaces

Throughout this paper we deal with Hölder spaces Hρ or Ho
ρ built on some

weight function ρ satisfying the following condition.

(r1) The function ρ : [0, 1] → R is non decreasing continuous and such that

ρ(h) = hαL(1/h), 0 < h ≤ 1, (6)

where 0 < α < 1, and L is some positive function which is normalized
slowly varying at infinity.

Let us recall that L(t) is positive continuous normalized slowly varying at infinity
if it has a representation

L(t) = c exp
{∫ t

b

ε(u)
du

u

}
,

with 0 < c < ∞ constant and ε(u) → 0 when u →∞. By a theorem of Bojanic
and Karamata [1, Th.1.5.5], the class of normalized slowly varying functions is
exactly the Zygmund class i.e. the class of functions f(t) such that for every
δ > 0, tδf(t) is ultimately increasing and t−δf(t) is ultimately decreasing. Here
and below “ultimately” means “on some interval [b,∞)”.

We shall also use one of the following extra assumptions.
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(r2) The function L in (6) is ultimately monotonic.

(r3) The function θ(t) := t1/2ρ(1/t) is C1 on [1,∞) and there is a β > 1/2,
such that θ(t) ln−β(t) is ultimately non decreasing.

Note that such a β always (resp. never) exists when α < 1/2 (resp. α > 1/2). In
particular (r3) is satisfied by ρ(h) = h1/2 lnγ(c/h) for γ > 1/2. Here c denotes
any constant compatible with the requirement of increasingness of ρ on [0, 1].

Denote as usual by C[0, 1] the space of continuous functions x : [0, 1] → R
endowed with the supremum norm ‖x‖∞. For ρ satisfying (r1), put

ωρ(x, δ) := sup
s,t∈[0,1],
0<t−s<δ

|x(t)− x(s)|
ρ(t− s)

, 0 < δ ≤ 1.

We associate to ρ the Hölder space

Hρ := {x ∈ C[0, 1]; ωρ(x, 1) < ∞},

endowed with the norm

‖x‖ρ := |x(0)|+ ωρ(x, 1).

As Hρ is a non separable Banach space, it is more convenient to work with its
closed separable subspace

Ho
ρ := {x ∈ Hρ; lim

δ→0
ωρ(x, δ) = 0}.

When ρ(h) = hα, the corresponding Hölder spaces Hρ and Ho
ρ will be denoted

by Hα and Ho
α respectively.

As polygonal lines, the paths of ξpg
n and χpg

n belong clearly to Ho
ρ for any ρ

satisfying (r1).
One interesting feature of the spaces Ho

α is the existence of a basis of trian-
gular functions, see [3]. We write this basis as a triangular array of functions,
indexed by the dyadic numbers. Let us denote by Dj the set of dyadic numbers
in [0, 1] of level j, i.e.

D0 = {0, 1}, Dj =
{
(2l − 1)2−j ; 1 ≤ l ≤ 2j−1

}
, j ≥ 1.

Write for r ∈ Dj , j ≥ 0,

r− := r − 2−j , r+ := r + 2−j .

For r ∈ Dj , j ≥ 1, define the triangular Faber-Schauder functions Λr by:

Λr(t) :=

 2j(t− r−) if t ∈ (r−, r];
2j(r+ − t) if t ∈ (r, r+];
0 else.
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When j = 0, we just take the restriction to [0, 1] in the above formula, so

Λ0(t) = 1− t, Λ1(t) = t, t ∈ [0, 1].

The sequence {Λr; r ∈ Dj , j ≥ 0} is a Schauder basis of C[0, 1]. Each x ∈ C[0, 1]
has a unique expansion

x =
∞∑

j=0

∑
r∈Dj

λr(x)Λr, (7)

with uniform convergence on [0, 1]. The Schauder scalar coefficients λr(x) are
given by

λr(x) = x(r)− x(r+) + x(r−)
2

, r ∈ Dj , j ≥ 1,

and in the special case j = 0 by

λ0(x) = x(0), λ1(x) = x(1).

The partial sum

EJx :=
J∑

j=0

∑
r∈Dj

λr(x)Λr (8)

in the series (7) gives the linear interpolation of x by a polygonal line between
the dyadic points of level at most J .

Ciesielski [3] proved that {Λr; r ∈ Dj , j ≥ 0} is also a Schauder basis of each
space Ho

α (hence the convergence (7) holds in the Hα topology when x ∈ Ho
α)

and that the norm ‖x‖α is equivalent to the following sequence norm :

‖x‖seqα := sup
j≥0

2jα max
r∈Dj

|λr(x)|.

This equivalence of norms provides a very convenient discretization procedure
to deal with Hölder spaces and is extended in [18] to the spaces Ho

ρ with ρ
satisfying (r1). The sequence norm ‖x‖seqρ equivalent to ‖x‖ρ is then defined by

‖x‖seqρ := sup
j≥0

1
ρ(2j)

max
r∈Dj

|λr(x)|. (9)

It is worth noticing that

‖x− EJx‖seqρ = sup
j>J

1
ρ(2j)

max
r∈Dj

|λr(x)|. (10)

2.3 Tightness in Hölder spaces

We write
Yn

Ho
ρ−−−−→

n→∞
Y,

for the convergence in law in the separable Banach space Ho
ρ of a sequence

(Yn)n≥1 of random elements in Ho
ρ (also called here convergence in distribution in
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Ho
ρ or weak convergence in Ho

ρ). Such a convergence is equivalent to the tightness
of (Yn)n≥1 on Ho

ρ together with convergence of finite dimensional distributions.
The following characterization of tightness in Ho

ρ looks very similar to the
classical one for the space C[0, 1], obtained by combining Ascoli’s and Prohorov’s
theorems.

Theorem 1. The sequence (Yn)n≥1 of random elements in Ho
ρ is tight if and

only if the following two conditions are satisfied:

i) For each t ∈ [0, 1], the sequence (Yn(t))n≥1 is tight on R.

ii) For each ε > 0,
lim
δ→0

lim sup
n→∞

P(ωρ(Yn, δ) > ε) = 0. (11)

Proof sketched. For the sufficiency, we refer to Theorem 3 in [18] noting that
with the notations used therein,

‖Yn − EjYn‖seqρ ≤ ωρ(Yn, 2−j).

For the necessity, introduce the functionals ΦN defined on Ho
ρ by ΦN (x) :=

ωρ

(
x, 1/N

)
. By the definition of Ho

ρ, the sequence (ΦN )N≥1 decreases to zero
pointwise on Ho

ρ. Moreover each ΦN is continuous in the strong topology of Ho
ρ.

By Dini’s theorem this gives the uniform convergence of (ΦN )N≥1 to zero on
any compact K of Ho

ρ. This remark combined with the assumption of tightness
of (Yn)n≥1 leads easily to

lim
N→∞

sup
n≥1

P(ωρ(Yn, 1/N) > ε) = 0, (12)

from which we obtain (11).

The special following tightness result extends Theorem 1 in [9]. It may be
relevant in the case of processes Yn whose “not too small increments” behave
smoothly, while their smaller increments can be controlled differently. This
typically happens with the empirical processes ξpg

n .

Theorem 2. Assume that the sequence (Yn)n≥1 of random elements in Ho
ρ

fulfils the following conditions.

a) For each r ∈ D,
(
Yn(r)

)
n≥1

is tight in R.

b) For some non increasing sequence (an)n≥1 in (0, 1), converging to zero,

P
(
|Yn(t)− Yn(s)| ≥ u

)
≤ |t− s|Q(|t− s|, u), u > 0, |t− s| ≥ an, (13)

where the function Q : R∗+ × R∗+ → R+ satisfies for every positive ε,

+∞∑
j=1

Q
(
2−j , ερ(2−j)

)
< ∞. (14)
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c) ωρ(Yn, an) converges to 0 in probability (n →∞).

Then (Yn)n≥1 is tight in Ho
ρ.

When using Theorem 2 to prove a weak Hölder convergence, Condition a) is
automatically satisfied as soon as the convergence of finite dimensional distri-
butions of Yn holds true. Note also that if b) is satisfied without the restriction
|t − s| ≥ an, then c) follows. Of course our interest in this theorem focuses
on the case where there is no possibility to obtain b) without the restriction
|t− s| ≥ an. Condition c) may be tractable when some information is available
on the local smoothness of Yn. The following corollary is well adapted to the
case of the polygonal uniform empirical process. Recall that ρ(h) = hαL(1/h)
with 0 < α < 1 and L slowly varying.

Corollary 3. Assume that the sequence (Yn)n≥1 of random elements in Ho
ρ

satisfies Conditions a) and c) of Theorem 2 and that for some real numbers
γ > 0, p > 2 and some non increasing sequence (an)n≥1 in (0, 1), converging to
zero,

E |Yn(t)− Yn(s)|p ≤ Cp|t− s|1+γ , |t− s| ≥ an, (15)

for some positive constant Cp. Then (Yn)n≥1 is tight in Ho
ρ if either α < γ/p

or α = γ/p with
∑

j≥1 L(2j)−p < ∞.

Proof of Theorem 2. By Theorem 2 and Remark 1 in [19], it suffices to prove
that for every positive ε,

lim
J→∞

lim sup
n→∞

P
(
‖Yn − EJYn‖seqρ > ε

)
= 0, (16)

with the projectors EJ defined by (8). Define the integer Jn by the condition
2−Jn−1 < an ≤ 2−Jn . Then accounting (10), we have for each J ≥ 1

P
(
‖Yn − EJYn‖seqρ > ε

)
≤ P ′

J,n + P ′′
n , (17)

where

P ′
J,n := P

(
max

J≤j≤Jn

1
ρ(2−j)

max
r∈Dj

|λr(Yn)| > ε
)
,

P ′′
n := P

(
sup
j>Jn

1
ρ(2−j)

max
r∈Dj

|λr(Yn)| > ε
)
.

The estimate (17) is clear when J ≤ Jn. When Jn < J , it remains true with
the usual convention “sup ∅ = −∞”, which gives P ′

J,n = 0.
To control P ′′

n , let us simply note that

P ′′
n ≤ P

(
ωρ(Yn, an) > ε

)
,

so Condition c) in Theorem 2 gives

lim sup
n→∞

P ′′
n = 0. (18)
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Now to control P ′
J,n, having in mind the usual convention that a sum indexed

by the emptyset is defined as null, we get by Condition b)

P ′
J,n ≤

∑
J≤j≤Jn

∑
r∈Dj

P
(
|λr(Yn)| > ερ(2−j)

)
≤

∑
J≤j≤Jn

2j2−jQ
(
2−j , ερ(2−j)

)
≤

∞∑
j=J

Q
(
2−j , ερ(2−j)

)
.

In view of (14), this leads to

lim
J→∞

lim sup
n→∞

P ′′
n = 0. (19)

Then (16) and hence the tigthness of (Yn) follow from (18) and (19).

Proof of Corollary 3. By Markov’s inequality, (15) leads to (13) with Q(v, u) :=
Cpu

γv−p. Hence Condition (14) reduces to

∞∑
j=1

2j(pα−γ)

L(2j)p
< ∞.

Since L is slowly varying in the neighbourhood of infinity, zδL(z)p goes to
infinity with z for any positive δ. It follows that the above series converges for
any α < γ/p whatever the choice of the slowly varying function L may be.

2.4 An Hölderian FCLT

We shall need the following invariance principle for partial sums processes, which
is proved in [18] in a more general setting. Let X1, . . . , Xn, . . . be i.i.d. random
variables in R with null expectation and EX2

1 = 1. Set S0 = 0,

Sk = X1 + · · ·+ Xk, for k = 1, 2, . . .

and consider the polygonal partial sums processes

Ξn(t) = n−1/2S[nt] + n−1/2(nt− [nt])X[nt]+1, t ∈ [0, 1]. (20)

Theorem 4 (Račkauskas, Suquet [18]). Let ρ satisfying (r1). If Ξn con-
verges weakly in Ho

ρ to the standard Brownian motion W , then for every A > 0,

lim
t→∞

tP
(
|X1| ≥ Aθ(t)

)
= 0. (21)

If ρ satisfies (r1), (r3) and (21), then Ξn converges weakly in Ho
ρ to W .
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Recall that Condition (r3) implies that α ≤ 1/2 and that θ is defined by

θ(t) = t1/2ρ(1/t) = t1/2−αL(t).

If a < 1/2 then it suffices to check (21) for A = 1 only. In the classical case
where ρ(h) = hα, 0 < α < 1/2, (21) is equivalent to P(|X1| ≥ t) = o(t−p(α))
with p(α) := (1/2 − α)−1. This improves on Lamperti’s Theorem [11] which
obtained the weak Ho

α convergence of Ξn under the finiteness of E |X1|p for
some p > p(α). In the case where ρ(h) = h1/2 lnb(c/h) with b > 1/2, (21) is
equivalent to E exp

(
γ|X1|1/b

)
< ∞, for each γ > 0.

2.5 Spacings

The study of the asymptotical behavior in Ho
ρ of the polygonal lines ξpg

n and
χpg

n involves clearly their ρ-weighted increments between vertices. This requires
some probabilistic control on the increments Un:i+k − Un:i. The quantities of
interest are more precisely the minimal and maximal spacing δn:1 and δn:n+1

defined by

δn:1 := min
0≤i≤n

(Un:i+1 − Un:i), δn:n+1 := max
0≤i≤n

(Un:i+1 − Un:i) (22)

and the minimal k-spacing mn(k) defined for k = 1, . . . , n by

mn(k) := min
0≤i≤n−k+1

(Un:i+k − Un:i). (23)

Let us recall the classical Lévy’s results about δn:1 and δn:n+1.

Lemma 5 (Lévy [13], [24]). The sequence of random variables
(
n2δn:1

)
n≥1

converges in distribution to the exponential distribution with parameter 1.

Lemma 6 (Lévy [24], p.726). The limiting distribution of the maximal spac-
ing δn:n+1 is given by

P
(
(n + 1)δn:n+1 − log(n + 1) ≤ t

)
−−−−→
n→∞

exp(−e−t), t > 0.

To control mn(k), we use the following lemma by Deheuvels which extends
an earlier result of Devroye [7] concerning mn(1) = δn:1.

Lemma 7 (Deheuvels [6]). Let k ≥ 1 be a fixed integer. Then, whenever a
non increasing sequence (an)n≥1 of positive constants satisfies the condition

∞∑
n=1

(nan)k < ∞, (24)

we have P(mn(k) ≤ an i.o.) = 0.
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3 Polygonal uniform empirical process
Theorem 8. Let ρ(h) = h1/4L(1/h) be a weight function satisfying (r1) and
(r2). Then ξpg

n converges weakly in Ho
ρ to the Brownian bridge if and only if

lim
t→∞

L(t) = ∞. (25)

In view of the embeddings of Hölder spaces and of the result in [9] for
the weight functions ρ(h) = hα, α ≥ 1/4, Theorem 8 leads to the following
characterization of the weak Ho

ρ convergence of ξpg
n when ρ satisfies (r1) and

(r2) :

ξpg
n

Ho
ρ−−−−→

n→∞
B if and only if lim

h→0
h−1/4ρ(h) = ∞. (26)

It is worth noticing that Condition (r2) is needed here only to prove the necessity
of (25).

The following elementary lemma plays a key rôle in the proof of Theorem 8.

Lemma 9. Let the weight function ρ satisfy (r1) with 0 < α < 1. Then, there
is a η ∈ (0, 1], such that if 0 ≤ t < t′ ≤ 1 with t′ − t ≤ η and if f is any real
valued function whose restriction to [t, t′] is affine, we have

sup
t≤s<s′≤t′

|f(s′)− f(s)|
ρ(s′ − s)

=
|f(t′)− f(t)|

ρ(t′ − t)
, (27)

where η depends only on ρ.

Proof of Lemma 9. Because the function L in (6) is normalized slowly varying,
tεL(t) is ultimately non decreasing for any positive ε, i.e. is non decreasing on
some interval [b,∞), where b ≥ 1 depends on ε and L. Choosing ε = 1 − α,
it follows that the function h/ρ(h) is non decreasing on (0, η], where η = 1/b
depends only on ρ. This together with the fact that f is affine between t and t′

leads for t ≤ s < s′ ≤ t′ to the estimate

|f(s′)− f(s)|
ρ(s′ − s)

=
s′ − s

ρ(s′ − s)
|f(t′)− f(t)|

t′ − t
≤ t′ − t

ρ(t′ − t)
|f(t′)− f(t)|

t′ − t
,

whence (27) follows.

Proof of Theorem 8. As we have already noted that ξpg
n converge to B in the

sense of the finite dimensional distributions, we only have to prove that Con-
dition (25) is necessary and sufficient for the tightness in Ho

ρ of the sequence
(ξpg

n )n≥1.
The necessity of (25) follows essentially of the fact that with ρ0(h) := h1/4,

(ξpg
n )n≥1 is not tight in Ho

ρ0
, see [9]. Now if (25) fails, then ρ(h)/ρ0(h) is bounded

near 0 by (r2) and hence Ho
ρ is topologically embedded in Ho

ρ0
. This forbids the

tightness of (ξpg
n )n≥1 in Ho

ρ.
To prove the sufficiency of (25) for the tightness of (ξpg

n )n≥1, we shall use
Corollary 3, recalling that its Condition a) is obviously satisfied, due to the
convergence of the one dimensional distributions of (ξpg

n )n≥1.

11



To check Conditions b) and c), we choose an := n−c with 3/2 < c < 2.
In order to obtain the estimate (15) for the increments of ξpg

n , let us observe
first that the corresponding increments of the discontinuous empirical process
ξn may be expressed as

ξn(t)− ξn(s) =
1√
n

n∑
i=1

Zi(s, t), 0 ≤ s ≤ t ≤ 1, (28)

where the Zi(s, t) := 1(s,t](Ui) − (t − s) are i.i.d. bounded random variables.
Note moreover that for any real p ≥ 2,

E |Zi(s, t)|p ≤ |t− s|. (29)

Now in view of (2), (28) and (29), Rosenthal’s inequality, see [22] or [12], gives
us for any p > 2,

E |ξpg
n (t)− ξpg

n (s)|p ≤ E
(
|ξn(t)− ξn(s)|+ 2n−1/2

)p

≤ 2p−1E |ξn(t)− ξn(s)|p + 22p−1n−p/2

≤ Ap

(
n1−p/2|t− s|+ |t− s|p/2

)
+ 22p−1n−p/2, (30)

with a constant Ap depending only on p. The estimate (30) is valid for any
s, t ∈ [0, 1]. When |t− s| ≥ n−c, we have moreover

n−p/2 ≤ |t− s|
p
2c , n1−p/2 ≤ |t− s|

p−2
2c ,

so (30) leads to the inequality

E |ξpg
n (t)− ξpg

n (s)|p ≤ Cp|t− s|
p
2c , |t− s| ≥ an = n−c,

where the constant Cp depends only on p. Hence (15) is satisfied for any p > 2c
with an exponent γ = p

2c − 1. Finally recalling that c < 2, we choose p large
enough to have

γ

p
=

1
2c
− 1

p
>

1
4
.

To check Condition c), it is convenient to introduce the random variable N
with values in N∗ ∪ {∞} defined by

N := inf{l ∈ N∗; ∀n ≥ l, mn(2) ≥ an}, (31)

with the usual convention inf ∅ := ∞. Because an = n−c with c > 3/2, Lemma 7
implies that N is almost surely finite. Hence for any positive ε there is some
integer n1 = n1(ε) such that

P(N > n1) < ε. (32)

It follows that for any positive ε0,

P
(
ωρ(ξpg

n , an) > ε0

)
≤ P

(
ωρ(ξpg

n , an) > ε0, N ≤ n1

)
+ ε. (33)

12



Now it remains to control ωρ(ξpg
n , an) on the event

Eε := {N ≤ n1}.

To do that, let us consider an arbitrary interval [t, t + an] and estimate on Eε

the ratios

qn(s, s′) :=
|ξpg

n (s′)− ξpg
n (s)|

ρ(s′ − s)
, t ≤ s < s′ ≤ t + an.

Due to (23) and (31) it is clear that on Eε and for every n ≥ n1, the open
interval (t, t + an) contains at most two order statistics Un:i. We observe also
that the increment of ξpg

n between two consecutive vertices of its restriction to
[t, t+an] (including artificial vertices at t and t+an) is bounded by n−1/2 because
n1/2an = n1/2−c < n−1. Then considering the three possible configurations and
using Lemma 9 it is easily seen that on Eε,

qn(s, s′) ≤ 3
n1/2ρ(δn:1)

, t ≤ s < s′ ≤ t + an, n ≥ n1.

This estimate being uniform in t ∈ [0, 1− an], it follows that

ωρ(ξpg
n , an) ≤ 3

n1/2ρ(δn:1)
, n ≥ n1, on Eε. (34)

Next we note that if Z is a random variable having the exponential distri-
bution with parameter 1, then with b := − ln(1− ε), P(Z ≤ b) = ε. In view of
Lemma 5 we can find an integer n2 = n2(ε) such that

P
(
δn:1 ≤

b

n2

)
< 2ε, n ≥ n2. (35)

Finally, by Condition (25) we can find an integer n3 = n3(ε, ε0) such that

3
n1/2ρ(bn−2)

=
3

b1/4L(n2/b)
< ε0, n ≥ n3. (36)

Gathering (33), (34), (35) and (36), we see that with n4 := max(n1, n2, n3),

P
(
ωρ(ξpg

n , an) > ε0

)
≤ 3ε, n ≥ n4.

Since ε and ε0 were arbitrary, Condition c) of Corollary 3 is satisfied and the
proof of Theorem 8 is complete.

4 Polygonal uniform quantile processes
Theorem 10. Let ρ(h) = h1/2L(1/h) be a weight function satisfying (r1) and
(r3). Then χpg

n converges weakly in Ho
ρ to the Brownian bridge, if and only if

lim
t→∞

L(t)
ln t

= ∞. (37)
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Due to the embeddings of Hölder spaces, note that if ρ satisfies (r1) with
α < 1/2, then χpg

n converges weakly in Ho
ρ to B. Note also that for the special

class of weight functions of the form ρ(h) = h1/2 lnγ(c/h), (37) implies (r3).

Proof. Let us establish first the sufficiency of (37). With the i.i.d. 1-exponential
random variables Xi and their partial sums Sk introduced in (1), let ζn be the
polygonal process which is affine on each interval [un:i−1, un:i], i = 1, . . . , n + 1
and such that

ζn(un:i) =
√

n
( Si

Sn+1
− un:i

)
, i = 0, 1, . . . , n + 1. (38)

Put for notational convenience

X ′
i = Xi −EXi, S′k = Sk −ESk

and let Ξn be the partial sums process (20) built on the S′k’s instead of the Sk’s.
Note also that EX ′

1
2 = 1. Then we have for i = 0, 1, . . . , n + 1,

ζn(un:i) =
√

n

Sn+1

(
Si −

iSn+1

n + 1

)
=

√
n

Sn+1

(
S′i −

i

n + 1
S′n+1

)
=

√
n(n + 1)
Sn+1

(
S′i√
n + 1

− i

n + 1
S′n+1√
n + 1

)
=

√
n(n + 1)
Sn+1

(
Ξn+1(un:i)− un:i Ξn+1(1)

)
.

It follows that

ζn(t) =

√
n(n + 1)
Sn+1

(
Ξn+1(t)− tΞn+1(1)

)
, t ∈ [0, 1], (39)

because both sides of (39) are polygonal lines with the same vertices. By the
strong law of large numbers, √

n(n + 1)
Sn+1

a.s.−−−−→
n→∞

1. (40)

By Theorem 4, Ξn+1 converges weakly in Ho
ρ to the Brownian motion if X ′

1

satisfies (21) for every positive A. Noting that θ(t) = L(t), and |X ′
1| ≤ X1 + 1,

this condition follows from (37) since

tP
(
|X ′

1| ≥ Aθ(t)
)
≤ tP

(
X1 + 1 ≥ Aθ(t)

)
= t exp(−AL(t) + 1).

Denote by I the identity s 7→ s on [0, 1]. The map ϕ : Ho
ρ → Ho

ρ, x 7→ x−x(1)I is
obviously continuous for any ρ. Hence by preservation of the weak convergence
by continuous maping, see e.g. [2, p.29],

ϕ(Ξn+1)
Ho

ρ−−−−→
n→∞

B. (41)
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From (40) and (41) it follows that

ζn

Ho
ρ−−−−→

n→∞
B. (42)

By (1), χpg
n and ζn have the same finite dimensional distributions. This implies

that the distributions of χpg
n and ζn coincide as probability measures on the

Borel σ-field of Ho
ρ. A simple way to see it is to use the decomposition of any

element x ∈ Ho
ρ on the Faber Schauder basis of triangular functions, noting that

the coefficients are dyadic second differences of x, see [15] or [23]. Hence (42)
gives

χpg
n

Ho
ρ−−−−→

n→∞
B. (43)

To prove now the necessity of (37), assume that the convergence (43) holds
for some ρ satisfying (r1), with α = 1/2. This implies the tightness of

(
ϕ(Ξn+1)

)
n≥1

in Ho
ρ. The sequence of degenerated processes (Zn)n≥1 defined by Zn = Ξn+1(1)I

is tight in Ho
ρ in view of the CLT in R. As Ξn+1 = ϕ(Ξn+1) + Zn, this gives the

tightness in Ho
ρ of (Ξn+1)n≥1. By Theorem 5 in [18] X ′

1 must satisfy (21) for
every positive A, which implies (37) because

P(|X ′
1| ≥ Aθ(t)) ≥ P(X1 ≥ 1 + AL(t)) = exp(−1−AL(t)).

The proof is complete.

Remark 11. From Theorem 10 we see that the critical ρ for the weak Ho
ρ con-

vergence of χpg
n to B is ρ1(h) = h1/2 ln(c/h). This fact is somewhat connected

to the following observation. Denote by i? the random index where the maximal
spacing of the sample is realized, i.e.

Un:i? − Un:i?−1 = δn:n+1 = max
1≤i≤n+1

(Un:i − Un:i−1).

By Lemma 6, we have for n large enough,

P
(
δn:n+1 ≥

ln(n + 1)
n + 1

)
> 1− 2e−1 > 0.

Now the following lower bound holds at least with probability 1− 2e−1.

|χpg
n (un:i?)− χpg

n (un:i?−1)|
ρ1(1/(n + 1))

≥
n1/2

( ln(n+1)
n+1 − 1

n+1

)
(n + 1)−1/2 ln(c(n + 1))

∼ 1.

Hence ωρ1(χ
pg
n , 1/n) cannot converge to zero in probability, which forbids the

tightness in Ho
ρ1

of (χpg
n )n≥1 in view of (12).

Since we already noted that our definition of the quantile process is not
the most classical, it is natural to ask if Theorem 10 still holds true with the
classical polygonal quantile process χ̃pg

n , based on the left continuous inverse of
the empirical distribution function Fn. This process is the random polygonal
line with vertices

(
i/n, n1/2(Un:i − i/n)

)
, 0 ≤ i ≤ n.

15



Corollary 12. Let ρ(h) = h1/2L(1/h) be a weight function satisfying (r1) and
(r3). Then χ̃pg

n converges weakly in Ho
ρ to the Brownian bridge, if and only if L

satisfies (37).

Proof. To show that (37) implies the weak-Ho
ρ convergence of χ̃pg

n to B, it suffices
clearly to check the tightness. To this end, we estimate ωρ(χ̃pg

n , δ) in terms of
ωρ(χpg

n , δ) in order to apply Theorem 10. To control the increments of χ̃pg
n

between s and t we discuss according to the positions of s and t relatively to
the grid {i/n, i = 0, . . . , n}.
Case 1, i−1

n < s < t ≤ i
n . Interpolating linearly between (i− 1)/n and i/n and

using the relationship between Un:i−Un:i−1 and χpg
n (un:i)−χpg

n (un:i−1), we get

χ̃pg
n (t)− χ̃pg

n (s) = n(t− s)
(
χpg

n (un:i)− χpg
n (un:i−1)

)
− n1/2(t− s)

n + 1
.

Due to (r1), h/ρ(h) increases on (0, 1/n] for n large enough. Hence

|χ̃pg
n (t)− χ̃pg

n (s)|
ρ(t− s)

≤ n
t− s

ρ(t− s)
ωρ

(
χpg

n ,
1

n + 1

)
ρ
( 1

n + 1

)
+

n1/2

n + 1
t− s

ρ(t− s)

≤ ωρ

(
χpg

n ,
1
n

)
+

1
n3/2ρ(1/n)

. (44)

Case 2, i−1
n < s ≤ i

n ≤ (j − 1)/n < t ≤ j/n. By chaining we get

|χ̃pg
n (t)− χ̃pg

n (s)|
ρ(t− s)

≤ T1 + T2 + T3,

where

T1 :=
|χ̃pg

n (i/n)− χ̃pg
n (s)|

ρ(i/n− s)
, T2 :=

|χ̃pg
n (t)− χ̃pg

n ((j − 1)/n)|
ρ(t− (j − 1)/n)

,

T3 :=
|χ̃pg

n ((j − 1)/n)− χ̃pg
n (i/n)|

ρ((j − 1)/n− i/n)
,

with the convention that Tk := 0 when its denominator vanishes. From Case 1,
T1 and T2 are bounded by (44). To bound T3 when i < j − 1, we note that

χ̃pg
n

(j − 1
n

)
− χ̃pg

n

( i

n

)
= χpg

n (un:j−1)− χpg
n (un:i)−

j − 1− i

n1/2(n + 1)
,

whence

T3 ≤
ωρ

(
χpg

n , j−1−i
n+1

)
ρ
(

j−1−i
n+1

)
ρ
(

j−1−i
n

) +
1

n1/2

j−1−i
(n+1)

ρ
(

j−1−i
n

)
≤ ωρ(χpg

n , t− s) + Cn−1/2, (45)
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where C := sup0<h≤1 h/ρ(h). Accounting (44), we obtain finally in Case 2 and
for n large enough,

|χ̃pg
n (t)− χ̃pg

n (s)|
ρ(t− s)

≤ 2ωρ

(
χpg

n ,
1
n

)
+ ωρ(χpg

n , t− s) + (C + 1)n−1/2.

To conclude this discussion, let us simply retain that for any 0 < δ < 1 and
n > 1/δ,

ωρ(χ̃pg
n , δ) ≤ 3ωρ(χpg

n , δ) + (C + 1)n−1/2.

From this it follows that

lim sup
n→∞

P
(
ωρ(χ̃pg

n , δ) > ε
)
≤ lim sup

n→∞
P

(
ωρ(χpg

n , δ) > ε/4
)
. (46)

From (37), Theorem 10 and Theorem 1 applied to (χpg
n )n≥1 and (46) we deduce

that
lim
δ→0

lim sup
n→∞

P
(
ωρ(χ̃pg

n , δ) > ε
)

= 0.

Now Theorem 1 applied to the sequence (χ̃pg
n )n≥1 gives its tightness in Ho

ρ.
The necessity of (37) for the weak Ho

ρ convergence of (χ̃pg
n )n≥1 is easily

checked by the argument given in Remark 11.
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